The disclosed embodiments relate generally to cable dispensing systems. In particular, the disclosed embodiments relate to an electric cable dispensing system used for recharging the batteries of electric vehicles.
Electric vehicles are becoming more popular. Unfortunately, current battery technology requires batteries for electric vehicles to be recharged frequently. Accordingly, there is a need for systems that can quickly and efficiently couple an electric vehicle to a charge station to recharge the batteries of such vehicles.
The 120V-240V electrical outlets commonly available worldwide have several drawbacks for recharging car batteries. First, charging takes a substantial amount of time because of relatively low voltage sources. Second, the high current required for charging the batteries often results in inefficiencies, including loss of energy as heat. Therefore, there exists a need for a retractable cable dispensing system that reduces energy loss and recharges car batteries more quickly and conveniently.
The present invention addresses the above deficiencies and other problems associated with prior retractable cable dispensing systems. Embodiments of the present invention may operate at medium and/or high voltage, which reduces the current and associated energy loss. The invention utilizes continuous conductive elements to provide electrical connections between two parts (e.g. a stator and a housing) which are displaceable with respect to one another (as a result of movement/rotation of one of them or both). The invention may therefore be utilized in medium and high voltage applications for which continuous and stable electrical connection(s) are required (for example for safe and reliable connection of a protective earth/ground conductor). For example, instead of traditional non-continuous electricity conducting mechanisms such as slip-rings and touch brushes, which are typically used for conducting electricity between relatively movable/rotatable parts, embodiments of the present invention use continuous conductive element(s), such as spirals, to provide electric conductivity between electric terminals/contacts coupled to the respective moving parts thus allowing the relative movement between those moving parts while providing and maintaining continuous and stable electric contact.
It should be noted here that the terms low-, medium- and high-voltage are considered herein in accordance with the general/standard definitions according to which: “High voltage” refers to alternating-current (AC) voltage over 1000 V or direct-current (DC) voltage over 1500 V; “Medium voltage” refers to voltages in the range of 50-1000 V AC or 120-1500 V DC over 1000 V or direct-current (DC) voltages over 1500 V; and “Low voltage” refers to voltages below 50 V AC or below 120 V DC.
In addition, the present invention allows efficient electrical conduction through the retractable cable dispensing system having reduced resistance and thereby reduced energy loss. As is generally known, the electrical resistance of a conductor is linearly proportional to the length of the electrical path through the conductor. Thus, in some embodiments of the invention the bindings of the coils/spirals, which provide continuous electrical connection between the two moving elements, are configured to be tightened to one another when the cable is retracted, thus creating an electrical short between the bindings/loops of the coils. This provides that the electrical path through the coils/spirals is decreased as the coils are tightened during use e.g. when the cable dispensing system is extracted and an electric cable is dispensed thereby. To this end it should be understood, that the number of bindings in each spiral and the nominal radii of the bindings are selected such that an electrical contact would be formed between at least some of the bindings in the radial direction at least when the cable is extracted over a certain length. In some cases, also the crossectional shape of the spiral conductor is selected to improve the electrical coupling between adjacent bindings when the latter are close to one another. For example flat or flat-braid cables may be used for this purpose. This is explained in more detail below.
Yet additionally, in some embodiments of the invention, it provides a modular design for such a cable dispensing system allowing extraction and retraction of a cable that may include any number of electrical wires, as well as communication/data transmission cords/lines, where all the electrical wires and possibly also the communication/data transmission cords are accommodated in a single cable (e.g. within a single insulating cable cover). This is achieved according to the invention by utilizing a housing of the cable dispensing system, on the outside circumference of which the cable that is to be retracted/contracted is wrapped. The housing may for example have a cylindrical shape. The housing at least partially encloses a stator module defining a rotation axis of the housing relative to the stator. Typically, the stator may be associated with an anchor or may be fixedly mounted, for example to a charging pole, wherein the housing is configured to be rotatable relative to the stator for retracting or releasing the cable wrapped thereon. When connected to a charging pole/post, one or more continuous electrical connections and possibly also continuous data transmission cords are provided between the cable wrapped/connected to the housing and the electrical connections/terminals of the stator by which the cable dispensing system is connected to the charging pole. The one or more continuous electrical connections are provided by one or more coils/spiral conductors whose inner end is fixedly attached to the stator and outer end is fixedly attached to the housing and electrically connected to the wires/data-cords of the cable wrapped thereon. The one or more spiral conductors are typically arranged within the housing with a spaced apart, coaxial and collinear arrangement about the stator. This provides a modular design by which any number of such conductive spirals may be accommodated side by side coaxially about the stator. Accordingly, any desired number of continuous electrical connections and data transmission cords may be provided between the housing and the stator while also enabling the same number of connections to be connected to a single cable wrapped about the housing. Specifically, the cable dispensing system of the invention may be used to provide a single-phase or a three-phase electrical connection (i.e. including 3 and 5 electric wires respectively) and may also provide therewith a data communication connection.
Providing a modular design of the cable dispensing system, which may be configured to carry any number of conductor/wires and data lines, has also commercial advantages as the same elements/modules may be modularly assembled to provide different types of retractable cable dispensing systems. Specifically, in vehicle charging applications, single phase and three phase chargers may coexist together for charging vehicles and may accordingly require retractable cables which may support both three- and five-wires electrical connections plus data connections. Providing a modular design satisfying both requirements allows efficient and less costly production of such modules.
It should be understood that the modular design provided by the invention also allows some of the electrical connections between the housing and the stator to be non-continuous connections such as those achieved by the slip-rings and touch brushes mechanisms. Specifically, in some cases it might be essential to provide continuous grounding (earthing) connection while for other electrical connections such as the phase and neutral electric wires, non continuous electrical connections may be used. For example, for some electrical connections, the typical known in the art slip-rings and touch brushes mechanism may be used in between the stator and the housing, while for one or more other connections, such as ground connection, the continuous spiral conductor connection may be used. In such a combination the slip-rings and touch brushes mechanism(s) and the spiral conductor may be arranged side by side, and coaxially and collinearly with respect to the stator to provide multiple electrical connections between the stator and the housing/cable. In this regard, it should be noted that the signal/data transmission between the housing and the stator may be provided by a spiral data cord which may include multiple signal lines and/or by slip-rings and touch brushes mechanism.
An additional advantage of the present invention is associated with the small footprint/form-factor of the retractable cable dispensing system. The small form-factor is achieved by utilizing non-insulated conductive spirals for conducting electric power between the housing and the stator. In general, the electric insulation of an electric wire is associated with a substantial part of the wire's volume, thus by obviating use of insulated conductors/wires in the spirals, the size of the housing may be reduced. In particular, obviating use of an insulation in the spirals provides significant reduction in the sizes of dispensing systems for medium voltage, high power applications, such as charging, for which the thickness of the insulation layer is significant.
Specifically, according to some embodiments of the invention, the coils (or some of them) are configured such that as the cable is extracted and the housing is rotated with respect to the stator for releasing the cable wrapped thereon (reducing the number of windings of the cable), then the number of windings of the coils is increased and the coils are wrapped (e.g. tightened) closer to the central hub of the stator (i.e. the direction of the coils windings being similar to the direction of the cable windings). Accordingly, when the cable is retracted (being wound over the housing), the number of windings of the coils is reduced and their nominal/average radius increased.
Alternatively or additionally, according to some embodiments of the invention, the coils (or some of them) are configured such that as the housing is rotated with respect to the stator for releasing the cable (reducing the number of windings of the cable), then the number of windings of the coils is decreased and the coils are wrapped (e.g. tightened) closer to the internal perimeter of the housing (i.e. the direction of the coil windings being opposite to the direction of the cable windings). Accordingly, when the cable is retracted (being wound over the housing), the number of windings of the coils is increased and their nominal/average radius is decreased.
As noted above, the use of non insulated coils/spirals improves the packing/wrapping of wires/coils in a given volume of the housing resulting in longer cable when fully extracted. This is because for a given size/diameter of the housing, the length of the retractable cable depends inter alia on the allowable number of rotations of the housing between a fully retracted state of the cable dispensing system and a fully extracted state thereof. In turn, the number of allowable rotations of the housing actually corresponds to the difference between the number of windings of the coils in the fully retracted and fully extracted states. For a given housing and stator dimensions, this difference (and accordingly the number of allowable/possible rotations of the housing) is increased when utilizing thinner spiral/coils elements. Accordingly, the use of non-insulated coils/spirals provides smaller and more efficient design increasing the number of possible rotations of the housing about the stator and thus increasing the length of the cable that can be extracted.
As noted above, use of the non-insulated conductive spirals also allows shortening the electrical path between the bindings of the spirals when they are tightened (when the cable is extracted) thus reducing resistance through the spirals and energy loss. In this connection it should be noted that the configuration of the spiral bindings, which allows them to be in contact with one another when the spirals are wound, is also associated with the smaller size of the cable dispensing system.
According to the present invention, instead of utilizing insulated conductive spirals, the spirals are coaxially and collinearly arranged with respect to the stator (with respect to the rotation axis of the housing) with spaces between them. Specifically, in embodiments configured for medium voltage applications, physical insulation between adjacent conductive spirals is provided (e.g. in the form of insulating disks furnished on the stator and/or on the housing (from its inner side) to provide a physical insulating barrier between the spirals and preventing the creation of arcs even in medium/high voltage ranges. It should be noted that in some embodiments, the retractable cable dispensing system is configured for three-phase operation with voltages of about 400V. In such embodiments the use of such physical insulating barriers (e.g. insulating disks) may be necessary in order to provide proper insulation between the non-insulated conductive spirals while maintaining a relatively small distance between them and thereby reducing the size and form factor of the dispensing system. In cases where such physical insulating barriers are not used, sufficient distance between the spirals should be provided to insure no arcing occurs.
It should be understood that preferably, in some embodiments of the present invention, the retracting/contracting force, which is used to rewind/wind the housing (i.e. to release/wrap the cable wrapped on the housing), is not provided by the conductive spirals themselves but by separate retraction mechanism(s) which may include one or more springs and/or one or more electric-actuators/motors coupled in between the housing and the stator and allowing for actuating relative movement between them. One of the main advantages of utilizing a retraction mechanism that is distinct/separated from the conductive spirals/coils, is associated with the following:
(i) As the conductive spiral is not required to have spring like properties, it may be formed with a stranded wire (e.g. flat braid wire) which is associated with greater flexibility and reduced material fatigue caused by repeated motion and thereby improved reliability.
(ii) Spring-like conducting elements are typically associated with deterioration of their conductance properties during repeated winding and rewinding operations (e.g. due to material fatigue). Thus, avoiding spring-like properties of the spirals may provide improved and more reliable and long lasting conductance through the spirals and reduced energy loss.
(iii) Separation of the conductive spiral from the retraction mechanism facilitates the modular system design described above since the number and the types of conductive spirals may be selected independently and do not affect the retraction force applied to rewind the housing.
It should be noted that according to some embodiments of the invention an over pulling mechanism is provided to prevent rotation of the housing over an allowed degree (e.g. more than a certain number of rotations for which the cable dispensing system is designed). For example such an over pulling mechanism may be configured and/or adjusted to prevent the over pulling of the external cable wrapped on the housing and thereby prevent excess rotation of the housing which may damage the cable dispensing system. Such an over pulling mechanism may be coupled between the housing and the stator, externally or internally to the housing, for preventing over rotation of the housing with respect to the stator. The over pulling mechanism may be implemented by any suitable technique (e.g. utilizing properly constructed mechanical systems which may include gear mechanisms and/or brake/clutch mechanisms).
Specifically, according to some embodiments of the invention, the over pulling mechanism may be implemented by utilizing one or more spirals/coils that are located within the housing. The coils, which serve for over-pulling prevention, may be configured such that their windings are tightened against one another when the housing is rotated over a certain extent to thereby prevent over-rotation of the housing. Specifically, the over pulling prevention coils, may be wound in the same directions as the windings of the cable, or in the opposite direction. Accordingly and respectively, when the cable is extracted/extended, the over pulling prevention coils wound in the direction of the cable would be tightened towards the stator (towards the stator's hub(s)) while coils wound in the opposite direction would be tightened towards the inner perimeter/surface of the housing. The length and number of the coils and the number of windings/bindings in the coils are configured to allow only a certain number of rotations of the housing with respect to the stator before being tightened to the housing inner surface and/or the stator's hub and thereby preventing further rotation of the housing and over pulling of the cable.
In this regard it should be noted that in some embodiments of the invention, the coils serving for conduction of data and/or electricity are used also for over pulling prevention. Alternatively or additionally, one or more dedicated coils/spirals are accommodated within the housing and configured for over-pulling prevention as described above. In the latter configuration, in which dedicated over pulling prevention coils are used, reduced physical stresses are applied to the electric/data terminals by which the electricity/data carrying cables are connected to the housing and/or stator, and thus damage to those terminals is prevented in case of over-pulling of the cable.
Some embodiments are used at charging stations for electrical vehicles. At a charging station, a group of electrical cables may be connected to a vehicle to charge the batteries. Long fixed length cables tend to become tangled and are generally inconvenient. A retractable cable dispensing system reduces cable clutter and entanglement, but may greatly increase electrical resistance. Embodiments described herein provide a cable dispensing system that has reduced electrical resistance.
In some embodiments, a charging station is located at a public location, such as at a service station. In other embodiments, a charging station is located at a private location, such as a garage, or in a semi-private location, such as a business campus. In some embodiments, a charging station may use a retractable cable dispensing system to connect an electrical source to a vehicle, and charge the batteries within the vehicle. In other embodiments, a vehicle exchanges batteries at a battery exchange station, and a retractable cable dispensing system connects a power source directly to the batteries or battery unit.
In accordance with some embodiments, a cable dispensing system is disclosed that comprises a housing assembly that encloses a stator. The housing assembly is rotatable about a central axis through the center of the non-rotating stator. The stator includes a plurality of parallel insulating discs that are axially aligned with the central axis. Each of the insulating discs has a centrally located hub, which may extend outward along the axis from a face of the insulating disc. The insulated discs are all attached to one another in a stacked array. The stator also includes a plurality of parallel coils of flexible non-insulated cable (also referred to in the following as primary coils). Each pair of adjacent coils is separated by one of the insulating discs. Each coil has an inner portion coupled to a hub of an adjacent insulating disc, and an outer portion coupled to the housing assembly. The housing assembly encloses the stator, which includes the insulating discs.
In accordance with some embodiments, a cable dispensing system is disclosed that comprises a housing assembly that encloses a stator. The housing assembly rotates about a central axis. The stator includes a plurality of parallel hubs axially-aligned with the central axis. The hubs are fixedly coupled to each other. Each hub has a first surface and an opposing second surface substantially parallel to the first surface. The stator also includes a plurality of parallel primary coils of flexible cable. Each primary coil has an inner portion coupled to a hub, and an outer portion coupled to the housing assembly. The stator also includes a plurality of parallel secondary coils of flexible insulated data transmission cable. Each secondary coil has an inner portion coupled to a hub, and an outer portion coupled to the housing assembly. The secondary coils are separated from each adjacent primary coil by an insulating disc. The housing assembly encloses the stator, and is rotatably coupled to the hubs.
It is noted that according to some embodiments of the invention, the stator elements including the insulating disks, the central hubs and the primary coils of flexible non-insulated cable, and possibly also the secondary coils are configured as modular elements/structures, which allow the stator to be assembled with any number of parallel primary coils and possibly also with any number of secondary coils where each coil (primary or secondary) may be separated from an adjacent coil by an insulating disk. Specifically each primary coil may be separated by insulating disk(s) from one or two adjacent coil(s) residing from one or both sides thereof.
In some embodiments, the retractable cable dispensing system separates the individual coils with insulating discs, thus allowing medium and/or high voltage through the coils without arcing across the coils. In some embodiments, there are multiple electrical coils, thereby increasing the amount of electrical energy that may be transferred at any one time. In some embodiments, the individual coils are unshielded, which creates a desirable electrical short (shorter electrical path) when the coils are wound or partially wound (i.e., not fully unwound). Because the coils are typically at least partially wound when the cable dispensing system is in use, the unshielded coils reduce the overall resistance through the coils, and thus reduce the amount of energy lost as heat. In some embodiments data control coils are also included, which can modify the flow of electricity through the power cables.
The disclosed embodiments help to remove key impediments to wider adoption of electric vehicles. The embodiments of a retractable cable dispensing system described herein reduce the recharge time by using medium or high voltage connections and data communication channels (e.g. low voltage channels) to optimize recharging. The disclosed embodiments are also cost effective and environmentally friendly by reducing the amount of energy lost as wasted heat. The medium/high voltage and shorter internal electrical path caused by the short between the loops of each coil results in lower electrical energy losses.
For a better understanding of the aforementioned embodiments of the invention as well as additional embodiments thereof, reference should be made to the Description of Embodiments below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.
Reference will now be made in detail to various embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known components and elements have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.
It will also be understood that, although the terms first, second, etc., or primary, secondary, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a primary coil could be termed a secondary coil, and, similarly, a secondary coil could be termed a primary coil, without departing from the scope of the present invention. The primary coil and the secondary coil are both coils, but they are not the same coil.
Embodiments described herein may be used at a private residence, a public charging station, a private commercial facility, or anywhere else that a car may be parked. Some embodiments described herein recharge a battery that is installed in a vehicle. Other embodiments recharge batteries that are not installed in any vehicle, while yet other embodiments are used to charge batteries that are not used to power electric cars. More generally, embodiments of the present invention may be used in rotatable electric devices, such as electric signs or robotic arms, in extension cords, in electric cranes, and other similar locations.
In some embodiments, one or more other of the electricity conducting mechanisms might include non-continuous electrically conducting mechanism(s), e.g. slip rings and brushes, providing electrical contact between the electric contact(s) coupled to the stator and the electric terminal(s) of the housing. While the continuous electrically conducting element provides safe electric contact for the ground part, the discontinuous mechanism(s) may be used for reducing the size (form factor) of the system while providing the rest of the electric/data connections.
As exemplified in the figures, in some embodiments the housing assembly 148 includes an upper housing unit 102 and a lower housing unit 104. In alternative embodiments, the housing assembly 148 includes more or fewer components. In
Different embodiments of the present invention have different sizes. For example, the housing assembly 148 shown in
In some embodiments the housing assembly 148 is made from an insulating material such as plastic or ceramic. Other insulating materials may also be used for the housing assembly. In some embodiments the housing assembly, or pieces of the housing assembly, are formed by injection molding. In other embodiments the housing assembly may be formed by thermoplastic molding, thermosetting molding, machined CNC, low pressure injection (RIM), or casting of epoxy resin.
The stator 140 includes two or more insulating spacers 114 arranged in a spaced-apart parallel relationship and fixedly attached to one another, while the continuous electrically conducting element(s) is/are formed by at least one coil 116 of a flexible non-insulated cable and is/are separated from an adjacent electrically conducting mechanism by one of the insulating spacers 114. The spacers 114 may be shaped like discs. A rotatable bearing 110 is located between the end cap 112 and the housing assembly 148, allowing the housing assembly 148 to rotate while the end cap 112, discs, and hubs remain stationary (or vice versa). The end cap 112 is described in more detail below with respect to
In some embodiments, the upper housing unit 102 is attached to the lower housing unit 104 with bolts or screws.
It should be noted, although not specifically illustrated, that the system of the invention preferably includes a mechanism that prevents over pulling of the housing for restricting the number of rotations between the stator and the housing. Such an over pulling prevention mechanism may include one or more spiral-like elements coupled in between the housing and the stator.
As illustrated in
The partially exploded view in
Generally, a second bearing 110 is attached to a second end cap or hub from an outermost disc (not shown), which is located on the opposite end of the stator (opposite the end where the end cap 112 is shown in
One of skill in the art would recognize that many different types of bearings made from many different materials could provide the proper interface between the stator 140 and the housing assembly 148, allowing the housing assembly to rotate around the stator. For example, in some embodiments, the bearings 110 are angular contact ball bearings. In some embodiments the balls and races of the bearings are made of ceramic. Some embodiments use spherical roller thrust bearings. Other embodiments use cylindrical roller bearings. In some embodiments high precision bearings are used. In some embodiments a non-metallic material, such as ceramic, is used for the bearings 110 to reduce the risk of electrical shorts or arcing. In some embodiments slide bearings are used. In alternative embodiments, the surfaces between the stator 140 and assembly housing 148 slide without the use of bearings.
In some embodiments, a shaft 174 is located along the axis 176, extending through the middle of stator 140. In some embodiments where a shaft is used, the shaft 174 is fixedly coupled to the insulating discs 114 and the end cap 112. In some embodiments, the shaft is positioned within a passageway formed along the central axis of the stator 140. In particular,
In some embodiments, the insulating discs 114 are made from a ceramic material, and are sufficiently thick to prevent arcing between adjacent coils. One of skill in the art will recognize that the specific thickness of the insulating discs depends on both the permittivity of the insulating material and the intended voltage and current in the coils separated by the insulating discs. For example, the insulating discs may be 3 or 4 millimeters thick when the voltage across the coils is 400 volts. In some embodiments the insulating discs are circular, but alternative shapes could provide the same functionality as long as the electrical coils are separated from one another.
In some embodiments, the outer circumference of the end cap 112 is circular. Although a circular shape is not required, a circular shape facilitates use of commercially available bearings 110. In some embodiments, the end cap 110 is composed of ceramic or plastic. In other embodiments, alternative rigid insulating materials are used for the end cap 112.
As shown in
In some embodiments the shielded data communication cables 108 are routed through a distinct tunnel in a manner similar to the unshielded cables 106 (see
In some embodiments, the inner end 128 of each coil 116 is mechanically coupled to a hub 124 using a lock connector 122. The lock connector is shaped to prevent the inner end 128 of coil 116 from moving relative to the hub 124. In some embodiments the hub 124 has a hole 144 (
In one example, a coil having 12 spiral loops has an innermost spiral loop 150 with a six millimeter radius and an outermost spiral loop 150 with a sixteen millimeter radius. In a wound state the total electrical path may be as little as sixteen millimeters, going from the center to the outer portion 118 along a radial path. But in an unwound state the electrical path would be approximately the sum of twelve circumferences, which is about 83 centimeters. In this example, the electrical path in the wound state is much less than the length of the electrical path in the unwound state. This makes a significant difference in the energy loss from the coil resistance, and reduces the operating temperature of the system. In particular, the resistance is directly proportional to the length of the electrical path, and the loss of energy is directly proportional to the resistance, so any reduction in the length of the electrical path translates directly into decreased energy loss. Experimental tests have shown a reduction of up to 5° C. using unshielded cable for the coils.
The electrical terminals 132 may be held in place by several different means. In some embodiments, insert molding is used, placing the terminals in the intended location prior to injection. In other embodiments, ultrasonic insertion is used. In other embodiments, the space for the electrical terminals in the housing assembly is formed so that there is a tight fit when the electrical terminals are inserted. In other embodiments, the terminals 132 have a loose fit until the upper and lower housing units 102 and 104 are stuck together (at which point there is a tight fit). In some embodiments, screws (e.g., screws 162) or bolts are used to hold the electrical terminals 132 in place, and these screws or bolts may be hidden when the unit is fully assembled.
The retracting cable 192 wraps around a drum 188, which may be substantially circular, as shown in the embodiment of
The outer end 146 of the retracting cable 192 would typically connect to a plug, socket or other mechanism suitable for connecting to an external device (not shown in
In some embodiments, one or more of the coils 116 are made of spring metal, which rewinds the retracting cable 192 around the housing assembly 148 after use. In other embodiments, the retracting cable 192 is rewound about the housing assembly 148 by a motor, which may be located outside of the housing unit. In some embodiments there is an external mechanical spring system connected to the housing unit 148 to rewind the retracting cable 192. As noted above, use of a separate retracting mechanism (i.e. distinct from the conductive coils/spirals e.g. motor and/or spring located outside the housing) is advantageous for several reasons, and at least because it prevents/reduces deterioration in the conductivity of the conductive coils. It also allows use of stranded conductors for the spirals, thereby improving their mechanical stability, and facilitating an improved electric contact between their bindings when the latter are tightened (improving conductivity of the coils), and facilitating modular design of the cable dispensing system in which the number of coils does not affect the retraction force applied to the housing.
Once assembled in position, such as in a charge station or in an electrical vehicle, one end of the power cables connects to a power source and the other end connects to a load, such as a battery to be recharged. There are at least two unshielded cables 106, but in some embodiments there may be many more unshielded cables 106. The embodiment in
It should also be understood (although not specifically illustrated in the figure) that in some embodiments of the invention certain one or more electrical connections and/or data/signal connection, between the stator and the housing may be provided by utilizing conventional techniques (e.g. rings and touch brushes) while at least one electrical connection (e.g. grounding/earthing connection) is provided by a conductive spiral/coil in the manner described above. The latter may be used for providing continuous and reliable electrical contact of grounding between the ground wire in the electric cable wrapped around the housing and an earthing connection/terminal of the stator.
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.
This application is a continuation-in-part of International Application No. PCT/IB2010/002453, designating the United States, with an international filing date of Sep. 13, 2010, which claims the priority benefit of U.S. application Ser. No. 12/558,430, filed Sep. 11, 2009, now U.S. Pat. No. 8,118,147.
Number | Date | Country | |
---|---|---|---|
Parent | 12558430 | Sep 2009 | US |
Child | PCT/IB10/02453 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IB10/02453 | Sep 2010 | US |
Child | 13417528 | US |