Calibration of runout error in a digital printing system

Information

  • Patent Grant
  • 11511536
  • Patent Number
    11,511,536
  • Date Filed
    Tuesday, November 13, 2018
    6 years ago
  • Date Issued
    Tuesday, November 29, 2022
    2 years ago
Abstract
Printing apparatus (20) includes a continuous blanket (24) and a set of motorized rollers (31), which advance the blanket at a constant speed through an image area. One or more print bars (38) eject droplets of ink at respective locations onto the blanket in the image area. One or more monitoring rollers (42), in proximity to the locations of the print bars, contact the blanket so as to be rotated by advancement of the blanket. Each monitoring roller includes an encoder (44), which outputs a signal indicative of a rotation angle of the monitoring roller. A control unit (40) collects, during a calibration phase, the signal from the encoders over multiple rotations of the monitoring rollers and computes runout correction factors. During an operational phase, the control unit synchronizes ejection of the droplets from the print bars using the computed runout correction factors.
Description
FIELD OF THE INVENTION

The present invention relates generally to digital printing systems, and particularly to apparatus and methods for enhancing the precision of digital printing.


BACKGROUND

Some digital printing systems use a flexible, moving intermediate transfer member (ITM), referred to herein as a “blanket.” A system of this sort is described, for example in PCT International Publication WO 2013/132424, whose disclosure is incorporated herein by reference. An ink image is formed on a surface of the moving ITM (for example, by droplet deposition at an image forming station) and subsequently transferred to a substrate, such as a sheet or roll of paper or plastic (at a transfer station). To transfer the ink image to the substrate, the substrate is pressed between at least one impression cylinder and a region of the moving ITM where the ink image is located.


High-quality printing requires precise registration between the droplet deposition heads and the moving medium onto which the ink image is formed. One of the problems that can lead to misregistration is “runout” of a roller over which the medium passes, meaning that the signal output by an encoder monitoring the roller has a period error due to deviation of the roller from true circular rotation.


U.S. Pat. No. 8,162,428 describes a method that compensates for runout errors in a web printing system. The method includes identifying runout error at a first roller driving a web of printable media, generating a runout compensation value corresponding to the identified runout error, identifying a velocity of the moving web with reference to encoder output corresponding to an angular velocity of the first roller and the generated runout compensation value, and delivering a firing signal to a print head proximate the first roller to energize the inkjet nozzles in the print head and eject ink onto the web at a position corresponding to the computed web velocity.


SUMMARY

Embodiments of the present invention that are described hereinbelow provide methods and apparatus for enhancing the precision of a digital printing system.


There is therefore provided, in accordance with an embodiment of the invention, printing apparatus, including a continuous blanket and a set of motorized rollers, which are coupled to advance the blanket at a constant speed through an image area of the apparatus. One or more print bars are configured to eject droplets of ink at respective locations onto the blanket in the image area so as to create an image. One or more monitoring rollers are positioned in proximity to the respective locations of the print bars and contact the blanket so as to be rotated by advancement of the blanket. Each monitoring roller includes an encoder configured to output a signal indicative of a rotation angle of the monitoring roller. A control unit is configured to collect, during a calibration phase, the signal from the encoder in each of the monitoring rollers over multiple rotations of the monitoring rollers while the blanket is advanced at the constant speed through the image area and to compute runout correction factors for the monitoring rollers responsively to the collected signal, and is further configured to synchronize, during an operational phase subsequent to the calibration phase, ejection of the droplets from the print bars using the computed runout correction factors.


In some embodiments, the one or more print bars comprise a first plurality of the print bars, and the one or more monitoring rollers comprise a second plurality of the monitoring rollers. In a disclosed embodiment, the plurality of print bars are configured to eject the ink of different, respective colors, and the control unit is configured to synchronize the ejection of the droplets with the advancement of the blanket so as to register the different colors in the image. Additionally or alternatively, the apparatus includes a transfer station, which is configured to transfer the image from the blanket to a print medium.


In some embodiments, the control unit is configured, during the calibration phase, to detect a deviation of the signal from the encoder relative to a clock signal having a predefined frequency, and to apply the runout correction factors in synchronizing the ejection of the droplets to the clock signal. In a disclosed embodiment, the control unit is configured to derive from the signal output by the encoder a sequence of ticks at a predefined angular separation, and to sample the signal synchronously with the ticks and to measure, based on the clock signal, variations in a time elapsed between the ticks.


Typically, the control unit is configured to compute and apply the runout correction factors as a function of an angle of rotation of each of the monitoring rollers. In some embodiments, the control unit is configured to detect, based on the signal, variations in a speed of rotation of each of the monitoring rollers as a function of the angle of rotation and to compute the runout correction factors so as to compensate for the variations in the speed. In a disclosed embodiment, the runout correction factors for each monitoring roller are based on a ratio between an average speed of the rotation of the monitoring roller and a specific speed of rotation measured during the calibration phase in each of a multiplicity of angular sectors.


There is also provided, in accordance with an embodiment of the invention, a method for controlling a printer, which includes one or more print bars configured to eject droplets of ink at respective locations onto a moving blanket in an image area of the printer, thereby forming an image on the moving blanket. The method includes advancing the continuous blanket at a constant speed through the image area over one or more monitoring rollers, which are positioned in proximity to the respective locations of the print bars and contact the blanket so as to be rotated by advancement of the blanket, each monitoring roller including an encoder. A signal received from the encoder in each monitoring roller is indicative of a rotation angle of the monitoring roller. During a calibration phase, the signal is collected from the encoder in each of the monitoring rollers over multiple rotations of the monitoring rollers while the blanket is advanced at the constant speed through the image area. Runout correction factors are computed for the monitoring rollers responsively to the collected signal. During an operational phase subsequent to the calibration phase, ejection of the droplets from the print bars is synchronized using the computed runout correction factors.


There is additionally provided, in accordance with an embodiment of the invention, a printing system, including a continuous blanket and an image-forming station, which includes a set of motorized rollers, which are coupled to advance the blanket at a constant speed through an image area of the image-forming station. One or more print bars are configured to eject droplets of ink at respective locations onto the blanket in the image area so as to create an image on the blanket. One or more monitoring rollers are positioned in proximity to the respective locations of the print bars and contact the blanket so as to be rotated by advancement of the blanket. Each monitoring roller includes an encoder configured to output a signal indicative of a rotation angle of the monitoring roller. A transfer station is configured to transfer the image from the blanket to a print medium.


A control unit is configured to collect, during a calibration phase, the signal from the encoder in each of the one or more monitoring rollers over multiple rotations of the monitoring rollers while the blanket is advanced at the constant speed through the image area and to compute runout correction factors for the one or more monitoring rollers responsively to the collected signal. The controller is further configured to synchronize, during an operational phase subsequent to the calibration phase, ejection of the droplets from the one or more print bars using the computed runout correction factors.


There is further provided, in accordance with an embodiment of the invention, a method for controlling a printer, which includes advancing a continuous blanket at a constant speed through an image area of the printer over one or more monitoring rollers, which are positioned in proximity to respective locations of one or more print bars in the image area and contact the blanket so as to be rotated by advancement of the blanket. Each monitoring roller includes an encoder. A signal is received from the encoder in each monitoring roller indicative of a rotation angle of the monitoring roller. During a calibration phase, the signal from the encoder in each of the monitoring rollers is collected over multiple rotations of the monitoring rollers while the blanket is advanced at the constant speed through the image area. Runout correction factors are computed for the monitoring rollers responsively to the collected signal.


During an operational phase subsequent to the calibration phase, an image is formed on the blanket while advancing the blanket through the image area by ejecting droplets from the one or more print bars onto the blanket and synchronizing ejection of the droplets using the computed runout correction factors. The image is transferred from the blanket to a print medium. The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic side view of a digital printing system, in accordance with an embodiment of the invention;



FIG. 2A is a schematic detail view of a roller and blanket in the system of FIG. 1;



FIG. 2B is a timing diagram that schematically shows signals generated during operation of the system of FIG. 1; and



FIG. 3 is a flow chart that schematically shows a method for correction of runout error, in accordance with an embodiment of the invention.





DETAILED DESCRIPTION OF EMBODIMENTS


FIG. 1 is a schematic side view of a digital printing system 20, in accordance with an embodiment of the invention. This particular configuration of system 20 is shown by way of example, in order to illustrate certain problems that are addressed by embodiments of the present invention and to demonstrate the application of these embodiments in enhancing the performance of such a system. Embodiments of the present invention, however, are by no means limited to this specific sort of example system, and the principles described herein may similarly be applied to other sorts of printing systems that are known in the art.


System 20 comprises an image forming station 22, which creates an image on a continuous, moving blanket 24, and a transfer station 26, which transfers the image from the blanket to a print medium. Blanket 24 in this example comprises an endless belt, which is advanced over a set of rollers 31, 32, for example as described in the above-mentioned PCT International Publication PCT/IB2013/051727. In the pictured example, rollers 31 are motorized in order to drive blanket 24, and the print medium comprises sheets 28 of a suitable substrate, such as paper or plastic. Sheets 28 are captured and pressed against blanket 24 between an impression cylinder 34 and a pressure cylinder 36 (also referred to as a blanket cylinder), causing the image to be transferred from blanket 24 to output sheets 30. Alternatively, the print medium may comprise a continuous roll of material.


Image forming station 22 comprises multiple print bars 38, which eject droplets of ink at respective locations onto blanket 24, under the command of a control unit 40, so as to print images on the blanket that will be transferred to sheets 28 in transfer station 26. Typically, each print bar 38 comprise a plurality of print heads (not shown), which eject ink of a different, respective color from each print bar. The print bars are spaced apart along blanket 24 in the area of image forming station 22 (referred to herein as the image area of system 20), and control unit 40 synchronizes the ejection of the droplets with the advancement of the blanket by rollers 31 so as to register the different colors in the image. Although four print bars 38 are shown in FIG. 1 (for printing cyan, magenta, yellow and black inks, i.e., CMYK, respectively in the pictured example), image forming station 22 may alternatively comprise a smaller or larger number of print bars, in a different order.


To ensure that droplet ejection is properly synchronized, image forming station 22 comprises a set of monitoring rollers 42, which are positioned in proximity to the respective locations of print bars 38. In the pictured example, monitoring rollers 42 are positioned on the lower side of blanket 24, opposite the locations of print bars 38 on the upper side of the blanket. Further details of an arrangement of this sort are described, for example, in the PCT Patent Application PCT/IB2016/051560, whose disclosure is incorporated herein by reference. Alternatively, however, other arrangements of the monitoring rollers may be used. Monitoring rollers 42 contact blanket 24 so as to be rotated by advancement of the blanket.


Each monitoring roller 42 comprises an encoder 44, which outputs a signal indicative of a rotation angle of the monitoring roller. During the operational phase of system 20, control unit 40 receives these signals as an indication of the precise motion of blanket 24 relative to each of print bars 38 and synchronizes the ejection of the droplets from the print bars according to the signals.


As explained below, however, the indications of blanket position that are provided by encoders 44 can be distorted by a number of factors, including runout of monitoring rollers 42. Therefore, in embodiments of the present invention, control unit 40 calibrates and compensates for position errors that would otherwise by caused by such distortion. Specifically, during a calibration phase of system 20, prior to the operational phase, control unit 40 collects signals from encoders 44 over multiple rotations of monitoring rollers 42 while blanket 24 is advanced at a constant speed, and uses the collected signals in computing runout correction factors. In the subsequent operational phase, control unit 40 uses these runout correction factors in compensating for the runout of monitoring rollers 42 so as to synchronize the ejection of droplets from print bars 38 with high precision.


To carry out these functions, control unit 40 comprises a synchronizer 46, which samples the signals that are output by encoders 44. In the present embodiment, synchronizer 46 processes these signals to generate a respective sequence of “ticks” at predefined angular intervals of the rotation of each encoder 44. For example, synchronizer 46 may sense the rising and falling edges of the signals output by each encoder 44 to generate 40,000 ticks per revolution of the corresponding roller 42, as is known in the art. Because of runout of rollers 42 and other error factors, these ticks may not occur at constant, precisely-spaced time intervals. In order to measure and compensate for these error factors, synchronizer 46 samples the output signals from encoders 44, relative to a stable clock signal, synchronously with the ticks.


During the calibration phase in system 20, calibration logic 48 in control unit 40 measures the variations in the time elapsed between the ticks sampled by synchronizer 46 for each of encoders 44. Calibration logic 48 thus detects deviations of the signals from each encoder 44 relative to the clock signal, which has a constant, predefined frequency. The calibration logic applies these deviations in computing runout correction factors for each encoder 44, which are stored in a memory 50. Further details of this calibration process are described hereinbelow.


During subsequent printing operation of system 20, compensation logic 52 in control unit 40 reads the runout correction factors from memory 50 and uses these factors in determining when to issue “fire” signals to print bars 38, so as to compensate for the runout error in the timing of the ticks generated by synchronizer 46 in response to the signals output by encoders 44. In this manner, compensation logic 52 outputs instructions to a print bar drive circuit 54, indicating precisely the times at which the drive circuit should issue the “fire” signal to each of print bars 38 in order to precisely synchronize the ejection of the droplets to the clock signal, notwithstanding runout errors in rollers 42.


Control unit 40 typically comprises a general-purpose computer processor, which has suitable input and output interface and is programmed in software to carry out the functions that are described herein. Additionally or alternatively, at least some of the functions of control unit 40 are carried out by suitable hardware logic circuits, including high-speed timing, sampling, and signal generation circuits. These circuits may be implemented using hard-wired and/or programmable logic components. Although control unit 40 is shown in FIG. 1 as a unitary block, in practice the functions of the control unit may be distributed among multiple processors and circuits, which may be deployed at different locations in system 20. The term “control unit” in the present description and in the claims should be understood as covering these sorts of distributed implementations, as well.


Reference is now made to FIGS. 2A and 2B, which schematically illustrate a model of the operation of monitoring rollers 42 and encoders 44 that is used in generating runout correction factors, in accordance with an embodiment of the invention. FIG. 2A is a schematic detail view of monitoring roller 42 and blanket 24, while FIG. 2B is a timing diagram that schematically shows signals generated during operation of system 20. Although only a single roller 42 and the signals from the corresponding encoder 44 are illustrated in FIGS. 2A and 2B, control unit 40 uses the model illustrated in these figures in calibrating and compensating for runout in each of the rollers individually.


Roller 42 is assumed to have a diameter R and to engage blanket 24 between a pair of circumferential points 60 and 62, separated by a circumferential distance L. In the pictured example, the shaft of roller 42 is not rotating exactly in line with the intended axis, resulting in eccentric rotation, which is a form of runout. Runout error can also occur when roller 42 is slightly elliptical rather than circular in cross-section, or is mounted slightly off-center, or wobbles in some other manner, so that the effective radius of the roller varies with angle over each rotation. (Encoders 44 may also have small imperfections in their angular readings, with an effect that is similar to mechanical runout errors.) In general, each one of rollers 42 will have its own runout error, which is different in magnitude and angular dependence from those of the other rollers. These errors, if not corrected, lead to inaccuracy in the readings made by control unit 40 of the distance traversed by blanket 24 as it passes over each of rollers 42 and can thus affect the relative timing of the firing signals issued to print bars 38, resulting in misregistration in the printed images.


In the example shown in FIG. 2A, the axis of roller 42 wobbles cyclically over an elliptical path that includes an upper point 64 and a lower point 66, separated by a distance ΔR. At upper point 64, the angular spread between circumferential points 60 and 62 is ϕ, whereas at lower point 66 the angular spread has the smaller value α. Although the circumferential distance L between points 60 and 62 is shown in FIG. 2A as though it were a constant value, in actuality it varies between LMAX=R*φ and LMIN=R*α, giving an encoder error of 0.5R(φ−α). In terms of encoder 44 on roller 42, the elapsed number of ticks in rotation between points 60 and 62 about upper point 64 will be greater than the number of ticks in the rotation about lower point 66 by a multiplicative runout factor







δ
=


Δ

R

R


.




As shown in FIG. 2B, control unit 40 uses a stabilized clock, having clock ticks separated by a clock cycle 70, which is typically much smaller than the interval between the encoder ticks. Synchronizer 46 meanwhile receives encoder ticks, which are separated by encoder intervals (ti) 72, and reads the clock value at each tick. As explained above and illustrated in FIG. 2B, encoder intervals 72 vary due to runout of roller 42 (as well as other factors). Calibration logic 48 measures and models this variation and stores correction factors in memory 50, which are then applied by compensation logic 52 in generating fire pulses 74 to print bars 38 at the appropriate times.



FIG. 3 is a flow chart that schematically shows a method for correction of runout error, in accordance with an embodiment of the invention. Control unit 40 applies this method in order to compute and apply the appropriate runout correction factors as a function of an angle of rotation of each of monitoring rollers 42, as indicated by the corresponding encoders 44. The correction factors are derived by control unit 40 itself based on signals output by encoders 44 while running blanket 24. There is no need for any sort of specialized measurement tools or for test printing and analysis as part of the runout calibration process.


For the sake of concreteness and clarity, the method of FIG. 3 is described hereinbelow with reference to the elements of system 20. The principles of this method, however, are not limited to this particular system configuration and can be applied, mutatis mutandis, in other sorts of printing systems that require precise timing control with compensation for encoder error. In particular, although system 20 is shown in FIG. 1 as including four print bars 38, with four monitoring rollers 42 and encoders 44, the principles embodied in this system and in the present method may similarly be applied to printing system having larger or smaller numbers of print bars, monitoring rollers and corresponding encoders, including systems that include only a single print bar and/or a single monitoring roller and encoder. All such alternative embodiments are considered to be within the scope of the present invention.


The method of FIG. 3 is divided into two phases: a calibration phase 80, during which the runout correction factors are computed, and a subsequent operational phase 82, during which the corrections are applied. Calibration phase 80 is typically carried out before beginning the actual printing operation of system 20, and may be repeated at later times to compensate for changes in runout that can occur over time.


To start the calibration phase, synchronizer 46 samples and collects encoder ticks from each of encoders 44 over many rotations of rollers 42, while blanket 24 is advanced continuously at a constant speed, at a measurement step 84. It is advantageous that system 20 operate over sufficient time before beginning the measurements at step 84 in order to reach its normal operating temperature. When encoder measurements are made over many rotations under these conditions, temperature-related encoder errors will cancel out, as will various other possible errors due to transient speed variations of blanket 24, leaving only the runout errors to correct.


Each measurement made at step 84 gives the duration of encoder interval 72 for a given tick (in terms of clock cycles 70) at a given encoder position (i.e., a given angle of rotation). Calibration logic 48 groups these measurements as a function of position, at a measurement grouping step 86. For convenience of calibration, the 360° range of rotation angles can be divided into N angular sectors, for example N=32, and the encoder measurements grouped in each sector.


Based on the encoder measurements, calibration logic 48 computes an average sector tick duration Tn for each sector n (n=1, . . . , N), as well as an average tick duration TAVG over all sectors, at an averaging step 88. As the average tick durations are inverse to the average velocities, this computation is equivalent to detecting, based on the encoder signals, variations in the circumferential speed of rotation V of each of monitoring rollers 42 as a function of the angle of rotation.


Calibration logic 48 then computes a runout correction factor Kn for each sector so as to compensate for these variations in the circumferential speed, at a correction computation step 90. These runout correction factors for each monitoring roller 42 are based on the ratio between the average speed of the rotation of the monitoring roller and the specific speed of rotation measured during the calibration phase in each of the angular sectors, i.e.,








V
AVG


V
n


=



T
n


T
AVG


=


1
+
δ

=

K
n








Calibration logic 48 saves the runout correction factors, per encoder and per sector, in memory 50, at a calibration storage step 92.


To begin operational phase 82, system 20 is loaded with sheets 28, and digital print images are fed to control unit 40, indicating which of print bars 38 should be fired at each pixel of the images. As blanket 24 advances and rollers 42 rotate, synchronizer 46 receives signals from encoders 44, at a tick input step 94. Compensation logic 52 identifies each tick with the angular sector to which it belongs and thus reads the appropriate correction factor Kn from memory 50. Based on the correction factors, compensation logic 52 adjusts the measured tick interval, i.e., increases or decreases the interval by the factor Kn, thus effectively advancing or delaying the measured tick timing, in order to correct for the runout that was found in calibration phase 80, at a timing adjustment step 96. Compensation logic 52 inputs a signal to drive circuit 54 indicating the adjusted time, and drive circuit 54 accordingly outputs fire pulses to the appropriate print bars 38, at a firing step 98. This process continues over all encoder ticks and pixels printed by system until operation is complete.


It will be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.

Claims
  • 1. Printing apparatus, comprising: a continuous blanket;a set of motorized rollers, which are coupled to advance the blanket at a constant speed through an image area of the apparatus;one or more print bars, which are configured to eject droplets of ink at respective locations onto the blanket in the image area so as to create an image;one or more monitoring rollers, which are positioned in proximity to the respective locations of the print bars and contact the blanket so as to be rotated by advancement of the blanket, each monitoring roller comprising an encoder configured to output a signal indicative of a rotation angle of the monitoring roller; anda control unit, which is configured to collect, during a calibration phase, the signal from the encoder in each of the one or more monitoring rollers over multiple rotations of the monitoring rollers while the blanket is advanced at the constant speed through the image area and to compute runout correction factors for the one or more monitoring rollers responsively to the collected signal, and which is further configured to synchronize, during an operational phase subsequent to the calibration phase, ejection of the droplets from the one or more print bars using the computed runout correction factors,wherein the control unit is configured to compute and apply the runout correction factors as a function of an angle of rotation of each of the one or more monitoring rollers,wherein the control unit is configured to detect, based on the signal, variations in a speed of rotation of each of the one or more monitoring rollers as a function of the angle of rotation and to compute the runout correction factors so as to compensate for the variations in the speed, andwherein the runout correction factors for each monitoring roller are based on a ratio between an average speed of the rotation of the monitoring roller and a specific speed of rotation measured during the calibration phase in each of a multiplicity of angular sectors.
  • 2. The apparatus according to claim 1, wherein the one or more print bars comprise a first plurality of the print bars, and wherein the one or more monitoring rollers comprise a second plurality of the monitoring rollers.
  • 3. The apparatus according to claim 2, wherein the first plurality of print bars are configured to eject the ink of different, respective colors, and wherein the control unit is configured to synchronize the ejection of the droplets with the advancement of the blanket so as to register the different colors in the image.
  • 4. The apparatus according to claim 1, and comprising a transfer station, which is configured to transfer the image from the blanket to a print medium.
  • 5. The apparatus according to claim 1, wherein the control unit is configured, during the calibration phase, to detect a deviation of the signal from the encoder relative to a clock signal having a predefined frequency, and to apply the runout correction factors in synchronizing the ejection of the droplets to the clock signal.
  • 6. The apparatus according to claim 5, wherein the control unit is configured to derive from the signal output by the encoder a sequence of ticks at a predefined angular separation, and to sample the signal synchronously with the ticks and to measure, based on the clock signal, variations in a time elapsed between the ticks.
  • 7. A method for controlling a printer, which includes a one or more print bars configured to eject droplets of ink at respective locations onto a moving blanket in an image area of the printer, thereby forming an image on the moving blanket, the method comprising: advancing the continuous blanket at a constant speed through the image area over one or more monitoring rollers, which are positioned in proximity to the respective locations of the one or more print bars and contact the blanket so as to be rotated by advancement of the blanket, each monitoring roller comprising an encoder;receiving a signal from the encoder in each monitoring roller indicative of a rotation angle of the monitoring roller;during a calibration phase, collecting the signal from the encoder in each of the monitoring rollers over multiple rotations of the monitoring rollers while the blanket is advanced at the constant speed through the image area;computing runout correction factors for the monitoring rollers responsively to the collected signal; andduring an operational phase subsequent to the calibration phase, synchronizing ejection of the droplets from the print bars using the computed runout correction factors,wherein computing the runout correction factors comprises calculating the runout correction factors as a function of an angle of rotation of each of the monitoring rollers,wherein calculating the runout correction factors comprises detecting, based on the signal, variations in a speed of rotation of each of the one or more monitoring rollers as a function of the angle of rotation and computing the runout correction factors so as to compensate for the variations in the speed, andwherein the runout correction factors for each monitoring roller are based on a ratio between an average speed of the rotation of the monitoring roller and a specific speed of rotation measured during the calibration phase in each of a multiplicity of angular sectors.
  • 8. The method according to claim 7, wherein the one or more print bars comprise a first plurality of the print bars, and wherein the one or more monitoring rollers comprise a second plurality of the monitoring rollers.
  • 9. The method according to claim 8, wherein the first plurality of the print bars eject different, respective colors of the ink, and wherein synchronizing the ejection of the droplets comprises synchronizing the ejection with the advancement of the blanket so as to register the different colors in the image.
  • 10. The method according to claim 7, and comprising transferring the image from the blanket to a print medium.
  • 11. The method according to claim 7, wherein computing the runout correction factors comprises detecting a deviation of the signal from the encoder relative to a clock signal having a predefined frequency, and wherein synchronizing the ejection of the droplets comprises applying the runout correction factors in synchronizing the ejection of the droplets to the clock signal.
  • 12. The method according to claim 11, wherein detecting the deviation comprises deriving from the signal output by the encoder a sequence of ticks at a predefined angular separation, sampling the signal synchronously with the ticks, and measuring, based on the clock signal, variations in a time elapsed between the ticks.
  • 13. A printing system, comprising: a continuous blanket;an image-forming station, which comprises:a set of motorized rollers, which are coupled to advance the blanket at a constant speed through an image area of the image-forming station;one or more print bars, which are configured to eject droplets of ink at respective locations onto the blanket in the image area so as to create an image on the blanket; andone or more monitoring rollers, which are positioned in proximity to the respective locations of the print bars and contact the blanket so as to be rotated by advancement of the blanket, each monitoring roller comprising an encoder configured to output a signal indicative of a rotation angle of the monitoring roller;a transfer station, which is configured to transfer the image from the blanket to a print medium; anda control unit, which is configured to collect, during a calibration phase, the signal from the encoder in each of the one or more monitoring rollers over multiple rotations of the monitoring rollers while the blanket is advanced at the constant speed through the image area and to compute runout correction factors for the one or more monitoring rollers responsively to the collected signal, and which is further configured to synchronize, during an operational phase subsequent to the calibration phase, ejection of the droplets from the one or more print bars using the computed runout correction factors,wherein the control unit is configured to compute and apply the runout correction factors as a function of an angle of rotation of each of the one or more monitoring rollers,wherein the control unit is configured to detect, based on the signal, variations in a speed of rotation of each of the one or more monitoring rollers as a function of the angle of rotation and to compute the runout correction factors so as to compensate for the variations in the speed, andwherein the runout correction factors for each monitoring roller are based on a ratio between an average speed of the rotation of the monitoring roller and a specific speed of rotation measured during the calibration phase in each of a multiplicity of angular sectors.
  • 14. A method for controlling a printer, comprising: advancing a continuous blanket at a constant speed through an image area of the printer over one or more monitoring rollers, which are positioned in proximity to respective locations of one or more print bars in the image area and contact the blanket so as to be rotated by advancement of the blanket, each monitoring roller comprising an encoder;receiving a signal from the encoder in each monitoring roller indicative of a rotation angle of the monitoring roller;during a calibration phase, collecting the signal from the encoder in each of the monitoring rollers over multiple rotations of the monitoring rollers while the blanket is advanced at the constant speed through the image area;computing runout correction factors for the monitoring rollers responsively to the collected signal;during an operational phase subsequent to the calibration phase, forming an image on the blanket while advancing the blanket through the image area by ejecting droplets from the one or more print bars onto the blanket and synchronizing ejection of the droplets using the computed runout correction factors; andtransferring the image from the blanket to a print medium,wherein computing the runout correction factors comprises calculating the runout correction factors as a function of an angle of rotation of each of the monitoring rollers,wherein calculating the runout correction factors comprises detecting, based on the signal, variations in a speed of rotation of each of the one or more monitoring rollers as a function of the angle of rotation and computing the runout correction factors so as to compensate for the variations in the speed, andwherein the runout correction factors for each monitoring roller are based on a ratio between an average speed of the rotation of the monitoring roller and a specific speed of rotation measured during the calibration phase in each of a multiplicity of angular sectors.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application 62/590,672, filed Nov. 27, 2017, which is incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/IB2018/058895 11/13/2018 WO
Publishing Document Publishing Date Country Kind
WO2019/102297 5/31/2019 WO A
US Referenced Citations (580)
Number Name Date Kind
2839181 Renner Jun 1958 A
3011545 Welsh et al. Dec 1961 A
3053319 Cronin et al. Sep 1962 A
3697551 Thomson Oct 1972 A
3697568 Boissieras et al. Oct 1972 A
3889802 Jonkers Jun 1975 A
3898670 Erikson et al. Aug 1975 A
3947113 Buchan et al. Mar 1976 A
4009958 Kurita et al. Mar 1977 A
4093764 Duckett et al. Jun 1978 A
4293866 Takita et al. Oct 1981 A
4401500 Hamada et al. Aug 1983 A
4535694 Fukuda Aug 1985 A
4538156 Durkee et al. Aug 1985 A
4555437 Tanck Nov 1985 A
4575465 Viola Mar 1986 A
4586807 Yuasa May 1986 A
4642654 Toganoh et al. Feb 1987 A
4853737 Hartley et al. Aug 1989 A
4976197 Yamanari et al. Dec 1990 A
5012072 Martin et al. Apr 1991 A
5039339 Phan et al. Aug 1991 A
5062364 Lewis et al. Nov 1991 A
5075731 Kamimura et al. Dec 1991 A
5099256 Anderson Mar 1992 A
5106417 Hauser et al. Apr 1992 A
5128091 Agur et al. Jul 1992 A
5190582 Shinozuka et al. Mar 1993 A
5198835 Ando et al. Mar 1993 A
5246100 Stone et al. Sep 1993 A
5264904 Audi et al. Nov 1993 A
5305099 Morcos Apr 1994 A
5320214 Kordis Jun 1994 A
5333771 Cesario Aug 1994 A
5349905 Taylor et al. Sep 1994 A
5352507 Bresson et al. Oct 1994 A
5365324 Gu et al. Nov 1994 A
5406884 Okuda et al. Apr 1995 A
5471233 Okamoto et al. Nov 1995 A
5532314 Sexsmith Jul 1996 A
5552875 Sagiv et al. Sep 1996 A
5575873 Pieper et al. Nov 1996 A
5587779 Heeren et al. Dec 1996 A
5608004 Toyoda et al. Mar 1997 A
5613669 Grueninger Mar 1997 A
5614933 Hindman et al. Mar 1997 A
5623296 Fujino et al. Apr 1997 A
5642141 Hale et al. Jun 1997 A
5660108 Pensavecchia Aug 1997 A
5677719 Granzow Oct 1997 A
5679463 Visser et al. Oct 1997 A
5683841 Kato Nov 1997 A
5698018 Bishop et al. Dec 1997 A
5723242 Woo et al. Mar 1998 A
5733698 Lehman et al. Mar 1998 A
5736250 Heeks et al. Apr 1998 A
5772746 Sawada et al. Jun 1998 A
5777576 Zur et al. Jul 1998 A
5777650 Blank Jul 1998 A
5780412 Scarborough et al. Jul 1998 A
5841456 Takei et al. Nov 1998 A
5859076 Kozma et al. Jan 1999 A
5865299 Williams Feb 1999 A
5880214 Okuda Mar 1999 A
5883144 Bambara et al. Mar 1999 A
5883145 Hurley et al. Mar 1999 A
5884559 Okubo et al. Mar 1999 A
5889534 Johnson et al. Mar 1999 A
5891934 Moffatt et al. Apr 1999 A
5895711 Yamaki et al. Apr 1999 A
5902841 Jaeger et al. May 1999 A
5923929 Ben et al. Jul 1999 A
5929129 Feichtinger Jul 1999 A
5932659 Bambara et al. Aug 1999 A
5935751 Matsuoka et al. Aug 1999 A
5978631 Lee Nov 1999 A
5978638 Tanaka et al. Nov 1999 A
5991590 Chang et al. Nov 1999 A
6004647 Bambara et al. Dec 1999 A
6009284 Weinberger et al. Dec 1999 A
6024018 Darel et al. Feb 2000 A
6024786 Gore Feb 2000 A
6033049 Fukuda Mar 2000 A
6045817 Ananthapadmanabhan et al. Apr 2000 A
6053438 Romano, Jr. et al. Apr 2000 A
6055396 Pang Apr 2000 A
6059407 Komatsu et al. May 2000 A
6071368 Boyd et al. Jun 2000 A
6072976 Kuriyama et al. Jun 2000 A
6078775 Arai et al. Jun 2000 A
6094558 Shimizu et al. Jul 2000 A
6102538 Ochi et al. Aug 2000 A
6103775 Bambara et al. Aug 2000 A
6108513 Landa et al. Aug 2000 A
6109746 Jeanmaire et al. Aug 2000 A
6132541 Heaton Oct 2000 A
6143807 Lin et al. Nov 2000 A
6166105 Santilli et al. Dec 2000 A
6195112 Fassler et al. Feb 2001 B1
6196674 Takemoto Mar 2001 B1
6213580 Segerstrom et al. Apr 2001 B1
6214894 Bambara et al. Apr 2001 B1
6221928 Kozma et al. Apr 2001 B1
6234625 Wen May 2001 B1
6242503 Kozma et al. Jun 2001 B1
6257716 Yanagawa et al. Jul 2001 B1
6261688 Kaplan et al. Jul 2001 B1
6262137 Kozma et al. Jul 2001 B1
6262207 Rao et al. Jul 2001 B1
6303215 Sonobe et al. Oct 2001 B1
6316512 Bambara et al. Nov 2001 B1
6318853 Asano et al. Nov 2001 B1
6332943 Herrmann et al. Dec 2001 B1
6335046 Mackey Jan 2002 B1
6354700 Roth Mar 2002 B1
6357869 Rasmussen et al. Mar 2002 B1
6357870 Beach et al. Mar 2002 B1
6358660 Agler et al. Mar 2002 B1
6363234 Landa et al. Mar 2002 B2
6364451 Silverbrook Apr 2002 B1
6377772 Chowdry et al. Apr 2002 B1
6383278 Hirasa et al. May 2002 B1
6386697 Yamamoto et al. May 2002 B1
6390617 Iwao May 2002 B1
6396528 Yanagawa May 2002 B1
6397034 Tarnawskyj et al. May 2002 B1
6400913 De et al. Jun 2002 B1
6402317 Yanagawa et al. Jun 2002 B2
6405006 Tabuchi Jun 2002 B1
6409331 Gelbart Jun 2002 B1
6432501 Yang et al. Aug 2002 B1
6438352 Landa et al. Aug 2002 B1
6454378 Silverbrook et al. Sep 2002 B1
6471803 Pelland et al. Oct 2002 B1
6530321 Andrew et al. Mar 2003 B2
6530657 Polierer Mar 2003 B2
6531520 Bambara et al. Mar 2003 B1
6551394 Hirasa et al. Apr 2003 B2
6551716 Landa et al. Apr 2003 B1
6554189 Good et al. Apr 2003 B1
6559969 Lapstun May 2003 B1
6575547 Sakuma Jun 2003 B2
6586100 Pickering et al. Jul 2003 B1
6590012 Miyabayashi Jul 2003 B2
6608979 Landa et al. Aug 2003 B1
6623817 Yang et al. Sep 2003 B1
6630047 Jing et al. Oct 2003 B2
6633735 Kellie et al. Oct 2003 B2
6639527 Johnson Oct 2003 B2
6648468 Shinkoda et al. Nov 2003 B2
6678068 Richter et al. Jan 2004 B1
6682189 May et al. Jan 2004 B2
6685769 Karl et al. Feb 2004 B1
6704535 Kobayashi et al. Mar 2004 B2
6709096 Beach et al. Mar 2004 B1
6716562 Uehara et al. Apr 2004 B2
6719423 Chowdry et al. Apr 2004 B2
6720367 Taniguchi et al. Apr 2004 B2
6755519 Gelbart et al. Jun 2004 B2
6761446 Chowdry et al. Jul 2004 B2
6770331 Mielke et al. Aug 2004 B1
6789887 Yang et al. Sep 2004 B2
6811840 Cross Nov 2004 B1
6827018 Hartmann et al. Dec 2004 B1
6881458 Ludwig et al. Apr 2005 B2
6898403 Baker et al. May 2005 B2
6912952 Landa et al. Jul 2005 B1
6916862 Ota et al. Jul 2005 B2
6917437 Myers et al. Jul 2005 B1
6966712 Trelewicz et al. Nov 2005 B2
6970674 Sato et al. Nov 2005 B2
6974022 Saeki Dec 2005 B2
6982799 Lapstun Jan 2006 B2
6983692 Beauchamp et al. Jan 2006 B2
7025453 Ylitalo et al. Apr 2006 B2
7057760 Lapstun et al. Jun 2006 B2
7084202 Pickering et al. Aug 2006 B2
7128412 King et al. Oct 2006 B2
7129858 Ferran et al. Oct 2006 B2
7134953 Reinke Nov 2006 B2
7160377 Zoch et al. Jan 2007 B2
7204584 Lean et al. Apr 2007 B2
7213900 Ebihara May 2007 B2
7224478 Lapstun et al. May 2007 B1
7265819 Raney Sep 2007 B2
7271213 Hoshida et al. Sep 2007 B2
7296882 Buehler et al. Nov 2007 B2
7300133 Folkins et al. Nov 2007 B1
7300147 Johnson Nov 2007 B2
7304753 Richter et al. Dec 2007 B1
7322689 Kohne et al. Jan 2008 B2
7334520 Geissler et al. Feb 2008 B2
7348368 Kakiuchi et al. Mar 2008 B2
7360887 Konno Apr 2008 B2
7362464 Kitazawa Apr 2008 B2
7459491 Tyvoll et al. Dec 2008 B2
7527359 Stevenson et al. May 2009 B2
7575314 Desie et al. Aug 2009 B2
7612125 Muller et al. Nov 2009 B2
7655707 Ma Feb 2010 B2
7655708 House et al. Feb 2010 B2
7699922 Breton et al. Apr 2010 B2
7708371 Yamanobe May 2010 B2
7709074 Uchida et al. May 2010 B2
7712890 Yahiro May 2010 B2
7732543 Loch et al. Jun 2010 B2
7732583 Annoura et al. Jun 2010 B2
7808670 Lapstun et al. Oct 2010 B2
7810922 Gervasi et al. Oct 2010 B2
7845788 Oku Dec 2010 B2
7867327 Sano et al. Jan 2011 B2
7876345 Houjou Jan 2011 B2
7910183 Wu Mar 2011 B2
7919544 Matsuyama et al. Apr 2011 B2
7942516 Ohara et al. May 2011 B2
7977408 Matsuyama et al. Jul 2011 B2
7985784 Kanaya et al. Jul 2011 B2
8002400 Kibayashi et al. Aug 2011 B2
8012538 Yokouchi Sep 2011 B2
8025389 Yamanobe et al. Sep 2011 B2
8038284 Hori et al. Oct 2011 B2
8041275 Soria et al. Oct 2011 B2
8042906 Chiwata et al. Oct 2011 B2
8059309 Lapstun et al. Nov 2011 B2
8095054 Nakamura Jan 2012 B2
8109595 Tanaka et al. Feb 2012 B2
8119315 Heuft et al. Feb 2012 B1
8122846 Stiblert et al. Feb 2012 B2
8147055 Cellura et al. Apr 2012 B2
8162428 Eun et al. Apr 2012 B2
8177351 Taniuchi et al. May 2012 B2
8186820 Chiwata May 2012 B2
8192904 Nagai et al. Jun 2012 B2
8215762 Ageishi Jul 2012 B2
8242201 Goto et al. Aug 2012 B2
8256857 Folkins et al. Sep 2012 B2
8263683 Gibson et al. Sep 2012 B2
8264135 Ozolins et al. Sep 2012 B2
8295733 Imoto Oct 2012 B2
8303071 Eun Nov 2012 B2
8303072 Shibata et al. Nov 2012 B2
8304043 Nagashima et al. Nov 2012 B2
8353589 Ikeda et al. Jan 2013 B2
8434847 Dejong et al. May 2013 B2
8460450 Taverizatshy et al. Jun 2013 B2
8469476 Mandel et al. Jun 2013 B2
8474963 Hasegawa et al. Jul 2013 B2
8536268 Karjala et al. Sep 2013 B2
8546466 Yamashita et al. Oct 2013 B2
8556400 Yatake et al. Oct 2013 B2
8693032 Goddard et al. Apr 2014 B2
8711304 Mathew et al. Apr 2014 B2
8714731 Leung et al. May 2014 B2
8746873 Tsukamoto et al. Jun 2014 B2
8779027 Idemura et al. Jul 2014 B2
8802221 Noguchi et al. Aug 2014 B2
8867097 Mizuno Oct 2014 B2
8885218 Hirose Nov 2014 B2
8891128 Yamazaki Nov 2014 B2
8894198 Hook et al. Nov 2014 B2
8919946 Suzuki et al. Dec 2014 B2
9004629 De et al. Apr 2015 B2
9186884 Landa et al. Nov 2015 B2
9207585 Hatano et al. Dec 2015 B2
9227429 LeStrange et al. Jan 2016 B1
9229664 Landa et al. Jan 2016 B2
9264559 Motoyanagi et al. Feb 2016 B2
9284469 Song et al. Mar 2016 B2
9290016 Landa et al. Mar 2016 B2
9327496 Landa et al. May 2016 B2
9327519 Larson et al. May 2016 B1
9353273 Landa et al. May 2016 B2
9381736 Landa et al. Jul 2016 B2
9446586 Matos et al. Sep 2016 B2
9498946 Landa et al. Nov 2016 B2
9505208 Shmaiser et al. Nov 2016 B2
9517618 Landa et al. Dec 2016 B2
9566780 Landa et al. Feb 2017 B2
9568862 Shmaiser et al. Feb 2017 B2
9643400 Landa et al. May 2017 B2
9643403 Landa et al. May 2017 B2
9776391 Landa et al. Oct 2017 B2
9782993 Landa et al. Oct 2017 B2
9849667 Landa et al. Dec 2017 B2
9884479 Landa et al. Feb 2018 B2
9902147 Shmaiser et al. Feb 2018 B2
9914316 Landa et al. Mar 2018 B2
10065411 Landa et al. Sep 2018 B2
10175613 Watanabe Jan 2019 B2
10179447 Shmaiser et al. Jan 2019 B2
10190012 Landa et al. Jan 2019 B2
10195843 Landa et al. Feb 2019 B2
10201968 Landa et al. Feb 2019 B2
10226920 Shmaiser et al. Mar 2019 B2
10266711 Landa et al. Apr 2019 B2
10300690 Landa et al. May 2019 B2
10357963 Landa et al. Jul 2019 B2
10357985 Landa et al. Jul 2019 B2
10427399 Shmaiser et al. Oct 2019 B2
10434761 Landa et al. Oct 2019 B2
10477188 Stiglic et al. Nov 2019 B2
10518526 Landa et al. Dec 2019 B2
10569532 Shmaiser et al. Feb 2020 B2
10569533 Landa et al. Feb 2020 B2
10569534 Shmaiser et al. Feb 2020 B2
10576734 Landa et al. Mar 2020 B2
10596804 Landa et al. Mar 2020 B2
10632740 Landa et al. Apr 2020 B2
10642198 Landa et al. May 2020 B2
10703094 Shmaiser et al. Jul 2020 B2
20010022607 Takahashi et al. Sep 2001 A1
20010033688 Taylor Oct 2001 A1
20020041317 Kashiwazaki et al. Apr 2002 A1
20020061451 Kita et al. May 2002 A1
20020064404 Iwai May 2002 A1
20020102374 Gervasi et al. Aug 2002 A1
20020121220 Lin Sep 2002 A1
20020150408 Mosher et al. Oct 2002 A1
20020164494 Grant et al. Nov 2002 A1
20020197481 Jing et al. Dec 2002 A1
20030004025 Okuno et al. Jan 2003 A1
20030007055 Ogawa Jan 2003 A1
20030018119 Frenkel et al. Jan 2003 A1
20030030686 Abe et al. Feb 2003 A1
20030032700 Morrison et al. Feb 2003 A1
20030041777 Karl et al. Mar 2003 A1
20030043258 Kerr et al. Mar 2003 A1
20030054139 Ylitalo et al. Mar 2003 A1
20030055129 Alford Mar 2003 A1
20030063179 Adachi Apr 2003 A1
20030064317 Bailey et al. Apr 2003 A1
20030081964 Shimura et al. May 2003 A1
20030118381 Law et al. Jun 2003 A1
20030129435 Blankenship et al. Jul 2003 A1
20030186147 Pickering et al. Oct 2003 A1
20030214568 Nishikawa et al. Nov 2003 A1
20030234849 Pan et al. Dec 2003 A1
20040003863 Eckhardt Jan 2004 A1
20040020382 McLean et al. Feb 2004 A1
20040036758 Sasaki et al. Feb 2004 A1
20040047666 Imaizumi et al. Mar 2004 A1
20040087707 Zoch et al. May 2004 A1
20040123761 Szumla et al. Jul 2004 A1
20040125188 Szumla et al. Jul 2004 A1
20040145643 Nakamura Jul 2004 A1
20040173111 Okuda Sep 2004 A1
20040200369 Brady Oct 2004 A1
20040221943 Yu et al. Nov 2004 A1
20040228642 Iida et al. Nov 2004 A1
20040246324 Nakashima Dec 2004 A1
20040246326 Dwyer et al. Dec 2004 A1
20040252175 Bejat et al. Dec 2004 A1
20040265016 Kitani et al. Dec 2004 A1
20050031807 Quintens et al. Feb 2005 A1
20050082146 Axmann Apr 2005 A1
20050110855 Taniuchi et al. May 2005 A1
20050111861 Calamita et al. May 2005 A1
20050134874 Overall et al. Jun 2005 A1
20050150408 Hesterman Jul 2005 A1
20050185009 Claramunt et al. Aug 2005 A1
20050195235 Kitao Sep 2005 A1
20050235870 Ishihara Oct 2005 A1
20050266332 Pavlisko et al. Dec 2005 A1
20050272334 Wang et al. Dec 2005 A1
20060004123 Wu et al. Jan 2006 A1
20060066704 Nishida Mar 2006 A1
20060120740 Yamada et al. Jun 2006 A1
20060135709 Hasegawa et al. Jun 2006 A1
20060164488 Taniuchi et al. Jul 2006 A1
20060164489 Vega et al. Jul 2006 A1
20060192827 Takada et al. Aug 2006 A1
20060233578 Maki et al. Oct 2006 A1
20060286462 Jackson et al. Dec 2006 A1
20070014595 Kawagoe Jan 2007 A1
20070025768 Komatsu et al. Feb 2007 A1
20070029171 Nemedi Feb 2007 A1
20070045939 Toya et al. Mar 2007 A1
20070054981 Yanagi et al. Mar 2007 A1
20070064077 Konno Mar 2007 A1
20070077520 Maemoto Apr 2007 A1
20070120927 Snyder et al. May 2007 A1
20070123642 Banning et al. May 2007 A1
20070134030 Lior et al. Jun 2007 A1
20070144368 Barazani et al. Jun 2007 A1
20070146462 Taniuchi et al. Jun 2007 A1
20070147894 Yokota et al. Jun 2007 A1
20070166071 Shima Jul 2007 A1
20070176995 Kadomatsu et al. Aug 2007 A1
20070189819 Uehara et al. Aug 2007 A1
20070199457 Cyman, Jr. et al. Aug 2007 A1
20070229639 Yahiro Oct 2007 A1
20070253726 Kagawa Nov 2007 A1
20070257955 Tanaka et al. Nov 2007 A1
20070285486 Harris et al. Dec 2007 A1
20080006176 Houjou Jan 2008 A1
20080030536 Furukawa et al. Feb 2008 A1
20080032072 Taniuchi et al. Feb 2008 A1
20080044587 Maeno et al. Feb 2008 A1
20080055356 Yamanobe Mar 2008 A1
20080055381 Doi et al. Mar 2008 A1
20080074462 Hirakawa Mar 2008 A1
20080112912 Springob et al. May 2008 A1
20080124158 Folkins May 2008 A1
20080138546 Soria et al. Jun 2008 A1
20080166495 Maeno et al. Jul 2008 A1
20080167185 Hirota Jul 2008 A1
20080175612 Oikawa et al. Jul 2008 A1
20080196612 Rancourt et al. Aug 2008 A1
20080196621 Ikuno et al. Aug 2008 A1
20080213548 Koganehira et al. Sep 2008 A1
20080236480 Furukawa et al. Oct 2008 A1
20080253812 Pearce et al. Oct 2008 A1
20090022504 Kuwabara et al. Jan 2009 A1
20090041515 Kim Feb 2009 A1
20090041932 Ishizuka et al. Feb 2009 A1
20090064884 Hook et al. Mar 2009 A1
20090074492 Ito Mar 2009 A1
20090082503 Yanagi et al. Mar 2009 A1
20090087565 Houjou Apr 2009 A1
20090098385 Kaemper et al. Apr 2009 A1
20090116885 Ando May 2009 A1
20090148200 Hara et al. Jun 2009 A1
20090165937 Inoue et al. Jul 2009 A1
20090185204 Wu et al. Jul 2009 A1
20090190951 Torimaru et al. Jul 2009 A1
20090202275 Nishida et al. Aug 2009 A1
20090211490 Ikuno et al. Aug 2009 A1
20090220873 Enomoto et al. Sep 2009 A1
20090237479 Yamashita et al. Sep 2009 A1
20090256896 Scarlata Oct 2009 A1
20090279170 Miyazaki et al. Nov 2009 A1
20090315926 Yamanobe Dec 2009 A1
20090317555 Hori Dec 2009 A1
20090318591 Ageishi et al. Dec 2009 A1
20100012023 Lefevre et al. Jan 2010 A1
20100053292 Thayer et al. Mar 2010 A1
20100053293 Thayer et al. Mar 2010 A1
20100066796 Yanagi et al. Mar 2010 A1
20100075843 Ikuno et al. Mar 2010 A1
20100086692 Ohta et al. Apr 2010 A1
20100091064 Araki et al. Apr 2010 A1
20100225695 Fujikura Sep 2010 A1
20100231623 Hirato Sep 2010 A1
20100239789 Umeda Sep 2010 A1
20100245511 Ageishi Sep 2010 A1
20100247171 Ono et al. Sep 2010 A1
20100282100 Okuda et al. Nov 2010 A1
20100285221 Oki et al. Nov 2010 A1
20100300604 Goss et al. Dec 2010 A1
20100303504 Funamoto et al. Dec 2010 A1
20100310281 Miura et al. Dec 2010 A1
20110044724 Funamoto et al. Feb 2011 A1
20110058001 Gila et al. Mar 2011 A1
20110058859 Nakamatsu et al. Mar 2011 A1
20110063355 Eun Mar 2011 A1
20110069110 Matsumoto et al. Mar 2011 A1
20110069117 Ohzeki et al. Mar 2011 A1
20110069129 Shimizu Mar 2011 A1
20110085828 Kosako et al. Apr 2011 A1
20110128300 Gay et al. Jun 2011 A1
20110141188 Morita Jun 2011 A1
20110149002 Kessler Jun 2011 A1
20110150509 Komiya Jun 2011 A1
20110150541 Michibata Jun 2011 A1
20110169889 Kojima et al. Jul 2011 A1
20110195260 Lee et al. Aug 2011 A1
20110199414 Lang Aug 2011 A1
20110234683 Komatsu Sep 2011 A1
20110234689 Saito Sep 2011 A1
20110242181 Otobe Oct 2011 A1
20110249090 Moore et al. Oct 2011 A1
20110269885 Imai Nov 2011 A1
20110279554 Dannhauser et al. Nov 2011 A1
20110298884 Furuta Dec 2011 A1
20110304674 Sambhy et al. Dec 2011 A1
20120013693 Tasaka et al. Jan 2012 A1
20120013694 Kanke Jan 2012 A1
20120013928 Yoshida et al. Jan 2012 A1
20120026224 Anthony et al. Feb 2012 A1
20120039647 Brewington et al. Feb 2012 A1
20120094091 Van et al. Apr 2012 A1
20120098882 Onishi et al. Apr 2012 A1
20120105561 Taniuchi et al. May 2012 A1
20120105562 Sekiguchi et al. May 2012 A1
20120113180 Tanaka et al. May 2012 A1
20120113203 Kushida et al. May 2012 A1
20120127250 Kanasugi et al. May 2012 A1
20120127251 Tsuji et al. May 2012 A1
20120140009 Kanasugi et al. Jun 2012 A1
20120154497 Nakao et al. Jun 2012 A1
20120156375 Brust et al. Jun 2012 A1
20120156624 Rondon et al. Jun 2012 A1
20120162302 Oguchi et al. Jun 2012 A1
20120163846 Andoh et al. Jun 2012 A1
20120194830 Gaertner et al. Aug 2012 A1
20120236100 Toya Sep 2012 A1
20120237260 Sengoku et al. Sep 2012 A1
20120287260 Lu et al. Nov 2012 A1
20120301186 Yang et al. Nov 2012 A1
20120314013 Takemoto et al. Dec 2012 A1
20120314077 Clavenna, II et al. Dec 2012 A1
20130011158 Meguro et al. Jan 2013 A1
20130017006 Suda Jan 2013 A1
20130044188 Nakamura et al. Feb 2013 A1
20130057603 Gordon Mar 2013 A1
20130088543 Tsuji et al. Apr 2013 A1
20130096871 Takahama Apr 2013 A1
20130120513 Thayer et al. May 2013 A1
20130182045 Ohzeki et al. Jul 2013 A1
20130201237 Thomson et al. Aug 2013 A1
20130234080 Torikoshi et al. Sep 2013 A1
20130242016 Edwards et al. Sep 2013 A1
20130302065 Mori et al. Nov 2013 A1
20130338273 Shimanaka et al. Dec 2013 A1
20140001013 Takifuji et al. Jan 2014 A1
20140011125 Inoue et al. Jan 2014 A1
20140043398 Butler et al. Feb 2014 A1
20140104360 Häcker et al. Apr 2014 A1
20140153956 Yonemoto Jun 2014 A1
20140168330 Liu et al. Jun 2014 A1
20140175707 Wolk et al. Jun 2014 A1
20140198162 DiRubio et al. Jul 2014 A1
20140232782 Mukai et al. Aug 2014 A1
20140267777 Le et al. Sep 2014 A1
20140334855 Onishi et al. Nov 2014 A1
20140339056 Iwakoshi et al. Nov 2014 A1
20150022605 Mantell et al. Jan 2015 A1
20150024648 Landa et al. Jan 2015 A1
20150025179 Landa et al. Jan 2015 A1
20150072090 Landa et al. Mar 2015 A1
20150085036 Liu et al. Mar 2015 A1
20150085037 Liu et al. Mar 2015 A1
20150085038 Liu Mar 2015 A1
20150116408 Armbruster et al. Apr 2015 A1
20150118503 Landa et al. Apr 2015 A1
20150165758 Sambhy et al. Jun 2015 A1
20150195509 Phipps Jul 2015 A1
20150210065 Kelly et al. Jul 2015 A1
20150304531 Rodriguez et al. Oct 2015 A1
20150315403 Song et al. Nov 2015 A1
20150336378 Guttmann et al. Nov 2015 A1
20150361288 Song et al. Dec 2015 A1
20160031246 Sreekumar et al. Feb 2016 A1
20160222232 Landa et al. Aug 2016 A1
20160250879 Chen et al. Sep 2016 A1
20160286462 Gohite et al. Sep 2016 A1
20160375680 Nishitani et al. Dec 2016 A1
20160378036 Onishi et al. Dec 2016 A1
20170028688 Dannhauser et al. Feb 2017 A1
20170104887 Nomura Apr 2017 A1
20180149998 Furukawa May 2018 A1
20180259888 Mitsui et al. Sep 2018 A1
20180348672 Yoshida Dec 2018 A1
20180348675 Nakamura et al. Dec 2018 A1
20190016114 Sugiyama et al. Jan 2019 A1
20190023919 Landa et al. Jan 2019 A1
20190152218 Stein et al. May 2019 A1
20190218411 Landa et al. Jul 2019 A1
20190256724 Landa et al. Aug 2019 A1
20190358982 Landa et al. Nov 2019 A1
20190366705 Landa et al. Dec 2019 A1
20190389230 Landa et al. Dec 2019 A1
20200062002 Landa et al. Feb 2020 A1
20200156366 Shmaiser et al. May 2020 A1
20200171813 Chechik et al. Jun 2020 A1
20200189264 Landa et al. Jun 2020 A1
20200198322 Landa et al. Jun 2020 A1
20210095145 Landa et al. Apr 2021 A1
20210146697 Landa et al. May 2021 A1
20210182001 Levant Jun 2021 A1
20210245528 Landa et al. Aug 2021 A1
20210252876 Landa et al. Aug 2021 A1
20210260869 Landa et al. Aug 2021 A1
20210268793 Burkatovsky Sep 2021 A1
20210283899 Landa et al. Sep 2021 A1
20220111633 Shmaiser et al. Apr 2022 A1
20220153015 Landa et al. May 2022 A1
20220153048 Landa et al. May 2022 A1
20220176693 Landa et al. Jun 2022 A1
20220188050 Boris Jun 2022 A1
Foreign Referenced Citations (367)
Number Date Country
1121033 Apr 1996 CN
1200085 Nov 1998 CN
1212229 Mar 1999 CN
1305895 Aug 2001 CN
1324901 Dec 2001 CN
1445622 Oct 2003 CN
1493514 May 2004 CN
1535235 Oct 2004 CN
1543404 Nov 2004 CN
1555422 Dec 2004 CN
1680506 Oct 2005 CN
1703326 Nov 2005 CN
1720187 Jan 2006 CN
1261831 Jun 2006 CN
1809460 Jul 2006 CN
1289368 Dec 2006 CN
101073937 Nov 2007 CN
101177057 May 2008 CN
101249768 Aug 2008 CN
101344746 Jan 2009 CN
101359210 Feb 2009 CN
101508200 Aug 2009 CN
101524916 Sep 2009 CN
101544100 Sep 2009 CN
101544101 Sep 2009 CN
101592896 Dec 2009 CN
101607468 Dec 2009 CN
201410787 Feb 2010 CN
101820241 Sep 2010 CN
101835611 Sep 2010 CN
101835612 Sep 2010 CN
101873982 Oct 2010 CN
102229294 Nov 2011 CN
102248776 Nov 2011 CN
102300932 Dec 2011 CN
102529257 Jul 2012 CN
102555450 Jul 2012 CN
102648095 Aug 2012 CN
102673209 Sep 2012 CN
102925002 Feb 2013 CN
103045008 Apr 2013 CN
103309213 Sep 2013 CN
103568483 Feb 2014 CN
103627337 Mar 2014 CN
103991293 Aug 2014 CN
104015415 Sep 2014 CN
104220934 Dec 2014 CN
104271356 Jan 2015 CN
104284850 Jan 2015 CN
104618642 May 2015 CN
105058999 Nov 2015 CN
107111267 Aug 2017 CN
102010060999 Jun 2012 DE
0457551 Nov 1991 EP
0499857 Aug 1992 EP
0606490 Jul 1994 EP
0609076 Aug 1994 EP
0613791 Sep 1994 EP
0676300 Oct 1995 EP
0530627 Mar 1997 EP
0784244 Jul 1997 EP
0835762 Apr 1998 EP
0843236 May 1998 EP
0854398 Jul 1998 EP
1013466 Jun 2000 EP
1146090 Oct 2001 EP
1158029 Nov 2001 EP
0825029 May 2002 EP
1247821 Oct 2002 EP
1271263 Jan 2003 EP
0867483 Jun 2003 EP
0923007 Mar 2004 EP
1454968 Sep 2004 EP
1503326 Feb 2005 EP
1777243 Apr 2007 EP
2028238 Feb 2009 EP
2042317 Apr 2009 EP
2065194 Jun 2009 EP
2228210 Sep 2010 EP
2270070 Jan 2011 EP
2042318 Feb 2011 EP
2042325 Feb 2012 EP
2634010 Sep 2013 EP
2683556 Jan 2014 EP
2075635 Oct 2014 EP
3260486 Dec 2017 EP
2823363 Oct 2018 EP
748821 May 1956 GB
1496016 Dec 1977 GB
1520932 Aug 1978 GB
1522175 Aug 1978 GB
2321430 Jul 1998 GB
S4843941 Dec 1973 JP
S5578904 Jun 1980 JP
S57121446 Jul 1982 JP
S6076343 Apr 1985 JP
S60199692 Oct 1985 JP
S6223783 Jan 1987 JP
H03248170 Nov 1991 JP
H05147208 Jun 1993 JP
H05192871 Aug 1993 JP
H05297737 Nov 1993 JP
H06954 Jan 1994 JP
H06100807 Apr 1994 JP
H06171076 Jun 1994 JP
H06345284 Dec 1994 JP
H07112841 May 1995 JP
H07186453 Jul 1995 JP
H07238243 Sep 1995 JP
H0862999 Mar 1996 JP
H08112970 May 1996 JP
2529651 Aug 1996 JP
H09123432 May 1997 JP
H09157559 Jun 1997 JP
H09281851 Oct 1997 JP
H09300678 Nov 1997 JP
H09314867 Dec 1997 JP
H10130597 May 1998 JP
H1142811 Feb 1999 JP
H11503244 Mar 1999 JP
H11106081 Apr 1999 JP
H11138740 May 1999 JP
H11245383 Sep 1999 JP
2000108320 Apr 2000 JP
2000108334 Apr 2000 JP
2000141710 May 2000 JP
2000168062 Jun 2000 JP
2000169772 Jun 2000 JP
2000206801 Jul 2000 JP
2000343025 Dec 2000 JP
2001088430 Apr 2001 JP
2001098201 Apr 2001 JP
2001139865 May 2001 JP
3177985 Jun 2001 JP
2001164165 Jun 2001 JP
2001199150 Jul 2001 JP
2001206522 Jul 2001 JP
2002020666 Jan 2002 JP
2002049211 Feb 2002 JP
2002504446 Feb 2002 JP
2002069346 Mar 2002 JP
2002103598 Apr 2002 JP
2002169383 Jun 2002 JP
2002229276 Aug 2002 JP
2002234243 Aug 2002 JP
2002278365 Sep 2002 JP
2002304066 Oct 2002 JP
2002326733 Nov 2002 JP
2002371208 Dec 2002 JP
2003057967 Feb 2003 JP
2003076159 Mar 2003 JP
2003094795 Apr 2003 JP
2003114558 Apr 2003 JP
2003145914 May 2003 JP
2003183557 Jul 2003 JP
2003211770 Jul 2003 JP
2003219271 Jul 2003 JP
2003246135 Sep 2003 JP
2003246484 Sep 2003 JP
2003292855 Oct 2003 JP
2003313466 Nov 2003 JP
2004009632 Jan 2004 JP
2004011263 Jan 2004 JP
2004019022 Jan 2004 JP
2004025708 Jan 2004 JP
2004034441 Feb 2004 JP
2004077669 Mar 2004 JP
2004114377 Apr 2004 JP
2004114675 Apr 2004 JP
2004148687 May 2004 JP
2004167902 Jun 2004 JP
2004231711 Aug 2004 JP
2004524190 Aug 2004 JP
2004261975 Sep 2004 JP
2004325782 Nov 2004 JP
2004340983 Dec 2004 JP
2005014255 Jan 2005 JP
2005014256 Jan 2005 JP
2005114769 Apr 2005 JP
2005215247 Aug 2005 JP
2005307184 Nov 2005 JP
2005319593 Nov 2005 JP
2006001688 Jan 2006 JP
2006023403 Jan 2006 JP
2006095870 Apr 2006 JP
2006102975 Apr 2006 JP
2006137127 Jun 2006 JP
2006143778 Jun 2006 JP
2006152133 Jun 2006 JP
2006224583 Aug 2006 JP
2006231666 Sep 2006 JP
2006234212 Sep 2006 JP
2006243212 Sep 2006 JP
2006263984 Oct 2006 JP
2006347081 Dec 2006 JP
2006347085 Dec 2006 JP
2007025246 Feb 2007 JP
2007041530 Feb 2007 JP
2007069584 Mar 2007 JP
2007079159 Mar 2007 JP
2007083445 Apr 2007 JP
2007190745 Aug 2007 JP
2007216673 Aug 2007 JP
2007253347 Oct 2007 JP
2007334125 Dec 2007 JP
2008006816 Jan 2008 JP
2008018716 Jan 2008 JP
2008019286 Jan 2008 JP
2008036968 Feb 2008 JP
2008082820 Apr 2008 JP
2008137146 Jun 2008 JP
2008137239 Jun 2008 JP
2008139877 Jun 2008 JP
2008142962 Jun 2008 JP
2008183744 Aug 2008 JP
2008194997 Aug 2008 JP
2008532794 Aug 2008 JP
2008201564 Sep 2008 JP
2008238674 Oct 2008 JP
2008246787 Oct 2008 JP
2008246990 Oct 2008 JP
2008254203 Oct 2008 JP
2008255135 Oct 2008 JP
2009040892 Feb 2009 JP
2009045794 Mar 2009 JP
2009045851 Mar 2009 JP
2009045885 Mar 2009 JP
2009083314 Apr 2009 JP
2009083317 Apr 2009 JP
2009083325 Apr 2009 JP
2009096175 May 2009 JP
2009148908 Jul 2009 JP
2009154330 Jul 2009 JP
2009190375 Aug 2009 JP
2009202355 Sep 2009 JP
2009214318 Sep 2009 JP
2009214439 Sep 2009 JP
2009532240 Sep 2009 JP
2009226805 Oct 2009 JP
2009226852 Oct 2009 JP
2009226886 Oct 2009 JP
2009226890 Oct 2009 JP
2009227909 Oct 2009 JP
2009233977 Oct 2009 JP
2009234219 Oct 2009 JP
2009240925 Oct 2009 JP
2009271422 Nov 2009 JP
2010005815 Jan 2010 JP
2010030300 Feb 2010 JP
2010054855 Mar 2010 JP
2010510357 Apr 2010 JP
2010105365 May 2010 JP
2010173201 Aug 2010 JP
2010184376 Aug 2010 JP
2010214885 Sep 2010 JP
4562388 Oct 2010 JP
2010228192 Oct 2010 JP
2010228392 Oct 2010 JP
2010234599 Oct 2010 JP
2010234681 Oct 2010 JP
2010240897 Oct 2010 JP
2010241073 Oct 2010 JP
2010247381 Nov 2010 JP
2010247528 Nov 2010 JP
2010258193 Nov 2010 JP
2010260204 Nov 2010 JP
2010260287 Nov 2010 JP
2010260302 Nov 2010 JP
2010286570 Dec 2010 JP
2011002532 Jan 2011 JP
2011025431 Feb 2011 JP
2011031619 Feb 2011 JP
2011037070 Feb 2011 JP
2011064850 Mar 2011 JP
2011067956 Apr 2011 JP
2011126031 Jun 2011 JP
2011133884 Jul 2011 JP
2011144271 Jul 2011 JP
2011523601 Aug 2011 JP
2011168024 Sep 2011 JP
2011173325 Sep 2011 JP
2011173326 Sep 2011 JP
2011186346 Sep 2011 JP
2011189627 Sep 2011 JP
2011201951 Oct 2011 JP
2011224032 Nov 2011 JP
2012042943 Mar 2012 JP
2012086499 May 2012 JP
2012111194 Jun 2012 JP
2012126123 Jul 2012 JP
2012139905 Jul 2012 JP
2012196787 Oct 2012 JP
2012201419 Oct 2012 JP
2013001081 Jan 2013 JP
2013060299 Apr 2013 JP
2013103474 May 2013 JP
2013104044 May 2013 JP
2013121671 Jun 2013 JP
2013129158 Jul 2013 JP
2014008609 Jan 2014 JP
2014047005 Mar 2014 JP
2014073675 Apr 2014 JP
2014094827 May 2014 JP
2014131843 Jul 2014 JP
2015202616 Nov 2015 JP
2016074206 May 2016 JP
2016093999 May 2016 JP
2016185688 Oct 2016 JP
2016539830 Dec 2016 JP
2017093178 May 2017 JP
2180675 Mar 2002 RU
2282643 Aug 2006 RU
8600327 Jan 1986 WO
9307000 Apr 1993 WO
9604339 Feb 1996 WO
9631809 Oct 1996 WO
9707991 Mar 1997 WO
9736210 Oct 1997 WO
9821251 May 1998 WO
9855901 Dec 1998 WO
9912633 Mar 1999 WO
9942509 Aug 1999 WO
9943502 Sep 1999 WO
0064685 Nov 2000 WO
0154902 Aug 2001 WO
0170512 Sep 2001 WO
02068191 Sep 2002 WO
02078868 Oct 2002 WO
02094912 Nov 2002 WO
2004113082 Dec 2004 WO
2004113450 Dec 2004 WO
2006051733 May 2006 WO
2006069205 Jun 2006 WO
2006073696 Jul 2006 WO
2006091957 Aug 2006 WO
2007009871 Jan 2007 WO
2007145378 Dec 2007 WO
2008078841 Jul 2008 WO
2009025809 Feb 2009 WO
2009134273 Nov 2009 WO
2010042784 Jul 2010 WO
2010073916 Jul 2010 WO
2011142404 Nov 2011 WO
2012014825 Feb 2012 WO
2012148421 Nov 2012 WO
2013060377 May 2013 WO
2013087249 Jun 2013 WO
2013132339 Sep 2013 WO
2013132340 Sep 2013 WO
2013132343 Sep 2013 WO
2013132345 Sep 2013 WO
2013132356 Sep 2013 WO
2013132418 Sep 2013 WO
2013132419 Sep 2013 WO
2013132420 Sep 2013 WO
2013132424 Sep 2013 WO
2013132432 Sep 2013 WO
2013132438 Sep 2013 WO
2013132439 Sep 2013 WO
2013136220 Sep 2013 WO
2015026864 Feb 2015 WO
2015036864 Mar 2015 WO
2015036906 Mar 2015 WO
2015036960 Mar 2015 WO
2016166690 Oct 2016 WO
2017208246 Dec 2017 WO
2018100541 Jun 2018 WO
Non-Patent Literature Citations (272)
Entry
“Amino Functional Silicone Polymers”, in Xiameter.COPYRGT. 2009 Dow Coming Corporation.
BASF , “JONCRYL 537”, Datasheet, Retrieved from the internet: Mar. 23, 2007 p. 1.
Clariant., “Ultrafine Pigment Dispersion for Design and Creative Materials: Hostafine Pigment Preparation” Jun. 19, 2008. Retrieved from the Internet: [URL: http://www.clariant.com/C125720D002B963C/4352D0BC052E90CEC1257479002707D9/$FILE/DP6208E_0608_FL_Hostafinefordesignandcreativematerials.pdf].
CN101073937A Machine Translation (by EPO and Google)—published Nov. 21, 2007; Werner Kaman Maschinen GMBH & [DE].
CN101177057 Machine Translation (by EPO and Google)—published May 14, 2008—Hangzhou Yuanyang Industry Co.
CN101249768A Machine Translation (by EPO and Google)—published Aug. 27, 2008; Shantou Xinxie Special Paper T [CN].
CN101344746A Machine Translation (by EPO and Google)—published Jan. 14, 2009; Ricoh KK [JP].
CN101359210A Machine Translation (by EPO and Google)—published Feb. 4, 2009; Canon KK [JP].
CN101524916A Machine Translation (by EPO and Google)—published Sep. 9, 2009; Fuji Xerox Co Ltd.
CN101544100A Machine Translation (by EPO and Google)—published Sep. 30, 2009; Fuji Xerox Co Ltd.
CN101873982A Machine Translation (by EPO and Google)—published Oct. 27, 2010; Habasit AG, Delair et al.
CN102648095A Machine Translation (by EPO and Google)—published Aug. 22, 2012; Mars Inc.
CN102925002 Machine Translation (by EPO and Google)—published Feb. 13, 2013; Jiangnan University, Fu et al.
CN103045008A Machine Translation (by EPO and Google)—published Apr. 17,2 013; Fuji Xerox Co Ltd.
CN103991293A Machine Translation (by EPO and Google)—published Aug. 20, 2014; Miyakoshi Printing Machinery Co., Ltd, Junichi et al.
CN104618642 Machine Translation (by EPO and Google); published on May 13, 2015, Yulong Comp Comm Tech Shenzhen.
CN105058999A Machine Translation (by EPO and Google)—published Nov. 18, 2015; Zhuoli Imaging Technology Co Ltd.
CN1121033A Machine Translation (by EPO and Google)—published Apr. 24, 1996; Kuehnle Manfred R [US].
CN1212229A Machine Translation (by EPO and Google)—published Mar. 31, 1999; Honta Industry Corp [JP].
CN1493514A Machine Translation (by EPO and Google)—published May 5, 2004; GD Spa, Boderi et al.
CN1809460A Machine Translation (by EPO and Google)—published Jul. 26, 2006; Canon KK.
CN201410787Y Machine Translation (by EPO and Google)—published Feb. 24, 2010; Zhejiang Chanx Wood Co Ltd.
Co-pending U.S. Appl. No. 16/512,915, filed Jul. 16, 2019.
Co-pending U.S. Appl. No. 16/590,397, filed Oct. 2, 2019.
Co-pending U.S. Appl. No. 16/649,177, filed Mar. 20, 2020.
Co-pending U.S. Appl. No. 16/764,330, filed May 14, 2020.
Co-Pending U.S. Appl. No. 16/784,208, filed Feb. 6, 2020.
Co-Pending U.S. Appl. No. 16/793,995, filed Feb. 18, 2020.
Co-Pending U.S. Appl. No. 16/814,900, filed Mar. 11, 2020.
Co-Pending U.S. Appl. No. 16/850,229, filed Apr. 16, 2020.
Co-Pending U.S. Appl. No. 16/883,617, filed May 26, 2020.
DE102010060999 Machine Translation (by EPO and Google)—published Jun. 6, 2012; Wolf, Roland, Dr.-lng.
Epomin Polyment, product information from Nippon Shokubai, dated Feb. 28, 2014.
Flexicon., “Bulk Handling Equipment and Systems: Carbon Black,” 2018, 2 pages.
Handbook of Print Media, 2001, Springer Verlag, Berlin/Heidelberg/New York, pp. 127-136,748—With English Translation.
IP.com Search, 2018, 2 pages.
IP.com Search, 2019, 1 page.
JP2000108320 Machine Translation (by PlatPat English machine translation)—published Apr. 18, 2000 Brother Ind. Ltd.
JP2000108334A Machine Translation (by EPO and Google)—published Apr. 18, 2000; Brother Ind Ltd.
JP2000141710A Machine Translation (by EPO and Google)—published May 23, 2000; Brother Ind Ltd.
JP2000168062A Machine Translation (by EPO and Google)—published Jun. 20, 2000; Brother Ind Ltd.
JP2000169772 Machine Translation (by EPO and Google)—published Jun. 20, 2000; Tokyo Ink MFG Co Ltd.
JP2000206801 Machine Translation (by PlatPat English machine translation); published on Jul. 28, 2000, Canon KK, Kobayashi et al.
JP2001088430A Machine Translation (by EPO and Google)—published Apr. 3, 2001; Kimoto KK.
JP2001098201A Machine Translation (by EPO and Google)—published Apr. 10, 2001; Eastman Kodak Co.
JP2001139865A Machine Translation (by EPO and Google)—published May 22, 2001; Sharp KK.
JP2001164165A Machine Translation (by EPO and Google)—published Jun. 19, 2001; Dainippon Ink & Chemicals.
JP2001199150A Machine Translation (by EPO and Google)—published Jul. 24, 2001; Canon KK.
JP2001206522 Machine Translation (by EPO, PlatPat and Google)—published Jul. 31, 2001; Nitto Denko Corp, Kato et al.
JP2002069346A Machine Translation (by EPO and Google)—published Mar. 8, 2002; Dainippon Ink & Chemicals.
JP2002103598A Machine Translation (by EPO and Google)—published Apr. 9, 2002; Olympus Optical Co.
JP2002169383 Machine Translation (by EPO, PlatPat and Google)—published Jun. 14, 2002 Richo KK.
JP2002234243 Machine Translation (by EPO and Google)—published Aug. 20, 2002; Hitachi Koki Co Ltd.
JP2002278365 Machine Translation (by PlatPat English machine translation)—published Sep. 27, 2002 Katsuaki, Ricoh KK.
JP2002304066A Machine Translation (by EPO and Google)—published Oct. 18, 2002; PFU Ltd.
JP2002326733 Machine Translation (by EPO, PlatPat and Google)—published Nov. 12, 2002; Kyocera Mita Corp.
JP2002371208 Machine Translation (by EPO and Google)—published Dec. 26, 2002; Canon Inc.
JP2003114558 Machine Translation (by EPO, PlatPat and Google)—published Apr. 18, 2003 Mitsubishi Chem Corp, Yuka Denshi Co Ltd, et al.
JP2003145914A Machine Translation (by EPO and Google)—published May 21, 2003; Konishiroku Photo Ind.
JP2003211770 Machine Translation (by EPO and Google)—published Jul. 29, 2003 Hitachi Printing Solutions.
JP2003219271 Machine Translation (by EPO and Google); published on Jul. 31, 2003, Japan Broadcasting.
JP2003246135 Machine Translation (by PlatPat English machine translation)—published Sep. 2, 2003 Ricoh KK, Morohoshi et al.
JP2003246484 Machine Translation (English machine translation)—published Sep. 2, 2003 Kyocera Corp.
JP2003292855A Machine Translation (by EPO and Google)—published Oct. 15, 2003; Konishiroku Photo Ind.
JP2003313466A Machine Translation (by EPO and Google)—published Nov. 6, 2003; Ricoh KK.
JP2004009632A Machine Translation (by EPO and Google)—published Jan. 15, 2004; Konica Minolta Holdings Inc.
JP2004019022 Machine Translation (by EPO and Google)—published Jan. 22, 2004; Yamano et al.
JP2004025708A Machine Translation (by EPO and Google)—published Jan. 29, 2004; Konica Minolta Holdings Inc.
JP2004034441A Machine Translation (by EPO and Google)—published Feb. 5, 2004; Konica Minolta Holdings Inc.
JP2004077669 Machine Translation (by PlatPat English machine translation)—published Mar. 11, 2004 Fuji Xerox Co Ltd.
JP2004114377(A) Machine Translation (by EPO and Google)—published Apr. 15, 2004; Konica Minolta Holdings Inc, et al.
JP2004114675 Machine Translation (by EPO and Google)—published Apr. 15, 2004; Canon Inc.
JP2004148687A Machine Translation (by EPO and Google)—published May 27, 2014; Mitsubishi Heavy Ind Ltd.
JP2004231711 Machine Translation (by EPO and Google)—published Aug. 19, 2004; Seiko Epson Corp.
JP2004261975 Machine Translation (by EPO, PlatPat and Google); published on Sep. 24, 2004, Seiko Epson Corp, Kataoka et al.
JP2004325782A Machine Translation (by EPO and Google)—published Nov. 18, 2004; Canon KK.
JP2004524190A Machine Translation (by EPO and Google)—published Aug. 12, 2004; Avery Dennison Corp.
JP2005014255 Machine Translation (by EPO and Google)—published Jan. 20, 2005; Canon Inc.
JP2005014256 Machine Translation (by EPO and Google)—published Jan. 20, 2005; Canon Inc.
JP2005114769 Machine Translation (by PlatPat English machine translation)—published Apr. 28, 2005 Ricoh KK.
JP2005215247A Machine Translation (by EPO and Google)—published Aug. 11, 2005; Toshiba Corp.
JP2005319593 Machine Translation (by EPO and Google)—published Nov. 17, 2005, Jujo Paper Co Ltd.
JP2006001688 Machine Translation (by PlatPat English machine translation)—published Jan. 5, 2006 Ricoh KK.
JP2006023403A Machine Translation (by EPO and Google)—published Jan. 26, 2006; Ricoh KK.
JP2006095870A Machine Translation (by EPO and Google)—published Apr. 13, 2006; Fuji Photo Film Co Ltd.
JP2006102975 Machine Translation (by EPO and Google)—published Apr. 20, 2006; Fuji Photo Film Co Ltd.
JP2006137127 Machine Translation (by EPO and Google)—published Jun. 1, 2006; Konica Minolta Med & Graphic.
JP2006143778 Machine Translation (by EPO, PlatPat and Google)—published Jun. 8, 2006 Sun Bijutsu Insatsu KK et al.
JP2006152133 Machine Translation (by EPO, PlatPat and Google)—published Jun. 15, 2006 Seiko Epson Corp.
JP2006224583A Machine Translation (by EPO and Google)—published Aug. 31, 2006; Konica Minolta Holdings Inc.
JP2006231666A Machine Translation (by EPO and Google)—published Sep. 7, 2006; Seiko Epson Corp.
JP2006234212A Machine Translation (by EPO and Google)—published Sep. 7, 2006; Matsushita Electric Ind Co Ltd.
JP2006243212 Machine Translation (by PlatPat English machine translation)—published Sep. 14, 2006 Fuji Xerox Co Ltd.
JP2006263984 Machine Translation (by EPO, PlatPat and Google)—published Oct. 5, 2006 Fuji Photo Film Co Ltd.
JP2006347081 Machine Translation (by EPO and Google)—published Dec. 28, 2006; Fuji Xerox Co Ltd.
JP2006347085 Machine Translation (by EPO and Google)—published Dec. 28, 2006 Fuji Xerox Co Ltd.
JP2007025246A Machine Translation (by EPO and Google)—published Feb. 1, 2007; Seiko Epson Corp.
JP2007041530A Machine Translation (by EPO and Google)—published Feb. 15, 2007; Fuji Xerox Co Ltd.
JP2007069584 Machine Translation (by EPO and Google)—published Mar. 22, 2007 Fujifilm.
JP2007083445A Machine Translation (by EPO and Google)—published Apr. 5, 2007; Fujifilm Corp.
JP2011144271 Machine Translation (by EPO and Google)—published Jun. 28, 2011 Toyo Ink SC Holdings Co Ltd.
JP2011173325 Abstract; Machine Translation (by EPO and Google)—published Sep. 8, 2011; Canon Inc.
JP2011173326 Machine Translation (by EPO and Google)—published Sep. 8, 2011; Canon Inc.
JP2011186346 Machine Translation (by PlatPat English machine translation)—published Sep. 22, 2011 Seiko Epson Corp, Nishimura et al.
JP2011189627 Machine Translation (by Google Patents)—published Sep. 29, 2011; Canon KK.
JP2011201951A Machine Translation (by PlatPat English machine translation); published on Oct. 13, 2011, Shin-Etsu Chemical Co Ltd, Todoroki et al.
JP2011224032 Machine Translation (by EPO & Google)—published Jul. 5, 2012 Canon KK.
JP2012086499 Machine Translation (by EPO and Google)—published May 10, 2012; Canon Inc.
JP2012111194 Machine Translation (by EPO and Google)—published Jun. 14, 2012; Konica Minolta.
JP2012196787A Machine Translation (by EPO and Google)—published Oct. 18, 2012; Seiko Epson Corp.
JP2012201419A Machine Translation (by EPO and Google)—published Oct. 22, 2012, Seiko Epson Corp.
JP2013001081 Machine Translation (by EPO and Google)—published Jan. 7, 2013; Kao Corp.
JP2013060299 Machine Translation (by EPO and Google)—published Apr. 4, 2013; Ricoh Co Ltd.
JP2013103474 Machine Translation (by EPO and Google)—published May 30, 2013; Ricoh Co Ltd.
JP2013121671 Machine Translation (by EPO and Google)—published Jun. 20, 2013; Fuji Xerox Co Ltd.
JP2013129158 Machine Translation (by EPO and Google)—published Jul. 4, 2013; Fuji Xerox Co Ltd.
JP2014047005A Machine Translation (by EPO and Google)—published Mar. 17, 2014; Ricoh Co Ltd.
JP2014094827A Machine Translation (by EPO and Google)—published May 22, 2014; Panasonic Corp.
JP2016185688A Machine Translation (by EPO and Google)—published Oct. 27, 2016; Hitachi Industry Equipment Systems Co Ltd.
JP2529651B2 Machine Translation (by EPO and Google)—issued Aug. 28, 1996;Osaka Sealing Insatsu KK.
JPH03248170A Machine Translation (by EPO & Google)—published Nov. 6, 1991; Fujitsu Ltd.
JPH05147208 Machine Translation (by EPO and Google)—published Jun. 15, 1993—Mita Industrial Co Ltd.
JPH06100807 Machine Translation (by EPO and Google)—published Apr. 12, 1994; Seiko Instr Inc.
JPH06171076A Machine Translation (by PlatPat English machine translation)—published Jun. 21, 1994, Seiko Epson Corp.
JPH06345284A Machine Translation (by EPO and Google); published on Dec. 20, 1994, Seiko Epson Corp.
JPH06954A Machine Translation (by EPO and Google)—published Jan. 11, 1994; Seiko Epson Corp.
JPH07186453A Machine Translation (by EPO and Google)—published Jul. 25, 1995; Toshiba Corp.
JPH07238243A Machine Translation (by EPO and Google)—published Sep. 12, 1995; Seiko Instr Inc.
JPH08112970 Machine Translation (by EPO and Google)—published May 7, 1996; Fuji Photo Film Co Ltd.
JPH0862999A Machine Translation (by EPO & Google)—published Mar. 8, 1996 Toray Industries, Yoshida, Tomoyuki.
JPH09123432 Machine Translation (by EPO and Google)—published May 13, 1997, Mita Industrial Co Ltd.
JPH09157559A Machine Translation (by EPO and Google)—published Jun. 17, 1997; Toyo Ink Mfg Co.
JPH09281851A Machine Translation (by EPO and Google)—published Oct. 31, 1997; Seiko Epson Corp.
JPH09314867A Machine Translation (by PlatPat English machine translation)—published Dec. 9, 1997, Toshiba Corp.
JPH11106081A Machine Translation (by EPO and Google)—published Apr. 20, 1999; Ricoh KK.
JPH11245383A Machine Translation (by EPO and Google)—published Sep. 14, 1999; Xerox Corp.
JPH5297737 Machine Translation (by EPO & Google machine translation)—published Nov. 12, 1993 Fuji Xerox Co Ltd.
JPS5578904A Machine Translation (by EPO and Google)—published Jun. 14, 1980; Yokoyama Haruo.
JPS57121446U Machine Translation (by EPO and Google)—published Jul. 28, 1982.
JPS60199692A Machine Translation (by EPO and Google)—published Oct. 9, 1985; Suwa Seikosha KK.
JPS6076343A Machine Translation (by EPO and Google)—published Apr. 30, 1985; Toray Industries.
JPS6223783A Machine Translation (by EPO and Google)—published Jan. 31, 1987; Canon KK.
Machine Translation (by EPO and Google) of JPH07112841 published on May 2, 1995 Canon KK.
Marconi Studios, Virtual Set Real Time; http://www.marconistudios.il/pages/virtualset_en.php.
Montuori G.M., et al., “Geometrical Patterns for Diagrid Buildings: Exploring Alternative Design Strategies From the Structural Point of View,” Engineering Structures, Jul. 2014, vol. 71, pp. 112-127.
“Solubility of Alcohol”, in http://www.solubilityoflhings.com/water/alcohol; downloaded on Nov. 30, 2017.
Poly(vinyl acetate) data sheet. PolymerProcessing.com. Copyright 2010. http://polymerprocessing com/polymers/PVAC.html.
Royal Television Society, The Flight of the Phoenix; https://rts.org.uk/article/flight-phoenix, Jan. 27, 2011.
RU2180675C2 Machine Translation (by EPO and Google)—published Mar. 20, 2002; Zao Rezinotekhnika.
RU2282643C1 Machine Translation (by EPO and Google)—published Aug. 27, 2006; Balakovorezinotekhnika Aoot.
JP2007216673 Machine Translation (by EPO and Google)—published Aug. 30, 2007 Brother Ind.
JP2007253347A Machine Translation (by EPO and Google)—published Oct. 4, 2007; Ricoh KK, Matsuo et al.
JP2008006816 Machine Translation (by EPO and Google)—published Jan. 17, 2008; Fujifilm Corp.
JP2008018716 Machine Translation (by EPO and Google)—published Jan. 31, 2008; Canon Inc.
JP2008137239A Machine Translation (by EPO and Google); published on Jun. 19, 2008, Kyocera Mita Corp.
JP2008139877A Machine Translation (by EPO and Google)—published Jun. 19, 2008; Xerox Corp.
JP2008142962 Machine Translation (by EPO and Google)—published Jun. 26, 2008; Fuji Xerox Co Ltd.
JP2008183744A Machine Translation (by EPO and Google)—published Aug. 14, 2008, Fuji Xerox Co Ltd.
JP2008194997A Machine Translation (by EPO and Google)—published Aug. 28, 2008; Fuji Xerox Co Ltd.
JP2008201564 Machine Translation (English machine translation)—published Sep. 4, 2008 Fuji Xerox Co Ltd.
JP2008238674A Machine Translation (by EPO and Google)—published Oct. 9, 2008; Brother Ind Ltd.
JP2008246990 Machine Translation (by EPO and Google)—published Oct. 16, 2008, Jujo Paper Co Ltd.
JP2008254203A Machine Translation (by EPO and Google)—published Oct. 23, 2008; Fujifilm Corp.
JP2008255135 Machine Translation (by EPO and Google)—published Oct. 23, 2008; Fujifilm Corp.
JP2009045794 Machine Translation (by EPO and Google)—published Mar. 5, 2009; Fujifilm Corp.
JP2009045851A Machine Translation (by EPO and Google); published on Mar. 5, 2009, Fujifilm Corp.
JP2009045885A Machine Translation (by EPO and Google)—published Mar. 5, 2009; Fuji Xerox Co Ltd.
JP2009083314 Machine Translation (by EPO, PlatPat and Google)—published Apr. 23, 2009 Fujifilm Corp.
JP2009083317 Abstract; Machine Translation (by EPO and Google)—published Apr. 23, 2009; Fuji Film Corp.
JP2009083325 Abstract; Machine Translation (by EPO and Google)—published Apr. 23, 2009 Fujifilm.
JP2009096175 Machine Translation (EPO, PlatPat and Google) published on May 7, 2009 Fujifilm Corp.
JP2009148908A Machine Translation (by EPO and Google)—published Jul. 9, 2009; Fuji Xerox Co Ltd.
JP2009154330 Machine Translation (by EPO and Google)—published Jul. 16, 2009; Seiko Epson Corp.
JP2009190375 Machine Translation (by EPO and Google)—published Aug. 27, 2009; Fuji Xerox Co Ltd.
JP2009202355 Machine Translation (by EPO and Google)—published Sep. 10, 2009; Fuji Xerox Co Ltd.
JP2009214318 Machine Translation (by EPO and Google)—published Sep. 24, 2009 Fuji Xerox Co Ltd.
JP2009214439 Machine Translation (by PlatPat English machine translation)—published Sep. 24, 2009 Fujifilm Corp.
JP2009226852 Machine Translation (by EPO and Google)—published Oct. 8, 2009; Hirato Katsuyuki, Fujifilm Corp.
JP2009233977 Machine Translation (by EPO and Google)—published Oct. 15, 2009; Fuji Xerox Co Ltd.
JP2009234219 Machine Translation (by EPO and Google)—published Oct. 15, 2009; Fujifilm Corp.
JP2010054855 Machine Translation (by PlatPat English machine translation)—published Mar. 11, 2010 Itatsu, Fuji Xerox Co.
JP2010105365 Machine Translation (by EPO and Google)—published May 13, 2010; Fuji Xerox Co Ltd.
JP2010173201 Abstract; Machine Translation (by EPO and Google)—published Aug. 12, 2010; Richo Co Ltd.
JP2010184376 Machine Translation (by EPO, PlatPat and Google)—published Aug. 26, 2010 Fujifilm Corp.
JP2010214885A Machine Translation (by EPO and Google)—published Sep. 30, 2010; Mitsubishi Heavy Ind Ltd.
JP2010228192 Machine Translation (by PlatPat English machine translation)—published Oct. 14, 2010 Fuji Xerox.
JP2010228392A Machine Translation (by EPO and Google)—published Oct. 14, 2010; Jujo Paper Co Ltd.
JP2010234599A Machine Translation (by EPO and Google)—published Oct. 21, 2010; Duplo Seiko Corp et al.
JP2010234681A Machine Translation (by EPO and Google)—published Oct. 21, 2010; Riso Kagaku Corp.
JP2010241073 Machine Translation (by EPO and Google)—published Oct. 28, 2010; Canon Inc.
JP2010247381A Machine Translation (by EPO and Google); published on Nov. 4, 2010, Ricoh Co Ltd.
JP2010258193 Machine Translation (by EPO and Google)—published Nov. 11, 2010; Seiko Epson Corp.
JP2010260204A Machine Translation (by EPO and Google)—published Nov. 18, 2010; Canon KK.
JP2010260287 Machine Translation (by EPO and Google)—published Nov. 18, 2010, Canon KK.
JP2010260302A Machine Translation (by EPO and Google)—published Nov. 18, 2010; Riso Kagaku Corp.
JP2011002532 Machine Translation (by PlatPat English machine translation)—published Jun. 1, 2011 Seiko Epson Corp.
JP2011025431 Machine Translation (by EPO and Google)—published Feb. 10, 2011; Fuji Xerox Co Ltd.
JP2011037070A Machine Translation (by EPO and Google)—published Feb. 24, 2011; Riso Kagaku Corp.
JP2011067956A Machine Translation (by EPO and Google)—published Apr. 7, 2011; Fuji Xerox Co Ltd.
JP2011126031A Machine Translation (by EPO and Google); published on Jun. 30, 2011, Kao Corp.
CN102229294A Machine Translation (by EPO and Google)—published Nov. 2, 2011; Guangzhou Changcheng Ceramics Co Ltd.
CN102300932A Machine Translation (by EPO and Google)—published Dec. 28, 2011; Yoshida Hiroaki et al.
CN103568483A Machine Translation (by EPO and Google)—published Feb. 12, 2014; Anhui Printing Mechanical & Electrical Co Ltd.
CN103627337A Machine Translation (by EPO and Google)—published Mar. 12, 2014; Suzhou Banlid New Material Co Ltd.
CN107111267A Machine Translation (by EPO and Google)—published Aug. 29, 2017; Hewlett Packard Indigo BV.
CN1555422A Machine Translation (by EPO and Google)—published Dec. 15, 2004; Noranda Inc.
CN1680506A Machine Translation (by EPO and Google)—published Oct. 12, 2005; Shinetsu Chemical Co [JP].
Co-pending U.S. Appl. No. 17/155,121, filed Jan. 22, 2021.
Co-pending U.S. Appl. No. 17/265,817, inventors Alon; Siman Tov et al., filed Feb. 4, 2021.
Co-pending U.S. Appl. No. 17/279,539, inventors Helena; Chechik et al., filed Mar. 24, 2021.
Co-pending U.S. Appl. No. 17/312,394, filed Jun. 10, 2021.
Co-pending U.S. Appl. No. 17/382,285, filed Jul. 21, 2021.
Co-pending U.S. Appl. No. 17/382,334, filed Jul. 21, 2021.
Co-pending U.S. Appl. No. 17/414,087, filed Jun. 15, 2021.
IP.com search (Year: 2021).
JP2000343025A Machine Translation (by EPO and Google)—published Dec. 12, 2000; Kyocera Corp.
JP2002049211A Machine Translation (by EPO and Google)—published Feb. 15, 2002; PFU Ltd.
JP2003094795A Machine Translation (by EPO and Google)—published Apr. 3, 2003; Ricoh KK.
JP2004011263A Machine Translation (by EPO and Google)—published Jan. 15, 2004; Sumitomo Denko Steel Wire KK.
JP2004167902A Machine Translation (by EPO and Google)—published Jun. 17, 2004; Nippon New Chrome KK.
JP2004340983A Machine Translation (by EPO and Google)—published Dec. 2, 2004; Ricoh KK.
JP2007079159A Machine Translation (by EPO and Google)—published Mar. 29, 2007; Ricoh KK.
JP2008137146A Machine Translation (by EPO and Google)—published Jun. 19, 2008; CBG Acciai SRL.
JP2009226805A Machine Translation (by EPO and Google)—published Oct. 8, 2009; Fuji Xerox Co Ltd.
JP2009226890A Machine Translation (by EPO and Google)—published Oct. 8, 2009; Fuji Xerox Co Ltd.
JP2010240897A Machine Translation (by EPO and Google)—published Oct. 28, 2010; Toppan Printing Co Ltd.
JP2011031619A Machine Translation (by EPO and Google)—published Feb. 17, 2011; Xerox Corp.
JP2014131843A Machine Translation (by EPO and Google)—published Jul. 17, 2014; Ricoh Co Ltd.
JP2016093999A Machine Translation (by EPO and Google)—published May 26, 2016; Canon KK.
JPH09300678A Machine Translation (by EPO and Google)—published Nov. 25, 1997; Mitsubishi Electric Corp.
JPH11138740A Machine Translation (by EPO and Google)—published May 25, 1999; Nikka KK.
Larostat 264 A Quaternary Ammonium Compound, Technical Bulletin, BASF Corporation, Dec. 2002, p. 1.
CN101592896A Machine Translation (by EPO and Google)—published Dec. 2, 2009; Canon KK.
CN101820241A Machine Translation (by EPO and Google)—published Sep. 1, 2010; Canon KK.
CN102529257A Machine Translation (by EPO and Google)—published Jul. 4, 2012; Nippon Synthetic Chem Ind.
CN102673209A Machine Translation (by EPO and Google)—published Sep. 19, 2012; Wistron Corp.
CN104015415A Machine Translation (by EPO and Google)—published Sep. 3, 2014; Avery Dennison Dorp.
CN1305895A Machine Translation (by EPO and Google)—published Aug. 1, 2001; Imaje SA [FR].
CN1543404A Machine Translation (by EPO and Google)—published Nov. 3, 2004; 3M Innovative Properties Co [US].
CN1703326A Machine Translation (by EPO and Google)—published Nov. 30, 2005; Nissha Printing [JP].
Co-Pending U.S. Appl. No. 17/438,497, inventors Helena; Chechik et al., filed Sep. 13, 2021.
Co-Pending U.S. Appl. No. 17/583,372, inventor Pomerantz; Uriel, filed Jan. 25, 2022.
Co-Pending U.S. Appl. No. 17/676,398, filed Mar. 21, 2022.
Co-Pending U.S. Appl. No. 17/694,702, inventor Chechik; Helena, filed Mar. 15, 2022.
Co-Pending U.S. Appl. No. 17/712,198, filed Apr. 4, 2022.
Co-Pending U.S. Appl. No. 17/773,609, filed May 1, 2022.
JP2003076159A Machine Translation (by EPO and Google)—published Mar. 14, 2003, Ricoh KK.
JP2008082820A Machine Translation (by EPO and Google)—published Apr. 10, 2008; Ricoh KK.
JP2009227909A Machine Translation (EPO, PlatPat and Google) published on Oct. 8, 2009 Fujifilm Corp.
JP2009240925A Machine Translation (by EPO and Google)—published Oct. 22, 2009; Fujifilm Corp.
JP2009271422A Machine Translation (by EPO and Google)—published Nov. 19, 2009; Ricoh KK.
JP2009532240A Machine Translation (by EPO and Google)—published Sep. 10, 2009; Aisapack Holding SA.
JP2010030300A Machine Translation (by EPO and Google)—published Feb. 12, 2010; Xerox Corp.
JP2011064850A Machine Translation (by EPO and Google)—published Mar. 31, 2011; Seiko Epson Corp.
JP2011168024A Machine Translation (EPO, PlatPat and Google) published on Sep. 1, 2011 Ricoh Co Ltd.
JP2013104044A Machine Translation (by EPO and Google)—published May 30, 2013; Three M Innovative Properties.
JP2014008609A Machine Translation (EPO, PlatPat and Google) published on Jan. 20, 2014 Seiko Epson Corp.
JP2014073675A Machine Translation (EPO and Google) published on Apr. 24, 2014 Ricoh Co Ltd.
JP2015202616A Machine Translation (EPO, PlatPat and Google) published on Nov. 16, 2015 Canon KK.
JP2016074206A Machine Translation (EPO and Google) published on May 12, 2016 Xerox Corp.
JP2017093178A Machine Translation (EPO and Google) published on May 25, 2017 Samsung Electronics Co Ltd.
JP4562388B2 Machine Translation (by EPO and Google)—published Oct. 13, 2010; SK Kaken Co Ltd.
JP48043941 Machine Translation (by EPO and Google)—published Dec. 21, 1973;. Ibaraki.
JPH10130597A Machine Translation (by EPO and Google)—published May 19, 1998; Sekisui Chemical Co Ltd.
XIAMETER™ “OFS-0777 Siliconate Technical Data Sheet,” Dec. 31, 2017, 5 pages. [Retrieved from the internet on Oct. 13, 2021]: https://www.dow.com/en-us/document-viewer.html?ramdomVar=6236427586842315077&docPath=/content/dam/dcc/documents/en-us/productdatasheet/95/95-4/95-435-01-xiameter-ofs-0777-siliconate.pdf.
Technical Information Lupasol Types, Sep. 2010, 10 pages.
The Engineering Toolbox., “Dynamic Viscosity of Common Liquids,” 2018, 4 pages.
Thomas E. F., “CRC Handbook of Food Additives, Second Edition, vol. 1” CRC Press LLC, 1972, p. 434.
Units of Viscosity published by Hydramotion Ltd 1 York Road Park, Malton, York Y017 6YA, England; downloaded from www.hydramotion.com website on Jun. 19, 2017.
WO2006051733A1 Machine Translation (by EPO and Google)—published May 18, 2006; Konica Minolta Med & Graphic.
WO2010073916A1 Machine Translation (by EPO and Google)—published Jul. 1,2 010; Nihon Parkerizing [JP] et al.
WO2013087249 Machine Translation (by EPO and Google)—published Jun. 20, 2013; Koenig & Bauer AG.
Related Publications (1)
Number Date Country
20200361202 A1 Nov 2020 US
Provisional Applications (1)
Number Date Country
62590672 Nov 2017 US