In some settings, endoscopic surgical instruments may be preferred over traditional open surgical devices since a smaller incision may reduce the post-operative recovery time and complications. Consequently, some endoscopic surgical instruments may be suitable for placement of a distal end effector at a desired surgical site through a cannula of a trocar. These distal end effectors may engage tissue in a number of ways to achieve a diagnostic or therapeutic effect (e.g., endocutter, grasper, cutter, stapler, clip applier, access device, drug/gene therapy delivery device, and energy delivery device using ultrasound, RF, laser, etc.). Endoscopic surgical instruments may include a shaft between the end effector and a handle portion, which is manipulated by the clinician. Such a shaft may enable insertion to a desired depth and rotation about the longitudinal axis of the shaft, thereby facilitating positioning of the end effector within the patient.
Examples of endoscopic surgical instruments include those disclosed in U.S. Pat. Pub. No. 2006/0079874, entitled “Tissue Pad for Use with an Ultrasonic Surgical Instrument,” published Apr. 13, 2006, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2007/0191713, entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 16, 2007, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2007/0282333, entitled “Ultrasonic Waveguide and Blade,” published Dec. 6, 2007, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2008/0200940, entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 21, 2008, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2011/0015660, entitled “Rotating Transducer Mount for Ultrasonic Surgical Instruments,” published Jan. 20, 2011, issued as U.S. Pat. No. 8,461,744 on Jun. 11, 2013, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 6,500,176, entitled “Electrosurgical Systems and Techniques for Sealing Tissue,” issued Dec. 31, 2002, the disclosure of which is incorporated by reference herein; and U.S. Pat. Pub. No. 2011/0087218, entitled “Surgical Instrument Comprising First and Second Drive Systems Actuatable by a Common Trigger Mechanism,” published Apr. 14, 2011, issued as U.S. Pat. No. 8,939,974 on Jan. 27, 2015, the disclosure of which is incorporated by reference herein. Additionally, such surgical tools may include a cordless transducer such as that disclosed in U.S. Pat. Pub. No. 2009/0143797, entitled “Cordless Hand-held Ultrasonic Cautery Cutting Device,” published Jun. 4, 2009, issued as U.S. Pat. No. 8,419,757 on Apr. 16, 2013, the disclosure of which is incorporated by reference herein. In addition, the surgical instruments may be used, or adapted for use, in robotic-assisted surgery settings such as that disclosed in U.S. Pat. No. 6,783,524, entitled “Robotic Surgical Tool with Ultrasound Cauterizing and Cutting Instrument,” issued Aug. 31, 2004.
While several systems and methods have been made and used for surgical instruments, it is believed that no one prior to the inventors has made or used the invention described in the appended claims.
While the specification concludes with claims which particularly point out and distinctly claim this technology, it is believed this technology will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements and in which:
The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the technology may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present technology, and together with the description serve to explain the principles of the technology; it being understood, however, that this technology is not limited to the precise arrangements shown.
The following description of certain examples of the technology should not be used to limit its scope. Other examples, features, aspects, embodiments, and advantages of the technology will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the technology. As will be realized, the technology described herein is capable of other different and obvious aspects, all without departing from the technology. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
I. Overview of Exemplary Ultrasonic Surgical System
Surgical instrument (50) of the present example includes a multi-piece handle assembly (60), an elongated transmission assembly (70), and a transducer (100). Transmission assembly (70) is coupled to multi-piece handle assembly (60) at a proximal end of transmission assembly (70) and extends distally from multi-piece handle assembly (60). In the present example, transmission assembly (70) is configured as an elongated, thin tubular assembly for endoscopic use, but it should be understood that transmission assembly (70) may alternatively be a short assembly, such as those disclosed in U.S. Pat. Pub. No. 2007/0282333, entitled “Ultrasonic Waveguide and Blade,” published Dec. 6, 2007, now abandoned, and U.S. Pat. Pub. No. 2008/0200940, entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 21, 2008, now abandoned, the disclosures of which are incorporated by reference herein. Transmission assembly (70) of the present example comprises an outer sheath (72), an inner tubular actuating member (not shown), a waveguide (not shown), and an end effector (80) located on the distal end of transmission assembly (70). In the present example, end effector (80) comprises a blade (82) that is mechanically and acoustically coupled to the waveguide, a clamp arm (84) operable to pivot at the proximal end of transmission assembly (70), and a clamp pad (86) coupled to clamp arm (84). In some versions, transducer (100) comprises a plurality of piezoelectric elements (not shown) that are compressed between a first resonator (not shown) and a second resonator (not shown) to form a stack of piezoelectric elements. The piezoelectric elements may be fabricated from any suitable material, for example, lead zirconate-titanate, lead meta-niobate, lead titanate, and/or any suitable piezoelectric crystal material, for example.
Transducer (100) further comprises electrodes, including at least one positive electrode and at least one negative electrode, that are configured to create a voltage potential across the one or more piezoelectric elements, such that the piezoelectric elements convert the electrical power into ultrasonic vibrations. When transducer (100) of the present example is activated, transducer (100) is operable to create linear oscillations or vibrations (e.g., torsional or transverse, etc.) at an ultrasonic frequency (such as 55.5 kHz). When transducer (100) is coupled to transmission assembly (70), these linear oscillations are transmitted through the internal waveguide of transmission assembly (70) to end effector (80). In the present example, with blade (82) being coupled to the waveguide, blade (82) thereby oscillates at the ultrasonic frequency. Thus, when tissue is secured between blade (82) and clamp arm (84), the ultrasonic oscillation of blade (82) may simultaneously sever the tissue and denature the proteins in adjacent tissue cells, thereby providing a coagulative effect with relatively little thermal spread. An electrical current may also be provided through blade (82) and clamp arm (84) to cauterize the tissue. One merely exemplary suitable ultrasonic transducer (100) is Model No. HP054, sold by Ethicon Endo-Surgery, Inc. of Cincinnati, Ohio, though it should be understood that any other suitable transducer may be used. It should also be understood that clamp arm (84) and associated features may be constructed and operable in accordance with at least some of the teachings of U.S. Pat. No. 5,980,510, entitled “Ultrasonic Clamp Coagulator Apparatus Having Improved Clamp Arm Pivot Mount,” issued Nov. 9, 1999, the disclosure of which is incorporated by reference herein.
Multi-piece handle assembly (60) of the present example comprises a mating housing portion (62) and a lower portion (64). Mating housing portion (62) defines a cavity within multi-piece handle assembly (60) and is configured to receive transducer (100) at a proximal end of mating housing portion (62) and to receive the proximal end of transmission assembly (70) at a distal end of mating housing portion (62). A rotation knob (66) is shown in the present example to rotate transmission assembly (70) and transducer (100), but it should be understood that rotation knob (66) is merely optional. Lower portion (64) of multi-piece handle assembly (60) shown in
While multi-piece handle assembly (60) has been described in reference to two distinct portions (62, 64), it should be understood that multi-piece handle assembly (60) may be a unitary assembly with both portions (62, 64) combined. Multi-piece handle assembly (60) may alternatively be divided into multiple discrete components, such as a separate trigger portion (operable either by a user's hand or foot) and a separate mating housing portion (62). Such a trigger portion may be operable to activate transducer (100) and may be remote from mating housing portion (62). Multi-piece handle assembly (60) may be constructed from a durable plastic casing (61) (such as polycarbonate or a liquid crystal polymer), ceramics, metals and/or any other suitable material as will be apparent to one of ordinary skill in the art in view of the teachings herein. Other configurations for multi-piece handle assembly (60) will also be apparent to those of ordinary skill in the art in view of the teachings herein. For instance, in some versions trigger (68) may be omitted and surgical instrument (50) may be activated by a controlled of a robotic system. In other versions, surgical instrument (50) may be activated when coupled to generator (20).
Further still, surgical instrument (50) may be constructed in accordance with at least some of the teachings of U.S. Pat. No. 5,322,055 entitled “Clamp Coagulator/Cutting System for Ultrasonic Surgical Instruments,” issued Jun. 21, 1994, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 5,873,873 entitled “Ultrasonic Clamp Coagulator Apparatus Having Improved Clamp Mechanism,” issued Feb. 23, 1999, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 5,980,510, entitled “Ultrasonic Clamp Coagulator Apparatus Having Improved Clamp Arm Pivot Mount,” filed Oct. 10, 1997, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 6,325,811 entitled “Blades with Functional Balance Asymmetries for use with Ultrasonic Surgical Instruments,” issued Dec. 4, 2001, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2006/0079874 entitled “Tissue Pad for Use with an Ultrasonic Surgical Instrument,” published Apr. 13, 2006, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2007/0191713 entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 16, 2007, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2007/0282333 entitled “Ultrasonic Waveguide and Blade,” published Dec. 6, 2007, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2008/0200940 entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 21, 2008, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2009/0143797, entitled “Cordless Hand-held Ultrasonic Cautery Cutting Device,” published June 4, 2009, issued as U.S. Pat. No. 8,419,757 on Apr. 16, 2013, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2010/0069940 entitled “Ultrasonic Device for Fingertip Control,” published Mar. 18, 2010, issued as U.S. Pat. No. 9,023,071 on May 5, 2015, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2011/0015660, entitled “Rotating Transducer Mount for Ultrasonic Surgical Instruments,” published Jan. 20, 2011, issued as U.S. Pat. No. 8,461,744 on Jun. 11, 2013, the disclosure of which is incorporated by reference herein; and/or U.S. Provisional Application Ser. No. 61/410,603, filed Nov. 5, 2010, entitled “Energy-Based Surgical Instruments,” the disclosure of which is incorporated by reference herein.
It is further understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The following-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.
II. Exemplary Coupling Mechanisms for Ultrasonic Surgical Instrument
In some instances it may be useful to selectively couple transducer (100) to transmission assembly (70) without using a torque wrench to tighten transducer (100) onto transmission assembly (70). For instance, various mechanical couplings may be implemented that, when cammed or actuated into a locked position, ensure an adequate acoustic coupling of transducer (100) to transmission assembly (70) to permit energy transmission from transducer (100) to blade (82) of end effector (80). Such mechanical couplings may also permit a user to quickly connect and/or disconnect transducer (100) and/or transmission assembly (70) from each other and/or from multi-piece handle assembly (60). In addition, a user may only need to ensure that the coupling mechanism is in the locked position to ensure a sufficient connection, instead using a torque wrench to determine the proper torque. Furthermore, such coupling mechanisms may permit multi-piece handle assembly (60), transmission assembly (70) and/or transducer (100) to be reusable and/or interchangeable. Accordingly, surgical instruments (50) incorporating such coupling mechanisms may be preferable to some users.
A. Exemplary Pin and Troughed Gear Coupling Mechanism
Transducer (160) of the present example comprises a plurality of piezoelectric elements (164) that are compressed between a first resonator (165) and a second resonator (166) to form a stack of piezoelectric elements. First resonator (165) of the present example further comprises a pin hole (168) through which a second pin (196), shown in
When a user desires to couple transducer (160) to waveguide (150), the user rotates troughed gears (170). A lever (not shown) or finger grips may be included on troughed gear (170) to aid the user's rotation of troughed gear (170). Alternatively, a user may simply grasp and rotate second half (182) to rotate troughed gears (170). As the user rotates troughed gears (170), pins (194, 196) engage arcuate portions (180) of troughs (174) and are cammed radially inward by arcuate portions (180). As pins (194, 196) are cammed radially inward, transducer (160) translates distally and waveguide (150) simultaneously translates proximally. The user continues to rotate troughed gears (170) to engage cone (162) with conical recess (152) (shown in phantom). In the present example, arcuate portions (180) terminate at a predetermined point calculated to provide a sufficient compression between transducer (160) and waveguide (150) to ensure that cone (162) adequately couples with conical recess (152) to transmit the ultrasonic vibrations produced by the stacks of piezoelectric elements (164) to waveguide (150). In other versions, arcuate portions (180) may continue to spiral inwardly on troughed gears (170) to permit a user to tighten transducer (160) to waveguide (150) as desired.
When a user desires to detach transducer (160) and/or waveguide (150), the user disengages pawls (190) from teeth (188) of troughed gears (170). The user may then pull out transducer (160) and/or waveguide (150) (effectively rotating troughed gears (170) via pins (194, 196) and arcuate portions (180)) or rotate troughed gears (170) until pins (194, 196) can be removed through open ends (178) of troughs (174). In some versions, troughed gears (170) may include a torsion spring (not shown) that is biased to rotate troughed gears (170) toward the unlocked position once pawl (190) is disengaged. Thus, a user may quickly connect transducer (160) to waveguide (150) and also ensure an adequate connection between transducer (160) and waveguide (150) by using the pin and troughed gear coupling mechanism described herein.
Of course other configurations for a pin and troughed gear coupling mechanism will be apparent to one of ordinary skill in the art in view of the teachings herein. For instance, a single troughed gear (170) may be used instead of a pair of troughed gears (170). Alternatively, troughed gears (170) may be mechanically coupled together, either directly through an axle or indirectly through additional gears, to concurrently rotate both troughed gears (170). Further still, troughed gears (170) may be located entirely within casing (61) and a key hole (not shown) may be provided to permit a user to insert a geared key to rotate one or both troughed gears (170). Such a key hole and gearing may be configured in similar fashion to the keys used for winding clocks. Further still, troughed gears (170), transducer (160), and waveguide (150) may be contained within a separate casing that is rotatable relative to a main handle assembly. Such a casing may be mounted to the main handle assembly via bearings to permit the rotation of waveguide (150), transducer (160), troughed gears (170), and/or any other components relative to the main handle assembly. Still further configurations will be apparent to one of ordinary skill in the art in view of the teachings herein.
B. Exemplary Sled Coupling Mechanism
An actuation arm (220) is coupled to a distal end of sled member (200) by a first axle (222). A second axle (224) couples actuation arm (220) to casing (210) to provide a pivot point about which actuation arm (220) rotates. Actuation arm (220) further includes a handle portion (226) that a user uses to rotate actuation arm (220), as will be described in more detail below. Handle portion (226) includes a recess (228) into which a latch (240) is selectively insertable. Latch (240) includes a spring-loaded camming member and a slidable release to selectively decouple the spring-loaded camming member from handle portion (226). A pair of pillars (230) are located distally of sled member (200) and include a notch (232). It should also be understood that while a single pillar (230) is shown, a pillar (230) is located on the opposite side of waveguide (150) and is identical to pillar (230) shown. Pillars (230) are fixedly attached to casing (210) and notches (232) are configured to receive the ends of pin (194). Notches (232) may also include a resilient snap fastener configured to receive and snap the ends of pin (194) into notch (232). It should be understood that in some versions, waveguide (150) and pin (194) may be affixed to pillar (230) such that waveguide (150) is not removable. Still other configurations for sled member (200) and pillar (230) will be apparent to one of ordinary skill in the art in view of the teachings herein.
Initially, a user couples waveguide (150) to pillars (230) by inserting the ends of pin (194) into notches (232). Pin (196) of transducer (160) is then inserted into U-shaped members (202) of sled member (200). With waveguide (150) prevented from translating distally by notches (232) and transducer (160) longitudinally secured by U-shaped members (202), the user actuates actuation arm (220) by rotating handle portion (226) downwardly toward casing (210). Actuation arm (220) rotates about second axle (224) and translates sled member (200) distally toward waveguide (150) and pillar (230). The user continues to rotate handle portion (226) to engage cone (162) of transducer (160) with conical recess (152) (shown in phantom) of waveguide (150). In present example, sled member (200) and pillar (230) are spaced at a predetermined distance calculated to induce a sufficient compressive force between transducer (160) and waveguide (150) to ensure proper coupling of cone (162) with conical recess (152) when actuation arm (220) is rotated and latch (240) engages recess (228) of handle portion (226). Such a compressive force may be calculated such that the ultrasonic vibrations produced by the stacks of piezoelectric elements (164) are adequately transmitted to waveguide (150). When a user desires to decouple transducer (160) from waveguide (150), latch (240) is released and actuation arm (220) is actuated to translate sled member (200) proximally. The user may then remove transducer (160) and/or waveguide (150) for reuse, disposal, and/or reclamation. Thus, a user may quickly connect transducer (160) to waveguide (150) and also ensure an adequate connection between transducer (160) and waveguide (150) by using the sled coupling mechanism described herein.
Of course other configurations for a sled coupling mechanism will be apparent to one of ordinary skill in the art in view of the teachings herein. For instance, a pair of actuation arms (220) may be located on either side of sled member (200). Alternatively, in versions in which transducer (160) is a cordless transducer, transducer (160) may be affixed to U-shaped members (202) or directly to sled member (200). Further still, a separate casing containing the sled coupling mechanism may be rotatably coupled via bearings to a handle assembly to permit rotation of the entire coupling mechanism relative to the handle assembly. In yet a further configuration, a spring may be provided to resiliently bias sled member (200) proximally such that the user merely needs to release latch (240). Still further configurations will be apparent to one of ordinary skill in the art in view of the teachings herein.
C. Exemplary Self-Locking Pin and Lever Coupling Mechanism
An outer casing (270) of a handle assembly, such as multi-piece handle assembly (60), includes a pair of pin apertures (272) and a pair of pin and lever assemblies (280). In the present example, pin and lever assemblies (280) are located on opposing sides of casing (270), though in some versions a pin and lever assembly (280) may be located on the top of casing (270) and a second pin and lever assembly (280) may be located on the bottom of casing (270). Further still, pin and lever assemblies (280) do not need to be directly opposed. Indeed, in some versions pin and lever assemblies (280) may be disposed in a V shaped arrangement or at any other suitable arrangement as will be apparent to one of ordinary skill in the art in view of the teachings herein. Pin and lever assemblies (280) of the present example are each coupled to casing (270) by a respective axle (not shown) such that pin and lever assemblies (280) are pivotable relative to casing (270). Torsion springs (282) are coupled to pin and lever assemblies (280) and to casing (270) to bias pin and lever assemblies (280) toward a locked position, as shown in
Referring now to
Referring back to
When a user desires to couple transducer (260) to waveguide (250), initially the user rotates handles (286) of both pin and lever assemblies (280) to rotate lever portions (290) about torsion springs (282). The rotation of lever portions (290) engages wheels (302) via L-shaped members (292) to actuate pin portions (300) outwardly relative to pin apertures (272). Tab stops (not shown) may be included on pin bodies (310) to prevent a user from pulling pin portions (300) completely out of pin apertures (272), though this is merely optional.
With transaxial pin holes (254, 264) and first and second pin ends (320, 330) substantially aligned, the user releases handles (286) and torsion springs (282) rotate lever portions (290) inwardly. Lever portions (290) engage wheels (302) to actuate pin portions (300) inwardly relative to pin apertures (272). As pin portions (300) move inwardly, first and second pin ends (320, 330) enter transaxial pin hole (254) of waveguide (250). In the example shown, first pin end (320) and ramped portion (322) may engage transaxial pin hole (264) to cam horn (262) distally as first pin end (320) enters transaxial pin hole (264). If second pin end (330) is misaligned relative to transaxial pin hole (264), the camming of horn (262) distally may align transaxial pin hole (264) to permit second pin end (330) to enter transaxial pin hole (264). First and second pin ends (320, 330) engage each other within transaxial pin hole (264) and ramped portions (322, 332) cam against one another as pin portions (300) continue to actuate inwardly. The engagement of ramped portions (322, 332) within transaxial pin hole (264) urges horn (262) of transducer (260) further into recess (252) of waveguide (250) to couple transducer (260) to waveguide (250). Torsion springs (282) may be designed such that a certain compressive force between horn (262) and a distal wall of recess (252) is achieved when pin and lever assemblies (280) are in the locked position, shown in
When a user desires to decouple transducer (260) from waveguide (250), the user actuates handles (286) to lift pin portions (300) outwardly relative to pin apertures (272). Ramped portions (322, 332) disengage and first and second pin ends (320, 330) are actuated out of transaxial pin holes (254, 264). With first and second pin ends (320, 330) removed, the user may remove waveguide (250) and/or transducer (260) from within casing (270) of the handle assembly. Thus, a user may quickly connect transducer (260) to waveguide (250) and also ensure an adequate connection between transducer (260) and waveguide (250) by using the self-locking pin and lever coupling mechanism described herein.
Of course other configurations for a self-locking pin and lever coupling mechanism will be apparent to one of ordinary skill in the art in view of the teachings herein. For instance, a single pin and lever assembly (280) may be used in which pin body (310) comprises a substantially conical member insertable through conical transaxial pin holes (254, 264) to couple waveguide (250) and transducer (260). In another version, lever (284) may be omitted and pin portions (300) may be spring-biased members each having a handle for a user to outwardly actuate pin portions (300). Still further configurations will be apparent to one of ordinary skill in the art in view of the teachings herein.
D. Exemplary Bolt-Action Coupling Mechanism
Waveguide (350) of the present example is coupled to a handle assembly (370) with a proximal end (352) (shown in phantom) extending proximally into handle assembly (370) and a distal portion (354) extending distally from handle assembly (370). In the present example, waveguide (350) comprises a titanium rod that terminates at a distal end with an end effector, such as end effector (80). Waveguide (350) may also be included in a transmission assembly, such as transmission assembly (70) described above. In some versions, the end effector includes a blade and a clamp arm to simultaneously sever the tissue and denature the proteins in adjacent tissue cells, thereby providing a coagulative effect with relatively little thermal spread. In other versions, the end effector may only include a blade. Still other configurations for the end effector will be apparent to one of ordinary skill in the art in view of the teachings herein. Proximal end (352) of waveguide (350) is configured to be insertable into a recess (368) (shown in phantom) of distal coupling member (366). In the present example, proximal end (352) is a cylindrical member that is insertable into recess (368) of distal coupling member (366). In other versions, proximal end (352) and distal coupling member (366) may include threading, slots and locking tabs, snap fasteners, and/or any other coupling member as will be apparent to one of ordinary skill in the art in view of the teachings herein.
Handle assembly (370) of the present example includes a casing (372), a portion of which defines a transducer recess (374), and a ramped cam slot (380) formed in casing (372) on a side of transducer recess (374). Handle assembly (370) may further be configured in accordance with at least some of the teachings of multi-piece handle assembly (60) described above; U.S. Pat. Pub. No. 2006/0079874, now abandoned; U.S. Pat. Pub. No. 2007/0191713, now abandoned; U.S. Pat. Pub. No. 2007/0282333, now abandoned; U.S. Pat. Pub. No. 2008/0200940, now abandoned; U.S. Pat. Pub. No. 2011/0015660, issued as U.S. Pat. No. 8,461,744 on Jun. 11, 2013; U.S. Pat. No. 6,500,176; U.S. Pat. Pub. No. 2011/0087218, issued as U.S. Pat. No. 8,939,974 on Jan. 27, 2015; and/or U.S. Pat. Pub. No. 2009/0143797, issued as U.S. Pat. No. 8,419,757 on Apr. 16, 2013. Transducer recess (374) of the present example is sized and configured to receive at least a portion of transducer body (362) when inserted therein. Ramped cam slot (380) comprises dogleg shaped slot having an opening portion (382), a transition portion (384), a locking portion (386), and a detent (388). In the present example, opening portion (382) is configured to receive locking member (364) when transducer unit (360) is initially inserted into transducer recess (374). Transition portion (384) extends distally from opening portion (382) toward proximal end (352) of waveguide (350). Locking portion (386) extends downwardly from transition portion (384) and includes a lower surface (390) and a detent (388) located above lower surface (390). Detent (388) is configured to resist vertical movement of locking member (364) past detent (388) in locking portion (386). As will be apparent to one of ordinary skill in the art, when locking member (386) is urged past detent (388) and toward lower surface (390) of locking portion (386), locking member (364) is secured within locking portion (386) both longitudinally by the sides of locking portion (386) and vertically by detent (388) and lower surface (390). Thus, with locking member (364) secured therein, transducer unit (360) is secured to handle assembly (370). A spring may resiliently bias transducer unit (360) proximally to further ensure locking member (364) is urged past detent (388). The spring may also prevent an inadvertent release of locking member (364) past detent (388).
When a user desires to couple transducer unit (360) to waveguide (350), initially the user inserts transducer unit (360) into transducer recess (374). If locking member (364) is not initially within opening portion (382) of ramped cam slot (380), the user rotates transducer unit (360) until locking member (364) enters opening portion (382). It should be understood at this point that distal coupling member (366) of transducer unit (360) and proximal end (352) of waveguide (350) are substantially axially aligned, but are not coupled together. The user grasps handle portion (365) and actuates locking member (364) distally along transition portion (384). As locking member (364) is actuated distally along transition portion (384), distal coupling member (366) engages and couples to proximal end (352) of waveguide (350). As noted above, proximal end (352) and distal coupling member (366) may alternatively include threading, slots and locking tabs, snap-on fittings, and/or any other coupling member as will be apparent to one of ordinary skill in the art in view of the teachings herein.
Once locking member (364) is at a distal end of transition portion (384), the user rotates locking member (364) into locking portion (386) and past detent (388). The rotation of transducer unit (360) from opening portion (382) until transducer unit (360) is locked in by detent (388) may be between 10 and 350 degrees of rotation. The rotation of transducer unit (360) in the present example is approximately 90 degrees. When locking member (364) is rotated into locking portion (386) of ramped cam slot (380), distal coupling member (366) of transducer unit (360) and proximal end (352) of waveguide (350) are already substantially engaged and distal coupling member (366) of the present example merely rotates about proximal end (352). In other versions, such as in a version including a threaded distal coupling member (366), the threads of distal coupling member (366) may engage and thread into threads of proximal end (352) when locking member (364) is rotated into locking portion (386). By way of example only, a luer lock-type fitting or quarter turn fasteners may be used. In an alternative version having a slot and tab configuration, the rotation of transducer unit (360) may rotate the tab to lock distal coupling member (366) to proximal end (352). Still other configurations for distal coupling member (366) and proximal end (352) will be apparent to one of ordinary skill in the art in view of the teachings herein.
Of course other configurations for a bolt-action coupling mechanism will be apparent to one of ordinary skill in the art in view of the teachings herein. For instance, transducer unit (360) may include bearings to permit rotation of a transducer contained within transducer unit (360) relative to transducer unit (360) and/or handle assembly (370). In another version, transducer recess (374) may be substantially enclosed with an opening at a proximal end of handle assembly (370). In such a version, transition portion (384) or opening portion (382) of ramped cam slot (380) extends proximally such that locking member (364) and transducer unit (360) are longitudinally insertable handle assembly (370). In addition, more than one locking member (364) and more than one ramped cam slot (380) may be used. In yet another alternative, transducer unit (360) may be coupled to handle assembly (370) and locking member (364) may instead be coupled to waveguide (350). In such a version, locking member (364) couples waveguide (350) to transducer unit (360) and handle assembly (370) by rotation and insertion into ramped cam slot (380). Still further configurations will be apparent to one of ordinary skill in the art in view of the teachings herein.
E. Exemplary Camming Lever Arms Coupling Mechanism
Trigger (420) is pivotably mounted to lower handle portion (410) with a trigger portion (422) extending out of lower handle portion (410) and a forked portion (424) within lower handle portion (410). Forked portion (424) comprises a pair of vertically oriented C-shaped members (426) (a side view of which is shown in
Transducer unit (460) comprises a cover portion (462), a pair of bearing members (464), a pair of lever arms (490), shown in
Transducer body (472) of the present example comprises an outer shell having a distal circumferential flange (474), as will be discussed in more detail later. Transducer body (472) encases a plurality of piezoelectric elements (not shown) compressed between a first resonator (not shown) and a second resonator (not shown) to form a stack of piezoelectric elements. The piezoelectric elements may be fabricated from any suitable material, for example, lead zirconate-titanate, lead meta-niobate, lead titanate, and/or any suitable piezoelectric crystal material, for example. Transducer body (472) further includes electrodes, including at least one positive electrode and at least one negative electrode, that are configured to create a voltage potential across the one or more piezoelectric elements, such that the piezoelectric elements convert the electrical power into ultrasonic vibrations.
Cable (480) is configured to electrically couple the electrodes to a power source, such as generator (20) discussed above. In some versions, cable (480) may be coupled to a power source contained within transducer unit (460) or to a power source within lower handle portion (410). In yet another version, a power source may be integrated into transducer (470). Horn (476) extends distally from transducer body (472) and includes a tapered recess (478) at a distal end. Tapered recess (478) is configured to couple to tapered shaft (452) of waveguide (450). When horn (476) is coupled to waveguide (450) via tapered recess (478) and tapered shaft (452), the ultrasonic vibrations produced by the stacks of piezoelectric elements are transmitted to waveguide (450). A blade (not shown) at the distal end of waveguide (450) oscillates according to the ultrasonic vibrations to simultaneously sever the tissue and denature the proteins in adjacent tissue cells, thereby providing a coagulative effect with relatively little thermal spread.
A disc (482) is coaxially disposed about horn (476) and is longitudinally actuatable relative to horn (476) and transducer body (472). In the present example, disc (482) is longitudinally retained on horn (476) by a raised portion (not shown) on horn (476) distal of disc (482). Accordingly, disc (482) is slidable on horn (476), but is still retained thereon. As another merely illustrative variation, disc (482) may include an internal annular recess configured to loosely receive a flange of horn (476), such that the recess permits disc (482) to slide relative to horn (476) while the flange restricts the longitudinal sliding range of disc (482) relative to horn (476). Disc (482) of the present example further includes an outer tube (484) fixedly coupled to disc (482) and extending distally from disc (482). Outer tube (484) includes a distal end having a flared portion (486). Flared portion (486) is configured to snap into flared snap-on connector (442) of outer shaft (440) when transducer (470) is coupled to waveguide (450). As noted above and shown best in
Handle portions (494) of the present example further include resilient insertable latches (495) to retain lever arms (490) against casing portion (462) when handle portions (494) are in the closed position. Latches (495) of the present example are selectively coupleable to recesses in casing portion (462). In some versions, other retention mechanisms may be used, such as snap fasteners, spring-loaded stops, screws, bolts, etc., to retain lever arms (490) in the closed position. When lever arms (490) are actuated back to the open position, proximal camming portions (498) engage transducer body (472) and/or flange (474) to urge transducer (470) proximally. This proximal urging of transducer (470) decouples tapered shaft (452) from tapered recess (478) and flared snap-on connector (442) unsnaps from flared portion (486).
When a user desires to couple transducer (470) to waveguide (450) and outer shaft (440), initially the user places transducer unit (460) atop lower handle portion (410) when lever arms (490) are in the open position, shown in
To decouple handle assembly (400), the user actuates lever arms (490) back to the open position, thereby decoupling tapered recess (478) from tapered shaft (452) and unsnapping flared portion (486) from flared snap-on connector (442). The user may then remove transducer unit (460) for use with another lower handle portion (410). The used lower handle portion (410) may be disposed of, cleaned, and/or reclaimed. In some instances, transmission assembly (430) may be decoupled from lower handle portion (410). Such decoupling may allow a user to reuse lower handle portion (410) and only dispose of the dirty transmission assembly (430). Merely exemplary coupling and decoupling mechanisms for transmission assembly (430) are disclosed in U.S. patent application Ser. No. 13/269,870, entitled “Surgical Instrument with Modular Shaft and End Effector,” filed Oct. 10, 2011, issued as U.S. Pat. No. 9,510,895 on Dec. 6, 2016, the disclosure of which is incorporated by reference herein. Thus, a user may quickly connect transducer (470) to waveguide (450) and also ensure an adequate connection between transducer (470) and waveguide (450) by using the camming lever arm coupling mechanism described herein.
Of course other configurations for a camming lever arm coupling mechanism will be apparent to one of ordinary skill in the art in view of the teachings herein. For instance, lever arms (490) may be replaced with longitudinal sliders that actuate transducer (470) distally and proximally via flange (474). In other versions, outer shaft (440), outer tube (484), disc (482), and trigger (420) may be omitted and only waveguide (450) and transducer (470) are used. In yet another version, transducer unit (460) may be permanently coupled to lower handle portion (410) and transducer (470) may be insertable through the top of casing portion (462). Still further configurations will be apparent to one of ordinary skill in the art in view of the teachings herein.
F. Exemplary Rotatable Clamshell Coupling Mechanism
Handle assembly (500) of the present example comprises a first handle portion (502) and a second handle portion (504). Portions of handle assembly (500) have been omitted from
Second handle portion (504) of the present example includes a second casing (512) having a rotatable hinge member (514), shown in
When a user desires to coupled transducer (520) to transmission assembly (530), initially the user places transducer (520) within transducer recess (508) and aligns tab (524) with notch (516). The user also initially engages threading (534) of waveguide (532) with the threads of horn (526) of transducer (520). Such an initial, unlocked position is shown in
To decouple transducer (520) from transmission assembly (530), initially second casing (512) is decoupled from first casing (506). The user rotates second casing (512) about the semi-cylindrical portion of first casing (506) defining transducer recess (508) via rotatable hinge member (514) back to the unlocked position shown in
Of course, as with the other coupling mechanisms described herein, other configurations for the rotatable clamshell coupling mechanism will be apparent to one of ordinary skill in the art in view of the teachings herein. For instance, in some versions, nested frustoconical features may be used to couple transducer (520) to waveguide (532) instead of threading (534) described above. Merely exemplary frustoconical features include cone (162) and conical recess (152) shown and described in reference to
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Embodiments of the present invention have application in conventional endoscopic and open surgical instrumentation as well as application in robotic-assisted surgery.
Embodiments of the devices disclosed herein can be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, embodiments of the devices disclosed herein may be disassembled, and any number of the particular pieces or parts of the devices may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, embodiments of the devices may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
By way of example only, embodiments described herein may be processed before surgery. First, a new or used instrument may be obtained and if necessary cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.
Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
This application is a divisional application of U.S. application Ser. No. 13/274,496, filed on Oct. 17, 2011, published as U.S. Pub. No. 2012/0116262 on May 10, 2012, now abandoned, which claims the benefit of U.S. Provisional Application Ser. No. 61/410,603, filed Nov. 5, 2010, entitled “Energy-Based Surgical Instruments,” the disclosure of which is incorporated by reference herein. This application also claims the benefit of U.S. Provisional Application Ser. No. 61/487,846, filed May 19, 2011, entitled “Ultrasonic Surgical Instruments,” the disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1754806 | Stevenson | Apr 1930 | A |
2340822 | Scott | Feb 1944 | A |
3297192 | Swett | Jan 1967 | A |
3419198 | Pettersen | Dec 1968 | A |
3619671 | Shoh | Nov 1971 | A |
3806225 | Codrino | Apr 1974 | A |
4034762 | Cosens et al. | Jul 1977 | A |
4057220 | Kudlacek | Nov 1977 | A |
4535773 | Yoon | Aug 1985 | A |
4641076 | Linden | Feb 1987 | A |
4662068 | Polonsky | May 1987 | A |
4666037 | Weissman | May 1987 | A |
4685459 | Koch et al. | Aug 1987 | A |
4717018 | Sacherer et al. | Jan 1988 | A |
4717050 | Wright | Jan 1988 | A |
4721097 | D'Amelio | Jan 1988 | A |
4768969 | Bauer et al. | Sep 1988 | A |
4800878 | Cartmell | Jan 1989 | A |
4844259 | Glowczewskie, Jr. et al. | Jul 1989 | A |
4878493 | Pasternak et al. | Nov 1989 | A |
5071417 | Sinofsky | Dec 1991 | A |
5107155 | Yamaguchi | Apr 1992 | A |
5144771 | Miwa | Sep 1992 | A |
5169733 | Savovic et al. | Dec 1992 | A |
5176677 | Wuchinich | Jan 1993 | A |
5246109 | Markle et al. | Sep 1993 | A |
5273177 | Campbell | Dec 1993 | A |
5277694 | Leysieffer et al. | Jan 1994 | A |
5308358 | Bond et al. | May 1994 | A |
5317485 | Merjanian | May 1994 | A |
5322055 | Davison et al. | Jun 1994 | A |
5339799 | Kami et al. | Aug 1994 | A |
5358508 | Cobb et al. | Oct 1994 | A |
5361902 | Abidin et al. | Nov 1994 | A |
5429229 | Chester et al. | Jul 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5454378 | Palmer et al. | Oct 1995 | A |
5501607 | Yoshioka et al. | Mar 1996 | A |
5507297 | Slater et al. | Apr 1996 | A |
5561881 | Klinger et al. | Oct 1996 | A |
5578052 | Koros et al. | Nov 1996 | A |
5580258 | Wakata | Dec 1996 | A |
5582617 | Klieman et al. | Dec 1996 | A |
5590778 | Dutchik | Jan 1997 | A |
5592065 | Oglesbee et al. | Jan 1997 | A |
5597531 | Liberti et al. | Jan 1997 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5630420 | Vaitekunas | May 1997 | A |
5630456 | Hugo et al. | May 1997 | A |
5690222 | Peters | Nov 1997 | A |
5707369 | Vaitekunas et al. | Jan 1998 | A |
5741305 | Vincent et al. | Apr 1998 | A |
5776155 | Beaupre et al. | Jul 1998 | A |
5800336 | Ball et al. | Sep 1998 | A |
5817128 | Storz | Oct 1998 | A |
5868244 | Ivanov et al. | Feb 1999 | A |
5871493 | Sjostrom et al. | Feb 1999 | A |
5873873 | Smith et al. | Feb 1999 | A |
5882310 | Marian, Jr. | Mar 1999 | A |
5893835 | Witt et al. | Apr 1999 | A |
5893874 | Bourque et al. | Apr 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5938633 | Beaupre | Aug 1999 | A |
5944737 | Tsonton et al. | Aug 1999 | A |
5951575 | Bolduc et al. | Sep 1999 | A |
5980510 | Tsonton et al. | Nov 1999 | A |
5997531 | Loeb et al. | Dec 1999 | A |
6018227 | Kumar et al. | Jan 2000 | A |
6051010 | Dimatteo et al. | Apr 2000 | A |
6056735 | Okada et al. | May 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6066151 | Miyawaki et al. | May 2000 | A |
6083191 | Rose | Jul 2000 | A |
6083223 | Baker | Jul 2000 | A |
6099537 | Sugai et al. | Aug 2000 | A |
6113593 | Tu et al. | Sep 2000 | A |
6123702 | Swanson et al. | Sep 2000 | A |
6165191 | Shibata et al. | Dec 2000 | A |
6190386 | Rydell | Feb 2001 | B1 |
6204592 | Hur | Mar 2001 | B1 |
6214023 | Whipple et al. | Apr 2001 | B1 |
6246896 | Dumoulin et al. | Jun 2001 | B1 |
6248238 | Burtin et al. | Jun 2001 | B1 |
6287304 | Eggers et al. | Sep 2001 | B1 |
6325811 | Messerly | Dec 2001 | B1 |
6339368 | Leith | Jan 2002 | B1 |
6398755 | Belef et al. | Jun 2002 | B1 |
6409742 | Fulton, III et al. | Jun 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500188 | Harper et al. | Dec 2002 | B2 |
6512667 | Shiue et al. | Jan 2003 | B2 |
6514267 | Jewett | Feb 2003 | B2 |
6520185 | Bommannan et al. | Feb 2003 | B1 |
6561983 | Cronin et al. | May 2003 | B2 |
6562032 | Ellman et al. | May 2003 | B1 |
6609414 | Mayer et al. | Aug 2003 | B2 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6623500 | Cook et al. | Sep 2003 | B1 |
6626901 | Treat et al. | Sep 2003 | B1 |
6647281 | Morency | Nov 2003 | B2 |
6650091 | Shiue et al. | Nov 2003 | B1 |
6650975 | Ruffner | Nov 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6658301 | Loeb et al. | Dec 2003 | B2 |
6666875 | Sakurai et al. | Dec 2003 | B1 |
6706038 | Francishelli et al. | Mar 2004 | B2 |
6717193 | Olewine et al. | Apr 2004 | B2 |
6730042 | Fulton et al. | May 2004 | B2 |
6753673 | Shiue et al. | Jun 2004 | B2 |
6758855 | Fulton, III et al. | Jul 2004 | B2 |
6761698 | Shibata et al. | Jul 2004 | B2 |
6761701 | Cucin | Jul 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6815206 | Lin et al. | Nov 2004 | B2 |
6821671 | Hinton et al. | Nov 2004 | B2 |
6836097 | Turner et al. | Dec 2004 | B2 |
6838862 | Luu | Jan 2005 | B2 |
6847192 | Turner et al. | Jan 2005 | B2 |
6860880 | Treat et al. | Mar 2005 | B2 |
6869435 | Blake | Mar 2005 | B2 |
6923807 | Ryan et al. | Aug 2005 | B2 |
6982696 | Shahoian | Jan 2006 | B1 |
6998822 | Turner et al. | Feb 2006 | B2 |
7031155 | Sauciuc et al. | Apr 2006 | B2 |
7061749 | Liu et al. | Jun 2006 | B2 |
7077853 | Kramer et al. | Jul 2006 | B2 |
7083589 | Banko et al. | Aug 2006 | B2 |
7085123 | Shiue et al. | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7150712 | Buehlmann et al. | Dec 2006 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7186473 | Shiue et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7221216 | Nguyen | May 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7244024 | Biscardi | Jul 2007 | B2 |
7292227 | Fukumoto et al. | Nov 2007 | B2 |
7296804 | Lechot et al. | Nov 2007 | B2 |
7303556 | Metzger et al. | Dec 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7349741 | Maltan et al. | Mar 2008 | B2 |
7354440 | Truckai et al. | Apr 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7364554 | Bolze et al. | Apr 2008 | B2 |
7381209 | Truckai et al. | Jun 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7422139 | Shelton, IV et al. | Aug 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7473145 | Her et al. | Jan 2009 | B2 |
7479152 | Fulton, III et al. | Jan 2009 | B2 |
7494492 | Da Silva et al. | Feb 2009 | B2 |
D594983 | Price et al. | Jun 2009 | S |
7560903 | Thrap | Jul 2009 | B2 |
7563142 | Wenger et al. | Jul 2009 | B1 |
7573151 | Acena et al. | Aug 2009 | B2 |
7583564 | Ketahara et al. | Sep 2009 | B2 |
7638958 | Philipp et al. | Dec 2009 | B2 |
7643378 | Genosar | Jan 2010 | B2 |
7658247 | Carter | Feb 2010 | B2 |
7692411 | Trainor et al. | Apr 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7721936 | Shelton, IV et al. | May 2010 | B2 |
7738971 | Swayze et al. | Jun 2010 | B2 |
7761198 | Bhardwaj | Jul 2010 | B2 |
7766910 | Hixson et al. | Aug 2010 | B2 |
7766929 | Masuda | Aug 2010 | B2 |
7770722 | Donahoe et al. | Aug 2010 | B2 |
7770775 | Shelton et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7780660 | Bourne et al. | Aug 2010 | B2 |
7802121 | Zansky et al. | Sep 2010 | B1 |
7815658 | Murakami | Oct 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7846155 | Houser et al. | Dec 2010 | B2 |
7846159 | Morrison et al. | Dec 2010 | B2 |
7862579 | Ortiz et al. | Jan 2011 | B2 |
7889489 | Richardson et al. | Feb 2011 | B2 |
7918848 | Lau et al. | Apr 2011 | B2 |
7923151 | Lam et al. | Apr 2011 | B2 |
7948208 | Partovi et al. | May 2011 | B2 |
7952322 | Partovi et al. | May 2011 | B2 |
7952873 | Glahn et al. | May 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7977921 | Bahai et al. | Jul 2011 | B2 |
7982439 | Trainor et al. | Jul 2011 | B2 |
8038025 | Stark et al. | Oct 2011 | B2 |
8040107 | Ishii | Oct 2011 | B2 |
8052605 | Muller et al. | Nov 2011 | B2 |
8058771 | Giordano et al. | Nov 2011 | B2 |
8075530 | Taylor et al. | Dec 2011 | B2 |
8097011 | Hideo et al. | Jan 2012 | B2 |
8142461 | Houser et al. | Mar 2012 | B2 |
8147488 | Masuda | Apr 2012 | B2 |
8177776 | Humayun et al. | May 2012 | B2 |
8195271 | Rahn | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8216212 | Grant et al. | Jul 2012 | B2 |
8221418 | Prakash et al. | Jul 2012 | B2 |
8240498 | Ramsey et al. | Aug 2012 | B2 |
8246608 | Omori et al. | Aug 2012 | B2 |
8246642 | Houser et al. | Aug 2012 | B2 |
8251994 | McKenna et al. | Aug 2012 | B2 |
8267094 | Danek et al. | Sep 2012 | B2 |
8277446 | Heard | Oct 2012 | B2 |
8292882 | Danek et al. | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8298253 | Charles | Oct 2012 | B2 |
8301262 | Mi et al. | Oct 2012 | B2 |
8328802 | Deville et al. | Dec 2012 | B2 |
8333764 | Francischelli et al. | Dec 2012 | B2 |
8336725 | Ramsey et al. | Dec 2012 | B2 |
8337097 | Cao | Dec 2012 | B2 |
8344690 | Smith et al. | Jan 2013 | B2 |
8372099 | Deville et al. | Feb 2013 | B2 |
8377059 | Deville et al. | Feb 2013 | B2 |
8400108 | Powell et al. | Mar 2013 | B2 |
8403948 | Deville et al. | Mar 2013 | B2 |
8403949 | Palmer et al. | Mar 2013 | B2 |
8403950 | Palmer et al. | Mar 2013 | B2 |
8419757 | Smith et al. | Apr 2013 | B2 |
8419758 | Smith et al. | Apr 2013 | B2 |
8425545 | Smith et al. | Apr 2013 | B2 |
8444653 | Nycz et al. | May 2013 | B2 |
8444662 | Palmer et al. | May 2013 | B2 |
8449529 | Bek et al. | May 2013 | B2 |
8461744 | Wiener et al. | Jun 2013 | B2 |
8487487 | Dietz et al. | Jul 2013 | B2 |
8550106 | Hebach et al. | Oct 2013 | B2 |
8550981 | Woodruff et al. | Oct 2013 | B2 |
8551088 | Falkenstein et al. | Oct 2013 | B2 |
8564242 | Hansford et al. | Oct 2013 | B2 |
8573461 | Shelton et al. | Nov 2013 | B2 |
8602287 | Laurent et al. | Dec 2013 | B2 |
8608045 | Smith et al. | Dec 2013 | B2 |
8617077 | van Groningen et al. | Dec 2013 | B2 |
8622274 | Yates et al. | Jan 2014 | B2 |
8623027 | Price et al. | Jan 2014 | B2 |
8632535 | Shelton, IV et al. | Jan 2014 | B2 |
8641629 | Kurokawa | Feb 2014 | B2 |
8657174 | Yates et al. | Feb 2014 | B2 |
8663112 | Slayton et al. | Mar 2014 | B2 |
8733614 | Ross et al. | May 2014 | B2 |
8758342 | Bales et al. | Jun 2014 | B2 |
8784415 | Malackowski et al. | Jul 2014 | B2 |
8808319 | Houser et al. | Aug 2014 | B2 |
8834465 | Ramstein et al. | Sep 2014 | B2 |
8864761 | Johnson et al. | Oct 2014 | B2 |
8906017 | Rioux et al. | Dec 2014 | B2 |
8939974 | Boudreaux et al. | Jan 2015 | B2 |
8961441 | Cioanta et al. | Feb 2015 | B2 |
8968648 | Kaneko | Mar 2015 | B2 |
8986302 | Aldridge et al. | Mar 2015 | B2 |
8998939 | Price et al. | Apr 2015 | B2 |
9000720 | Stulen et al. | Apr 2015 | B2 |
9011336 | Slayton et al. | Apr 2015 | B2 |
9011427 | Price et al. | Apr 2015 | B2 |
9011471 | Timm et al. | Apr 2015 | B2 |
9017849 | Stulen et al. | Apr 2015 | B2 |
9017851 | Felder et al. | Apr 2015 | B2 |
9023071 | Miller et al. | May 2015 | B2 |
9039720 | Madan | May 2015 | B2 |
9044261 | Houser | Jun 2015 | B2 |
9050125 | Boudreaux et al. | Jun 2015 | B2 |
9060750 | Lam | Jun 2015 | B2 |
9072523 | Houser et al. | Jul 2015 | B2 |
9072543 | Miller et al. | Jul 2015 | B2 |
9078671 | Beale et al. | Jul 2015 | B2 |
9089338 | Smith et al. | Jul 2015 | B2 |
9095346 | Houser et al. | Aug 2015 | B2 |
9113903 | Unger | Aug 2015 | B2 |
9161803 | Yates et al. | Oct 2015 | B2 |
9179912 | Yates et al. | Nov 2015 | B2 |
9186046 | Ramamurthy et al. | Nov 2015 | B2 |
9186047 | Ramamurthy et al. | Nov 2015 | B2 |
9192428 | Houser et al. | Nov 2015 | B2 |
9247986 | Haberstich et al. | Feb 2016 | B2 |
9308009 | Madan et al. | Apr 2016 | B2 |
9318271 | Fletcher et al. | Apr 2016 | B2 |
9364279 | Houser et al. | Jun 2016 | B2 |
9364288 | Smith et al. | Jun 2016 | B2 |
9375255 | Houser et al. | Jun 2016 | B2 |
9381058 | Houser et al. | Jul 2016 | B2 |
9421062 | Houser et al. | Aug 2016 | B2 |
9441954 | Ramamurthy et al. | Sep 2016 | B2 |
9500472 | I Ramamurthy et al. | Nov 2016 | B2 |
9500473 | I Ramamurthy et al. | Nov 2016 | B2 |
9510895 | Houser et al. | Dec 2016 | B2 |
9526921 | Kimball et al. | Dec 2016 | B2 |
9597143 | Madan et al. | Mar 2017 | B2 |
9616803 | Jeong | Apr 2017 | B2 |
9649150 | Houser et al. | May 2017 | B2 |
9782214 | Houser et al. | Oct 2017 | B2 |
9782215 | Haberstich et al. | Oct 2017 | B2 |
10085792 | Johnson et al. | Oct 2018 | B2 |
10143513 | Houser et al. | Dec 2018 | B2 |
20010032666 | Jenson et al. | Oct 2001 | A1 |
20020165577 | Witt et al. | Nov 2002 | A1 |
20030093103 | Malackowski et al. | May 2003 | A1 |
20030109802 | Laeseke et al. | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030144680 | Kellogg et al. | Jul 2003 | A1 |
20040097911 | Murakami et al. | May 2004 | A1 |
20040116952 | Sakurai et al. | Jun 2004 | A1 |
20040133189 | Sakurai | Jul 2004 | A1 |
20040173487 | Johnson et al. | Sep 2004 | A1 |
20050021065 | Yamada et al. | Jan 2005 | A1 |
20050033195 | Fulton, III et al. | Feb 2005 | A1 |
20050171522 | Christopherson | Aug 2005 | A1 |
20050203546 | Van Wyk et al. | Sep 2005 | A1 |
20060030797 | Zhou et al. | Feb 2006 | A1 |
20060079829 | Fulton, III et al. | Apr 2006 | A1 |
20060079874 | Faller et al. | Apr 2006 | A1 |
20060079877 | Houser et al. | Apr 2006 | A1 |
20060079879 | Faller et al. | Apr 2006 | A1 |
20060253176 | Caruso et al. | Nov 2006 | A1 |
20070027447 | Theroux et al. | Feb 2007 | A1 |
20070103437 | Rosenberg | May 2007 | A1 |
20070191713 | Eichmann et al. | Aug 2007 | A1 |
20070207354 | Curello et al. | Sep 2007 | A1 |
20070261978 | Sanderson | Nov 2007 | A1 |
20070265613 | Edelstein | Nov 2007 | A1 |
20070265620 | Kraas et al. | Nov 2007 | A1 |
20070282333 | Fortson et al. | Dec 2007 | A1 |
20080003491 | Yahnker et al. | Jan 2008 | A1 |
20080004656 | Livneh | Jan 2008 | A1 |
20080057470 | Levy et al. | Mar 2008 | A1 |
20080147058 | Horrell et al. | Jun 2008 | A1 |
20080150754 | Quendt | Jun 2008 | A1 |
20080173651 | Ping | Jul 2008 | A1 |
20080188810 | Larsen et al. | Aug 2008 | A1 |
20080200940 | Eichmann et al. | Aug 2008 | A1 |
20080228104 | Uber, III et al. | Sep 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080281301 | Deboer et al. | Nov 2008 | A1 |
20080315829 | Jones et al. | Dec 2008 | A1 |
20090043797 | Dorie et al. | Feb 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090096430 | Van Der Linde et al. | Apr 2009 | A1 |
20090143799 | Smith et al. | Jun 2009 | A1 |
20090143800 | Deville et al. | Jun 2009 | A1 |
20090253030 | Kooij | Oct 2009 | A1 |
20090281430 | Wilder | Nov 2009 | A1 |
20100021022 | Pittel et al. | Jan 2010 | A1 |
20100030218 | Prevost | Feb 2010 | A1 |
20100060231 | Trainor et al. | Mar 2010 | A1 |
20100076455 | Birkenbach et al. | Mar 2010 | A1 |
20100106144 | Matsumura et al. | Apr 2010 | A1 |
20100106146 | Boitor et al. | Apr 2010 | A1 |
20100125172 | Jayaraj | May 2010 | A1 |
20100152610 | Parihar et al. | Jun 2010 | A1 |
20100201311 | Alexander et al. | Aug 2010 | A1 |
20100249665 | Roche | Sep 2010 | A1 |
20100268221 | Beller et al. | Oct 2010 | A1 |
20100274160 | Yachi et al. | Oct 2010 | A1 |
20110009694 | Schultz et al. | Jan 2011 | A1 |
20110074336 | Miller | Mar 2011 | A1 |
20110077514 | Ulric et al. | Mar 2011 | A1 |
20110080134 | Miller | Apr 2011 | A1 |
20110221398 | Ferber | Sep 2011 | A1 |
20120111591 | Shelton, IV et al. | May 2012 | A1 |
20120116260 | Johnson et al. | May 2012 | A1 |
20120116261 | Mumaw et al. | May 2012 | A1 |
20120116262 | Houser et al. | May 2012 | A1 |
20120116263 | Houser et al. | May 2012 | A1 |
20120116265 | Houser et al. | May 2012 | A1 |
20120116266 | Houser et al. | May 2012 | A1 |
20120116366 | Houser et al. | May 2012 | A1 |
20120116380 | Madan et al. | May 2012 | A1 |
20120116381 | Houser et al. | May 2012 | A1 |
20120116391 | Houser et al. | May 2012 | A1 |
20120179036 | Patrick et al. | Jul 2012 | A1 |
20120292367 | Morgan et al. | Nov 2012 | A1 |
20120305427 | Felder et al. | Dec 2012 | A1 |
20130085330 | Ramamurthy et al. | Apr 2013 | A1 |
20130090528 | Ramamurthy et al. | Apr 2013 | A1 |
20130090675 | Mumaw et al. | Apr 2013 | A1 |
20130118733 | Kumar | May 2013 | A1 |
20140088379 | Bhamra et al. | Mar 2014 | A1 |
20160121143 | Mumaw et al. | May 2016 | A1 |
20160206900 | Haberstich et al. | Jul 2016 | A1 |
20160329614 | Madan et al. | Nov 2016 | A1 |
20160338760 | Houser et al. | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
102008051866 | Oct 2010 | DE |
102009013034 | Oct 2010 | DE |
0897696 | Feb 1999 | EP |
0947167 | Oct 1999 | EP |
1330991 | Jul 2003 | EP |
1525853 | Apr 2005 | EP |
1535585 | Jun 2005 | EP |
1684396 | Jul 2006 | EP |
1721576 | Nov 2006 | EP |
1743592 | Jan 2007 | EP |
1818021 | Aug 2007 | EP |
1839599 | Oct 2007 | EP |
1868275 | Dec 2007 | EP |
1886637 | Feb 2008 | EP |
1263341 | Jun 2008 | EP |
1943976 | Jul 2008 | EP |
1970014 | Sep 2008 | EP |
1997439 | Dec 2008 | EP |
2027819 | Feb 2009 | EP |
2090256 | Aug 2009 | EP |
2105104 | Sep 2009 | EP |
2165660 | Mar 2010 | EP |
2218409 | Aug 2010 | EP |
2243439 | Oct 2010 | EP |
2345454 | Jul 2011 | EP |
2425874 | Nov 2006 | GB |
2440566 | Feb 2008 | GB |
H 10-118090 | May 1998 | JP |
2002-186627 | Jul 2002 | JP |
4602681 | Oct 2005 | JP |
4836148 | Apr 2010 | JP |
WO 1997024072 | Jul 1997 | WO |
WO 2000065682 | Feb 2000 | WO |
WO 2003013374 | Feb 2003 | WO |
WO 2003020139 | Mar 2003 | WO |
WO 2004113991 | Dec 2004 | WO |
WO 2005079915 | Sep 2005 | WO |
WO 2006023266 | Mar 2006 | WO |
WO 2007004515 | Jan 2007 | WO |
WO 2007024983 | Mar 2007 | WO |
WO 2007090025 | Aug 2007 | WO |
WO 2007137115 | Nov 2007 | WO |
WO 2007137304 | Nov 2007 | WO |
WO 2008071898 | Jun 2008 | WO |
WO 2008102154 | Aug 2008 | WO |
WO 2008107902 | Sep 2008 | WO |
WO 2008131357 | Oct 2008 | WO |
WO 2009018409 | Feb 2009 | WO |
WO 2009046394 | Apr 2009 | WO |
WO 2009070780 | Jun 2009 | WO |
WO 2009073608 | Jun 2009 | WO |
WO 2010030850 | Mar 2010 | WO |
WO 2010096174 | Aug 2010 | WO |
WO 2011059785 | May 2011 | WO |
WO 2011089270 | Jul 2011 | WO |
Entry |
---|
Dietz, T. et al., Partially Implantable Vibrating Ossicular Prosthesis, Transducers'97, vol. 1, International Conference on Solid State Sensors and Actuators, (Jun. 16-19, 1997) pp. 433-436 (Abstract). |
“System 6 Aseptic Battery System,” Stryker (2006) pp. 1-2. |
EP Communication dated Feb. 19, 2014 for Application No. EP 11781972.2. |
International Search Report and Written Opinion dated Jan. 26, 2012 for Application No. PCT/US2011/059212. |
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059212. |
Communication from International Searching Authority dated Jan. 24, 2012 tor Application No. PCT/US2011/059215. |
International Search Report dated Apr. 4, 2012 for Application No. PCT/US2011/059215. |
International Preliminary Report on Patentability dated May 8, 2013 for Application No. PCT/US2011/059215. |
International Search Report dated Feb. 13, 2012for Application No. PCT/US2011/059217. |
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/0592717. |
International Search Report dated Jun. 12, 2012 for Application No. PCT/US2011/059218. |
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCY/US2011/059218. |
International Search Report dated Jan. 26, 2012 for Application No. PCT/US11/059220. |
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059220. |
Communication from International Searching Authority dated Feb. 2, 2012for Application No. PCT/US2011/059222. |
International Search Report dated Apr. 18, 2012 for Application No. PCT/US2011/059222. |
International Preliminary Report on Patentability dated May. 7, 2013 for Application No. PCT/US2011/059222. |
Internatlonal Search Report dated Feb. 1, 2012 for Application No. PCT/US11/059223. |
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059223. |
International Search Report dated Jan. 12, 2012 for Application No. PCT/US11/059226. |
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059226. |
International Search Report dated Mar. 15, 2012 for Application No. PCT/US2011/059338. |
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059338. |
International Search Report dated Feb. 7, 2012 for Applcation No. PCT/US2011/059351. |
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059351. |
International Search Report dated Feb. 2, 2012for Application No. PCT/US2011/059354. |
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059354. |
International Search Report dated May 29, 2012 for Application No. PCT/US11/059358. |
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059358. |
Communication from International Searching Authority dated Feb. 6, 2012for Application No. PCT/US2011/059362. |
International Search Report dated Mar. 22, 2012for Application No. PCT/US2011/059362. |
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059362. |
International Search Report dated Jun. 4, 2012 for Application No. PCT/US2011/059365. |
International Preliminary Report on Patentability dated May 8, 2013 for Application No. PCT/US2011/059365. |
International Search Report dated Feb. 23, 2012 for Application No. PCT/US2011/059371. |
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059371. |
Communication from International Searching Authority dated Feb. 2, 2012 for Application No. PCT/US2011/059378. |
International Search Report dated May 24, 2012 for Application No. PCT/US2011/059378. |
International Search Report and Written Opinion dated Feb. 2, 2012for Application No. PCT/US2011/059378. |
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059378. |
International Search Report dated Apr. 11, 2012 for Application No. PCT/US2011/059381. |
International Search Report and Written Opinion dated Jul. 6, 2012 for PCT/US2011/059381. |
International Preliminary Report on Patentability dated May 8, 2013 for Application No. PCT/US2011/059381. |
Office Action Non-Final dated Aug. 6, 2013 for U.S. Appl. No. 13/151,471. |
Notice of Allowance dated Dec. 6, 2013 for U.S. Appl. No. 13/151,471. |
Office Action Non-Final dated Mar. 28, 2014 for U.S. Appl. No. 13/151,471. |
U.S. Office Action, Notice of Allowance, dated Aug. 19, 2014 for U.S. Appl. No. 13/151,471. |
U.S. Office Action, Notice of Allowance, dated Nov. 21, 2014 for U.S. Appl. No. 13/151,471. |
Restriction Requirement dated Dec. 11, 2012 for U.S. Appl. No. 13/151,481. |
Office Action Non-Final dated Feb. 15, 2013 for U.S. Appl. No. 13/151,481. |
Office Action Final dated Jun. 7, 2013 for U.S. Appl. No. 13/151,481. |
U.S. Office Action, Non-Final, dated Aug. 14, 2014 for U.S. Appl. No. 13/151,481. |
Restriction Requirement dated Jul. 5, 2013 for U.S. Appl. No. 13/151,488. |
U.S. Office Action, Non-Final, dated Nov. 7, 2014 for U.S. Appl. No. 13/151,488. |
Office Action Non-Final dated Jun. 14, 2013 for U.S. Appl. No. 13/151,498. |
Office Action Final dated Nov. 21, 2013 for U.S. Appl. No. 13/151,498. |
Office Action Non Final dated Mar. 18, 2014 for U.S. Appl. No. 13/151,498. |
U.S. Office Action, Notice of Allowance, dated Aug. 6, 2014 for U.S. Appl. No. 13/151,498. |
U.S. Office Action, Notice of Allowance, dated Nov. 21, 2014 for U.S. Appl. No. 13/151,498. |
Office Action Non Final dated Jun. 18, 2014 for U.S. Appl. No. 13/151,503. |
Office Action Non Final dated Nov. 6, 2014 for U.S. Appl. No. 13/151,503. |
Restriction Requirement dated Mar. 13, 2013 for U.S. Appl. No. 13/151,509. |
Restriction Requirement dated Jun. 24, 2013 for U.S. Appl. No. 13/151,509. |
Office Action Non-Final dated Sep. 26, 2013 for U.S. Appl. No. 13/151,509. |
Office Action Final dated Jan. 29, 2014 for U.S. Appl. No. 13/151,509. |
Office Action Non-Final dated Jul. 9, 2014 for U.S. Appl. No. 13/151,509. |
U.S. Office Action, Notice of Allowance, dated Oct. 28, 2014 for U.S. Appl. No. 13/151,509. |
Restriction Requirement dated Jun. 11, 2014 for U.S. Appl. No. 13/151,512. |
U.S. Office Action, Notice of Allowance, date Oct. 29, 2014 for U.S. Appl. No. 13/151,512. |
U.S. Office Action , Restriction Requirement, dated Jul. 11, 2014 for U.S. Appl. No. 13/269,870. |
Restriction Requirement dated Feb. 28, 2013 for U.S. Appl. No. 13/270,667. |
Office Action Non-Final dated Apr. 26, 2013 for U.S. Appl. No. 13/270,667. |
Office Action Final dated Oct. 25, 2013 for U.S. Appl. No. 13/270,667. |
U.S. Office Action, Non-Final, dated Jul. 29, 2014 for U.S. Appl. No. 13/270,667. |
U.S. Office Action, Restriction Requirement, dated Jul. 9, 2014 for U.S. Appl. No. 13/270,684. |
U.S. Office Action, Non-Final, dated Oct. 9, 2014 for U.S. Appl. No. 13/270,684. |
U.S. Office Action, Restriction Requirement, dated Sep. 11, 2014 for U.S. Appl. No. 13/270,701. |
Office Action Non-Final dated Nov. 21, 2013 for U.S. Appl. No. 13/271,352. |
U.S. Office Action, Restriction Requirement, dated Sep. 25, 2014 for U.S. Appl. No. 13/271,352. |
U.S. Office Action, Restriction Requirement, dated Oct. 2, 2013 for U.S. Appl. No. 13/274,480. |
Office Action Non-Final dated Feb. 14, 2014 for U.S. Appl. No. 13/274,480. |
U.S. Office Action, Final, dated Jul. 17, 2014 for U.S. Appl. No. 13/274,480. |
Restriction Requirement dated Mar. 28, 2014 for U.S. Appl. No. 13/274,507. |
Office Action Non-Final dated Jun. 19, 2014 for U.S. Appl. No. 13/274,507. |
Office Action Non-Final dated Dec. 21, 2012 for U.S. Appl. No. 13/274,516. |
Office Action Final dated Aug. 16, 2013 for U.S. Appl. No. 13/274,516. |
Office Action Non-Final dated Dec. 6, 2013 for U.S. Appl. No. 13/274,516. |
U.S. Office Action, Final, dated Jun. 12, 2012 for U.S. Appl. No. 13/274,516. |
U.S. Office Action, Non-Final, dated Oct. 8, 2014 for U.S. Appl. No. 13/274,516. |
Restriction Requirement dated Feb. 25, 2013 for U.S. Appl. No. 13/274,540. |
Office Action Non-Final dated Apr. 30, 2013 for U.S. Appl. No. 13/274,540. |
Office Action Final dated Oct. 25, 2013 for U.S. Appl. No. 13/274,540. |
U.S. Office Action, Non-Final, dated Aug. 26, 2014 for U.S. Appl. No. 13/274,540. |
Office Action Non-Final dated Apr. 1, 2013 for U.S. Appl. No. 13/274,805. |
Office Action Final dated Sep. 12, 2013 for U.S. Appl. No. 13/274,805. |
U.S. Office Action, Non-Final, dated Aug. 14, 2014 for U.S. Appl. No. 13/274,805. |
Restriction Requirement dated Apr. 29, 2013 for U.S. Appl. No. 13/274,830. |
Office Action Non-Final dated Jun. 14, 2013 for U.S. Appl. No. 13/274,830. |
Office Action Final dated Nov. 26, 2013 for U.S. Appl. No. 13/274,830. |
U.S. Office Action, Non-Final, dated Oct. 22, 2014 for U.S. Appl. No. 13/274,830. |
Restriction Requirement dated Apr. 4, 2013 for U.S. Appl. No. 13/275,495. |
Office Action Non-Final dated May 31, 2013 for U.S. Appl. No. 13/275,495. |
Office Action Final dated Dec. 5, 2013 for U.S. Appl. No. 13/275,495. |
Office Action Non-Final dated Jan. 6, 2014 for U.S. Appl. No. 13/275,514. |
U.S. Office Action, Non-Final, dated Sep. 9, 2014 for U.S. Appl. No. 13/275,514. |
Office Action Non-Final dated May 17, 2013 for U.S. Appl. No. 13/275,547. |
Office Action Final dated Feb. 28, 2014 for U.S. Appl. No. 13/275,547. |
U.S. Office Action, Non-Final, dated Aug. 20, 2014 for U.S. Appl. No. 13/275,547. |
Office Action Non-Final dated Feb. 1, 2013 for U.S. Appl. No. 13/275,563. |
Office Action Final dated Aug. 29, 2013 for U.S. Appl. No. 13/275,563. |
U.S. Office Action, Non-Final, dated Oct. 23, 2014 for U.S. Appl. No. 13/275,563. |
Restriction Requirement dated Feb. 6, 2013 for U.S. Appl. No. 13/276,660. |
Office Action Non-Final dated Jun. 3, 2013 for U.S. Appl. No. 13/246,660. |
U.S. Office Action, Restriction Requirement, dated Jul. 9, 2014 for U.S. Appl. No. 13/276,660. |
Office Action Non-Final dated Dec. 21, 2012 for U.S. Appl. No. 13/276,673. |
Office Action Non-Final dated Aug. 19, 2013 for U.S. Appl. No. 13/276,673. |
Office Action Final dated Mar. 21, 2014 for U.S. Appl. No. 13/276,673. |
U.S. Office Action, Non-Final, dated Aug. 14, 2014 for U.S. Appl. No. 13/276,673. |
Restriction Requirement dated Feb. 6, 2013 for U.S. Appl. No. 13/276,687. |
Office Action Non-Final dated Jun. 12, 2013 for U.S. Appl. No. 13/276,687. |
Notice of Allowance dated Nov. 12, 2013 for U.S. Appl. No. 13/276,687. |
Notice of Allowance dated Jun. 2, 2014 for U.S. Appl. No. 13/276,687. |
U.S. Office Action, Notice of Allowance, dated Sep. 12, 2014 for U.S. Appl. No. 13/276,687. |
Restriction Requirement dated Feb. 21, 2013 for U.S. Appl. No. 13/276,707. |
Office Action Non-Final dated May 6, 2013 for U.S. Appl. No. 13/276,707. |
Office Action Final dated Sep. 27, 2013 for U.S. Appl. No. 13/276,707. |
Restriction Requirement dated Feb. 6, 2013 for U.S. Appl. No. 13/276,725. |
U.S. Office Action, Non-Final, dated Aug. 20, 2014 for U.S. Appl. No. 13/276,725. |
Restriction Requirement dated Dec. 21, 2012 for U.S. Appl. No. 13/276,745. |
Office Action Non-Final dated Apr. 30, 2013 for U.S. Appl. No. 13/276,745. |
Office Action Final dated Nov. 8, 2013 for U.S. Appl. No. 13/276,745. |
Office Action Non-Final dated Feb. 28, 2014 for U.S. Appl. No. 13/276,745. |
U.S. Office Action, Notice of Allowance, dated Oct. 7, 2014 for U.S. Appl. No. 13/276,745. |
U.S. Office Action, Restriction Requirement, dated Sep. 24, 2014 for U.S. Appl. No. 13/277,328. |
Australian Firrt Examination Report dated Jun. 11, 2015 for App. No. 2011323281. |
Chinese First Office Action dated Apr. 16, 2015 for App. No. CN 201180063919X. |
Chinese First Office Action dated Jun. 1, 2015 for App. No. CN 2011800640981. |
Japanese Office Action, Notification of Reasons for Refusal, dated Sep. 8, 2015 for App. No. 2013-537830. |
Japanese Office Action, Notification of Reasons for Refusal, dated Aug. 25, 2015 for App. No. 2013-537831. |
U.S. Office Action, Non-Final, dated Apr. 1, 2015 for U.S. Appl. No. 13/151,481. |
U.S. Office Action, Notice of Allowance, dated Feb. 25, 2015 for U.S. Appl. No. 13/151,509. |
U.S. Office Action, Notice of Allowance, dated Feb. 17, 2015 for U.S. Appl. No. 13/151,512. |
U.S. Office Action, Non-Final, dated Jan. 5, 2015 for U.S. Appl. No. 13/269,870. |
U.S. Office Action, Final, dated Aug. 14, 2015 for U.S. Appl. No. 13/269,870. |
U.S. Office Action, Notice of Allowance, dated Apr. 4, 2016 for U.S. Appl. No. 13/269,870. |
U.S. Office Action, Notice of Allowance, dated Jul. 27, 2016 for U.S. Appl. No. 13/269,870. |
U.S. Office Action, Notice of Allowance, dated Dec. 17, 2014 for U.S. Appl. No. 13/270,667. |
U.S. Office Action, Final, dated Mar. 17, 2015 for U.S. Appl. No. 13/270,684. |
U.S. Office Action, Notice of Allowance, dated Jul. 28, 2015 for U.S. Appl. No. 13/270,684. |
U.S. Office Action, Notice of Allowance, dated Nov. 30, 2015 for U.S. Appl. No. 13/270,684. |
U.S. Office Action, Non-Final, dated Dec. 16, 2014 for U.S. Appl. No. 13/270,701. |
U.S. Office Action, Non-Final, dated Mar. 26, 2015 for U.S. Appl. No. 13/271,352. |
U.S. Office Action, Final, dated Jul. 15, 2015 for U.S. Appl. No. 13/271,352. |
U.S. Office Action, Notice of Allowance, dated Feb. 19, 2016 for U.S. Appl. No. 13/271,352. |
U.S. Office Action, Non-Final, dated Jul. 14, 2015 for U.S. Appl. No. 13/271,364. |
U.S. Office Action, Notice of Allowance, dated Dec. 18, 2015 for U.S. Appl. No. 13/271,364. |
U.S. Office Action, Notice of Allowance, dated Apr. 7, 2016 for U.S. Appl. No. 13/271,364. |
U.S. Office Action, Restriction Requirement, dated Dec. 9, 2013 for U.S. Appl. No. 13/274,496. |
U.S. Office Action, Non-Final, dated Feb. 6, 2014 for U.S. Appl. No. 13/274,496. |
U.S. Office Action, Final, dated May 15, 2014 for U.S. Appl. No. 13/274,496. |
U.S. Office Action, Final, dated Aug. 22, 2014 for U.S. Appl. No. 13/274,496. |
U.S. Office Action, Non-Final, dated Apr. 2, 2015 for U.S. Appl. No. 13/274,496. |
U.S. Office Action, Non-Final, dated Jul. 22, 2015 for U.S. Appl. No. 13/274,507. |
U.S. Office Action, Final, dated Dec. 8, 2015 for U.S. Appl. No. 13/274,507. |
U.S. Office Action, Final, dated May 8, 2015 for U.S. Appl. No. 13/274,516. |
U.S. Office Action, Notice of Allowance, dated Sep. 24, 2015 for U.S. Appl. No. 13/274,516. |
U.S. Office Action, Notice of Allowance, dated Jan. 21, 2015 for U.S. Appl. No. 13/274,540. |
U.S. Office Action, Notice of Allowance, dated Nov. 28, 2014 for U.S. Appl. No. 13/274,805. |
U.S. Office Action, Notice of Allowance, dated Jan. 21, 2015 for U.S. Appl. No. 13/274,805. |
U.S. Office Action, Notice of Allowance, dated Mar. 23, 2015 for U.S. Appl. No. 13/274,830. |
U.S. Office Action, Non-Final, dated Feb. 25, 2015 for U.S. Appl. No. 13/275,495. |
U.S. Office Action, Final, dated Mar. 10, 2015 for U.S. Appl. No. 13/275,547. |
U.S. Office Action, Final, dated Mar. 13, 2015 for U.S. Appl. No. 13/276,673. |
U.S. Office Action, Notice of Allowance, dated Dec. 23, 2014 for U.S. Appl. No. 13/276,687. |
U.S. Office Action, Non-Final, dated Jan. 29, 2015 for U.S. Appl. No. 13/276,707. |
U.S. Office Action, Notice of Allowance, dated Mar. 13, 2015 for U.S. Appl. No. 13/276,725. |
U.S. Office Action, Notice of Allowance, dated Dec. 19, 2014 for U.S. Appl. No. 13/276,745. |
U.S. Office Action, Non-Final, dated Dec. 8, 2014 for U.S. Appl. No. 13/277,328. |
U.S. Office Action, Final, dated Mar. 24, 2015 for U.S. Appl. No. 13/277,328. |
U.S. Office Action, Notice of Allowance, dated Jun. 1, 2015 for U.S. Appl. No. 13/277,328. |
U.S. Office Action, Non-Final, dated Aug. 26, 2016 for U.S. Appl. No. 15/008,530. |
U.S. Office Action, Notice of Allowance, dated May 17, 2018 for U.S. Appl. No. 13/270,701. |
U.S. Office Action, Notice of Allowance, dated Jul. 23, 2018 for U.S. Appl. No. 13/274,507, 5 pgs. |
U.S. Office Action, Restriction Requirement, dated Jun. 14, 2018 for U.S. Appl. No. 15/342,218, 6 pgs. |
U.S. Office Action, Non-Final, dated Nov. 19, 2018 for U.S. Appl. No. 15/342,218, 6 pgs. |
U.S. Office Action, Notice of Allowance, dated Feb. 1, 2017 for U.S. Appl. No. 15/008,530. |
U.S. Office Action, Notice of Allowance, dated Jun. 16, 2017 for U.S. Appl. No. 15/008,530. |
U.S. Appl. No. 13/151,488. |
U.S. Appl. No. 13/274,480. |
U.S. Appl. No. 13/274,496. |
U.S. Appl. No. 13/275,495. |
U.S. Appl. No. 13/275,547. |
U.S. Appl. No. 13/275,563. |
U.S. Appl. No. 14/992,104. |
U.S. Appl. No. 15/212,423. |
U.S. Appl. No. 15/229,418. |
U.S. Appl. No. 15/342,218. |
Japanese Office Action, Notification of Reasons for Refusal, dated Jan. 9, 2018 for Application No. JP 2013-537835, Trial against Examiner's Decision of Refusal No. JP 2016-19055, 7 pgs. |
U.S. Appl. No. 15/460,822. |
U.S. Appl. No. 15/695,151. |
U.S. Appl. No. 16/530,009. |
U.S. Pat. No. 10,376,304. |
European Examination Report dated May 18, 2018 for Application No. EP 11784882.0, 4 pgs. |
Indian Office Action, Examination Report, dated Sep. 25, 2019 for Application No. 3969/DELNP/2013, 8 pgs. |
Indian Office Action, Examination Report, dated Aug. 7, 2019 for Application No. 3971/DELNP/2013, 8 pgs. |
Indian Office Action, Examination Report, dated Aug. 16, 2019 for Application No. 3972/DELNP/2013, 5 pgs. |
Indian Office Action, Examination Report, dated Nov. 15, 2019 for Application No. 3967/DELNP/2013, 6 pgs. |
Indian Office Action, Examination Report, dated Dec. 5, 2019 for Application No. 3974/DELNP/2013, 8 pgs. |
U.S. Appl. No. 61/410,603, filed Nov. 5, 2010, by Houser, entitled: “Energy-Based Surgical Instruments”. |
U.S. Appl. No. 61/487,846, filed May 19, 2011, by Boudreaux et al., entitled: “Ultrasonic Surgical Instruments”. |
Number | Date | Country | |
---|---|---|---|
20150305763 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61487846 | May 2011 | US | |
61410603 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13274496 | Oct 2011 | US |
Child | 14788915 | US |