Calibration structures for differential signal probing

Information

  • Patent Grant
  • 7723999
  • Patent Number
    7,723,999
  • Date Filed
    Thursday, February 22, 2007
    17 years ago
  • Date Issued
    Tuesday, May 25, 2010
    14 years ago
Abstract
A plurality of calibration structures facilitate calibration of a probing system that includes a differential signal probe having a linear array of probe tips.
Description
BACKGROUND OF THE INVENTION

The present invention relates to integrated circuits and, more particularly, to structures for calibrating probing systems that utilize differential signals to inspect integrated circuits and other microelectronic devices.


Integrated circuits (ICs) are economically attractive because large numbers of often complex circuits, for example microprocessors, can be inexpensively fabricated on the surface of a wafer or substrate. Following fabrication, individual dies, including one or more circuits, are separated or singulated and encased in a package that provides for electrical connections between the exterior of the package and the circuit on the enclosed die. The separation and packaging of a die comprises a significant portion of the cost of manufacturing the integrated circuit device and to monitor and control the IC fabrication process and avoid the cost of packaging defective dies, manufacturers commonly add electrical circuits or test structures to the wafer to enable “probing”, on-wafer testing to verify the characteristics of the integrated circuits, before the dies are singulated.


A test structure typically includes a device-under-test (DUT), a plurality of metallic bond or probe pads that are deposited at the wafer's surface and a plurality of conductive vias that connect the probe pads to the DUT which is typically fabricated beneath the surface of the wafer. The DUT typically comprises a simple circuit that includes a copy of one or more of the basic elements of the marketable integrated circuits fabricated on the wafer, such as a single line of conducting material, a chain of vias or a single transistor. The circuit elements of the DUT are typically produced with the same process and in the same layers of the die as the corresponding elements of the integrated circuit. The ICs are typically characterized “on-wafer” by applying a test instrument generated signal to the test structure and measuring the response of the test structure to the signal. Since the circuit elements of the DUT are fabricated with the same process as the corresponding elements of the integrated circuit, the electrical properties of the DUT are expected to be representative of the electrical properties of the corresponding components of the integrated circuits.


At higher frequencies, on-wafer characterization is commonly performed with a network analyzer. The network analyzer comprises a source of an AC signal, commonly, a radio frequency (RF) signal, that is used to stimulate the DUT of a test structure. A forward-reverse switch directs the stimulating signals to one or more of the probe pads of the test structure. Directional couplers or bridges pick off the forward or reverse waves traveling to or from the test structure. These signals are down-converted by intermediate frequency (IF) sections of the network analyzer where the signals are filtered, amplified and digitized for further processing and display. The preferred interconnection for communicating the signals between the signal source and the signal sink of the network analyzer and the test structure is coaxial cable. The transition between the coaxial cable and the probe pads of the test structure is preferably provided by a movable probe having one or more conductive probe tips that are arranged to be co-locatable with the probe pads of the test structure. The network analyzer and the test structure can be temporarily interconnected by bringing the probe tips into contact with the probe pads of the test structure.


The probe functions as an adapter enabling the signals to transition between the coaxial cable connecting the probe to the network analyzer and the coplanar waveguides of the probe pads. As a result of the transitions from one form of transmission line to another, the probe will perturb high frequency signals transmitted to and from the network analyzer. Relatively accurate measurements can be made with a network analyzer and probe system if the system is calibrated to remove the signal perturbations caused by the interconnection of the network analyzer and the test structure and, in some cases, perturbations caused by components of the test structure. Probing systems are typically calibrated by interconnecting the network analyzer and a calibration structure and stimulating the calibration structure with a test signal. Calibration structures typically comprise one or more conductive contact areas or probe pad regions arranged to spatially conform to the probe tips of the probe(s) to be calibrated. The probe pad regions are interconnected, in various combinations, by a conductive or non-conductive calibration element. Deviations from the ideal response to the stimulating signal are stored in the network analyzer. In a process known as “de-embedding,” the data is used to mathematically compensate for the effect of the probe, or, in some cases, elements of the test structure, when probing a test structure on a wafer.


Most test instrumentation utilizes ground referenced or single ended signals for stimulating the test structure and measuring the response to the stimulation. At higher frequencies noise and interference induced by adjacent circuitry and uncertainty concerning the ground potential often make the integrity of single ended signals inadequate. For example, integrated circuits typically have a ground plane at the lower surface of the substrate on which the active and passive devices of the circuit are fabricated. The terminals of transistors fabricated on a semi-conductive substrate are typically capacitively interconnected, through the substrate, to the ground plane. The impedance of this parasitic interconnection is frequency dependent and at higher frequencies the ground potential and the true nature of single ended signals becomes uncertain.


Differential signals, on the other hand, are transmitted on two conductors which carry inverted copies of the signal waveform and the value of the signal is the difference between the waveforms on the respective conductors. Noise typically effects both conductors equally and this common mode noise or signal is cancelled when the value of the signal is determined from the difference between the waveforms. In addition, the two waveforms are mutual references enabling greater certainty in determining the transition from one value to the other in binary devices and enabling a faster transition between binary values with a reduced voltage swing for the signal. Differential signaling enables a reduction in signal power, an increase in data rate and greater immunity from noise from sources such as power supplies, adjacent circuitry and external sources.


Test structures comprising differential gain cells require five connections to the test instrumentation. The two components of the differential input signal or a common mode signal is transmitted by the network analyzer to two of the probe pads of the test structure and the two components of the differential output signal are transmitted from two other probe pads of the test structure to the network analyzer. At least one additional probe pad of the test structure enables biasing of the transistors of the differential gain cell. Test structures for differential signal probing are, typically, interconnected to the network analyzer with two probes and, correspondingly, calibration structures for differential signal probes provide for simultaneous contact by the tips of two probes. However, a test structure and probe comprising a linear array of probe pads and probe tips permits a differential test structure to be fabricated in a saw street between dies increasing the surface area of the substrate available for the fabrication of marketable ICs.


What is desired are calibration structures for calibrating a differential signal probe having a linear array of contact tips.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is schematic diagram of a balanced differential gain cell.



FIG. 2 is a schematic diagram of a differential signal test structure and a probing system.



FIG. 3 is a schematic diagram of a probing system and calibration element for calibrating a probing system utilizing differential signals.



FIG. 4 is a schematic diagram of a grounded, “short” calibration structure.



FIG. 5 is a perspective view of a grounded, “short” calibration structure fabricated on a portion of a calibration substrate.



FIG. 6 is a schematic diagram of an ungrounded, “short” calibration structure.



FIG. 7 is a perspective view of a ungrounded, “short” calibration structure.



FIG. 8 is a schematic diagram of an “open” calibration structure.



FIG. 9 is a schematic diagram of a grounded, “load” calibration structure.



FIG. 10 is a schematic diagram of an ungrounded, “load” calibration structure.



FIG. 11 is a schematic diagram of a “thru” calibration structure.



FIG. 12 is a schematic diagram of a “crossed thru” calibration structure.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Referring in detail to the drawings where similar parts are identified by like reference numerals, and, more particularly to FIG. 1, a differential gain cell 20 is a balanced device comprising two nominally identical circuit halves 20A, 20B. When biased, with a DC current source 22, and stimulated with a differential mode signal comprising even and odd mode components of equal amplitude and opposite phase (Si+1 and Si−1) 24, 26, a virtual ground is established at the symmetrical axis 28 of the two circuit halves. At the virtual ground, the potential at the operating frequency does not change with time regardless of the amplitude of the stimulating signal. The quality of the virtual ground of a balanced device is independent of the physical ground path and, therefore, balanced or differential circuits can tolerate poor radio frequency (RF) grounding better than circuits operated with single ended signals. In addition, noise from external sources, such as adjacent conductors, tends to couple, electrically and electromagnetically, in the common mode and cancel in the differential mode. As a result, balanced or differential circuits have good immunity to noise including noise at even-harmonic frequencies since signals that are of opposite phase at the fundamental frequency are in phase at the even harmonics. Two probes are typically required to conduct the DC bias 22, the phase or even mode (Si+1) 24, and the anti-phase or odd mode (Si−1) 26 portions of a differential input signals to the differential device and to conduct the even mode (So+1) 30 and odd mode (So−1) 32 components of a differential output signal from the device.


Referring to FIG. 2, the differential test structure 50 comprises a device-under test (DUT) 52 and a linear array 55 of bond or probe pads. The DUT 52 includes a differential gain cell 54 that is responsive to a differential mode input signal comprising an even mode component (Si+1) and an odd mode component (Si−1) that has substantially the same amplitude as the even mode component but which is opposite in phase of the even mode component. The differential gain cell 54 comprises two substantially identical field effect (JFET) transistors 56A and 56B. However, the DUT typically comprises components corresponding to the components utilized in the marketable integrated circuits fabricated on a particular wafer and other types of transistors, such as bipolar junction (BJT) transistors or MOSFET transistors can be used in the construction of a differential gain cell.


The source terminals of the transistors 56A, 56B are interconnected as a bias terminal 80 of the device. The bias terminal is interconnected to a centrally located bias probe pad 60. The bias probe pad can be interconnected, typically through a contact tip 70 of a probe 90, to a source of direct current, for example a current mirror or a potential relative to ground, which provides the DC bias for the transistors of the differential gain cell. The gates of the transistors comprise a first pair of signal terminals 86, 88 of the DUT and are connected to respective signal probe pads 66, 68 which are, in turn, respectively connectible, typically through contact tips 76, 78 of the probe, to a test instrument 110. The drains of the transistors of the differential gain cell, comprise a second pair of signal terminals 82, 84 of the DUT, which are interconnected to respective signal probe pads 62, 64 which are connectible through contact tips 72, 74 of the probe to the test instrument.


Typically, a network analyzer comprises the test instrument 110. A network analyzer includes a source 102 of a differential mode signal comprising an even mode component, Si+1, and an odd mode component, Si−1. The network analyzer also comprises a sink 104 for the differential signals output by the DUT, So+1 and So−1. A reversing switch 112 enables reversing the connections between the test instrument's source and sink for the differential test signals and the respective pairs of signal probe pads. With the reversing switch in the illustrated position, the components of the differential input signals (Si+1 and Si−1) are applied to probe pads 66 and 68 and sunk at the terminals 86 and 88 of the DUT and the output signals (So+1 and So−1) are sourced from the terminals 82 and 84 through the probe pads 62 and 64. By actuating the reversing switch, the input signals (Si+1 and Si−1) can be applied to probe pads 62 and 64 sinking the input signals at terminals 82 and 84. As a result, the output signal components (So+1 and So−1) are sourced from terminals 86 and 88 and transmitted from probe pads 66 and 68 to the sink of the test instrument. The operation of the test structure 50 is typically tested by launching a differential input signal to one pair of signal terminals of the differential gain cell and capturing the differential and common mode output signals transmitted, in response to the input signal, from the other pair of signal terminals.


The source 102 of the test instrument can output a radio frequency (RF) signal with a DC offset, including a ground potential. The DUT is commonly biased with the DC portion of the input signal (Si). Bias tees 114 comprising a capacitor 130 in series the an RF port 132 and an inductor 134 in series with a DC port 136 are connected to each of the conductors connecting the signal probe tips and the test instrument. The capacitor blocks the transmission of DC from the RF port of the bias tee enabling transmission of the modulated portion of the input signal to the respective pairs of signal probe pads. The inductor blocks the modulated portion of the input signal from the DC port of the bias tee but permits the DC portion of the signal output by the source 102 to be conducted to the bias probe tip 70 and the bias terminal 80 to bias the transistors of the DUT.


The probe pads 60, 62, 64, 66, 68 of the test structure 50 are arranged in a substantially linear array 55, with the centroids of the respective probe pads arranged in a substantially, straight line. The linear array of probe pads enables fabrication of the probe pads of a differential test structure in a saw street between dies on a wafer. The test structure serves no function after the dies are singulated and fabrication of test structure in the saw street provides additional area on the surface of a wafer for fabricating dies comprising the marketable integrated circuits. In a second embodiment of the differential test structure, the linear array 55 of probe pads is extended by fabricating an additional probe pad 120 and 122 adjacent to the first 66 and fifth 68 probe pads, distal of the respective ends of the linear array five probe pads. The additional probe pads 120, 122 are interconnected to the DC bias through the bias terminal 80 and sixth 124 and seventh 126 probe tips which are connected to the central bias probe tip 70. The additional bias probe pads provide additional shielding for the signals transmitted to and from the test structure.


In another embodiment, the linear array of probe pads comprises six probe pads. The DUT is biased through probe pads 120 and 122 at the respective ends of a linear array comprising two pairs of signal probe pads 62 and 64 and 66 and 68.


Referring to FIG. 3, probing systems are typically calibrated by launching signals from the test instrument at a plurality of calibration structures that are successively engaged with the probe tips of the probe that will be used in the on-wafer inspection of test structures. Any deviation from the ideal response when a calibration structure is stimulated by a test signal is recorded. These deviations are utilized to mathematically account for signal perturbations introduced by the probing system when a test structure on a wafer is stimulated with the test signal. To calibrate the probing system 40, the probe tips of the probe 90 are engaged with contact regions 310, 312, 314, 316, 318 of one or more calibration structures 300. The calibration structures comprise contact regions arranged to be co-locatable with the probe tips of the probe to be calibrated and a calibration element 302 comprising a conductive, non-conductive or semi-conductive interconnection between two or more of the contact regions. The contact regions of the calibration structure 300 comprise a linear array of regions 310, 312, 314, 316, 318 having respective centroids arranged in a substantially straight line. Referring also to FIG. 5, the contact regions are arranged to enable co-location and engagement by a plurality of probe tips 174,176, 178, 180, 182, 184, 186 having respective contact surfaces with centroids arranged in a substantially straight line. Two pairs of contact regions 312, 316 and 314, 318 are arranged for co-location with the signal probe tips of the probe and at least one contact region, for example the central region 310 is arranged for contact with the central bias probe tip of the probe. The contact regions may have other arrangements, for example, a linear array of seven contact regions with a central region, separating the two pairs of signal contact regions, arranged for contact with the bias probe tip and two additional contact regions 320, 322 respectively distal of the respective pairs of signal contact regions arranged for contact by additional bias probe tips 124, 126 of the probe. As an additional example, the calibration structure may comprise six contact regions with two pairs of signal contact regions immediately adjacent to each other at the center of the linear array and a pair to contact regions distal of the signal contact regions at the ends of the array for contact with respective bias probe tips. The calibration structures comprise a linear array of contact regions with one more bias contact regions arranged symmetrical with two or more pairs of signal contact regions. Signals are launched from the test instrument 110 to particular contact regions of the calibration structure and output signals sourced from contact regions of the calibration structure are sunk in the test instrument sink 104. Deviations from the expected output signals are recorded and used in correcting the raw results obtained during test structure testing.


Several different algorithms are used in calibrating probing systems. The names of the various algorithms generally reflect the construction of the plurality of calibration elements that are used during the calibration process. For example, the Short-Open-Load-Through (SOLT) algorithm utilizes a succession of calibration structures including a shorted interconnection, an open circuit, a loaded interconnection and a through interconnection between some or all of the contact tips of the probe. Similarly, a Line-Reflect-Match (LRM) algorithm utilizes calibration structures comprising a transmission line, a reflect and a match calibration element.


Referring to FIG. 4, a grounded, “short” calibration structure 150 schematically comprises a linear array 152 (indicated by a bracket) of conductive regions or probe pads 154, 156, 158,160,162 that are spatially arranged to be co-locatable, respectively, with each of the contact areas of a linear array of probe tips of a probe that will be calibrated. The shorted calibration element comprises a plurality of short circuits interconnecting each of the conductive regions to the other conductive regions. The short calibration structure can be grounded by connecting the probe tip that engages the center conductive region 160 to ground during calibration. Referring to FIG. 5, calibration structures are typically fabricated by depositing conductive material on a substrate 170. The grounded “short” calibration structure 150 can be fabricated by depositing conductive material over a region 172 of sufficient dimensions to enable simultaneous contact by all of the contact tips 174, 176, 178, 180, 182 of a linear array of contact tips comprising a probe 188 that is to be calibrated. An extended conductive contact region 190 deposited on the substrate provides a grounded, short calibration structure 151 for a probe 188 having a linear array of six probe tips or a probe having additional “bias” probe tips 184, 186 that are respectively distal of the tips 174, 182 at the ends of the linear array of five probe tips. Schematically, the extended contact region appends conductive regions 184, 196 at the ends of the linear array 152 providing an extended linear array 192 for engagement by a probe having a linear arrangement of seven contact tips.


Referring to FIG. 6, an ungrounded, “short” calibration structure 200 schematically comprises the linear array of five contact regions 152. The first 154 and the fifth 162 contact regions of the linear array, spatially corresponding to a pair of signal probe tips that conduct either the input signal or the output signal of the test structure, are interconnected by a calibration element comprising a short circuit. Likewise, a calibration element comprising a short circuit interconnects the second 156 and fourth 158 contact regions, engageable by a second pair of signal probe tips. The central conductive region 160 which engageable with the probe tip that biases the test structure and which may be connected to ground during calibration is not conductively interconnected to the regions engageable by the signal probe tips. Referring to FIG. 7, the ungrounded, short calibration structure 200 comprises a first conductive region 202 deposited on the substrate having interconnected portions spatially arranged to be co-locatable with the first 174 and fifth 182 contact tips of the linear of array of tips of the probe 188 and a second conductive region 204 having interconnected portions spatially arranged to be co-locatable with the second 176 and fourth 178 tips. The area of the substrate spatially co-locatable with center contact tip 180 is not conductively interconnected with the other conductive areas of the calibration structure.


An ungrounded, short calibration structure 208, for calibrating probes comprising a linear array of seven contact tips, a third conductive region 206 is deposited on the substrate. The third conductive region has interconnected portions spatially arranged for engagement by the center contact tip 180 and the contact tips 184, 186 distal of the ends of the five tip linear array of tips 174, 176, 180, 178, 182.


Referring to FIG. 8, an “open” calibration structure 220 comprises a linear array 152 of five contact regions or, in the case of a seven tip probe, the “open” calibration structure 222 comprising seven contact regions 192, including contact regions 194, 196, which are each insulated from the others. While an open calibration structure can be fabricated on a substrate by providing a plurality of conductively disconnected contact regions, arranged to be spatially co-locatable with the contact tips of the probe to be calibrated, an “open” calibration is typically performed by raising the probe above the calibration substrate so that the contact tips are not connected conductively.


Referring to FIG. 9, a grounded, “load” calibration structure 250 comprising a linear array 152 of five contact regions arranged to spatially co-locate with the contact tips of a five tip, differential signal probe includes resistors 254 that respectively connect the central contact region 160, arranged for engagement by the biasing contact tip of the probe, to the first 154, second 156, fourth 158 and fifth 162 contact regions which are arranged for engagement with the signal probe tips through which the differential signals are transmitting to and from the test structure. The resistance in the interconnections to the central contact region is greater than the resistance, typically less than one ohm (Ω), provided by the interconnections of a short calibration structure. Typically, the resistors 254 have a value approximating 50 Ω providing termination for the coaxial cables that typically connect the network analyzer and the probe. A grounded, load calibration structure 252 for a probe having a linear array 192 of seven contact tips includes the additional contact regions 194, 196 distal of the ends of the linear array 152 which are interconnected to the center contact region 160.


Referring to FIG. 10, an ungrounded, “load” calibration structure 260 for a differential signal probe having a linear array of five contact tips comprises a linear array of contact regions 152 in which the first 154 and fifth 162 contact regions are interconnected by a resistor 264 and the second 156 and fourth 158 contact regions are interconnected by a resistor 266. Preferably, the each of the resistors 264 and 266 has a value of approximately 100Ω. An ungrounded, load calibration structure for a differential signal probe 262 having a linear array of seven contact tips includes the additional contact regions 194, 196 distal of the ends of the linear array 152 which are interconnected to the center contact region 160.


Referring to FIG. 11, in a “thru” calibration structure 270 each of the contact regions engageable by a probe tip transmitting one of the components of the digital signal to the calibration structure is interconnected by a short circuit to one of the contact regions arranged for engagement by one of the probe tips receiving a component of the output signal. For example, the first 154 contact region is short circuited to the second 156 contact region and the fourth 158 and fifth 162 contact regions are interconnected by a short circuit. Typically, one phase component of the differential signal, for example, Si+1, is transmitted to the test structure through one probe tip, for example probe tip 174 corresponding to contact region 154, and the output signal component of the same phase, for example, So+1, is transmitted from the test structure to the network analyzer through the adjacent probe tip 176 corresponding to contact region 156. However, the probe tips communicating the input and output signals may be reversed. A thru calibration structure 272 for a probe having a linear array of seven probes tips includes the additional contact regions 194, 196 distal of the ends of the linear array 152 which are interconnected to the center contact region 160.


Referring to FIG. 12, a “crossed thru” calibration structure 280 provides a short circuit interconnection between the first 154 contact region and the fourth 158 contact region and a short circuit interconnection between the second 156 contact region and the fifth 162 contact region of the linear array 152 of contact regions. The crossed thru calibration structure enables input signals of one phase component; for example, the even phase; to be communicated to the port for the output signal component of the opposite phase, for example, the odd phase. A crossed thru calibration structure 282 for a probe having a linear array of seven probes tips includes the additional contact regions 194,196 distal of the ends of the linear array 152 which are interconnected to the center contact region 160.


Additional calibration structures may be constructed with linear arrays of contact regions and a calibration element comprising, for examples, transmission lines; transmission lines with a twist; attenuator pads; inductors; capacitors; tunable elements; filters including low pass, high pass, all-pass, band-stop and band pass filters; interconnecting two or more contact regions.


A differential signal probe comprising a linear array of probe tips can be calibrated with a set of calibration standards appropriate for the particular calibration algorithm.


The detailed description, above, sets forth numerous specific details to provide a thorough understanding of the present invention. However, those skilled in the art will appreciate that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid obscuring the present invention.


All the references cited herein are incorporated by reference.


The terms and expressions that have been employed in the foregoing specification are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims that follow.

Claims
  • 1. A probe calibration structure for calibrating a probe having five spaced apart probe tips, said five probe tips arranged in a linear array and operable to communicate a bias to a device under test from a centrally located probe tip and to communicate plural components of each of two radio frequency, differential signals with said device under test with pairs of probe tips disposed to either side of said centrally located probe tip, said probe calibration structure comprising: (a) a substrate having a surface; and(b) a substantially linear array of five contact regions and no more than five contact regions on said surface of said substrate, said five contact regions arranged to spatially correspond to said probe tips of said linear array of five probe tips of a probe to be calibrated, each contact region spaced immediately apart from at least one other contact region, electrically isolated from each other contact region and engageable by a respective one of said five probe tips, a bias conducted by said centrally located probe tip to a centrally located contact region of said array of contract regions and one component of a pair of radio frequency, differential signals conducted to each contact region other than the centrally located contact region by respective contact tips.
  • 2. A probe calibration structure for calibrating a probe having seven spaced apart probe tips, said seven probe tips arranged in a linear array and operable to communicate a bias to a device under test from a centrally located probe tip and from a probe tip at each extreme of said linear array and to communicate plural components of each of two radio frequency, differential signals with said device under test with pairs of probe tips disposed to either side of said centrally located probe tip, said probe calibration structure comprising: (a) a substrate having a surface; and(b) a substantially linear array of seven contact regions and no more than seven contact regions on said surface of said substrate, said seven contact regions arranged to spatially correspond to said probe tips of said linear array of seven probe tips of a probe to be calibrated, each contact region spaced immediately apart from at least one other contact region, electrically isolated from each other contact region and engageable by a respective one of said seven probe tips, a bias conducted by said centrally located probe tip to a centrally located contact region of said array of contract regions and conducted by said probe tip at each end of said array of probe tips to a respective contact region at each end of said array of contact regions and one component of a pair of radio frequency, differential signals conducted to each contact region other than the centrally located contact region and the contact region at each end of said linear array by respective contact tips.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/813,121, filed Jun. 12, 2006.

US Referenced Citations (1128)
Number Name Date Kind
491783 Moyer Feb 1893 A
1337866 Whitacker Apr 1920 A
2142625 Zoethout Jan 1939 A
2376101 Tyzzer May 1945 A
2389668 Johnson Nov 1945 A
2545258 Cailloux Mar 1951 A
2762234 Dodd Sep 1956 A
2901696 Möllfors Aug 1959 A
2921276 Fubini Jan 1960 A
2947939 Harwig Aug 1960 A
3111699 Comeau Nov 1963 A
3176091 Hanson et al. Mar 1965 A
3193712 Harris Jul 1965 A
3218584 Ayer Nov 1965 A
3230299 Radziekowski Jan 1966 A
3262593 Hainer Jul 1966 A
3396598 Grispo Aug 1968 A
3401126 Miller et al. Sep 1968 A
3429040 Miller Feb 1969 A
3445770 Harmon May 1969 A
3484679 Hodgson et al. Dec 1969 A
3541222 Parks et al. Nov 1970 A
3561280 MacPhee et al. Feb 1971 A
3573617 Randolph et al. Apr 1971 A
3596228 Reed et al. Jul 1971 A
3609539 Gunthert Sep 1971 A
3611199 Safran Oct 1971 A
3619780 Hoeks Nov 1971 A
3622915 Davo Nov 1971 A
3634807 Grobe et al. Jan 1972 A
3648169 Wiesler Mar 1972 A
3654585 Wickersham Apr 1972 A
3662318 Decuyper May 1972 A
3680037 Nellis et al. Jul 1972 A
3686624 Napoli et al. Aug 1972 A
3700998 Lee et al. Oct 1972 A
3705379 Bogar Dec 1972 A
3710251 Hagge et al. Jan 1973 A
3714572 Ham et al. Jan 1973 A
3725829 Brown Apr 1973 A
3740900 Youmans et al. Jun 1973 A
3766470 Hay et al. Oct 1973 A
3803709 Beltz et al. Apr 1974 A
3806801 Bove Apr 1974 A
3810016 Chayka et al. May 1974 A
3829076 Sofy Aug 1974 A
3833852 Schoch Sep 1974 A
3839672 Anderson Oct 1974 A
3849728 Evans Nov 1974 A
3858212 Tompkins et al. Dec 1974 A
3862790 Davies et al. Jan 1975 A
3866093 Kusters et al. Feb 1975 A
3867698 Beltz et al. Feb 1975 A
3882597 Chayka et al. May 1975 A
3930809 Evans Jan 1976 A
3936743 Roch Feb 1976 A
3952156 Lahr Apr 1976 A
3970934 Aksu Jul 1976 A
3971610 Buchoff et al. Jul 1976 A
3976959 Gaspari Aug 1976 A
3992073 Buchoff et al. Nov 1976 A
4001685 Roch Jan 1977 A
4008900 Khoshaba Feb 1977 A
4009456 Hopfer Feb 1977 A
4027935 Byrnes et al. Jun 1977 A
4035723 Kvaternik Jul 1977 A
4038599 Bove et al. Jul 1977 A
4038894 Knibbe et al. Aug 1977 A
4049252 Bell Sep 1977 A
4063195 Abrams et al. Dec 1977 A
4066943 Roch Jan 1978 A
4072576 Arwin et al. Feb 1978 A
4074201 Lennon Feb 1978 A
4093988 Scott Jun 1978 A
4099120 Aksu Jul 1978 A
4115735 Stanford Sep 1978 A
4116523 Coberly Sep 1978 A
4123706 Roch Oct 1978 A
4124787 Aamoth et al. Nov 1978 A
4135131 Larsen et al. Jan 1979 A
4151465 Lenz Apr 1979 A
4161692 Tarzwell Jul 1979 A
4177421 Thornburg Dec 1979 A
4184133 Gehle Jan 1980 A
4184729 Parks et al. Jan 1980 A
4216467 Colston Aug 1980 A
4225819 Grau et al. Sep 1980 A
4232398 Gould et al. Nov 1980 A
4251772 Worsham et al. Feb 1981 A
4275446 Blaess Jun 1981 A
4277741 Faxvog et al. Jul 1981 A
4280112 Eisenhart Jul 1981 A
4284033 del Rio Aug 1981 A
4284682 Tschirch et al. Aug 1981 A
4287473 Sawyer Sep 1981 A
4302146 Finlayson et al. Nov 1981 A
4306235 Christmann Dec 1981 A
4312117 Robillard et al. Jan 1982 A
4327180 Chen Apr 1982 A
4330783 Toia May 1982 A
4340860 Teeple, Jr. Jul 1982 A
4346355 Tsukii Aug 1982 A
4357575 Uren et al. Nov 1982 A
4375631 Goldberg Mar 1983 A
4376920 Smith Mar 1983 A
4383217 Shiell May 1983 A
4401945 Juengel Aug 1983 A
4425395 Negishi et al. Jan 1984 A
4453142 Murphy Jun 1984 A
4468629 Choma, Jr. Aug 1984 A
4476363 Berggren et al. Oct 1984 A
4480223 Aigo Oct 1984 A
4487996 Rabinowitz et al. Dec 1984 A
4491783 Sawayama et al. Jan 1985 A
4502028 Leake Feb 1985 A
4515133 Roman May 1985 A
4515439 Esswein May 1985 A
4520314 Asch et al. May 1985 A
4528504 Thornton, Jr. et al. Jul 1985 A
4531474 Inuta Jul 1985 A
4551747 Gilbert et al. Nov 1985 A
4552033 Marzhauser Nov 1985 A
4553111 Barrow Nov 1985 A
4558609 Kim Dec 1985 A
4563640 Hasegawa Jan 1986 A
4567321 Harayama Jan 1986 A
4567436 Koch Jan 1986 A
4568890 Bates Feb 1986 A
4581679 Smolley Apr 1986 A
4588950 Henley May 1986 A
4589815 Smith May 1986 A
4593243 Lao et al. Jun 1986 A
4600907 Grellman et al. Jul 1986 A
4621169 Petinelli et al. Nov 1986 A
4626618 Takaoka et al. Dec 1986 A
4626805 Jones Dec 1986 A
4636722 Ardezzone Jan 1987 A
4636772 Yasunaga Jan 1987 A
4641659 Sepponen Feb 1987 A
4642417 Ruthrof et al. Feb 1987 A
4646005 Ryan Feb 1987 A
4649339 Grangroth et al. Mar 1987 A
4651115 Wu Mar 1987 A
4652082 Warner Mar 1987 A
4653174 Gilder et al. Mar 1987 A
4663840 Ubbens et al. May 1987 A
4669805 Kosugi et al. Jun 1987 A
4673839 Veenendaal Jun 1987 A
4684883 Ackerman et al. Aug 1987 A
4684884 Soderlund Aug 1987 A
4685150 Maier Aug 1987 A
4691163 Blass et al. Sep 1987 A
4696544 Costella Sep 1987 A
4697143 Lockwood et al. Sep 1987 A
4705447 Smith Nov 1987 A
4706050 Andrews Nov 1987 A
4707657 Bøegh-Petersen Nov 1987 A
4711563 Lass Dec 1987 A
4713347 Mitchell et al. Dec 1987 A
4714873 McPherson et al. Dec 1987 A
4725793 Igarashi Feb 1988 A
4727319 Shahriary Feb 1988 A
4727391 Tajima et al. Feb 1988 A
4727637 Buckwitz et al. Mar 1988 A
4734641 Byrd, Jr. et al. Mar 1988 A
4739259 Hadwin et al. Apr 1988 A
4740764 Gerlack Apr 1988 A
4742571 Letron May 1988 A
4744041 Strunk et al. May 1988 A
4746857 Sakai et al. May 1988 A
4749942 Sang et al. Jun 1988 A
4754239 Sedivec Jun 1988 A
4755746 Mallory et al. Jul 1988 A
4755747 Sato Jul 1988 A
4755874 Esrig et al. Jul 1988 A
4757255 Margozzi Jul 1988 A
4764723 Strid Aug 1988 A
4766384 Kleinberg et al. Aug 1988 A
4772846 Reeds Sep 1988 A
4780670 Cherry Oct 1988 A
4783625 Harry et al. Nov 1988 A
4788851 Brault Dec 1988 A
4791363 Logan Dec 1988 A
4793814 Zifcak et al. Dec 1988 A
4795962 Yanagawa et al. Jan 1989 A
4805627 Klingenbeck et al. Feb 1989 A
4810981 Herstein Mar 1989 A
4812754 Tracy et al. Mar 1989 A
4818059 Kakii et al. Apr 1989 A
4827211 Strid et al. May 1989 A
4831494 Arnold et al. May 1989 A
4835495 Simonutti May 1989 A
4837507 Hechtman Jun 1989 A
4839587 Flatley et al. Jun 1989 A
4849689 Gleason et al. Jul 1989 A
4851767 Halbout et al. Jul 1989 A
4853624 Rabjohn Aug 1989 A
4853627 Gleason et al. Aug 1989 A
4858160 Strid et al. Aug 1989 A
4859989 McPherson Aug 1989 A
4864227 Sato Sep 1989 A
4871883 Guiol Oct 1989 A
4871964 Boll et al. Oct 1989 A
4888550 Reid Dec 1989 A
4891584 Kamieniecki et al. Jan 1990 A
4893914 Hancock et al. Jan 1990 A
4894612 Drake et al. Jan 1990 A
4899126 Yamada Feb 1990 A
4899998 Feramachi Feb 1990 A
4901012 Gloanec et al. Feb 1990 A
4904933 Snyder et al. Feb 1990 A
4904935 Calma et al. Feb 1990 A
4906920 Huff et al. Mar 1990 A
4908570 Gupta et al. Mar 1990 A
4912399 Greub et al. Mar 1990 A
4916002 Carver Apr 1990 A
4916398 Rath Apr 1990 A
4918373 Newberg Apr 1990 A
4918383 Huff et al. Apr 1990 A
4922128 Dhong et al. May 1990 A
4922186 Tsuchiya et al. May 1990 A
4922912 Watanabe May 1990 A
4926172 Gorsek May 1990 A
4929893 Sato et al. May 1990 A
4965514 Herrick Oct 1990 A
4970386 Buck Nov 1990 A
4972073 Lessing Nov 1990 A
4975638 Evans et al. Dec 1990 A
4980637 Huff et al. Dec 1990 A
4980638 Dermon et al. Dec 1990 A
4983910 Majidi-Ahy et al. Jan 1991 A
4987100 McBride et al. Jan 1991 A
4988062 London Jan 1991 A
4991290 MacKay Feb 1991 A
4998062 Ikeda Mar 1991 A
4998063 Miller Mar 1991 A
5001423 Abrami Mar 1991 A
5003253 Majidi-Ahy et al. Mar 1991 A
5007163 Pope et al. Apr 1991 A
5012186 Gleason Apr 1991 A
5020219 Leedy Jun 1991 A
5021186 Ota et al. Jun 1991 A
5030907 Yih et al. Jul 1991 A
5041782 Marzan Aug 1991 A
5045781 Gleason et al. Sep 1991 A
5059898 Barsotti et al. Oct 1991 A
5061192 Chapin et al. Oct 1991 A
5061823 Carroll Oct 1991 A
5066357 Smyth, Jr. et al. Nov 1991 A
5069628 Crumly Dec 1991 A
5082627 Stanbro Jan 1992 A
5084671 Miyata et al. Jan 1992 A
5089774 Nakano Feb 1992 A
5091692 Ohno et al. Feb 1992 A
5091732 Mileski et al. Feb 1992 A
5095891 Reitter Mar 1992 A
5097101 Trobough Mar 1992 A
5097207 Blanz Mar 1992 A
5101453 Rumbaugh Mar 1992 A
5107076 Bullock et al. Apr 1992 A
5116180 Fung et al. May 1992 A
5126286 Chance Jun 1992 A
5126696 Grote et al. Jun 1992 A
5128612 Aton et al. Jul 1992 A
5129006 Hill Jul 1992 A
5133119 Afshari et al. Jul 1992 A
5134365 Okubo et al. Jul 1992 A
5136237 Smith et al. Aug 1992 A
5138289 McGrath Aug 1992 A
5142224 Smith et al. Aug 1992 A
5145552 Yoshizawa et al. Sep 1992 A
5148131 Amboss et al. Sep 1992 A
5159264 Anderson Oct 1992 A
5159267 Anderson Oct 1992 A
5159752 Mahant-Shetti et al. Nov 1992 A
5160883 Blanz Nov 1992 A
5164319 Hafeman et al. Nov 1992 A
5166606 Blanz Nov 1992 A
5170930 Dolbear et al. Dec 1992 A
5172049 Kiyokawa et al. Dec 1992 A
5172050 Swapp Dec 1992 A
5172051 Zamborelli Dec 1992 A
5177438 Littlebury et al. Jan 1993 A
5180977 Huff Jan 1993 A
5187443 Bereskin Feb 1993 A
5198752 Miyata et al. Mar 1993 A
5198753 Hamburgen Mar 1993 A
5202558 Barker Apr 1993 A
5202648 McCandless Apr 1993 A
5207585 Byrnes et al. May 1993 A
5214243 Johnson May 1993 A
5214374 St. Onge May 1993 A
5225037 Elder et al. Jul 1993 A
5227730 King et al. Jul 1993 A
5232789 Platz et al. Aug 1993 A
5233197 Bowman et al. Aug 1993 A
5233306 Misra Aug 1993 A
5245292 Milesky et al. Sep 1993 A
5266889 Harwood et al. Nov 1993 A
5266963 Carter Nov 1993 A
5267088 Nomura Nov 1993 A
5270664 McMurty et al. Dec 1993 A
5274336 Crook et al. Dec 1993 A
5280156 Niori et al. Jan 1994 A
5281364 Stirling et al. Jan 1994 A
5289117 Van Loan et al. Feb 1994 A
5293175 Hemmie et al. Mar 1994 A
5298972 Heffner Mar 1994 A
5304924 Yamano et al. Apr 1994 A
5308250 Walz May 1994 A
5313157 Pasiecznik, Jr. May 1994 A
5315237 Iwakura et al. May 1994 A
5316435 Mozingo May 1994 A
5317656 Moslehi et al. May 1994 A
5321352 Takebuchi Jun 1994 A
5321453 Mori et al. Jun 1994 A
5326412 Schreiber et al. Jul 1994 A
5334931 Clarke et al. Aug 1994 A
5347204 Gregory et al. Sep 1994 A
5355079 Evans et al. Oct 1994 A
5357211 Bryson et al. Oct 1994 A
5360312 Mozingo Nov 1994 A
5361049 Rubin et al. Nov 1994 A
5363050 Guo et al. Nov 1994 A
5367165 Toda et al. Nov 1994 A
5369368 Kassen et al. Nov 1994 A
5371654 Beaman et al. Dec 1994 A
5373231 Boll et al. Dec 1994 A
5374938 Hatazawa et al. Dec 1994 A
5376790 Linker et al. Dec 1994 A
5383787 Switky et al. Jan 1995 A
5389885 Swart Feb 1995 A
5395253 Crumly Mar 1995 A
5397855 Ferlier Mar 1995 A
5404111 Mori et al. Apr 1995 A
5408188 Katoh Apr 1995 A
5408189 Swart et al. Apr 1995 A
5412330 Ravel et al. May 1995 A
5412866 Woith et al. May 1995 A
5414565 Sullivan et al. May 1995 A
5422574 Kister Jun 1995 A
5430813 Anderson et al. Jul 1995 A
5441690 Ayala-Esquilin et al. Aug 1995 A
5451884 Sauerland Sep 1995 A
5453404 Leedy Sep 1995 A
5457398 Schwindt et al. Oct 1995 A
5463324 Wardwell et al. Oct 1995 A
5467024 Swapp Nov 1995 A
5469324 Henderson et al. Nov 1995 A
5471185 Shea et al. Nov 1995 A
5475316 Hurley et al. Dec 1995 A
5476211 Khandros Dec 1995 A
5477011 Singles et al. Dec 1995 A
5478748 Akins, Jr. et al. Dec 1995 A
5479108 Cheng Dec 1995 A
5479109 Lau et al. Dec 1995 A
5481196 Nosov Jan 1996 A
5481936 Yanagisawa Jan 1996 A
5487999 Farnworth Jan 1996 A
5488954 Sleva et al. Feb 1996 A
5491425 Watanabe et al. Feb 1996 A
5493070 Habu Feb 1996 A
5493236 Ishii et al. Feb 1996 A
5500606 Holmes Mar 1996 A
5505150 James et al. Apr 1996 A
5506498 Anderson et al. Apr 1996 A
5506515 Godshalk et al. Apr 1996 A
5507652 Wardwell Apr 1996 A
5510792 Ono et al. Apr 1996 A
5511010 Burns Apr 1996 A
5512835 Rivera et al. Apr 1996 A
5517126 Yamaguchi May 1996 A
5521518 Higgins May 1996 A
5521522 Abe et al. May 1996 A
5523694 Cole, Jr. Jun 1996 A
5528158 Sinsheimer et al. Jun 1996 A
5530372 Lee et al. Jun 1996 A
5531022 Beaman et al. Jul 1996 A
5532608 Behfar-Rad et al. Jul 1996 A
5537372 Albrecht et al. Jul 1996 A
5539323 Davis, Jr. Jul 1996 A
5539676 Yamaguchi Jul 1996 A
5550481 Holmes et al. Aug 1996 A
5561378 Bockelman et al. Oct 1996 A
5565788 Burr et al. Oct 1996 A
5565881 Phillips et al. Oct 1996 A
5569591 Kell et al. Oct 1996 A
5571324 Sago et al. Nov 1996 A
5578932 Adamian Nov 1996 A
5583445 Mullen Dec 1996 A
5584120 Roberts Dec 1996 A
5584608 Gillespie Dec 1996 A
5589781 Higgens et al. Dec 1996 A
5594358 Ishikawa et al. Jan 1997 A
5600256 Woith et al. Feb 1997 A
5601740 Eldridge et al. Feb 1997 A
5610529 Schwindt Mar 1997 A
5611008 Yap Mar 1997 A
5617035 Swapp Apr 1997 A
5621333 Long et al. Apr 1997 A
5621400 Corbi Apr 1997 A
5623213 Liu et al. Apr 1997 A
5623214 Pasiecznik, Jr. Apr 1997 A
5627473 Takami May 1997 A
5628057 Phillips et al. May 1997 A
5629838 Knight et al. May 1997 A
5631571 Spaziani et al. May 1997 A
5633780 Cronin May 1997 A
5635846 Beaman et al. Jun 1997 A
5642298 Mallory et al. Jun 1997 A
5644248 Fujimoto Jul 1997 A
5653939 Hollis et al. Aug 1997 A
5656942 Watts et al. Aug 1997 A
5659421 Rahmel et al. Aug 1997 A
5666063 Abercrombie et al. Sep 1997 A
5669316 Faz et al. Sep 1997 A
5670322 Eggers et al. Sep 1997 A
5670888 Cheng Sep 1997 A
5672816 Park et al. Sep 1997 A
5675499 Lee et al. Oct 1997 A
5675932 Mauney Oct 1997 A
5676360 Boucher et al. Oct 1997 A
5678210 Hannah Oct 1997 A
5685232 Inoue Nov 1997 A
5686317 Akram et al. Nov 1997 A
5686960 Sussman et al. Nov 1997 A
5688618 Hulderman et al. Nov 1997 A
5700844 Hederick et al. Dec 1997 A
5704355 Bridges Jan 1998 A
5715819 Svenson et al. Feb 1998 A
5720098 Kister Feb 1998 A
5723347 Kirano et al. Mar 1998 A
5726211 Hedrick et al. Mar 1998 A
5728091 Payne et al. Mar 1998 A
5729150 Schwindt Mar 1998 A
5731920 Katsuragawa Mar 1998 A
5742174 Kister et al. Apr 1998 A
5744971 Chan et al. Apr 1998 A
5748506 Bockelman May 1998 A
5751153 Bockelman May 1998 A
5751252 Phillips May 1998 A
5756021 Bedrick et al. May 1998 A
5756908 Knollmeyer et al. May 1998 A
5764070 Pedder Jun 1998 A
5767690 Fujimoto Jun 1998 A
5772451 Dozier, II et al. Jun 1998 A
5773780 Eldridge et al. Jun 1998 A
5777485 Tanaka et al. Jul 1998 A
5785538 Beaman et al. Jul 1998 A
5792668 Fuller et al. Aug 1998 A
5793213 Bockelman et al. Aug 1998 A
5794133 Kashima Aug 1998 A
5803607 Jones et al. Sep 1998 A
5804607 Hedrick et al. Sep 1998 A
5804982 Lo et al. Sep 1998 A
5804983 Nakajima et al. Sep 1998 A
5806181 Khandros et al. Sep 1998 A
5807107 Bright et al. Sep 1998 A
5808874 Smith Sep 1998 A
5810607 Shih et al. Sep 1998 A
5811751 Leona et al. Sep 1998 A
5811982 Beaman et al. Sep 1998 A
5813847 Eroglu et al. Sep 1998 A
5814847 Shihadeh et al. Sep 1998 A
5820014 Dozier, II et al. Oct 1998 A
5821763 Beaman et al. Oct 1998 A
5824494 Feldberg Oct 1998 A
5829128 Eldridge et al. Nov 1998 A
5829437 Bridges Nov 1998 A
5831442 Heigl Nov 1998 A
5832601 Eldridge et al. Nov 1998 A
5833601 Swartz et al. Nov 1998 A
5838160 Beaman et al. Nov 1998 A
5841288 Meaney et al. Nov 1998 A
5841342 Hegmann et al. Nov 1998 A
5846708 Hollis et al. Dec 1998 A
5847569 Ho et al. Dec 1998 A
5848500 Kirk Dec 1998 A
5852232 Samsavar et al. Dec 1998 A
5852871 Khandros Dec 1998 A
5854608 Leisten Dec 1998 A
5864946 Eldridge et al. Feb 1999 A
5867073 Weinreb et al. Feb 1999 A
5869326 Hofmann Feb 1999 A
5869974 Akram et al. Feb 1999 A
5874361 Collins et al. Feb 1999 A
5876082 Kempf et al. Mar 1999 A
5878486 Eldridge et al. Mar 1999 A
5879289 Yarush et al. Mar 1999 A
5883522 O'Boyle Mar 1999 A
5883523 Ferland et al. Mar 1999 A
5884398 Eldridge et al. Mar 1999 A
5888075 Hasegawa et al. Mar 1999 A
5892539 Colvin Apr 1999 A
5896038 Budnaitis et al. Apr 1999 A
5900737 Graham et al. May 1999 A
5900738 Khandros et al. May 1999 A
5903143 Mochizuki et al. May 1999 A
5905421 Oldfield May 1999 A
5910727 Fujihara et al. Jun 1999 A
5912046 Eldridge et al. Jun 1999 A
5914613 Gleason et al. Jun 1999 A
5914614 Beaman et al. Jun 1999 A
5916689 Collins et al. Jun 1999 A
5917707 Khandros et al. Jun 1999 A
5923180 Botka et al. Jul 1999 A
5926029 Ference et al. Jul 1999 A
5926951 Khandros et al. Jul 1999 A
5940965 Uhling et al. Aug 1999 A
5944093 Viswanath Aug 1999 A
5945836 Sayre et al. Aug 1999 A
5949383 Hayes et al. Sep 1999 A
5949579 Baker Sep 1999 A
5959461 Brown et al. Sep 1999 A
5963364 Leong et al. Oct 1999 A
5966645 Davis Oct 1999 A
5970429 Martin Oct 1999 A
5973504 Chong Oct 1999 A
5974662 Eldridge et al. Nov 1999 A
5977783 Takayama et al. Nov 1999 A
5981268 Kovacs et al. Nov 1999 A
5982166 Mautz Nov 1999 A
5983493 Eldridge et al. Nov 1999 A
5993611 Moroney, III et al. Nov 1999 A
5994152 Khandros et al. Nov 1999 A
5995914 Cabot Nov 1999 A
5996102 Haulin Nov 1999 A
5998228 Eldridge et al. Dec 1999 A
5998768 Hunter et al. Dec 1999 A
5998864 Khandros et al. Dec 1999 A
5999268 Yonezawa et al. Dec 1999 A
6001760 Katsuda et al. Dec 1999 A
6002426 Back et al. Dec 1999 A
6006002 Motok et al. Dec 1999 A
6013586 McGhee et al. Jan 2000 A
6019612 Hasegawa et al. Feb 2000 A
6023103 Chang et al. Feb 2000 A
6028435 Nikawa Feb 2000 A
6029344 Khandros et al. Feb 2000 A
6031383 Streib et al. Feb 2000 A
6032356 Eldridge et al. Mar 2000 A
6032714 Fenton Mar 2000 A
6033935 Dozier, II et al. Mar 2000 A
6034533 Tervo et al. Mar 2000 A
6037785 Higgins Mar 2000 A
6040739 Wedeen et al. Mar 2000 A
6042712 Mathieu Mar 2000 A
6043563 Eldridge et al. Mar 2000 A
6046599 Long et al. Apr 2000 A
6049216 Yang et al. Apr 2000 A
6049976 Khandros Apr 2000 A
6050829 Eldridge et al. Apr 2000 A
6051422 Kovacs et al. Apr 2000 A
6052653 Mazur et al. Apr 2000 A
6054651 Fogel et al. Apr 2000 A
6054869 Hutton et al. Apr 2000 A
6059982 Palagonia et al. May 2000 A
6060888 Blackham et al. May 2000 A
6060892 Yamagata May 2000 A
6061589 Bridges et al. May 2000 A
6062879 Beaman et al. May 2000 A
6064213 Khandros et al. May 2000 A
6064217 Smith May 2000 A
6064218 Godfrey et al. May 2000 A
6066911 Lindemann et al. May 2000 A
6071009 Clyne Jun 2000 A
6078183 Cole, Jr. Jun 2000 A
6078500 Beaman et al. Jun 2000 A
6090261 Mathieu Jul 2000 A
6091236 Piety et al. Jul 2000 A
6091255 Godfrey Jul 2000 A
6091256 Long et al. Jul 2000 A
6096567 Kaplan et al. Aug 2000 A
6100708 Mizuta Aug 2000 A
6100815 Pailthorp Aug 2000 A
6104201 Beaman et al. Aug 2000 A
6104206 Verkull Aug 2000 A
6110823 Eldridge et al. Aug 2000 A
6114864 Soejima et al. Sep 2000 A
6114865 Lagowski et al. Sep 2000 A
6118287 Boll et al. Sep 2000 A
6118894 Schwartz et al. Sep 2000 A
6121836 Vallencourt Sep 2000 A
6124725 Sato Sep 2000 A
6127831 Khoury et al. Oct 2000 A
6130536 Powell et al. Oct 2000 A
6137302 Schwindt Oct 2000 A
6144212 Mizuta Nov 2000 A
6146908 Falque et al. Nov 2000 A
6147502 Fryer et al. Nov 2000 A
6147851 Anderson Nov 2000 A
6150186 Chen et al. Nov 2000 A
6160407 Nikawa Dec 2000 A
6166553 Sinsheimer Dec 2000 A
6168974 Chang et al. Jan 2001 B1
6169410 Grace et al. Jan 2001 B1
6172337 Johnsgard et al. Jan 2001 B1
6174744 Watanabe et al. Jan 2001 B1
6175228 Zamborelli et al. Jan 2001 B1
6181144 Hembree et al. Jan 2001 B1
6181149 Godfrey et al. Jan 2001 B1
6181297 Leisten Jan 2001 B1
6181416 Falk Jan 2001 B1
6184053 Eldridge et al. Feb 2001 B1
6184587 Khandros et al. Feb 2001 B1
6184845 Leisten et al. Feb 2001 B1
6191596 Abiko Feb 2001 B1
6194720 Li et al. Feb 2001 B1
6201453 Chan et al. Mar 2001 B1
6206273 Beaman et al. Mar 2001 B1
6208225 Miller Mar 2001 B1
RE37130 Fiori, Jr. Apr 2001 E
6211663 Moulthrop et al. Apr 2001 B1
6211837 Crouch et al. Apr 2001 B1
6215196 Eldridge et al. Apr 2001 B1
6215295 Smith, III Apr 2001 B1
6215670 Khandros Apr 2001 B1
6218910 Miller Apr 2001 B1
6222031 Wakabayashi et al. Apr 2001 B1
6222970 Wach et al. Apr 2001 B1
6229327 Boll et al. May 2001 B1
6232149 Dozier, II et al. May 2001 B1
6232787 Lo et al. May 2001 B1
6232788 Schwindt et al. May 2001 B1
6232789 Schwindt May 2001 B1
6233613 Walker et al. May 2001 B1
6236223 Brady et al. May 2001 B1
6242803 Khandros et al. Jun 2001 B1
6242929 Mizuta Jun 2001 B1
6245692 Pearce et al. Jun 2001 B1
6246247 Eldridge et al. Jun 2001 B1
6251595 Gordon et al. Jun 2001 B1
6255126 Mathiue et al. Jul 2001 B1
6256882 Gleason et al. Jul 2001 B1
6257564 Avneri et al. Jul 2001 B1
6259260 Smith et al. Jul 2001 B1
6265950 Schmidt et al. Jul 2001 B1
6268015 Mathieu et al. Jul 2001 B1
6268016 Bhatt et al. Jul 2001 B1
6271673 Furuta et al. Aug 2001 B1
6274823 Khandros et al. Aug 2001 B1
6275043 Muhlberger et al. Aug 2001 B1
6275738 Kasevich et al. Aug 2001 B1
6278051 Peabody Aug 2001 B1
6278411 Ohlsson et al. Aug 2001 B1
6281691 Matsunaga et al. Aug 2001 B1
6286208 Shih et al. Sep 2001 B1
6292760 Burns Sep 2001 B1
6295729 Beaman et al. Oct 2001 B1
6300775 Peach et al. Oct 2001 B1
6300780 Beaman et al. Oct 2001 B1
6307161 Grube et al. Oct 2001 B1
6307363 Anderson Oct 2001 B1
6307672 DeNure Oct 2001 B1
6310483 Taura et al. Oct 2001 B1
6320372 Keller Nov 2001 B1
6320396 Nikawa Nov 2001 B1
6327034 Hoover et al. Dec 2001 B1
6329827 Beaman et al. Dec 2001 B1
6330164 Khandros et al. Dec 2001 B1
6332270 Beaman et al. Dec 2001 B2
6334247 Beaman et al. Jan 2002 B1
6335625 Bryant et al. Jan 2002 B1
6339338 Eldridge et al. Jan 2002 B1
6340568 Hefti Jan 2002 B2
6340895 Uher et al. Jan 2002 B1
6351885 Suzuki et al. Mar 2002 B2
6352454 Kim et al. Mar 2002 B1
6359456 Hembree et al. Mar 2002 B1
6362792 Sawamura et al. Mar 2002 B1
6366247 Sawamura et al. Apr 2002 B1
6369776 Leisten et al. Apr 2002 B1
6376258 Hefti Apr 2002 B2
6384614 Hager et al. May 2002 B1
6384615 Schwindt May 2002 B2
6388455 Kamieniecki et al. May 2002 B1
6395480 Hefti May 2002 B1
6396296 Tarter et al. May 2002 B1
6396298 Young et al. May 2002 B1
6400168 Matsunaga et al. Jun 2002 B2
6404213 Noda Jun 2002 B2
6407542 Conte Jun 2002 B1
6407562 Whiteman Jun 2002 B1
6409724 Penny et al. Jun 2002 B1
6414478 Suzuki Jul 2002 B1
6415858 Getchel et al. Jul 2002 B1
6418009 Brunette Jul 2002 B1
6420722 Moore et al. Jul 2002 B2
6424316 Leisten et al. Jul 2002 B1
6429029 Eldridge et al. Aug 2002 B1
6441315 Eldridge et al. Aug 2002 B1
6442831 Khandros et al. Sep 2002 B1
6447339 Reed et al. Sep 2002 B1
6448788 Meaney et al. Sep 2002 B1
6448865 Miller Sep 2002 B1
6452406 Beaman et al. Sep 2002 B1
6452411 Miller et al. Sep 2002 B1
6456099 Eldridge et al. Sep 2002 B1
6456103 Eldridge et al. Sep 2002 B1
6459343 Miller Oct 2002 B1
6459739 Vitenberg Oct 2002 B1
6468098 Eldridge Oct 2002 B1
6475822 Eldridge Nov 2002 B2
6476333 Khandros et al. Nov 2002 B1
6476442 Williams et al. Nov 2002 B1
6476630 Whitten et al. Nov 2002 B1
6479308 Eldridge Nov 2002 B1
6480013 Nayler et al. Nov 2002 B1
6480978 Roy et al. Nov 2002 B1
6481939 Gillespie et al. Nov 2002 B1
6482013 Eldridge et al. Nov 2002 B2
6483327 Bruce et al. Nov 2002 B1
6488405 Eppes et al. Dec 2002 B1
6490471 Svenson et al. Dec 2002 B2
6491968 Mathieu et al. Dec 2002 B1
6496024 Schwindt Dec 2002 B2
6499121 Roy et al. Dec 2002 B1
6501343 Miller Dec 2002 B2
6509751 Mathieu et al. Jan 2003 B1
6512482 Nelson et al. Jan 2003 B1
6520778 Eldridge et al. Feb 2003 B1
6525555 Khandros et al. Feb 2003 B1
6526655 Beaman et al. Mar 2003 B2
6528984 Beaman et al. Mar 2003 B2
6528993 Shin et al. Mar 2003 B1
6529844 Kapetanic et al. Mar 2003 B1
6534856 Dozier, II et al. Mar 2003 B1
6538214 Khandros Mar 2003 B2
6538538 Hreish et al. Mar 2003 B2
6539531 Miller et al. Mar 2003 B2
6548311 Knoll Apr 2003 B1
6549022 Cole, Jr. et al. Apr 2003 B1
6549106 Martin Apr 2003 B2
6551884 Masuoka Apr 2003 B2
6559671 Miller et al. May 2003 B2
6566079 Hefti May 2003 B2
6572608 Lee et al. Jun 2003 B1
6573702 Marcuse et al. Jun 2003 B2
6578264 Gleason et al. Jun 2003 B1
6580283 Carbone et al. Jun 2003 B1
6582979 Coccioli et al. Jun 2003 B2
6587327 Devoe et al. Jul 2003 B1
6597187 Eldridge et al. Jul 2003 B2
6603322 Boll et al. Aug 2003 B1
6603323 Miller et al. Aug 2003 B1
6603324 Eldridge et al. Aug 2003 B2
6605941 Abe Aug 2003 B2
6605951 Cowan Aug 2003 B1
6605955 Costello et al. Aug 2003 B1
6606014 Miller Aug 2003 B2
6606575 Miller Aug 2003 B2
6608494 Bruce et al. Aug 2003 B1
6611417 Chen Aug 2003 B2
6615485 Eldridge et al. Sep 2003 B2
6616966 Mathieu et al. Sep 2003 B2
6617862 Bruce Sep 2003 B1
6617866 Ickes Sep 2003 B1
6621082 Morita et al. Sep 2003 B2
6621260 Eldridge et al. Sep 2003 B2
6622103 Miller Sep 2003 B1
6624648 Eldridge et al. Sep 2003 B2
6627461 Chapman et al. Sep 2003 B2
6627483 Ondricek et al. Sep 2003 B2
6627980 Eldridge Sep 2003 B2
6628503 Sogard Sep 2003 B2
6628980 Atalar et al. Sep 2003 B2
6633174 Satya et al. Oct 2003 B1
6636182 Mehltretter Oct 2003 B2
6639461 Tam et al. Oct 2003 B1
6640415 Eslamy et al. Nov 2003 B2
6640432 Mathieu et al. Nov 2003 B1
6642625 Dozier, II et al. Nov 2003 B2
6643597 Dunsmore Nov 2003 B1
6644982 Ondricek et al. Nov 2003 B1
6646520 Miller Nov 2003 B2
6653903 Leich et al. Nov 2003 B2
6655023 Eldridge et al. Dec 2003 B1
6657455 Eldridge et al. Dec 2003 B2
6657601 McLean Dec 2003 B2
6661316 Hreish et al. Dec 2003 B2
6664628 Khandros et al. Dec 2003 B2
6669489 Dozier, II et al. Dec 2003 B1
6672875 Mathieu et al. Jan 2004 B1
6677744 Long Jan 2004 B1
6678850 Roy et al. Jan 2004 B2
6678876 Stevens et al. Jan 2004 B2
6680659 Miller Jan 2004 B2
6685817 Mathieu Feb 2004 B1
6686754 Miller Feb 2004 B2
6690185 Khandros et al. Feb 2004 B1
6701265 Hill et al. Mar 2004 B2
6701612 Khandros et al. Mar 2004 B2
6707548 Kreimer et al. Mar 2004 B2
6708403 Beaman et al. Mar 2004 B2
6710798 Hershel et al. Mar 2004 B1
6713374 Eldridge et al. Mar 2004 B2
6714828 Eldridge et al. Mar 2004 B2
6717426 Iwasaki Apr 2004 B2
6720501 Henson Apr 2004 B1
6722032 Beaman et al. Apr 2004 B2
6724205 Hayden et al. Apr 2004 B1
6724928 Davis Apr 2004 B1
6727579 Eldridge et al. Apr 2004 B1
6727580 Eldridge et al. Apr 2004 B1
6727716 Sharif Apr 2004 B1
6729019 Grube et al. May 2004 B2
6731804 Carrieri et al. May 2004 B1
6734687 Ishitani et al. May 2004 B1
6737920 Jen et al. May 2004 B2
6741085 Khandros et al. May 2004 B1
6741092 Eldridge et al. May 2004 B2
6741129 Corsi et al. May 2004 B1
6744268 Hollman Jun 2004 B2
6753679 Kwong et al. Jun 2004 B1
6753699 Stockstad Jun 2004 B2
6759311 Eldridge et al. Jul 2004 B2
6759859 Deng et al. Jul 2004 B2
6764869 Eldridge et al. Jul 2004 B2
6768328 Self et al. Jul 2004 B2
6770955 Coccioli et al. Aug 2004 B1
6771806 Satya et al. Aug 2004 B1
6777319 Grube et al. Aug 2004 B2
6778140 Yeh Aug 2004 B1
6778406 Grube et al. Aug 2004 B2
6780001 Eldridge et al. Aug 2004 B2
6784674 Miller Aug 2004 B2
6784677 Miller Aug 2004 B2
6784679 Sweet et al. Aug 2004 B2
6788093 Aitren et al. Sep 2004 B2
6788094 Khandros et al. Sep 2004 B2
6791176 Mathieu et al. Sep 2004 B2
6794888 Kawaguchi et al. Sep 2004 B2
6794934 Betti-Berutto et al. Sep 2004 B2
6794950 Du Toit et al. Sep 2004 B2
6798225 Miller Sep 2004 B2
6798226 Altmann et al. Sep 2004 B2
6806724 Hayden et al. Oct 2004 B2
6806836 Ogawa et al. Oct 2004 B2
6807734 Eldridge et al. Oct 2004 B2
6809533 Anlage et al. Oct 2004 B1
6811406 Grube Nov 2004 B2
6812691 Miller Nov 2004 B2
6812718 Chong et al. Nov 2004 B1
6815963 Gleason et al. Nov 2004 B2
6816031 Miller Nov 2004 B1
6816840 Goodwin, III Nov 2004 B1
6817052 Grube Nov 2004 B2
6818840 Khandros Nov 2004 B2
6822463 Jacobs Nov 2004 B1
6822529 Miller Nov 2004 B2
6825052 Eldridge et al. Nov 2004 B2
6825422 Eldridge et al. Nov 2004 B2
6827584 Mathieu et al. Dec 2004 B2
6835898 Eldridge et al. Dec 2004 B2
6836962 Khandros et al. Jan 2005 B2
6838885 Kamitani Jan 2005 B2
6838893 Khandros et al. Jan 2005 B2
6839964 Henson Jan 2005 B2
6845491 Miller et al. Jan 2005 B2
6850082 Schwindt Feb 2005 B2
6856129 Thomas et al. Feb 2005 B2
6856150 Sporck et al. Feb 2005 B2
6859054 Zhou et al. Feb 2005 B1
6862727 Stevens Mar 2005 B2
6864105 Grube et al. Mar 2005 B2
6864694 McTigue Mar 2005 B2
6870359 Sekel Mar 2005 B1
6870381 Grube Mar 2005 B2
6882239 Miller Apr 2005 B2
6882546 Miller Apr 2005 B2
6887723 Ondricek et al. May 2005 B1
6888362 Eldridge et al. May 2005 B2
6891385 Miller May 2005 B2
6900646 Kasukabe et al. May 2005 B2
6900647 Yoshida et al. May 2005 B2
6900652 Mazur May 2005 B2
6900653 Yu et al. May 2005 B2
6902416 Feldman Jun 2005 B2
6902941 Sun Jun 2005 B2
6903563 Yoshida et al. Jun 2005 B2
6906506 Reano et al. Jun 2005 B1
6906539 Wilson et al. Jun 2005 B2
6906542 Sakagawa et al. Jun 2005 B2
6906543 Lou et al. Jun 2005 B2
6907149 Slater Jun 2005 B2
6908364 Back et al. Jun 2005 B2
6909297 Ji et al. Jun 2005 B2
6909300 Lu et al. Jun 2005 B2
6909983 Sutherland Jun 2005 B2
6910268 Miller Jun 2005 B2
6911814 Miller et al. Jun 2005 B2
6911826 Plotnikov et al. Jun 2005 B2
6911834 Mitchell et al. Jun 2005 B2
6911835 Chraft et al. Jun 2005 B2
6912468 Marin et al. Jun 2005 B2
6913468 Dozier, II et al. Jul 2005 B2
6914244 Alani Jul 2005 B2
6914427 Gifford et al. Jul 2005 B2
6914430 Hasegawa et al. Jul 2005 B2
6914580 Leisten Jul 2005 B2
6917195 Hollman Jul 2005 B2
6917210 Miller Jul 2005 B2
6917211 Yoshida et al. Jul 2005 B2
6917525 Mok et al. Jul 2005 B2
6919732 Yoshida et al. Jul 2005 B2
6922069 Jun Jul 2005 B2
6924653 Schaeffer et al. Aug 2005 B2
6924655 Kirby Aug 2005 B2
6927078 Saijo et al. Aug 2005 B2
6927079 Fyfield Aug 2005 B1
6927586 Thiessen Aug 2005 B2
6927587 Yoshioka Aug 2005 B2
6927598 Lee et al. Aug 2005 B2
6930498 Tervo et al. Aug 2005 B2
6933713 Cannon Aug 2005 B2
6933717 Dogaru et al. Aug 2005 B1
6933725 Lim et al. Aug 2005 B2
6933736 Kobayashi et al. Aug 2005 B2
6933737 Sugawara Aug 2005 B2
6937020 Munson et al. Aug 2005 B2
6937037 Eldridge et al. Aug 2005 B2
6937040 Maeda et al. Aug 2005 B2
6937042 Yoshida et al. Aug 2005 B2
6937045 Sinclair Aug 2005 B2
6937341 Woollam et al. Aug 2005 B1
6940264 Ryken, Jr. et al. Sep 2005 B2
6940283 McQueeney Sep 2005 B2
6943563 Martens Sep 2005 B2
6943571 Worledge Sep 2005 B2
6943574 Altmann et al. Sep 2005 B2
6944380 Hideo et al. Sep 2005 B1
6946859 Karavakis et al. Sep 2005 B2
6946860 Cheng et al. Sep 2005 B2
6946864 Gramann et al. Sep 2005 B2
6948391 Brassell et al. Sep 2005 B2
6948981 Pade Sep 2005 B2
6949942 Eldridge et al. Sep 2005 B2
6970001 Chheda et al. Nov 2005 B2
6987483 Tran Jan 2006 B2
7001785 Chen Feb 2006 B1
7002133 Beausoleil et al. Feb 2006 B2
7002363 Mathieu Feb 2006 B2
7002364 Kang et al. Feb 2006 B2
7003184 Ronnekleiv et al. Feb 2006 B2
7005842 Fink et al. Feb 2006 B2
7005868 McTigue Feb 2006 B2
7005879 Robertazzi Feb 2006 B1
7006046 Aisenbrey Feb 2006 B2
7007380 Das et al. Mar 2006 B2
7009188 Wang Mar 2006 B2
7009383 Harwood et al. Mar 2006 B2
7009415 Kobayashi et al. Mar 2006 B2
7011531 Egitto et al. Mar 2006 B2
7012425 Shoji Mar 2006 B2
7012441 Chou et al. Mar 2006 B2
7013221 Friend et al. Mar 2006 B1
7014499 Yoon Mar 2006 B2
7015455 Mitsuoka et al. Mar 2006 B2
7015689 Kasajima et al. Mar 2006 B2
7015690 Wang et al. Mar 2006 B2
7015703 Hopkins et al. Mar 2006 B2
7015707 Cherian Mar 2006 B2
7015708 Beckous et al. Mar 2006 B2
7015709 Capps et al. Mar 2006 B2
7015710 Yoshida et al. Mar 2006 B2
7015711 Rothaug et al. Mar 2006 B2
7019541 Kittrell Mar 2006 B2
7019544 Jacobs et al. Mar 2006 B1
7019701 Ohno et al. Mar 2006 B2
7020360 Satomura et al. Mar 2006 B2
7020363 Johannessen Mar 2006 B2
7022976 Santana, Jr. et al. Apr 2006 B1
7022985 Knebel et al. Apr 2006 B2
7023225 Blackwood Apr 2006 B2
7023226 Okumura et al. Apr 2006 B2
7023231 Howland, Jr. et al. Apr 2006 B2
7025628 LaMeres et al. Apr 2006 B2
7026832 Chaya et al. Apr 2006 B2
7026833 Rincon et al. Apr 2006 B2
7026834 Hwang Apr 2006 B2
7026835 Farnworth et al. Apr 2006 B2
7030328 Beerling Apr 2006 B1
7030599 Douglas Apr 2006 B2
7030827 Mahler et al. Apr 2006 B2
7032307 Matsunaga et al. Apr 2006 B2
7034553 Gilboe Apr 2006 B2
7035738 Matsumoto et al. Apr 2006 B2
7057404 Gleason et al. Jun 2006 B2
7071722 Yamada et al. Jul 2006 B2
7088981 Chang Aug 2006 B2
7091729 Kister Aug 2006 B2
7096133 Martin et al. Aug 2006 B1
7161363 Gleason et al. Jan 2007 B2
7173433 Hoshi et al. Feb 2007 B2
7187188 Andrews et al. Mar 2007 B2
7188037 Hidehira Mar 2007 B2
7219416 Inoue et al. May 2007 B2
7233160 Hayden et al. Jun 2007 B2
7253646 Lou et al. Aug 2007 B2
7271603 Gleason et al. Sep 2007 B2
7276922 Miller et al. Oct 2007 B2
7315175 Cole Jan 2008 B2
7319335 Brunner et al. Jan 2008 B2
7319337 Sakata Jan 2008 B2
7323680 Chong Jan 2008 B2
7323899 Schuette et al. Jan 2008 B2
7327153 Weinraub Feb 2008 B2
7332918 Sugiyama et al. Feb 2008 B2
7332923 Schott et al. Feb 2008 B2
7342402 Kim et al. Mar 2008 B2
7403028 Campbell Jul 2008 B2
7427868 Strid et al. Sep 2008 B2
20010002794 Draving et al. Jun 2001 A1
20010009061 Gleason et al. Jul 2001 A1
20010009377 Schwindt et al. Jul 2001 A1
20010010468 Gleason et al. Aug 2001 A1
20010020283 Sakaguchi Sep 2001 A1
20010024116 Draving Sep 2001 A1
20010030549 Gleason et al. Oct 2001 A1
20010043073 Montoya Nov 2001 A1
20010044152 Burnett Nov 2001 A1
20010045511 Moore et al. Nov 2001 A1
20010054906 Fujimura Dec 2001 A1
20020005728 Babson et al. Jan 2002 A1
20020008533 Ito et al. Jan 2002 A1
20020009377 Shafer Jan 2002 A1
20020009378 Obara Jan 2002 A1
20020011859 Smith et al. Jan 2002 A1
20020011863 Takahashi et al. Jan 2002 A1
20020030480 Appen et al. Mar 2002 A1
20020050828 Seward, IV et al. May 2002 A1
20020070743 Felici et al. Jun 2002 A1
20020070745 Johnson et al. Jun 2002 A1
20020079911 Schwindt Jun 2002 A1
20020105396 Streeter et al. Aug 2002 A1
20020109088 Nara et al. Aug 2002 A1
20020118034 Laureanti Aug 2002 A1
20020149377 Hefti et al. Oct 2002 A1
20020153909 Petersen et al. Oct 2002 A1
20020163769 Brown Nov 2002 A1
20020168659 Hefti et al. Nov 2002 A1
20020176160 Suzuki et al. Nov 2002 A1
20020180466 Hiramatsu et al. Dec 2002 A1
20020197709 Van der Weide et al. Dec 2002 A1
20030010877 Landreville et al. Jan 2003 A1
20030030822 Finarov Feb 2003 A1
20030032000 Liu et al. Feb 2003 A1
20030040004 Hefti et al. Feb 2003 A1
20030057513 Leedy Mar 2003 A1
20030062915 Arnold et al. Apr 2003 A1
20030072549 Facer et al. Apr 2003 A1
20030076585 Ledley Apr 2003 A1
20030077649 Cho et al. Apr 2003 A1
20030088180 Van Veen et al. May 2003 A1
20030119057 Gascoyne et al. Jun 2003 A1
20030139662 Seidman Jul 2003 A1
20030139790 Ingle et al. Jul 2003 A1
20030155939 Lutz et al. Aug 2003 A1
20030170898 Gundersen et al. Sep 2003 A1
20030184332 Tomimatsu et al. Oct 2003 A1
20030215966 Rolda et al. Nov 2003 A1
20030234659 Zieleman Dec 2003 A1
20040015060 Samsoondar et al. Jan 2004 A1
20040021475 Ito et al. Feb 2004 A1
20040029425 Yean et al. Feb 2004 A1
20040061514 Schwindt et al. Apr 2004 A1
20040066181 Thies Apr 2004 A1
20040069776 Fagrell et al. Apr 2004 A1
20040090223 Yonezawa May 2004 A1
20040095145 Boudiaf et al. May 2004 A1
20040095641 Russum et al. May 2004 A1
20040100276 Fanton May 2004 A1
20040100297 Tanioka et al. May 2004 A1
20040108847 Stoll et al. Jun 2004 A1
20040113640 Cooper et al. Jun 2004 A1
20040130787 Thome-Forster et al. Jul 2004 A1
20040132222 Hembree et al. Jul 2004 A1
20040134899 Hiramatsu et al. Jul 2004 A1
20040140819 McTigue et al. Jul 2004 A1
20040147034 Gore et al. Jul 2004 A1
20040162689 Jamneala et al. Aug 2004 A1
20040170312 Soenksen Sep 2004 A1
20040175294 Ellison et al. Sep 2004 A1
20040186382 Modell et al. Sep 2004 A1
20040193382 Adamian et al. Sep 2004 A1
20040197771 Powers et al. Oct 2004 A1
20040199350 Blackham et al. Oct 2004 A1
20040201388 Barr Oct 2004 A1
20040207072 Hiramatsu et al. Oct 2004 A1
20040207424 Hollman Oct 2004 A1
20040239338 Johnsson et al. Dec 2004 A1
20040246004 Heuermann Dec 2004 A1
20040251922 Martens et al. Dec 2004 A1
20050024069 Hayden et al. Feb 2005 A1
20050026276 Chou Feb 2005 A1
20050030047 Adamian Feb 2005 A1
20050054029 Tomimatsu et al. Mar 2005 A1
20050062533 Vice Mar 2005 A1
20050068054 Mok et al. Mar 2005 A1
20050083130 Grilo Apr 2005 A1
20050088191 Lesher Apr 2005 A1
20050101846 Fine et al. May 2005 A1
20050116730 Hsu Jun 2005 A1
20050142033 Glezer et al. Jun 2005 A1
20050151548 Hayden et al. Jul 2005 A1
20050156675 Rohde et al. Jul 2005 A1
20050164160 Gunter et al. Jul 2005 A1
20050165316 Lowery et al. Jul 2005 A1
20050168722 Forstner et al. Aug 2005 A1
20050172703 Kley Aug 2005 A1
20050174191 Brunker et al. Aug 2005 A1
20050178980 Skidmore et al. Aug 2005 A1
20050179444 Tiemeijer Aug 2005 A1
20050184742 Huang et al. Aug 2005 A1
20050195124 Puente Baliarda et al. Sep 2005 A1
20050229053 Sunter Oct 2005 A1
20050236587 Kodama et al. Oct 2005 A1
20050237102 Tanaka Oct 2005 A1
20060030060 Noguchi et al. Feb 2006 A1
20060052075 Galivanche et al. Mar 2006 A1
20060155270 Hancock et al. Jul 2006 A1
20060184041 Andrews et al. Aug 2006 A1
20060220663 Oikawa Oct 2006 A1
20060226864 Kramer Oct 2006 A1
20070024506 Hardacker Feb 2007 A1
20070030021 Cowan et al. Feb 2007 A1
20070145989 Zhu et al. Jun 2007 A1
20080111571 Smith et al. May 2008 A1
Foreign Referenced Citations (152)
Number Date Country
607 045 Nov 1978 CH
1083975 Mar 1994 CN
288234 Mar 1991 DD
2951072 Jul 1981 DE
3426565 Jan 1986 DE
3637549 May 1988 DE
4223658 Jan 1993 DE
9313420 Oct 1993 DE
19522774 Jan 1997 DE
19542955 May 1997 DE
19618717 Jan 1998 DE
19749687 May 1998 DE
29809568 Oct 1998 DE
10000324 Jul 2001 DE
20220754 May 2004 DE
0230766 Dec 1985 EP
0195520 Sep 1986 EP
0230348 Jul 1987 EP
0259163 Mar 1988 EP
0259183 Mar 1988 EP
0259942 Mar 1988 EP
0261986 Mar 1988 EP
0270422 Jun 1988 EP
0333521 Sep 1989 EP
0460911 Dec 1991 EP
0846476 Jun 1998 EP
0 945 736 Sep 1999 EP
0945736 Sep 1999 EP
579665 Aug 1946 GB
2014315 Aug 1979 GB
2179458 Mar 1987 GB
52-19046 Feb 1977 JP
53-037077 Apr 1978 JP
53037077 Apr 1978 JP
53-052354 May 1978 JP
55-115383 Sep 1980 JP
55115383 Sep 1980 JP
56-007439 Jan 1981 JP
56-88333 Jul 1981 JP
5691503 Jul 1981 JP
56088333 Jul 1981 JP
57-075480 May 1982 JP
57075480 May 1982 JP
57-163035 Oct 1982 JP
57163035 Oct 1982 JP
57171805 Oct 1982 JP
58-130602 Aug 1983 JP
594189 Jan 1984 JP
60-5462 Apr 1984 JP
60-236241 Nov 1985 JP
61142802 Jun 1986 JP
62-11243 Jan 1987 JP
62-51235 Mar 1987 JP
62-58650 Mar 1987 JP
62-098634 May 1987 JP
62-107937 May 1987 JP
62098634 May 1987 JP
62107937 May 1987 JP
62-179126 Aug 1987 JP
62-239050 Oct 1987 JP
62239050 Oct 1987 JP
62295374 Dec 1987 JP
63-108736 May 1988 JP
63-129640 Jun 1988 JP
63-143814 Jun 1988 JP
63-152141 Jun 1988 JP
63-192246 Aug 1988 JP
63-318745 Dec 1988 JP
64-21309 Feb 1989 JP
1-165968 Jun 1989 JP
1-214038 Aug 1989 JP
01209380 Aug 1989 JP
1-219575 Sep 1989 JP
1-296167 Nov 1989 JP
2-22836 Jan 1990 JP
2-124469 May 1990 JP
2-141681 May 1990 JP
02124469 May 1990 JP
02135804 May 1990 JP
2-191352 Jul 1990 JP
3-175367 Jul 1991 JP
3-196206 Aug 1991 JP
3196206 Aug 1991 JP
3-228348 Oct 1991 JP
03228348 Oct 1991 JP
4-130639 May 1992 JP
04130639 May 1992 JP
4-159043 Jun 1992 JP
04159043 Jun 1992 JP
4-206930 Jul 1992 JP
04206930 Jul 1992 JP
4-340248 Nov 1992 JP
5-082631 Apr 1993 JP
05082631 Apr 1993 JP
5-113451 May 1993 JP
51-57790 Jun 1993 JP
5157790 Jun 1993 JP
51-66893 Jul 1993 JP
5166893 Jul 1993 JP
6-85044 Mar 1994 JP
60-71425 Mar 1994 JP
6-102313 Apr 1994 JP
6-132709 May 1994 JP
6-160236 Jun 1994 JP
6154238 Jun 1994 JP
6-295949 Oct 1994 JP
7-005078 Jan 1995 JP
7-12871 Jan 1995 JP
7005078 Jan 1995 JP
7012871 Jan 1995 JP
7-201945 Aug 1995 JP
8-35987 Feb 1996 JP
8035987 Feb 1996 JP
8-261898 Oct 1996 JP
8-330401 Dec 1996 JP
08330401 Dec 1996 JP
09127432 May 1997 JP
10-48256 Feb 1998 JP
10-116866 May 1998 JP
10116866 May 1998 JP
11-023975 Jan 1999 JP
11004001 Jan 1999 JP
11023975 Jan 1999 JP
2000-137120 May 2000 JP
2000-329664 Nov 2000 JP
2001-33633 Feb 2001 JP
2001-124676 May 2001 JP
2001-189285 Jul 2001 JP
2001-189378 Jul 2001 JP
2002-203879 Jul 2002 JP
2002-243502 Aug 2002 JP
2002243502 Aug 2002 JP
2004-507851 Mar 2004 JP
20030090158 Nov 2003 KR
843040 Jun 1981 SU
1195402 Nov 1985 SU
1327023 Jul 1987 SU
1392603 Apr 1988 SU
WO8000101 Jan 1980 WO
WO9410554 May 1994 WO
WO 9629629 Jan 1996 WO
WO 9750001 Dec 1997 WO
WO9807040 Feb 1998 WO
WO 0073905 Dec 2000 WO
WO0107207 Jan 2001 WO
WO 0169656 Sep 2001 WO
WO 2004044604 May 2004 WO
WO 2004065944 Aug 2004 WO
WO 2004079299 Sep 2004 WO
WO 2005062025 Jul 2005 WO
WO 2007145727 Dec 2007 WO
WO 2007145728 Dec 2007 WO
Related Publications (1)
Number Date Country
20070285107 A1 Dec 2007 US
Provisional Applications (1)
Number Date Country
60813121 Jun 2006 US