Cancellous construct with support ring for repair of osteochondral defects

Information

  • Patent Grant
  • 8435551
  • Patent Number
    8,435,551
  • Date Filed
    Friday, July 24, 2009
    15 years ago
  • Date Issued
    Tuesday, May 7, 2013
    11 years ago
Abstract
The invention is directed toward an osteochondral repair assembly comprising a shaped allograft construct comprising an unbalanced barbell-shaped cylindrical cancellous bone primary member formed with a mineralized cylindrical base section having a smaller diameter cylindrical stem leading to a second cylindrical section which is demineralized. A mineralized ring-shaped support member is forced over the compressed demineralized second demineralized the aperture of the ring-shaped member to fit around the stem with one ring surface being adjacent the bottom surface to the second cylindrical section and the opposite ring surface being adjacent the upper surface of the mineralized cylindrical base section.
Description
BACKGROUND OF THE INVENTION

1. Field of Invention


The present invention is generally directed toward an allograft implant construct for osteochondral defect repair and is more specifically directed toward a two piece allograft cancellous bone implant having a cancellous bone base member with a mineralized base section, stem and demineralized top section and a ring-shaped support member which is pulled over the compressed demineralized cancellous top section around the stem. The construct is shaped for an interference fit implantation in a shoulder, knee, hip, or ankle joint, and the construct optionally further contains one or more growth factors impregnated within the construct.


2. Description of the Prior Art


Articular cartilage injury and degeneration present medical problems to the general population which are constantly addressed by orthopedic surgeons. Every year in the United States, over 500,000 arthroplastic or joint repair procedures are performed. These include approximately 125,000 total hip and 150,000 total knee arthroplasties and over 41,000 open arthroscopic procedures to repair cartilaginous defects of the knee.


In the knee joint, the articular cartilage tissue forms a lining which faces the joint cavity on one side and is linked to the subchondral bone plate by a narrow layer of calcified cartilage tissue on the other. Articular cartilage (hyaline cartilage) consists primarily of extracellular matrix with a sparse population of chondrocytes distributed throughout the tissue. Articular cartilage is composed of chondrocytes, type II collagen fibril meshwork, proteoglycans, and water. Active chondrocytes are unique in that they have a relatively low turnover rate and are sparsely distributed within the surrounding matrix. The collagens give the tissue its form and tensile strength and the interaction of proteoglycans with water gives the tissue its stiffness to compression, resilience and durability. The hyaline cartilage provides a low friction bearing surface over the bony parts of the joint. If the lining becomes worn or damaged resulting in lesions, joint movement may be painful or severely restricted. Whereas damaged bone typically can regenerate successfully, hyaline cartilage regeneration is quite limited because of its limited regenerative and reparative abilities.


Articular cartilage lesions generally do not heal, or heal only partially under certain biological conditions due to the lack of nerves, blood vessels and a lymphatic system. The limited reparative capabilities of hyaline cartilage usually results in the generation of repair tissue that lacks the structure and biomechanical properties of normal cartilage. Generally, the healing of the defect results in a fibrocartilaginous repair tissue that lacks the structure and biomedical properties of hyaline cartilage and degrades over the course of time. Articular cartilage lesions are frequently associated with disability and with symptoms such as joint pain, locking phenomena and reduced or disturbed function. These lesions are difficult to treat because of the distinctive structure and function of hyaline cartilage. Such lesions are believed to progress to severe forms of osteoarthritis. Osteoarthritis is the leading cause of disability and impairment in middle-aged and older individuals, entailing significant economic, social and psychological costs. Each year, osteoarthritis accounts for as many as 39 million physician visits and more than 500,000 hospitalizations. By the year 2020, arthritis is expected to affect almost 60 million persons in the United States and to limit the activity of 11.6 million persons.


There are many current therapeutic methods being used. None of these therapies has resulted in the successful regeneration of hyaline-like tissue that withstands normal joint loading and activity over prolonged periods. Currently, the techniques most widely utilized clinically for cartilage defects and degeneration are not articular cartilage substitution procedures, but rather lavage, arthroscopic debridement, and repair stimulation. The direct transplantation of cells or tissue into a defect and the replacement of the defect with biologic or synthetic substitutions presently accounts for only a small percentage of surgical interventions. The optimum surgical goal is to replace the defects with cartilage-like substitutes so as to provide pain relief, reduce effusions and inflammation, restore function, reduce disability and postpone or alleviate the need for prosthetic replacement.


Lavage and arthroscopic debridement involve irrigation of the joint with solutions of sodium chloride, Ringer or Ringer and lactate. The temporary pain relief is believed to result from removing degenerative cartilage debris, proteolytic enzymes and inflammatory mediators. These techniques provide temporary pain relief, but have little or no potential for further healing.


Repair stimulation is conducted by means of drilling, abrasion arthroplasty or microfracture. Penetration into the subchondral bone induces bleeding and fibrin clot formation which promotes initial repair, however, the tissue formed is fibrous in nature and not durable. Pain relief is temporary as the tissue exhibits degeneration, loss of resilience, stiffness and wear characteristics over time.


The periosteum and perichondrium have been shown to contain mesenchymal progenitor cells capable of differentiation and proliferation. They have been used as grafts in both animal and human models to repair articular defects. Few patients over 40 years of age obtain good clinical results, which most likely reflect the decreasing population of osteochondral progenitor cells with increasing age. There have also been problems with adhesion and stability of the grafts, which result in their displacement or loss from the repair site.


Transplantation of cells grown in culture provides another method of introducing a new cell population into chondral and osteochondral defects. CARTICEL7 is a commercial process to culture a patient's own cartilage cells for use in the repair of cartilage defects in the femoral condyle marketed by Genzyme Biosurgery in the United States and Europe. The procedure uses arthroscopy to take a biopsy from a healthy, less loaded area of articular cartilage. Enzymatic digestion of the harvested tissue releases the cells that are sent to a laboratory where they are grown for a period ranging from 2-5 weeks. Once cultivated, the cells are injected during a more open and extensive knee procedure into areas of defective cartilage where it is hoped that they will facilitate the repair of damaged tissue. An autologous periosteal flap with a cambium layer is used to seal the transplanted cells in place and act as a mechanical barrier. Fibrin glue is used to seal the edges of the flap. This technique preserves the subchondral bone plate and has reported a high success rate. Proponents of this procedure report that it produces satisfactory results, including the ability to return to demanding physical activities, in more than 90% of patients and those biopsy specimens of the tissue in the graft sites show hyaline-like cartilage repair. More work is needed to assess the function and durability of the new tissue and determine whether it improves joint function and delays or prevents joint degeneration. As with the perichondrial graft, patient/donor age may compromise the success of this procedure as chondrocyte population decreases with increasing age. Disadvantages to this procedure include the need for two separate surgical procedures, potential damage to surrounding cartilage when the periosteal patch is sutured in place, the requirement of demanding microsurgical techniques, and the expensive cost of the procedure resulting from the cell cultivation which is currently not covered by insurance.


Osteochondral transplantation or mosaicplasty involves excising all injured or unstable tissue from the articular defect and creating cylindrical holes in the base of the defect and underlying bone. These holes are filled with autologous cylindrical plugs of healthy cartilage and bone in a mosaic fashion. The filler osteochondral plugs are harvested from a lower weight-bearing area of lesser importance in the same joint. This technique, shown in Prior Art FIG. 2, can be performed as arthroscopic or open procedures. Reports of results of osteochondral plug autografts in a small number of patients indicate that they decrease pain and improve joint function, however, long-term results have not been reported. Factors that can compromise the results include donor site morbidity, effects of joint incongruity on the opposing surface of the donor site, damage to the chondrocytes at the articular margins of the donor and recipient sites during preparation and implantation, and collapse or settling of the graft over time. The limited availability of sites for harvest of osteochondral autografts restricts the use of this approach to treatment of relatively small articular defects and the healing of the chondral portion of the autograft to the adjacent articular cartilage remains a concern.


Transplantation of large allografts of bone and overlying articular cartilage is another treatment option that involves a greater area than is suitable for autologous cylindrical plugs, as well as for a non-contained defect. The advantages of osteochondral allografts are the potential to restore the anatomic contour of the joint, lack of morbidity related to graft harvesting, greater availability than autografts and the ability to prepare allografts in any size to reconstruct, large defects. Clinical experience with fresh and frozen osteochondral allografts shows that these grafts can decrease joint pain, and that the osseous portion of an allograft can heal to the host bone and the chondral portion can function as an articular surface. Drawbacks associated with this methodology in the clinical situation include the scarcity of fresh donor material and problems connected with the handling and storage of frozen tissue. Fresh allografts carry the risk of immune response or disease transmission. Musculoskeletal Transplant Foundation (MTF) has preserved fresh allografts in a media that maintains a cell viability of 50% for 35 days for use as implants. Frozen allografts lack cell viability and have shown a decreased amount of proteoglycan content which contribute to deterioration of the tissue.


A number of United States Patents have been specifically directed towards bone plugs which are implanted into a bone defect. Examples of such bone plugs are U.S. Pat. No. 4,950,296 issued Aug. 21, 1990 which discloses a bone graft device comprising a cortical shell having a selected outer shape and a cavity formed therein for receiving a cancellous plug, which is fitted into the cavity in a manner to expose at least one surface; U.S. Pat. No. 6,039,762 issued Mar. 21, 2000 discloses a cylindrical shell with an interior body of deactivated bone material and U.S. Pat. No. 6,398,811 issued Jun. 4, 2002 directed toward a bone spacer which has a cylindrical cortical bone plug with an internal through going bore designed to hold a reinforcing member. U.S. Pat. No. 6,383,211 issued May 7, 2002 discloses an invertebral implant having a substantially cylindrical body with a through going bore dimensioned to receive bone growth materials.


U.S. Pat. No. 6,379,385 issued Apr. 30, 2002 discloses an implant base body of spongious bone material into which a load carrying support element is embedded. The support element can take the shape of a diagonal cross or a plurality of cylindrical pins. See also, U.S. Pat. No. 6,294,187 issued Sep. 25, 2001 which is directed to a load bearing osteoimplant made of compressed bone particles in the form of a cylinder. The cylinder is provided with a plurality of through going bores to promote blood flow through the osteoimplant or to hold a demineralized bone and glycerol paste mixture. U.S. Pat. No. 6,096,081 issued Aug. 1, 2000 shows a bone dowel with a cortical end cap or caps at both ends, a brittle cancellous body and a through going bore.


The use of implants for cartilage defects is much more limited. Aside from the fresh allograft implants and autologous implants, U.S. Pat. No. 6,110,209 issued Nov. 5, 1998 shows the use of an autologous articular cartilage cancellous bone paste to fill arthritic defects. The surgical technique is arthroscopic and includes debriding (shaving away loose or fragmented articular cartilage), followed by morselizing the base of the arthritic defect with an awl until bleeding occurs. An osteochondral graft is then harvested from the inner rim of the intercondylar notch using a trephine. The graft is then morselized in a bone graft crusher, mixing the articular cartilage with the cancellous bone. The paste is then pushed into the defect and secured by the adhesive properties of the bleeding bone. The paste can also be mixed with a cartilage growth factor, a plurality of cells, or a biological glue. All patients are kept non-weight bearing for four weeks and use a continuous passive motion machine for six hours each night. Histologic appearance of the biopsies has mainly shown a mixture of fibrocartilage with hyaline cartilage. Concerns associated with this method are harvest site morbidity and availability, similar to the mosaicplasty method.


U.S. Pat. No. 6,379,367 issued Apr. 30, 2002 discloses a plug with a base membrane, a control plug, and a top membrane which overlies the surface of the cartilage covering the defective area of the joint.


SUMMARY OF THE INVENTION

In one embodiment, an osteochondral repair allograft construct implant is formed as an unbalanced barbell-shaped cylindrical cancellous bone base member having a mineralized cylindrical base section and a smaller diameter cylindrical stem extending there from leading to a second cylindrical section which is demineralized. In another embodiment, a ring shaped support member is forced over the compressed demineralized second cylindrical section and the aperture of the ring member fits around the stem with a top surface being adjacent the bottom surface of the demineralized cylindrical section and bottom surface being adjacent the upper surface of the mineralized cylindrical base section.


In another embodiment, the allograft construct implant is used to repair osteochondral defects and is placed in a bore which has been cut into the patient to remove the lesion defect area. In another embodiment, each osteochondral repair allograft construct implant can support the addition of a variety of growth factors. In another embodiment, the allograft construct implant can support the addition of a variety of chondrogenic (in any portion of the construct) and/or osteogenic (in any portion of the construct save the demineralized top section) growth factors including, but not limited to morselized allogeneic cartilage, growth factors and variants thereof (FGF-2, FGF-5, FGF-7, FGF-9, FGF-11, FGF-21, IGF-1, TGF-β, TGF-β1, BMP-2, BMP-7, PDGF, VEGF), human allogenic or autologous chondrocytes, human allogenic or autologous bone marrow cells, stem cells, demineralized bone matrix, insulin, insulin-like growth factor-1, transforming growth factor-B, interleukin-1 receptor antagonist,. hepatocyte growth factor, platelet-derived growth factor, Indian hedgehog and parathyroid hormone-related peptide or bioactive glue. These chondrogrenic and/or osteogenic growth factors or additives can be added throughout the implant or to specific regions of the implant such as the demineralized top section or the mineralized base portion, depending on whether chondrogenesis (any portion of the implant) or osteogenesis (any portion of the implant save the demineralized top section) is the desired outcome.


In another embodiment, the invention provides an allograft implant for joints which provides pain relief, restores normal function and will postpone or alleviate the need for prosthetic replacement.


In another embodiment, the invention provides an osteochondral repair implant which is easily placed in a defect area by the surgeon using an arthroscopic, minimally invasive technique.


In another embodiment, the invention provides an osteochondral repair implant which has load bearing capabilities.


In another embodiment, the invention provides an osteochondral repair procedure which is applicable for both partial and full thickness cartilage lesions that may or may not be associated with damage to the underlying bone.


In another embodiment, the invention provides an implant capable of facilitating bone healing and/or repair of hyaline cartilage.


In another embodiment, the invention provides a cancellous construct which is simultaneously treated with chondrogenic (in any portion of the implant) and/or osteogenic (in any portion of the implant save the demineralized top section) growth factors.


In another embodiment, the invention provides a cancellous construct which is treated with chondrogenic growth factors in the portion of the construct aimed to repair articular cartilage.


In another embodiment, the invention provides a cancellous construct which is treated with chondrogenic growth factors at any portion of the construct.


In another embodiment, the invention provides a cancellous construct which is treated with osteogenic growth factors in any portion of the construct except for the demineralized top portion of the construct.


These and other objects, advantages, and novel features of the present invention will become apparent when considered with the teachings contained in the detailed disclosure along with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the anatomy of a knee joint;



FIG. 2 shows a schematic mosaicplasty as known in the prior art;



FIG. 3 shows an assembled perspective view of the inventive cartilage repair construct;



FIG. 4 shows a perspective view of the base member of the construct with an unbalanced barbell configuration;



FIG. 5 shows a perspective view of the ring shaped support member of the construct;



FIG. 6 is a side elevation view of the assembled construct; and



FIG. 7 shows a cross section view of the construct of FIG. 6 taken along line 7′-7′.



FIG. 8 is a graph showing the relative concentration of endogenous TGF-β1 found in cartilage particles of the present invention, as derived from various donors and manufactured in accordance with Example 1;



FIG. 9 is a graph showing the relative concentration of endogenous FGF-2 found in cartilage particles of the present invention, as derived from various donors and manufactured in accordance with Example 1; and



FIG. 10 is a graph showing the relative concentration of endogenous BMP-2 found in cartilage particles of the present invention, as derived from various donors and manufactured in accordance with Example 1.





DESCRIPTION OF THE INVENTION

The term “tissue” is used in the general sense herein to mean any transplantable or implantable tissue, the survivability of which is improved by the methods described herein upon implantation. In particular, the overall durability and longevity of the implant are improved, and host-immune system mediated responses, are substantially eliminated.


The terms “transplant” and “implant” are used interchangeably to refer to tissue, material or cells (xenogeneic or allogeneic) which may be introduced into the body of a patient.


The terms “autologous” and “autograft” refer to tissue or cells which originate with or are derived from the recipient, whereas the terms “allogeneic” and “allograft” refer to cells or tissue which originate with or are derived from a donor of the same species as the recipient.


The terms “xenogeneic” and “xenograft” refer to cells or tissue which originate with or are derived from a species other than that of the recipient.


The term “growth factor” means a naturally occurring or synthetic compound capable of stimulating cellular proliferation and/or cellular differentiation. Growth factors are important for regulating a variety of cellular processes.


The term “ELISA” or “Enzyme-Linked ImmunoSorbent Assay” means a biochemical technique used mainly in immunology to detect the presence of an antibody or an antigen in a sample. The ELISA has been used as a diagnostic tool in medicine and plant pathology, as well as a quality control check in various industries. In simple terms, in ELISA an unknown amount of antigen is affixed to a surface, and then a specific antibody is washed over the surface so that it can bind to the antigen. This antibody is linked to an enzyme, and in the final step a substance is added that the enzyme can convert to some detectable signal. Thus in the case of fluorescence ELISA, when light is shone upon the sample, any antigen/antibody complexes will fluoresce so that the amount of antigen in the sample can be measured.


Construct


The present invention is directed towards an osteochondral repair construct constructed of cancellous bone taken from allogenic or xenogenic bone sources.


The construct is preferably derived from dense allograft cancellous bone that may originate from proximal or distal femur, proximal or distal tibia, proximal humerus, talus, calcaneus, patella, or ilium. Cancellous tissue is first processed into blocks and then milled into the desired shapes such as a cylinder for this present invention. A preferred embodiment of the assembled construct 10 is illustrated in FIG. 3. A cancellous bone cylinder is milled using a lathe to form an unbalanced barbell-shaped, primary base member 12, as illustrated in FIGS. 3 and 4. The primary base member 12 includes a top section 14, a cylindrical stem section 16 and a cylindrical base section 18. The top section 14 is milled to have a thickness similar to the thickness of human articular cartilage (e.g., 1.5 -3.5 mm) and the and the diameter of the implant may vary between 5-25 mm. The stem section 16 has a diameter approximately half of the diameter of the entire assembled construct 10. The base section 18 has a thickness or length which is preferably larger than the thickness or length of the top section 14 with a ratio preferably ranging from of at least about 1.5 to 1 to about 6:1. During tissue processing, the top section 14 is substantially demineralized by immersing it in dilute acid while the base section 18 remains mineralized.


Reference is now made to FIGS. 3 and 5, which illustrate a ring-shaped secondary member 20 having an aperture 22 with a diameter equal to or slightly greater than the diameter of the stem 16 and an outer diameter which is the same as the diameter of the top section 14 and base section 18. However, if desired, the aperture 22 can be 10% to 40% larger than the diameter of the stem 16. The top surface 24 and bottom surface 26 of the ring-shaped, or ring, member 20 are preferably planar and after assembly the bottom surface 26 is adjacent the top surface 19 of the base section 18 and the top surface 24 is adjacent the bottom surface 15 of the top section 14. While the ring member 20 is preferably constructed of mineralized allograft cancellous bone, it can be constructed of allograft cortical bone or xenograft bone as long as the same have been decellularized. Alternately, the ring member 20 may be constructed of ceramics or biocompatible polymers.


Demineralization


The top section 14 is substantially demineralized in dilute acid up to a predetermined level (as indicated by broken-line representation L1 in FIG. 7) until the bone contains less than 0.5% wt/wt residual calcium. Subsequently, the resultant tissue form is predominantly Type I collagen, which is sponge-like in nature with an elastic quality. Following decalcification, the tissue is further cleaned, brought to a physiological pH level of about 7 and may also be treated so that the cancellous tissue is non-osteoinductive. This inactivation of inherent osteoinductivity may be accomplished via chemical or thermal treatment or by high energy irradiation. The cancellous top section 14 is preferably treated with an oxidizing agent such as hydrogen peroxide in order to render it non-osteoinductive.


Following demineralization the top section 14 is spongy and deformable allowing it to be squeezed through the center aperture 22 of the ring member 20. After the implant has been assembled, morselized cartilage particles combined with a carrier or growth factor may be added to the top section 14. If desired, the open cancellous structure of the top section 14 may be loaded with a cartilage paste or gel as noted below and/or one or more additives namely recombinant or native or variant growth factors (FGF-2, FGF-5, FGF-7, FGF-9, FGF-11, FGF-21, IGF-1, TGF-β1, BMP-2, BMP-4, BMP-7, PDGF, VEGF), human allogenic or autologous chondrocytes, human allogenic cells, human allogenic or autologous bone marrow cells, human allogenic or autologous stem cells, demineralized bone matrix, insulin, insulin-like growth factor-1, interleukin-1 receptor antagonist, hepatocyte growth factor, platelet-derived growth factor, Indian hedgehog, parathyroid hormone-related peptide, viral vectors for growth factor or DNA delivery, nanoparticles, or platelet-rich plasma. This design enables the fabrication of an implant that possesses a relatively uniform substantially demineralized top section that is distinct from the mineralized base section.


Incorporation of Additives into the Construct


The demineralized portion of the construct can be provided with a matrix of cartilage putty or gel consisting of minced or milled allograft cartilage which has been lyophilized so that its water content ranges from about 0.1% to about 8.0% ranging from about 25% to about 50% by weight, mixed with a carrier of sodium hyaluronate solution (HA) (molecular weight ranging from about 7.0×105 to about 1.2×106) or any other bioabsorbable carrier such as hyaluronic acid and its derivatives, gelatin, collagen, chitosan, alginate, buffered PBS, Dextran CMC, or other polymers, the carrier ranging from about 75% to about 25% by weight. In one embodiment, the cartilage is minced or milled to a size less than or equal to about 212 μm. In another embodiment, the cartilage is minced or milled to a size of from about 5 μm to about 212 μm. In another embodiment, the cartilage is minced or milled to a size of from about 6 μm to about 10 μm. In another embodiment, the cartilage can be minced or milled to a size of less than or equal to about 5 μm. The small size of the minced or milled particulate cartilage can facilitate increased exposure or release of various growth factors due to the increased aggregate surface area of the particulate cartilage used.


The cartilage particles can contain endogenous growth factors. These endogenous growth factors can be extracted from the cartilage particles by the method outlined in Example 1 and detected by the method outlined in Example 2. Exogenous growth factors can also be combined with the cartilage particulate. In one embodiment, cartilage is recovered from deceased human donors, and the tissue may be treated with any known method or methods for chemically cleaning or treating a soft tissue. The cartilage is then lyophilized, milled, then sieved to yield particle sizes of, on average, less than or equal to 212 microns. The cartilage particles are mixed with a growth factor in an aqueous vehicle, then the particles can either be lyophilized and stored dry at room temperature or frozen, or used immediately. For example, particles containing chondrogenic growth factor can be added to any portion of the allograft construct, and particles containing osteogenic growth factor can be added to any portion of the allograft construct save the demineralized cancellous cap. The mixture containing the cartilage particles and growth factor can be lyophilized for storage.


The growth factor can be any one of a variety of growth factors known to promote wound healing, cartilage andior bone development (e.g. BMP's partictularly BMP-2, FGF's particularly FGF-2 and-9 and/or variants of FGF-2, IGF, VEGF, PDGF, etc.). The vehicle used to solubilize the growth factor and adsorb it into the cartilage particles can be saline, water, PBS, Ringers, etc.


In one embodiment, the resulting enhanced cartilage particles can contain levels of growth factors that are greater than that found in intact cartilage. In another embodiment, the cartilage particle mixture can be infused into all or part of the construct. If desired, the cartilage particle mixture can be infused primarily into the demineralized end of the primary member of the construct.


It is further envisioned that cells which have been collected from the patient or grown outside the patient can be inserted into the entire construct or into the cancellous demineralized top section 14 matrix before, during or after deposit of the construct 10 into the defect area. Such cells include, for example, allogenic or autologous bone marrow cells, stem cells and chondrocyte cells. The cellular density of the cells preferably ranges from 1.0×108 to 5.0×108 or from about 100 million to about 500 million cells per cc of putty or gel mixture.


Placement of Construct


The construct 10 is placed in an osteochondral defect area bore which has been cut in the lesion area of a patient with the upper surface 17 of the top section 14 being slightly proud (i.e., above), slightly below, or substantially flush with the surface of the original cartilage surrounding the defect area remaining at the site being treated. The construct 10 has a length which can be the same as the depth of the defect or more or less than the depth of the bore. If the construct 10 is the same as the depth of the bore, the base of the implant is supported by the bottom surface of the bore and the top surface 17 is substantially level with the articular cartilage. If the construct 10 is of a lesser length, the base of the construct is not supported but support is provided by the wall of the defect area bore or respective cut out area as the plug is interference fit within the bore or cut out area with the cap being slightly proud, slightly below, or flush with the surrounding articular cartilage depending on the surgeon's preference. With such load bearing support, the graft surface is not damaged by weight or bearing loads which can cause micromotion interfering with the graft interface producing fibrous tissue interfaces and subchondral cysts.


In operation, the lesion or defect is removed by cutting a blind bore removing a lesion in the implant area. The construct 10 is then placed in the bore or cut away area in an interface fit with the surrounding walls.


If the construct is moveable within the bore, suitable organic glue material can be used to keep the implant fixed in place in the implant area. Suitable organic glue material can also be used to keep the additives in the construct within the construct following implantation into the defect site. Suitable organic glue material can be found commercially, such as for example: TISSEEL 7 or TISSUCOL 7 (fibrin based adhesive; Immuno AG, Austria), Adhesive Protein (Sigma Chemical, USA), Dow Corning Medical Adhesive B (Dow Corning, USA), fibrinogen thrombin, elastin, collagen, casein, albumin, keratin and the like.


EXAMPLES
Example 1
Processed Cartilage Particle Extraction

Cartilage is recovered from deceased human donors, and the tissue may be treated with any known method or methods for chemically cleaning or treating a soft tissue. The cartilage is then lyophilized, freeze-milled, then sieved to yield particle sizes of, on average, less than or equal to 212 microns,. The cartilage particles are -again lyophilized prior to storage or extraction. The particles are extracted in guanidine HCl by incubating at 4° C. on an orbital shaker at 60 rpm for 24 hr, followed by dialysis (8 k MWCO membrane dialysis tube) in 0.05M Tris HCl for 15 hrs at 4° C. The dialysis solution was then replaced and the dialysis continued for another 8 hrs at 4° C. The post-dialysis extracts were stored at −70° C. until ELISA analysis.


Example 2
Quantification Of Endogenous Growth Factors Present In Processed Cartilage

0.25 g of cartilage particles were weighed out for each donor. The cartilage particles were transferred to tubes containing 5 ml of extraction solution (4M Guanidine HCl in TrisHCl). The cartilage particles were incubated at 4° C. on the orbital shaker at 60 rpm for 24 hr, followed by dialysis (8 k MWCO membrane dialysis tube) in 0.05M TrisHCl for 15 hrs at 4° C. The dialysis solution was then replaced and the dialysis continued for another 8 hrs at 4° C. The post-dialysis extracts were stored at −70° C. until ELISA run. Notably, the above protocol can also be utilized in order to determine the total growth factor concentration (e.g., exogenous plus endogenous) present in a device of the instant invention.



FIG. 8 illustrates the relative concentration of endogenous TGF-β1 found in cartilage particles of the present invention as derived from various donors and manufactured in accordance with Example 1.



FIG. 9 illustrates the relative concentration of endogenous FGF-2 found in cartilage particles of the present invention as derived from various donors and manufactured in accordance with Example 1.



FIG. 10 illustrates the relative concentration of endogenous BMP-2 found in cartilage particles of the present invention as derived from various donors and manufactured in accordance with Example 1.


The results shown in FIG. 8 indicate that processed cartilage particles prepared in accordance with the method of Example 1 retain a concentration of endogenous TGF-β1. The results shown in FIG. 9 indicate that processed cartilage particles prepared in accordance with the method of Example 1 also retain concentrations of endogenous FGF-2. The results shown in FIG. 10 indicate that processed cartilage particles prepared in accordance with the method of Example 1 also retain concentrations of endogenous BMP-2.


The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. However, the invention should not be construed as limited to the particular embodiments which have been described above. Instead, the embodiments described here should be regarded as illustrative rather than restrictive. Variations and changes may be made by others without departing from the scope of the present invention as defined by the following claims.

Claims
  • 1. A construct for repairing an osteochondral defect, comprising: a ring-shaped member having a top surface, a bottom surface, an outer diameter and an inner diameter, said inner diameter being defined by an aperture extending from said top surface to said bottom surface; anda base member derived from bone and having a longitudinal axis, which defines an axial direction, said base member having a first section arranged along said longitudinal axis proximate a first end of said base member, said first section being substantially mineralized and having a first diameter,a stem section arranged along said longitudinal axis, said stem section having one end attached to said first section and a second diameter that is less than said first diameter, anda second section arranged along said longitudinal axis proximate a second end of said base member opposite said first end thereof, said second section having a top surface, a bottom surface, and a thickness that substantially matches the thickness of a patient's surrounding native articular cartilage layer, said second section being attached to another end of said stem section opposite said one end thereof, and said second section being substantially demineralized to thereby provide said second section with an elastic quality that renders said second section deformable from a first condition, in which said second section has a third diameter that is greater than said inner diameter of said ring-shaped member, to a second condition, in which said second section is insertable through said aperture of said ring-shaped member, whereby said ring-shaped member is mountable around said stem section between said first and second sections such that said bottom surface of said second section engages said top surface of said ring-shaped member.
  • 2. The construct as recited in claim 1, wherein each of said first and second sections has a cylindrical shape; and wherein said stem section has a cylindrical shape and said second diameter thereof is smaller than said first diameter of said first section and smaller than said third diameter of said second section, whereby said base member has a barbell-like shape.
  • 3. The construct as recited in claim 1, wherein said ring-shaped member is formed from allograft bone.
  • 4. The construct as recited in claim 1, wherein said second section of said base member is non-osteoinductive.
  • 5. The construct as recited in claim 1, wherein said base member is formed from allograft cancellous bone.
  • 6. The construct as recited in claim 1, wherein said inner diameter of said ring-shaped member is similar to said second diameter of said stem section.
  • 7. The construct as recited in claim 1, wherein said inner diameter of said ring-shaped member is larger than said second diameter of said stem section by about 10% to about 40%.
  • 8. The construct as recited in claim 1, wherein said ring-shaped member is constructed of materials taken from a group consisting of allograft bone, xenograft bone, ceramics and biocompatible plastic polymers.
  • 9. The construct as recited in claim 1, wherein said second section of said base member contains milled allograft cartilage particles.
  • 10. The construct as recited in claim 9, wherein said second section of said base member also contains a biocompatible carrier for said cartilage particles.
  • 11. The construct as recited in claim 9, wherein said cartilage particles contain growth factors.
  • 12. The construct as recited in claim 11, wherein said growth factors are selected from the group consisting of TGF-β, FGF-2 and BMP-2.
  • 13. The construct as recited in claim 9, wherein said cartilage particles contain at least one additive taken from a group consisting of growth factors, variants of said growth factors, human chondrocytes, human bone marrow cells, stem cells, insulin, insulin-like growth factor-1, transforming growth factor-B, interleukin-1receptor antagonist, hepatocyte growth factor, platelet-derived growth factor, Indian hedgehog and parathyroid hormone-related peptide, bioactive glue, viral vectors for growth factor or DNA delivery, nanoparticles, and platelet-rich plasma.
  • 14. The construct as recited in claim 13, wherein said growth factors include FGF-2, FGF-5, FGF-7, FGF-9, FGF-11 and FGF-21.
  • 15. The construct as recited in claim 9, wherein said cartilage particles are freeze-milled.
  • 16. The construct as recited in claim 1, wherein at least one of said base member and said ring-shaped member contains at least one additive taken from a group consisting of growth factors, variants of said growth factors, human chondrocytes, human bone marrow cells, stem cells, demineralized bone matrix, cartilage particles, insulin, insulin-like growth factor-1, transforming growth factor-B, interleukin-1 receptor antagonist, hepatocyte growth factor, platelet-derived growth factor, Indian hedgehog and parathyroid hormone-related peptide, bioactive glue, viral vectors for growth factor delivery, viral vectors for DNA delivery, nanoparticles, and platelet-rich plasma.
  • 17. The construct as recited in claim 16, wherein said second section of said base member contains said at least one additive.
  • 18. The construct as recited in claim 1, wherein said second section of said base member contains at least one chondrogenic additive and said first section of said base member contains at least one osteogenic additive.
  • 19. The construct as recited in claim 9, wherein said cartilage particles have a size within a range of from about 10 microns to about 212 microns.
  • 20. The construct as recited in claim 1, whereby said first and second sections of said base member are arranged coaxially relative to said longitudinal axis of said base member.
  • 21. The construct as recited in claim 20, wherein said stem section of said base member is arranged coaxially relative to said first and second sections of said base member.
RELATED APPLICATIONS

This application is (i) a continuation-in-part of U.S. Nonprovisional patent application Ser. No. 12/043,001 filed Mar. 5, 2008 now abandoned, which claims priority to U.S. Provisional patent application Ser. No. 60/904,809 filed Mar. 6, 2007; and (ii) a continuation-in-part of U.S. Nonprovisional patent application Ser. No. 12/381,072 filed Mar. 5, 2009, which claims priority to both U.S. Provisional patent application Ser. No. 61/189,252 filed Aug. 15, 2008 and U.S. Provisional patent application Ser. No. 61/205,433 filed Jan. 15, 2009. The disclosure of each and every application referenced above is incorporated herein by reference in its entirety for all purposes.

US Referenced Citations (614)
Number Name Date Kind
3400199 Balassa Sep 1968 A
3476855 Balassa Nov 1969 A
3478146 Balassa Nov 1969 A
3551560 Theile Dec 1970 A
3772432 Balassa Nov 1973 A
3867728 Stubstad et al. Feb 1975 A
3966908 Balassa Jun 1976 A
4060081 Yannas et al. Nov 1977 A
4172128 Thiele et al. Oct 1979 A
4201845 Feder et al. May 1980 A
4296100 Franco Oct 1981 A
4378347 Franco Mar 1983 A
4394370 Jefferies Jul 1983 A
4400833 Kurland Aug 1983 A
4442655 Stroetmann Apr 1984 A
4458678 Yannas et al. Jul 1984 A
4479271 Bolesky et al. Oct 1984 A
4501269 Bagby Feb 1985 A
4505266 Yannas et al. Mar 1985 A
4600574 Lindner et al. Jul 1986 A
4609551 Caplan et al. Sep 1986 A
4627853 Campbell et al. Dec 1986 A
4642120 Nevo et al. Feb 1987 A
4656137 Balassa Apr 1987 A
4681763 Nathanson et al. Jul 1987 A
4683195 Mullis et al. Jul 1987 A
4683202 Mullis Jul 1987 A
4757017 Cheung Jul 1988 A
4776173 Kamarei et al. Oct 1988 A
4776853 Klement et al. Oct 1988 A
4795467 Piez et al. Jan 1989 A
4801299 Brendel et al. Jan 1989 A
4837379 Wienberg Jun 1989 A
4846835 Grande Jul 1989 A
4880429 Stone Nov 1989 A
4902508 Badylak et al. Feb 1990 A
4904259 Itay Feb 1990 A
4932973 Gendler Jun 1990 A
4950296 McIntyre Aug 1990 A
4950483 Ksander et al. Aug 1990 A
4955911 Frey et al. Sep 1990 A
4963146 Li Oct 1990 A
4963489 Naughton et al. Oct 1990 A
4965188 Mullis et al. Oct 1990 A
4971954 Brodsky et al. Nov 1990 A
4976738 Frey et al. Dec 1990 A
4978355 Frey et al. Dec 1990 A
4994559 Moscatelli et al. Feb 1991 A
5002071 Harrell Mar 1991 A
5002583 Pitaru et al. Mar 1991 A
5007934 Stone Apr 1991 A
5032508 Naughton et al. Jul 1991 A
5041138 Vacanti et al. Aug 1991 A
5053049 Campbell Oct 1991 A
5053050 Itay Oct 1991 A
5067963 Khouri et al. Nov 1991 A
5067964 Richmond et al. Nov 1991 A
5073373 O'Leary et al. Dec 1991 A
5084051 Tormala et al. Jan 1992 A
5092887 Gendler Mar 1992 A
5118512 O'Leary et al. Jun 1992 A
5152791 Hakamatsuka et al. Oct 1992 A
5155214 Baird et al. Oct 1992 A
5191067 Lappi et al. Mar 1993 A
5195892 Gersberg Mar 1993 A
5206023 Hunziker Apr 1993 A
5226914 Caplan et al. Jul 1993 A
5236456 O'Leary et al. Aug 1993 A
5256140 Fallick Oct 1993 A
5260420 Bumouf-Radosevich et al. Nov 1993 A
5266476 Sussman et al. Nov 1993 A
5270300 Hunziker Dec 1993 A
5275826 Badylak et al. Jan 1994 A
5281422 Badylak et al. Jan 1994 A
5284155 Treadwell et al. Feb 1994 A
5290558 O'Leary et al. Mar 1994 A
5298254 Prewett et al. Mar 1994 A
5302702 Seddon et al. Apr 1994 A
5306304 Gendler Apr 1994 A
5306311 Stone et al. Apr 1994 A
5310883 Seddon et al. May 1994 A
5314476 Prewett et al. May 1994 A
5326357 Kandel Jul 1994 A
5329846 Bonutti Jul 1994 A
5336616 Livesey et al. Aug 1994 A
5338772 Bauer et al. Aug 1994 A
5352463 Badylak et al. Oct 1994 A
5354557 Oppermann et al. Oct 1994 A
5356629 Sander et al. Oct 1994 A
5368858 Hunziker Nov 1994 A
5372821 Badylak et al. Dec 1994 A
5380328 Morgan Jan 1995 A
5411885 Marx May 1995 A
5425769 Snyders, Jr. Jun 1995 A
5439684 Prewett et al. Aug 1995 A
5439818 Fiddes et al. Aug 1995 A
5443950 Naughton et al. Aug 1995 A
5445833 Badylak et al. Aug 1995 A
5464439 Gendler Nov 1995 A
5466462 Rosenthal et al. Nov 1995 A
5491220 Seddon et al. Feb 1996 A
5496722 Goodwin et al. Mar 1996 A
5507813 Dowd et al. Apr 1996 A
5510396 Prewett et al. Apr 1996 A
5512460 Nauro et al. Apr 1996 A
5513662 Morse et al. May 1996 A
5516532 Atala et al. May 1996 A
5516533 Badylak et al. May 1996 A
5545222 Bonutti Aug 1996 A
5549904 Juergensen et al. Aug 1996 A
5554389 Badylak et al. Sep 1996 A
5556430 Gendler Sep 1996 A
5569272 Reed et al. Oct 1996 A
5571895 Kurokawa et al. Nov 1996 A
5576288 Lappi et al. Nov 1996 A
5604293 Fiddes et al. Feb 1997 A
5607474 Athanasiou et al. Mar 1997 A
5614496 Dunstan et al. Mar 1997 A
5618925 Dupont et al. Apr 1997 A
5622928 Naruo et al. Apr 1997 A
5624463 Stone et al. Apr 1997 A
5631011 Wadstrom May 1997 A
5632745 Schwartz May 1997 A
5656598 Dunstan et al. Aug 1997 A
5662710 Bonutti Sep 1997 A
5679637 Lappi et al. Oct 1997 A
5681353 Li et al. Oct 1997 A
5695998 Badylak et al. Dec 1997 A
5700476 Rosenthal et al. Dec 1997 A
5700774 Hattersley et al. Dec 1997 A
5707962 Chen et al. Jan 1998 A
5713374 Pachence et al. Feb 1998 A
5716413 Walter et al. Feb 1998 A
5723331 Tubo et al. Mar 1998 A
5733337 Carr, Jr. et al. Mar 1998 A
5736132 Juergensen et al. Apr 1998 A
5736372 Vacanti et al. Apr 1998 A
5736396 Bruder et al. Apr 1998 A
5749874 Schwartz May 1998 A
5755791 Whitson et al. May 1998 A
5759190 Vibe-Hansen et al. Jun 1998 A
5769899 Schwartz et al. Jun 1998 A
5770417 Vacanti et al. Jun 1998 A
5782835 Hart et al. Jul 1998 A
5782915 Stone Jul 1998 A
5786217 Tubo et al. Jul 1998 A
5788625 Plouhar et al. Aug 1998 A
5800537 Bell Sep 1998 A
5814084 Grivas et al. Sep 1998 A
5842477 Naughton et al. Dec 1998 A
5846931 Hattersley et al. Dec 1998 A
5853746 Hunziker Dec 1998 A
5855620 Bishopric et al. Jan 1999 A
5859208 Fiddes et al. Jan 1999 A
5863296 Orton Jan 1999 A
5863297 Walter et al. Jan 1999 A
5866415 Villeneuve Feb 1999 A
5876452 Athanasiou et al. Mar 1999 A
5881733 Stone Mar 1999 A
5888219 Bonutti Mar 1999 A
5891558 Bell et al. Apr 1999 A
5893888 Bell Apr 1999 A
5899936 Goldstein May 1999 A
5899939 Boyce et al. May 1999 A
5904716 Gendler May 1999 A
5906827 Khouri et al. May 1999 A
5910315 Stevenson et al. Jun 1999 A
5916265 Hu Jun 1999 A
5922028 Plouhar et al. Jul 1999 A
5948429 Bell et al. Sep 1999 A
5955438 Pitaru et al. Sep 1999 A
5964805 Stone Oct 1999 A
5972368 McKay Oct 1999 A
5972385 Liu et al. Oct 1999 A
5974663 Ikeda et al. Nov 1999 A
5989269 Vibe-Hansen et al. Nov 1999 A
5989289 Coates et al. Nov 1999 A
5989866 Deisher et al. Nov 1999 A
5998170 Arakawa et al. Dec 1999 A
6001352 Boyan et al. Dec 1999 A
6005161 Brekke et al. Dec 1999 A
6013853 Athanasiou et al. Jan 2000 A
6017348 Hart et al. Jan 2000 A
6025334 Dupont et al. Feb 2000 A
6025538 Yaccarino, III Feb 2000 A
6027743 Khouri et al. Feb 2000 A
6030635 Gertzman et al. Feb 2000 A
6037171 Larsson Mar 2000 A
6039762 McKay Mar 2000 A
6056777 McDowell May 2000 A
6060640 Pauley et al. May 2000 A
6074663 Delmotte et al. Jun 2000 A
6080194 Pachence et al. Jun 2000 A
6090996 Li Jul 2000 A
6090998 Grooms et al. Jul 2000 A
6096081 Grivas et al. Aug 2000 A
6096347 Geddes et al. Aug 2000 A
6110209 Stone Aug 2000 A
6110482 Khouri et al. Aug 2000 A
6123731 Boyce et al. Sep 2000 A
6132472 Bonutti Oct 2000 A
6143293 Weiss et al. Nov 2000 A
6146385 Torrie et al. Nov 2000 A
6156068 Walter et al. Dec 2000 A
6165486 Marra et al. Dec 2000 A
6176880 Plouhar et al. Jan 2001 B1
6180605 Chen et al. Jan 2001 B1
6183737 Zaleske et al. Feb 2001 B1
6189537 Wolfinbarger, Jr. Feb 2001 B1
6197061 Masuda et al. Mar 2001 B1
6197586 Bhatnagar et al. Mar 2001 B1
6200347 Anderson et al. Mar 2001 B1
6221854 Radomsky Apr 2001 B1
6231607 Ben-Bassat et al. May 2001 B1
6235316 Adkisson May 2001 B1
6242247 Rieser et al. Jun 2001 B1
6251143 Schwartz et al. Jun 2001 B1
6258778 Rodgers et al. Jul 2001 B1
6261586 McKay Jul 2001 B1
6267786 Stone Jul 2001 B1
6270528 McKay Aug 2001 B1
6274090 Coelho et al. Aug 2001 B1
6274663 Hosokawa et al. Aug 2001 B1
6274712 Springer et al. Aug 2001 B1
6280473 Lemperle et al. Aug 2001 B1
6281195 Rueger et al. Aug 2001 B1
6283980 Vibe-Hansen et al. Sep 2001 B1
6288043 Spiro et al. Sep 2001 B1
6293970 Wolfinbarger, Jr. Sep 2001 B1
6294187 Boyce et al. Sep 2001 B1
6294359 Fiddes et al. Sep 2001 B1
6303585 Spiro et al. Oct 2001 B1
6305379 Wolfinbarger, Jr. Oct 2001 B1
6306174 Gie et al. Oct 2001 B1
6306177 Felt et al. Oct 2001 B1
6306424 Vyakarnam et al. Oct 2001 B1
6310267 Rapp Oct 2001 B1
6319712 Meenen et al. Nov 2001 B1
6333029 Vyakanam et al. Dec 2001 B1
6352558 Spector Mar 2002 B1
6352971 Deisher et al. Mar 2002 B1
6361565 Bonutti Mar 2002 B1
6371958 Overaker Apr 2002 B1
6376244 Atala Apr 2002 B1
6379367 Vibe-Hansen et al. Apr 2002 B1
6379385 Kalas et al. Apr 2002 B1
6383211 Staehle May 2002 B1
6387693 Rieser et al. May 2002 B2
6398811 McKay Jun 2002 B1
6398816 Breitbart et al. Jun 2002 B1
6398972 Blasetti et al. Jun 2002 B1
6432436 Gertzman et al. Aug 2002 B1
6437018 Gertzman et al. Aug 2002 B1
6440141 Philippon Aug 2002 B1
6440427 Wadstrom Aug 2002 B1
6440444 Boyce et al. Aug 2002 B2
6451060 Masuda et al. Sep 2002 B2
6454811 Sherwood et al. Sep 2002 B1
6458144 Morris et al. Oct 2002 B1
6458158 Anderson et al. Oct 2002 B1
6458375 Gertzman et al. Oct 2002 B1
6468314 Schwartz et al. Oct 2002 B2
6471993 Shastri et al. Oct 2002 B1
6475175 Rivera et al. Nov 2002 B1
6486377 Rapp Nov 2002 B2
6488033 Cerundolo Dec 2002 B1
6489165 Bhatnagar et al. Dec 2002 B2
6497726 Carter et al. Dec 2002 B1
6503277 Bonutti Jan 2003 B2
6504079 Tucker et al. Jan 2003 B2
6511511 Slivka et al. Jan 2003 B1
6511958 Atkinson et al. Jan 2003 B1
6514514 Atkinson et al. Feb 2003 B1
6520964 Tallarida et al. Feb 2003 B2
6530956 Mansmann Mar 2003 B1
6534084 Vyakarnam et al. Mar 2003 B1
6541024 Kadiyala et al. Apr 2003 B1
6548729 Seelich et al. Apr 2003 B1
6569172 Asculai et al. May 2003 B2
6576015 Geistlich et al. Jun 2003 B2
6576265 Spievack Jun 2003 B1
6579538 Spievack Jun 2003 B1
6582960 Martin et al. Jun 2003 B1
6591581 Schmieding Jul 2003 B2
6592598 Vibe-Hansen et al. Jul 2003 B2
6592599 Vibe-Hansen et al. Jul 2003 B2
6599300 Vibe-Hansen et al. Jul 2003 B2
6599301 Vibe-Hansen et al. Jul 2003 B2
6599515 Delmotte Jul 2003 B1
6623963 Muller et al. Sep 2003 B1
6626950 Brown et al. Sep 2003 B2
6630000 Bonutti Oct 2003 B1
6632247 Boyer, II et al. Oct 2003 B2
6652592 Grooms et al. Nov 2003 B1
6652593 Boyer, II et al. Nov 2003 B2
6652872 Nevo et al. Nov 2003 B2
6662805 Frondoza et al. Dec 2003 B2
6666892 Hiles et al. Dec 2003 B2
6686184 Anderson et al. Feb 2004 B1
6689747 Filvaroff et al. Feb 2004 B2
6696073 Boyce et al. Feb 2004 B2
6712851 Lemperle et al. Mar 2004 B1
6727224 Zhang et al. Apr 2004 B1
RE38522 Gertzman et al. May 2004 E
6730314 Jeschke et al. May 2004 B2
6734018 Wolfinbarger, Jr. et al. May 2004 B2
6743232 Overaker et al. Jun 2004 B2
6752834 Geistlich et al. Jun 2004 B2
6761739 Shepard Jul 2004 B2
6761887 Kavalkovich et al. Jul 2004 B1
6767369 Boyer, II et al. Jul 2004 B2
6776800 Boyer, II et al. Aug 2004 B2
6783712 Slivka et al. Aug 2004 B2
6808585 Boyce et al. Oct 2004 B2
6815416 Carney et al. Nov 2004 B2
6838440 Stiles Jan 2005 B2
6841150 Halvorsen et al. Jan 2005 B2
6849255 Gazit et al. Feb 2005 B2
6852114 Cerundolo Feb 2005 B2
6852125 Simon et al. Feb 2005 B2
6852331 Lai et al. Feb 2005 B2
6855167 Shimp et al. Feb 2005 B2
6855169 Boyer, II et al. Feb 2005 B2
6858042 Nadler et al. Feb 2005 B2
6866668 Giannetti et al. Mar 2005 B2
6884428 Binette et al. Apr 2005 B2
6890354 Steiner et al. May 2005 B2
6893462 Buskirk et al. May 2005 B2
6902578 Anderson et al. Jun 2005 B1
6911212 Gertzman et al. Jun 2005 B2
6932977 Heidaran et al. Aug 2005 B2
6933326 Griffey et al. Aug 2005 B1
6933328 Schacht Aug 2005 B2
6949252 Mizuno et al. Sep 2005 B2
6989034 Hammer et al. Jan 2006 B2
6995013 Connelly et al. Feb 2006 B2
7009039 Yayon et al. Mar 2006 B2
7018416 Hanson et al. Mar 2006 B2
7033587 Halvorsen et al. Apr 2006 B2
7041641 Rueger et al. May 2006 B2
7044968 Yaccarino, III et al. May 2006 B1
7045141 Merboth et al. May 2006 B2
7048750 Vibe-Hansen et al. May 2006 B2
7048762 Sander et al. May 2006 B1
7048765 Grooms et al. May 2006 B1
7067123 Gomes et al. Jun 2006 B2
7070942 Heidaran et al. Jul 2006 B2
7078232 Konkle et al. Jul 2006 B2
7087227 Adkisson Aug 2006 B2
7108721 Huckle et al. Sep 2006 B2
RE39321 MacPhee et al. Oct 2006 E
7115146 Boyer, II et al. Oct 2006 B2
7125423 Hazebrouck Oct 2006 B2
7132110 Kay et al. Nov 2006 B2
7137989 Asculai et al. Nov 2006 B2
7141072 Geistlich et al. Nov 2006 B2
7156880 Evans et al. Jan 2007 B2
7157428 Kusanagi et al. Jan 2007 B2
7163563 Schwartz et al. Jan 2007 B2
7166133 Evans et al. Jan 2007 B2
7179299 Edwards et al. Feb 2007 B2
7182781 Bianchi et al. Feb 2007 B1
RE39587 Gertzman et al. Apr 2007 E
7201917 Malaviya et al. Apr 2007 B2
7217294 Kusanagi et al. May 2007 B2
7220558 Luyten et al. May 2007 B2
7241316 Evans et al. Jul 2007 B2
7252987 Bachalo et al. Aug 2007 B2
7264634 Schmieding Sep 2007 B2
7273756 Adkisson et al. Sep 2007 B2
7288406 Bogin et al. Oct 2007 B2
7291169 Hodorek Nov 2007 B2
7297161 Fell Nov 2007 B2
7316822 Binette et al. Jan 2008 B2
7323011 Shepard et al. Jan 2008 B2
7323445 Zhang et al. Jan 2008 B2
7335508 Yayon et al. Feb 2008 B2
7338492 Singhatat Mar 2008 B2
7338524 Fell et al. Mar 2008 B2
7358284 Griffey et al. Apr 2008 B2
7361195 Schwartz et al. Apr 2008 B2
7365051 Paulista et al. Apr 2008 B2
7371400 Borenstein et al. May 2008 B2
7468075 Lang et al. Dec 2008 B2
7468192 Mizuno et al. Dec 2008 B2
7476257 Sah et al. Jan 2009 B2
7479160 Branch et al. Jan 2009 B2
7485310 Luyten et al. Feb 2009 B2
7488348 Truncale et al. Feb 2009 B2
7513910 Buskirk et al. Apr 2009 B2
7531000 Hodorek May 2009 B2
7537617 Bindsell et al. May 2009 B2
7537780 Mizuno et al. May 2009 B2
7548865 Schmieding Jun 2009 B2
7550007 Malinin Jun 2009 B2
7563455 McKay Jul 2009 B2
7563769 Bogin et al. Jul 2009 B2
7601173 Messerli et al. Oct 2009 B2
7608113 Boyer, II et al. Oct 2009 B2
7621963 Simon et al. Nov 2009 B2
7622438 Lazarov et al. Nov 2009 B1
7622562 Thorne et al. Nov 2009 B2
7628851 Armitage et al. Dec 2009 B2
7632311 Seedhom et al. Dec 2009 B2
7638486 Lazarov et al. Dec 2009 B2
7642092 Maor Jan 2010 B2
7648700 Vignery et al. Jan 2010 B2
7648965 Vignery et al. Jan 2010 B2
7658768 Miller et al. Feb 2010 B2
7662184 Edwards et al. Feb 2010 B2
7666230 Orban et al. Feb 2010 B2
RE41286 Atkinson et al. Apr 2010 E
7824701 Binette et al. Nov 2010 B2
7837740 Semler et al. Nov 2010 B2
7875296 Binette et al. Jan 2011 B2
RE42208 Truncale et al. Mar 2011 E
7901457 Truncale et al. Mar 2011 B2
7901461 Harmon et al. Mar 2011 B2
20010005592 Bhatnagar et al. Jun 2001 A1
20010006634 Zaleske et al. Jul 2001 A1
20010010023 Schwartz et al. Jul 2001 A1
20010011131 Luyten et al. Aug 2001 A1
20010016646 Rueger et al. Aug 2001 A1
20010018619 Enzerink et al. Aug 2001 A1
20010020188 Sander Sep 2001 A1
20010021875 Enzerink et al. Sep 2001 A1
20010031254 Bianchi et al. Oct 2001 A1
20010039457 Boyer, II et al. Nov 2001 A1
20010039458 Boyer, II et al. Nov 2001 A1
20010043940 Boyce et al. Nov 2001 A1
20010051834 Frondoza et al. Dec 2001 A1
20020009805 Nevo et al. Jan 2002 A1
20020016592 Branch et al. Feb 2002 A1
20020035401 Boyce et al. Mar 2002 A1
20020042373 Carney et al. Apr 2002 A1
20020045940 Giannetti et al. Apr 2002 A1
20020055783 Tallarida et al. May 2002 A1
20020072806 Buskirk et al. Jun 2002 A1
20020082704 Cerundolo Jun 2002 A1
20020099448 Hiles et al. Jul 2002 A1
20020106393 Bianchi et al. Aug 2002 A1
20020111695 Kandel Aug 2002 A1
20020120274 Overaker et al. Aug 2002 A1
20020138143 Grooms et al. Sep 2002 A1
20020177224 Madry et al. Nov 2002 A1
20020192263 Merboth et al. Dec 2002 A1
20030021827 Malaviya et al. Jan 2003 A1
20030023316 Brown et al. Jan 2003 A1
20030032961 Pelo et al. Feb 2003 A1
20030033021 Plouhar et al. Feb 2003 A1
20030033022 Plouhar et al. Feb 2003 A1
20030036797 Malaviya et al. Feb 2003 A1
20030036801 Schwartz et al. Feb 2003 A1
20030039695 Geistlich et al. Feb 2003 A1
20030040113 Mizuno et al. Feb 2003 A1
20030044444 Malaviya et al. Mar 2003 A1
20030049299 Malaviya et al. Mar 2003 A1
20030050709 Noth et al. Mar 2003 A1
20030055502 Lang et al. Mar 2003 A1
20030077821 Sah et al. Apr 2003 A1
20030078617 Schwartz et al. Apr 2003 A1
20030099620 Zaleske et al. May 2003 A1
20030139591 Luyten et al. Jul 2003 A1
20030144743 Edwards et al. Jul 2003 A1
20030229400 Masuda et al. Dec 2003 A1
20030236573 Evans et al. Dec 2003 A1
20040024457 Boyce et al. Feb 2004 A1
20040028717 Sittinger et al. Feb 2004 A1
20040033212 Thomson et al. Feb 2004 A1
20040039447 Simon et al. Feb 2004 A1
20040044408 Hungerford et al. Mar 2004 A1
20040062753 Rezania et al. Apr 2004 A1
20040078078 Shepard Apr 2004 A1
20040078090 Binette et al. Apr 2004 A1
20040102850 Shepard May 2004 A1
20040107003 Boyer et al. Jun 2004 A1
20040127987 Evans et al. Jul 2004 A1
20040134502 Mizuno et al. Jul 2004 A1
20040138748 Boyer, II et al. Jul 2004 A1
20040143344 Malaviya et al. Jul 2004 A1
20040151705 Mizuno et al. Aug 2004 A1
20040166169 Malaviya et al. Aug 2004 A1
20040170610 Slavin et al. Sep 2004 A1
20040175826 Maor Sep 2004 A1
20040192605 Zhang et al. Sep 2004 A1
20040193268 Hazebrouck Sep 2004 A1
20040197311 Brekke et al. Oct 2004 A1
20040197373 Gertzman et al. Oct 2004 A1
20040219182 Gomes et al. Nov 2004 A1
20040220574 Pelo et al. Nov 2004 A1
20040230303 Gomes et al. Nov 2004 A1
20040241203 Shakesheff et al. Dec 2004 A1
20040243242 Sybert et al. Dec 2004 A1
20050004672 Pafford et al. Jan 2005 A1
20050027307 Schwartz et al. Feb 2005 A1
20050043814 Kusanagi et al. Feb 2005 A1
20050064042 Vunjak-Novakovia et al. Mar 2005 A1
20050074476 Gendler et al. Apr 2005 A1
20050074481 Brekke et al. Apr 2005 A1
20050089544 Khouri et al. Apr 2005 A1
20050101957 Buskirk et al. May 2005 A1
20050112761 Halvorsen et al. May 2005 A1
20050125077 Harmon et al. Jun 2005 A1
20050129668 Giannetti et al. Jun 2005 A1
20050152882 Kizer et al. Jul 2005 A1
20050159820 Yoshikawa et al. Jul 2005 A1
20050159822 Griffey et al. Jul 2005 A1
20050196460 Malinin Sep 2005 A1
20050209705 Niederauer et al. Sep 2005 A1
20050222687 Vunjak-Novakovia et al. Oct 2005 A1
20050228498 Andres Oct 2005 A1
20050240281 Slivka et al. Oct 2005 A1
20050251268 Truncale Nov 2005 A1
20050260612 Padmini et al. Nov 2005 A1
20050261681 Branch et al. Nov 2005 A9
20050261767 Anderson et al. Nov 2005 A1
20050288796 Awad et al. Dec 2005 A1
20060030948 Manrique et al. Feb 2006 A1
20060060209 Shepard Mar 2006 A1
20060099234 Winkler May 2006 A1
20060111778 Michalow May 2006 A1
20060167483 Asculai et al. Jul 2006 A1
20060178748 Dinger, III et al. Aug 2006 A1
20060200166 Hanson et al. Sep 2006 A1
20060210643 Truncale et al. Sep 2006 A1
20060216323 Knaack et al. Sep 2006 A1
20060216822 Mizuno et al. Sep 2006 A1
20060235534 Gertzman et al. Oct 2006 A1
20060247790 McKay Nov 2006 A1
20060247791 McKay et al. Nov 2006 A1
20060251631 Adkisson, IV et al. Nov 2006 A1
20060276907 Boyer, II et al. Dec 2006 A1
20060293757 McKay et al. Dec 2006 A1
20070009610 Syring Jan 2007 A1
20070014867 Kusanagi et al. Jan 2007 A1
20070026030 Gill et al. Feb 2007 A1
20070036834 Pauletti et al. Feb 2007 A1
20070041950 Leatherbury et al. Feb 2007 A1
20070055377 Hanson et al. Mar 2007 A1
20070065943 Smith et al. Mar 2007 A1
20070067032 Felt et al. Mar 2007 A1
20070083266 Lang Apr 2007 A1
20070093896 Malinin Apr 2007 A1
20070093912 Borden Apr 2007 A1
20070098759 Malinin May 2007 A1
20070100450 Hodorek May 2007 A1
20070113951 Huang May 2007 A1
20070128155 Seyedin Jun 2007 A1
20070134291 Ting Jun 2007 A1
20070135917 Malinin Jun 2007 A1
20070135918 Malinin Jun 2007 A1
20070135928 Malinin Jun 2007 A1
20070148242 Vilei et al. Jun 2007 A1
20070162121 Tarrant et al. Jul 2007 A1
20070168030 Edwards et al. Jul 2007 A1
20070172506 Nycz et al. Jul 2007 A1
20070179607 Hodorek et al. Aug 2007 A1
20070185585 Bracy et al. Aug 2007 A1
20070276506 Troxel Nov 2007 A1
20070299517 Davisson Dec 2007 A1
20070299519 Schmieding Dec 2007 A1
20080015709 Evans et al. Jan 2008 A1
20080027546 Semler et al. Jan 2008 A1
20080031915 Becerra Ratia et al. Feb 2008 A1
20080038314 Hunziker Feb 2008 A1
20080039939 Iwamoto et al. Feb 2008 A1
20080039954 Long et al. Feb 2008 A1
20080039955 Hunziker Feb 2008 A1
20080051889 Hodorek Feb 2008 A1
20080058953 Scarborough Mar 2008 A1
20080065210 McKay Mar 2008 A1
20080077251 Chen et al. Mar 2008 A1
20080119947 Huckle et al. May 2008 A1
20080125863 McKay May 2008 A1
20080125868 Branemark May 2008 A1
20080133008 Truncale et al. Jun 2008 A1
20080138414 Huckle et al. Jun 2008 A1
20080153157 Yao et al. Jun 2008 A1
20080154372 Peckham Jun 2008 A1
20080167716 Schwartz et al. Jul 2008 A1
20080183300 Seedhom et al. Jul 2008 A1
20080220044 Semler et al. Sep 2008 A1
20080249632 Stone et al. Oct 2008 A1
20080255676 Semler et al. Oct 2008 A1
20080274157 Vunjak-Novakovic et al. Nov 2008 A1
20080294270 Yao et al. Nov 2008 A1
20080305145 Shelby et al. Dec 2008 A1
20090024224 Chen et al. Jan 2009 A1
20090043389 Vunjak-Novakovic et al. Feb 2009 A1
20090069901 Truncale et al. Mar 2009 A1
20090069904 Picha Mar 2009 A1
20090076624 Rahaman et al. Mar 2009 A1
20090099661 Bhattacharya et al. Apr 2009 A1
20090117652 Luyten et al. May 2009 A1
20090131986 Lee et al. May 2009 A1
20090149893 Semler et al. Jun 2009 A1
20090210057 Liao et al. Aug 2009 A1
20090226523 Behnam et al. Sep 2009 A1
20090248592 Schmieding Oct 2009 A1
20090280179 Neumann et al. Nov 2009 A1
20090299475 Yamamoto et al. Dec 2009 A1
20090312805 Lang et al. Dec 2009 A1
20090312842 Bursac et al. Dec 2009 A1
20090319051 Nycz et al. Dec 2009 A9
20090324722 Elisseeff Dec 2009 A1
20100021521 Xu et al. Jan 2010 A1
20100036492 Hung et al. Feb 2010 A1
20100036503 Chen et al. Feb 2010 A1
20100322994 Kizer et al. Dec 2010 A1
20110052705 Malinin Mar 2011 A1
20110070271 Truncale et al. Mar 2011 A1
20110104242 Malinin May 2011 A1
20120009224 Kizer et al. Jan 2012 A1
20120009270 Kizer et al. Jan 2012 A1
Foreign Referenced Citations (107)
Number Date Country
0517030 Dec 1992 EP
0522569 Jan 1993 EP
0762903 Dec 1995 EP
0517030 Sep 1996 EP
0739631 Oct 1996 EP
0784985 Jul 1997 EP
0739631 May 1998 EP
0968012 Sep 1998 EP
1237511 Jun 2001 EP
1127581 Aug 2001 EP
1181908 Feb 2002 EP
1234552 Aug 2002 EP
1234555 Aug 2002 EP
0739631 Mar 2003 EP
0762903 Sep 2003 EP
1181908 Dec 2003 EP
1384452 Jan 2004 EP
1234555 Jun 2004 EP
1237511 Sep 2004 EP
1618178 Nov 2004 EP
1127581 Jun 2005 EP
1561481 Aug 2005 EP
1234552 Aug 2006 EP
0968012 Sep 2006 EP
1719463 Nov 2006 EP
1719531 Nov 2006 EP
1719532 Nov 2006 EP
1234555 Feb 2007 EP
0762903 Aug 2007 EP
1740121 Oct 2007 EP
1537883 Apr 2008 EP
1618178 Jul 2008 EP
1416880 Mar 2011 EP
2102811 Feb 1983 GB
1454423 Jan 1989 SU
WO 8404880 Dec 1984 WO
9001342 Feb 1990 WO
9316739 Sep 1993 WO
WO 9403584 Feb 1994 WO
9525748 Sep 1995 WO
WO 9533502 Dec 1995 WO
9624310 Aug 1996 WO
9737613 Oct 1997 WO
WO 9814222 Apr 1998 WO
9834569 Aug 1998 WO
WO 9841246 Sep 1998 WO
98-43686 Oct 1998 WO
9908728 Feb 1999 WO
WO 9909914 Mar 1999 WO
WO 9911298 Mar 1999 WO
9915209 Apr 1999 WO
WO 9921497 May 1999 WO
WO 9922747 May 1999 WO
WO 9948541 Sep 1999 WO
WO 9952572 Oct 1999 WO
9956797 Nov 1999 WO
WO 0040177 Jul 2000 WO
0047114 Aug 2000 WO
0072782 Dec 2000 WO
0107595 Feb 2001 WO
0138357 May 2001 WO
0139788 Jun 2001 WO
0146416 Jun 2001 WO
WO 0143667 Jun 2001 WO
0218546 Mar 2002 WO
0222779 Mar 2002 WO
0236732 May 2002 WO
WO 02058484 Aug 2002 WO
02077199 Oct 2002 WO
02095019 Nov 2002 WO
03007873 Jan 2003 WO
WO 03007805 Jan 2003 WO
WO 03007879 Jan 2003 WO
03012053 Feb 2003 WO
WO 03007879 May 2003 WO
03079985 Oct 2003 WO
03087160 Oct 2003 WO
03094835 Nov 2003 WO
WO 03007805 Feb 2004 WO
2004067704 Aug 2004 WO
2004069298 Aug 2004 WO
WO 2004075940 Sep 2004 WO
WO 2004096983 Nov 2004 WO
WO 2004103224 Dec 2004 WO
2005058207 Jun 2005 WO
WO 2005110278 Nov 2005 WO
WO 2004096983 Dec 2005 WO
2006036681 Apr 2006 WO
WO 2006042311 Apr 2006 WO
2006050213 May 2006 WO
WO 2005110278 Aug 2006 WO
2002036732 Sep 2006 WO
2006113586 Oct 2006 WO
WO 2006042311 Nov 2006 WO
2003094835 Dec 2006 WO
WO 2007024238 Mar 2007 WO
2006113586 Sep 2007 WO
2008013763 Jan 2008 WO
WO 2008021127 Feb 2008 WO
2008038287 Apr 2008 WO
2008013763 Jun 2008 WO
2008081463 Jul 2008 WO
2008038287 Sep 2008 WO
WO 2008106254 Sep 2008 WO
WO 2009076164 Jun 2009 WO
WO 2009111069 Sep 2009 WO
2009155232 Dec 2009 WO
Non-Patent Literature Citations (236)
Entry
Sedgwick et al., “Studies into the influence of carrageenan-induced inflammation on articular cartilage degradation using implantation into air pouches”, British Journal of Experimental Pathology, vol. 66, (1985), pp. 445-453.
First Action Interview Pilot Program Pre-interview Communications for U.S. Appl. No. 12/696,366, mailed Oct. 13, 2011.
Non-final Office Action for U.S. Appl. No. 12/881,988, mailed Oct. 26, 2011.
Non-final Office Action for U.S. Appl. No. 11/081,103, mailed Nov. 28, 2011.
Non-Final Office Action for U.S. Appl. No. 11/081,103, mailed Jan. 14, 2010.
Final Office Action for U.S. Appl. No. 11/481,955, mailed Jan. 7, 2010.
Final Office Action for U.S. Appl. No. 11/657,042, mailed Dec. 28, 2009.
Aston et al., “Repair of Articular Surfaces by Allografts of Articular and Growth-Plate Cartilage,” Journal of Bone and Joint Surgery, Jan. 1985, vol. 68-B, No. 1, pp. 29-35.
Hoffman, “Hydrogels for Biomedical Applications”, Advanced Drug Delivery Reviews, 2002, vol. 43, pp. 3-12.
Dahlberg et al., “Demineralized Allogeneic Bone Matrix for Cartilage Repair”, Journal of Orthopaedic Research, 1991, vol. 9, pp. 11-19.
Lu et al., “Minced Cartilage without Cell Culture Serves as an Effective Intraoperative Cell Source for Cartilage Repair”, Journal of Orthopaedic Research, Jun. 2006, vol. 24, pp. 1261-1270.
Stone et al., “Articular Cartilage Paste Grafting to Full-Thickness Articular Cartilage Knee Joint Lesions: A 2- to 12-Year Follow-up”, Arthroscopy: The Journal of Arthoscopic and Related Surgery, Mar. 2006, vol. 22, No. 3, pp. 291-299.
Newman, “Articular Cartilage Repair”, American Journal of Sports Medicine, 1998, vol. 26, No. 2, pp. 309-324.
Brittberg et al., “Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation”, New England Journal of Medicine, Oct. 6, 1994, vol. 331, No. 14, pp. 889-895.
Nixon et al., “Enhanced Repair of Extensive Articular Defects by Insulin-like Growth Factor-I-Laden Fibrin Composites”, Journal of Orthopaedic Research, 1999; 17:475-487.
International Cartilage Repair Society, “Cartilage Injury Evaluation Package”, www.cartilage.org, 2000.
Richardson et al., “Repair of Human Articular Cartilage After Implantation of Autologous Chondrocytes”, Journal of Bone and Joint Surgery [Br], 1999; 81-B:1064-1068.
Brittberg et al., “Autologous Chondrocytes Used for Articular Cartilage Repair: An Update”, Clinical Orthopaedics and Related Research, 2001; No. 391 Suppl: S337-S348.
Peterson et al., “Two- to 9-year Outcome After Autologous Chondrocyte Transplantation of the Knee”, Clinical Orthopaedics and Related Research, 2000; No. 374: 212-234.
Peterson et al., “Autologous Chondrocyte Transplantation: Biomechanics and Long-term Durability”, American Journal of Sports Medicine, 2002, vol. 30, No. 1, pp. 2-12.
Messner et al., “Cartilage Repair: A Critical Review”, Acta Orthopaedica Scandinavica,1996, vol. 67, No. 5, pp. 523-529.
Messner et al., “The Long-term Prognosis for Severe Damage to Weight-bearing Cartilage in the Knee: A 14-year Clinical and Radiographic Follow-up in 28 Young Athletes”, Acta Orthopaedica Scandinavica, 1996, vol. 67, No. 2, pp. 165-168.
Buckwalter et al., “Articular Cartilage: Degeneration and Osteoarthritis, Repair, Regeneration, and Transplantation”, AAOS Instructional Course Lectures, 1998; 47:487-504.
Breinan et al., “Effect of Cultured Autologous Chondrocytes on Repair of Chondral Defects in a Canine Model”, Journal of Bone and Joint Surgery [Am], Oct. 1997; vol. 79-A, No. 10, 1439-1451.
Breinan et al., “Autologous Chondrocyte Implantation in a Canine Model: Change in Composition of Reparative Tissue with Time”, Journal of Orthopaedic Research, 2001; 19:482-492.
Brittberg et al., “Rabbit Articular Cartilage Defects Treated with Autologous Cultured Chondrocytes”, Clinical Orthopaedics and Related Research, 1996; 326:270-283.
Nehrer et al., “Chondrocyte-seeded Collagen Matrices Implanted in a Chondral Defect in a Canine Model”, Biomaterials, 1998; 19:2313-2328.
Vunjak-Novakovic et al., “Bioreactor Cultivation Conditions Modulate the Composition and Mechanical Properties of Tissue-Engineered Cartilage”, Journal of Orthopaedic Research, 1999; 17:130-138.
Bursac, “Collagen Network Contributions to Structure-Function Relationships in Cartilaginous Tissues in Compression” (Dissertation), Boston University College of Engineering, 2002.
Gooch et al., “IGF-I and Mechanical Environment Interact to Modulate Engineered Cartilage Development”, Biochemical and Biophysical Research Communications, 2001; 286:909-915.
Pei et al., “Growth Factors for Sequential Cellular De- and Re-differentiation in Tissue Engineering”, Biochemical and Biophysical Research Communications, 2002; 294:149-154.
Obradovic et al., “Integration of Engineered Cartilage”, Journal of Orthopaedic Research, 19:1089-1097, 2001.
Schaefer et al., “Tissue Engineered Composites for the Repair of Large Osteochondral Defects”, Arthritis & Rheumatism, 46(9): 2524-2534 (2002).
Pei et al., “Bioreactors Mediate the Effectiveness of Tissue Engineering Scaffolds”, The FASEB Journal, 16:1691-1694, published online (Aug. 7, 2002), 10.1096/fj.02-0083fje.
Madry et al., “Gene Transfer of a Human Insulin-like Growth Factor I cDNA Enhances Tissue Engineering of Cartilage”, Human Gene Therapy, 13: 1621-1630 (Sep. 1, 2002).
Pearson et al. (eds.), American Association of Tissue Banks, Standards for Tissue Banking, 2008 (12th ed.), pp. 53-56, 86-88.
Osteo Sponge product information, Bacterin International Inc., May 2005.
Nolan et at., “Living Bone Grafts”, BMJ, vol. 304, Jun. 13, 1992, pp. 1520 and 1521.
Stone et al., “One-Step American Technique of Articular Cartilage Paste Grafting to Traumatic and Arthritic Defects in the Knee Joint (2-7 Years Follow-Up)”, downloaded from http:web.archive.org/web/20041205005845/http://www.stoneclinic.com/onestep.thm; published Dec. 5, 2004.
Feczko et al., “Experimental Results of Donor Site Filling for Autologous Osteochondral Mosaicplasty”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 19, No. 7 (Sep. 2003), pp. 755-761.
Nettles et al., “In Situ Crosslinkable Hyaluronan for Articular Cartilage Repair”, 50th Annual Meeting of the Orthopaedic Research Society, Paper No. 0202.
Nettles et al., “Photocrosslinkable Hyaluronan as a Scaffold for Articular Cartilage Repair”, Annals of Biomedical Engineering, vol. 32, No. 3, Mar. 2004, pp. 391-397.
Peretti et al., “Cell-Based Bonding of Articular Cartilage: An Extended Study”, Journal of Biomedical Materials Research, 64A, 2003, pp. 517-524.
Bugbee, “Fresh Osteochondral Allografting”, Operative Techniques in Sports Medicine, Apr. 2000, vol. 8, No. 2, pp. 158-162.
Verbruggen et al., “Repair Function in Organ Cultured Human Cartilage. Replacement of Enzymatically Removed Proteoglycans During Longterm Organ Culture”, The Journal of Rheumatology, 12:4, (1985), pp. 665-674.
Peretti et al., “Cell-based Tissue-Engineered Allogeneic Implant for Cartilage Repair” Tissue Engineering, 2000, vol. 6. No. 5, pp. 567-576.
Jackson et al., “Cartilage Substitute: Overview of Basic Science & Treatment Options”, Journal of American Academy of Orthopaedic Surgeons, vol. 9, Jan./Feb. 2001, pp. 37-52.
Glowacki, Julie, “Engineered Cartilage, Bone, Joints and Menisci—Potential for Temporomandibular Joint Reconstruction”, Cells tissues Organs, vol. 169, Issue 3, 2001, pp. 302-308.
Peretti et al., “A Biomedical Analysis of an Engineered Cell-Scaffold Implant for Cartilage Repair”, Annals of Plastic Surgery, 2001, vol. 46, No. 5, pp. 533-537.
Peretti et al., “Biomechanical Analysis of a Chondrocyte-Based Repair Model of Articular Cartilage”, Tissue Engineering, Aug. 1, 1999, vol. 5. No. 4, pp. 317-326.
Peretti et al., “In Vitro Bonding of Pre-seeded Chondrocyte”, Sport Sciences for Health, May 1, 2007, vol. 2, No. 1, pp. 29-33.
Peretti et al., “Bonding of Cartilage Matrices with Cultured Chondrocytes: An Experiential Model”, Journal of Orthopedic Research, Jan. 1998, vol. 16, No. 1, pp. 89-95.
Hunziker, “Articular Cartilage Repair: Basic Science and Clinical Progress. A Review of the Current Status and Prospects”, Osteoarthritis and Cartilage 2001, vol. 10, No. 6, pp. 432-463.
Chen et al., “Repair of Articular Cartilage Defects: Part I, Basic Science of Cartilage Healing”, The American Journal of Orthopedics, Jan. 1999, pp. 31-33.
Chen et al., “Repair of Articular Cartilage Defects: Part II. Treatment Options”, The American Journal of Orthopedics, Feb. 1999, pp. 88-96.
Buckwalter, “Articular Cartilage Injuries”, Clinical Orthopaedics and Related Research, 2002, No. 402, pp. 21-37.
Nixon et al., “New Horizons in Articular Cartilage Repair”, Proceedings of the Annual Convention of the AAEP, 2001, vol. 47, pp. 217-226.
Tsumaki et al. “Role of CDMP-1 in Skeletal Morphogenesis: Promotion of Mesenchymal Cell Recruitment and Chondrocyte Differentiation”, J. Cell Biol., Jan. 1999, vol. 144, No. 1, 161-173.
Trzeciak et al., “Evaluation of Cartilage Reconstruction by Means of Autologous Chondrocyte Versus Periosteal Graft Transplantation: An Animal Study”, Transplantation Proceedings, vol. 38 (2006), pp. 305-311.
Brighton et al., “Articular Cartilage Preservation and Storage—I. Application of Tissue Culture Techniques to the Storage of Viable Articular Cartilage”, Arthritis and Rheumatism, vol. 22, No. 10 (Oct. 1979), pp. 1093-1101.
Mahadev et al., “Autogenous Osteochondral Morselised Grafts for Full Thickness Osteochondral Defects in the Knee Joints of Pigs”, Singapore Medical Journal, 2001, vol. 42(9), pp. 410-416.
Hunziker, “Articular Cartilage Structure in Humans and Experimental Animals”, Articular Cartilage and Osteoarthritis, Raven Press, ed., 2001, pp. 183-199.
Girotto et al., “Tissue-specific gene expression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds”, Biomaterials, vol. 24 (2003), pp. 3265-3275.
Gertzman et al., “A pilot study evaluating sodium hyaluronate as a carrier for freeze-dried demineralized bone powder”, Cell and Tissue Banking, vol. 2, 2001, pp. 87-94.
Diduch et al., “Joint Repair: Treatment Options for Articular Cartilage Injury” Orthopedic Technology Review (2002) 4:24-27.
Gilbert, et al., “Decellularization of Tissues and Organs”, Biomaterials (2006) 27:3675-3683.
http://www.technobusiness-solutions.com/article-lyophilization1.html (published Feb. 12, 2002).
Loeser et al., “Basic Fibroblast Growth Factor Inhibits the Anabolic Activity of Insulin-like Growth Factor 1 and Osteogenic Protein 1 in Adult Human Articular Chondrocytes”, Arthritis & Rheumatism, vol. 52, No. 12 (Dec. 2005), pp. 3910-3917.
Kato et al., “Fibroblast Growth Factor is an Inhibitor of Chondrocyte Terminal Differentiation”, Journal of Biological Chemistry, vol. 265, No. 10 (Apr. 5, 1990) pp. 5903-5909.
Andrés et al., “A Pro-Inflammatory Signature Mediates FGF2-induced Angiogenesis”, Journal of Cellular and Molecular Medicine, (Jun. 28, 2008), available at http://www.ncbi.nlm.nih.gov/pubmed/18624773.
Burger et al., “Fibroblast growth factor receptor-1 is expressed by endothelial progenitor cells”, Blood, vol. 100, No. 10 (Nov. 15, 2002) 3527-35.
Baird, “Fibroblast growth factors: activities and significance of non-neurotrophin neurotrophic growth factors”, Current Opinions in Neurobiology, (1994) 4:78-86.
Mazué et al., “Preclinical and Clinical Studies with Recombinant Human Basic Fibroblast Growth Factor”, Annals New York Academy of Sciences, (1991) 329-340.
Aviles et al., “Testing clinical therapeutic angiogenesis using basic fibroblast growth factor (FGF-2)”, British Journal of Pharmacology (2003) 140: 637-646.
Ornitz et al., “Protein Family Review: Fibroblast Growth Factors”, Genome Biology (2001) 2(3): 3005.1-3005.12, http://genomebiology.com/2001/2/3/reviews/3005.1.
Non-final Office Action mailed on Oct. 5, 2005 in connection with U.S. Appl. No. 10/424,765.
U.S. Appl. No. 12/147,042, filed Jun. 26, 2008, titled Novel Glue for Cartilage Repair.
Non-final Office Action mailed on Aug. 19, 2009 in connection with U.S. Appl. No. 12/147,042.
Final Office Action mailed on Sep. 19, 2008 in connection with U.S. Appl. No. 11/081,103.
Non-final Office Action mailed on Jun. 3, 2009 in connection with U.S. Appl. No. 11/081,103.
Final Office Action mailed on Jul. 22, 2009 in connection with U.S. Appl. No. 12/010,984.
Non-final Office Action mailed on Jun. 8, 2009 in connection with U.S. Appl. No. 11/481,955.
Non-final Office Action mailed on Feb. 6, 2007 in connection with U.S. Appl. No. 10/438,883.
Non-final Office Action mailed on Nov. 12, 2008 in connection with U.S. Appl. No. 10/438,883.
Non-final Office Action mailed on May 3, 2005 in connection with U.S. Appl. No. 10/438,883.
Non-final Office Action mailed on Nov. 5, 2004 in connection with U.S. Appl. No. 10/438,883.
Non-final Office Action mailed on Jul. 2, 2009 in connection with U.S. Appl. No. 10/815,778.
Non-final Office Action mailed on Feb. 7, 2008 in connection with U.S. Appl. No. 10/815,778.
Final Office Action mailed on Nov. 13, 2008 in connection with U.S. Appl. No. 10/815,778.
Non-final Office Action mailed on May 18, 2009 in connection with U.S. Appl. No. 11/657,042.
International Search Report mailed on Nov. 1, 2004 in connection with International Patent Application No. PCT/US04/010957.
Written Opinion mailed on Nov. 1, 2004 in connection with International Patent Application No. PCT/US04/010957.
International Preliminary Report on Patentability mailed on Nov. 18, 2005 in connection with International Patent Application No. PCT/US04/010957.
International Search Report mailed on Apr. 7, 2006 in connection with International Patent Application No. PCT/US05/030610.
Written Opinion mailed on Apr. 7, 2006 in connection with International Patent Application No. PCT/US05/030610.
International Preliminary Report on Patentability mailed on Feb. 26, 2008 in connection with International Patent Application No. PCT/US05/030610.
International Search Report mailed on Sep. 21, 2006 in connection with International Patent Application No. PCT/US05/036878.
Written Opinion mailed on Sep. 21, 2006 in connection with International Patent Application No. PCT/US05/036878.
International Preliminary Report on Patentability mailed on Apr. 17, 2007 in connection with International Patent Application No. PCT/US05/036878.
International Search Report mailed on Jun. 19, 2006 in connection with International Patent Application No. PCT/US05/008798.
International Search Report mailed on Oct. 28, 2005 in connection with International Patent Application No. PCT/US04/010956.
Written Opinion mailed on Oct. 28, 2005 in connection with International Patent Application No. PCT/US04/010956.
International Preliminary Report on Patentability mailed on Nov. 18, 2005 in connection with International Patent Application No. PCT/US04/010956.
International Search Report mailed on Jun. 23, 2009 in connection with International Patent Application No. PCT/US08/051796.
Written Opinion mailed on Jun. 23, 2009 in connection with International Patent Application No. PCT/US08/051796.
International Search Report mailed on Jul. 6, 2009 in connection with International Patent Application No. PCT/US08/085522.
Written Opinion mailed on Jul. 6, 2009 in connection with International Patent Application No. PCT/US08/085522.
International Search Report mailed on Jul. 6, 2009 in connection with International Patent Application No. PCT/US09/001459.
Written Opinion mailed on Jul. 6, 2009 in connection with International Patent Application No. PCT/US09/001459.
U.S. Appl. No. 12/381,072, filed Mar. 5, 2009, titled Cancellous Constructs, Cartilage Particles and Combinations of Cancellous Constructs and Cartilage Particles.
Final Office Action mailed on Oct. 18, 2005 in connection with U.S. Appl. No. 10/438,883.
A Communication from the USPTO mailed on Oct. 9, 2007 in connection with U.S. Appl. No. 10/438,883.
The Written Opinion issued on Jun. 19, 2006 in connection with PCT/US2005/008798.
The International Preliminary Report on Patentability issued on Nov. 1, 2006 in connection with International Patent Application No. PCT/US2005/008798.
The International Preliminary Report on Patentability issued on Jul. 28, 2009 in connection with International Patent Application No. PCT/US2008/051796.
Non-final Office Action mailed on Dec. 18, 2007 in connection with U.S. Appl. No. 11/081,103.
Final Office Action mailed on Sep. 28, 2007 in connection with U.S. Appl. No. 10/960,960.
Non-final Office Action mailed on Feb. 20, 2007 in connection with U.S. Appl. No. 10/960,960.
http://www.stoneclinic.com/articularcartilagepastegrafting (listing a copyright date of 2009).
Non-final Office Action mailed on Apr. 19, 2007 in connection with U.S. Appl. No. 11/151,270.
Final Office Action mailed on Oct. 9, 2007 in connection with U.S. Appl. No. 11/151,270.
An Advisory Action mailed on Dec. 27, 2007 in connection with U.S. Appl. No. 11/151,270.
Non-final Office Action mailed on Jul. 9, 2008 in connection with U.S. Appl. No. 11/151,270.
U.S. Appl. No. 12/322,996, filed Feb. 9, 2009 titled Allograft Osteochondral Plug Combined With Cartilage Particle Mixture.
U.S. Appl. No. 12/881,988, filed Sep. 14, 2010.
U.S. Appl. No. 12/924,132, filed Sep. 21, 2010.
Temenoff et al., “Review: Tissue engineering for regeneration of articular cartilage”, Biomaterials 21 (2000) pp. 431-440.
Hunziker, “Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable?”, Osteoarthritis and Cartilage 7 (1999) pp. 15-28.
Communication pursuant to Article 94(3) EPC for European Patent Application No. 08 782 728.3, dated Aug. 9, 2011.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2010/000108, mailed Jul. 28, 2011.
First Action Interview Pilot Program Pre-Interview Communication for U.S. Appl. No. 12/931,427, mailed Aug. 19, 2011.
Nettles et al. (Mar. 2004), “In Situ Crosslinkable Hyaluronan for Articular Cartilage Repair”, 50th Annual Meeting of the Orthopaedic Research Society, Paper No. 0202.
Final Office Action for U.S. Appl. No. 11/081,103, mailed Aug. 11, 2010.
Non-final Office Action for U.S. Appl. No. 12/010,984, mailed Aug. 16, 2010.
International Search Report and Written Opinion for PCT/US2010/000108, mailed Aug. 24, 2010.
Non-final Office Action for U.S. Appl. No. 12/179,034, mailed Jun. 29, 2011.
Final Office Action for U.S. Appl. No. 12/381,072, mailed Jun. 27, 2011.
Non-final Office Action for U.S. Appl. No. 12/966,674, mailed Jul. 12, 2011.
Non-final Office Action for U.S. Appl. No. 12/924,132, mailed Jul. 18, 2011.
Cheng, et al., “Chondrogenic Differentiation of Adipose-Derived Adult Stem Cells by a Porous Scaffold Derived from Native Articular Cartilage Extracellular Matrix”, Tissue Engineering: Part A, vol. 15, No. 2, (2009), pp. 231-241.
Lin et al., “The Chondrocyte: Biology and Clinical Application”, Tissue Engineering, vol. 12, No. 7, (2006), pp. 1971-1984.
Umlauf et al., “Cartilage biology, pathology, and repair”, Cell. Mol. Life Sci., vol. 67, (2010), pp. 4197-4211.
Yee, Cindy J. et al., (2000) Analysis of fibroblast growth factor receptor 3 S249C mutation in cervical carcinoma. Journal of the National Cancer Institute 92(22):1848-1849.
Zhang, Jiandong et al., (1991) Three-dimensional structure of human basic fibroblast growth factor, a structural homolog of interleukin 1 Beta. Proc Natl Acad Sci. USA 88(8):3446-3450.
Zhu, Hengyi et al., (1995) Glu-96 of basic fibroblast growth factor is essential for high affinity receptor binding. Journal of Biological Chemistry 270(37):21869-21874.
Zhu, Hengyi et al., (1997) Analysis of high-affinity binding determinants in the receptor binding epitope of basic fibroblast growth factor. Protein Engineering 10(4):417-421.
Carr, M. E. Jr. and Alving, B. M. (1995) Effect of fibrin structure on plasmin-mediated dissolution of plasma clots. Blood Coag. Fibrinol. 6(6):567-573.
Carr, Marcus E. (1988) Fibrin formed in plasma is composed of fibers more massive than those formed from purified fibrinogen. Thromb. Haemost. 59(3):535-539.
Cook, James L. et al., (2003) Biocompatibility of three-dimensional chondrocyte grafts in large tibial defects of rabbits. Am J Vet Res. 64(1):12-20.
Gao, Jizong et al., (2002) Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge. Tissue Engin. Part A 8(5):827-837.
Gruber, Reinhard et al., (2002) Platelets stimulate proliferation of bone cells: involvement of platelet-derived growth factor, micropartides and membranes. Clin Oral Implants Res. 13(5):529-535.
Haisch, A. et al., (2000) Preparation of a pure autologous biodegradable fibrin matrix for tissue engineering. Med Biol Eng Comput. 38(6):686-689.
Itokazu, M. et al., (1997) The sustained release of antibiotic from freeze-dried fibrinantibioticcompound and efficacies in a rat model of osteomyelitis. Infection 25(6):359-363.
Sims, C. Derek et al., (1998) Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes. Plastic & Recon. Surg. 101(6):1580-1585.
“Young's Modulus.” Entry on http://en.wikipedia.org. accessed Oct. 27, 2005. 3 pages.
Bradford, Marion M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry 72(12):248-254.
Matsuda et al. (1995) In Vivo Chondrogenesis in Collagen Sponge Sandwiched by Perichondrium. J. Biomater. Sci. Polymer Ed., vol. 7, No. 3, pp. 221-229.
Fujisato et al. (1996) Effect of basic fibroblast growth factor on cartilage regeneration in chondrocyte-seeded collagen sponge scaffold. Biomaterials, vol. 17, No. 2, pp. 155-162.
Non-Final Office Action mailed Apr. 15, 2010 in connection with U.S. Appl. No. 12/079,629.
Non-Final Office Action mailed Apr. 12, 2010 in connection with U.S. Appl. No. 12/191,490.
Non-Final Office Action mailed Apr. 26, 2010 in connection with U.S. Appl. No. 12/147,042.
Non-Final Office Action mailed Apr. 15, 2010 in connection with U.S. Appl. No. 11/657,042.
International Preliminary Report on Patentability for PCT/US2009/001459, mailed on May 12, 2010.
Abraham, Judith A. et al., (1986) Human Basic Fibroblast Growth Factor: Nucleotide Sequence and Genomic Organization. EMBO Journal 5(10):2523-2528.
Agrawal, Sudhir et al., (1991) Pharmacokinetics. Biodistribution, and Stability of Oligodeoxynucleotide Phosphorothioates in Mice. Proc Natl Acad Sci. USA 88(17):75957599.
Arakawa, Tsutomu et al., (1993) Production and Characterization of an Analog of Acidic Fibroblast Growth Factor With Enhanced Stability and Biological Activity. Protein Engineering 6(5):541-546.
Bailly, Karine et al., (2000) Uncoupling of cell proliferation and differentiation activities of basic fibroblast growth factor. FASEB Journal 14(2):333-343.
Bange, Johannes et al., (2002) Cancer progression and tumor cell motility are associated with the FGFR4 Arg388 allele. Cancer Research 62(3):840-846.
Bork, Peer (2000) Powers and pitfalls in sequence analysis: The 70% hurdle. Genome Res. 10(4):398-400.
Bork, Peer and Bairoch, Amnon (1996) Go hunting in sequence databases but watch out for the traps. Trends in Genetics 12(10):425-427.
Brenner, Steven E. (1999) Errors in genome annotation. Trends in Genetics 15(4):132133.
Cappellen, David et al., (1999) Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nature Genetics 23(1):18-20.
Chusho, Hideki et al., (2001) Dwarfism and early death in mice lacking C-type Natriuretic Peptide. Proc Natl Acad Sci. 98(7):4016-4021.
Coughlin, Shaun R. et al., (1988) Acidic and basic fibroblast growth factors stimulate tyrosine kinase activity in vivo. J Biol Chem. 263(2):988-993.
Dell'Accio, Francesco et al., (2001) Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo, Arthritis Rheum. 44(7):1608-19.
Doerks, Tobias et al., (1998) Protein annotation: detective work for function prediction. Trends Genet. 14(6):248-250 .
Dvorakova, Dana et al., (2001) Changes in the expression of FGFR3 in patients with chronic myeloid leukaemia receiving transplants of allogeneic peripheral blood stem cells—British Journal Haematology 13(3):832-835.
Eriksson, A. Elisabeth et al., (1991) Three-dimensional structure of human basic fibroblast growth factor. Proc. Natl. Acad. Sci. USA 88:3441-3445 (XP002936511).
Ezzat Shereen et al., (2002) Targeted expression of a Human pituitary tumor-derived isoform of FGF Receptor-4 Recapitulates Pituitary Tumorigenesis. Journal of Clinical Investigation 109(1):69-77.
Faham, Salem et al., (1998) Diversity does make a difference: fibroblast growth factor-Heparin interactions. Curr Opin Struct Biol 8(5):578-586.
Fingl, Edward and Woodbury, Dixon M.(1975) General Principles. In: The Pharmacological Basis of Therapeutics. Fifth edition. Goodman, Louis S. and Gilman, Alfred editors. See also table of contents.
Gargiulo, B. J. et al., (2002) Phenotypic modulation of human articular chondrocytes by bistratene A. Eur Cell Mater. 3:9-18.
Givol, David and Yayon, Avner (1992) Complexity of FGF receptors: genetic basis for structural diversity and functional specificity FASEB J. 6(15):3362-3369.
Hecht, H. J. et al., (2000) Structure of fibroblast growth factor 9 shows a symmetric dimmer with unique receptor- and heparin-binding interfaces. Acta Cryst. D57:378-384.
Johnson, Daniel E. and Williams, Lewis T. (1993) Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res. 60:1-41.
Kirikoshi, Hiroyuki et al., (2000) Molecular cloning and characterization of Human FGF-20 on chromosome 8p21.3-p22. Biochem Biophys Res Commun. 274(2):337-343.
Kuroda, S. et al., (1999) Anabolic effect of aminoterminally truncated Fibroblast Growth Factor 4 (FGF4) on bone. Bone 25:(4)431-437.
Nakatake, Yuhki et al., (2001) Identification of a novel fibroblast growth factor. FGF-22, preferentially expressed in the inner root sheath of the hair follicle. Biochim Biophys Acta. 1517(3):460-463.
Ngo, J. Thomas et al., (1994) Computational complexity, protein structure prediction, and the Levithal Paradox. In: The Protein Folding Problem and Tertiary Structure Prediction. K. Merz Jr. and S. Le Grand, Editors. 433-506 see also table of contents.
Nishimura, Tetsuya et al., (2000) Identification of a Novel FGF, FGF-21, Preferentially Expressed in the Liver. Biochim Biophys Acta 1492(1):203-206.
Okada-Ban, Mai et al., (2000) Fibroblast growth factor-2. International Journal of Biochemistry & Cell Biology 32(3):263-267.
Olsen, Shaun K. (2003) Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. J Biol Chem. 278(36):34226-342236.
Ornitz, David M. et al., (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem. 271(25)15292-7.
Ornitz, David M. (2000) FGFs, heparan sulfate and FGFRs: Complex interactions essential for development. Bio Essays 22:108-112.
Pellegrini, Luca et al., (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407(6807):1029-1034.
Pillai, Omathanu and Panchagnula, Ramesh (2001) Polymers in drug delivery. Curr Opin Chem Biol 5(4):447-451.
Plotnikov, Alexander N. et al., (1999) Structural basis for FGF receptor dimerization and activation. Cell 98(5):641-650.
Plotnikov, Alexander N. et al., (2000) Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell 101(4): 413-424.
Sahni, Malika et al., (1999) FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway Genes Deve1.13(11):1361-1366.
Schlessinger, Joseph et al., (2000) Crystal structure of a ternary FGF-FGFR-1 Heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 6(3):743-750.
Schmal, H. et al., (2007) bFGF influences human articular chondrocyte differentiation. Cytotherapy 9(2):184-93.
Seno, Masaharu et al., (1990) Carboxyl-terminal structure of basic fibroblast growth factor significantly contributes to its affinity for Heparin. Eur J Biochem. 188:239-245.
Shao, Zhang-Qiang et al., (2006) Effects of intramyocardial administration of slow-release basic fibroblast growth factor on angiogenesis and ventricular remodeling in a rat infarct model. Circ. J. 70(4):471-477.
Skolnik, Jeffrey and Fetrow, Jacquelyn S. (2000) From genes to protein structure and function: novel applications of computational approaches in the genomic era. Trends BioTechnol. 18(1):34-39.
Sleeman, Matthew et al., (2001) Identification of a new fibroblast growth factor receptor, FGFR5. Gene 271(2):171-182.
Smith, Temple and Zhang, Xiaolin (1997) The challenges of genome sequence annotation or The devil is in the details. Nat Biotechnol. 15(12):1222-1223.
Springer, Barry A. et al., (1994) Identification and Concerted Function of Two Receptors Binding Surfaces on Basic Fibroblast Growth Factor Required for Mitogenesis. The Journal of Biological Chemistry 269(43):26879-26884.
Stauber, Deborah J. et al., (2000) Structural interactions of fibroblast growth factor receptor with its ligands. Proc Natl Acad Sci USA 97(1):49-54.
Vajo, Zoltan et al., (2000) The Molecular and Genetic Basis of Fibroblast Growth Factor Receptor 3 Disorders: The Achondroplasia Family of Skeletal Dysplasias, Muenke Craniosynostosis, and Crouzon Syndrome with Acanthosis Nigricans. Endocrine Rev. 21(1):2339.
Wells, James A. (1990) Additivity of mutational effects in proteins. Biochemistry 29(37):8509-8517.
Yamashita, Tetsuo et al., (2000) Identification of a novel fibroblast growth factor, FGF23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochemical and Biophysical Research Communications 277(2):494-498.
Yayon, Avner et al., (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64(4):841-848.
Non-final Office Action for U.S. Appl. No. 12/043,001, mailed May 11, 2011.
Supplemental Search Report for European Patent Application No. 05728956.3, dated May 2, 2011.
Non-final Office Action for U.S. Appl. No. 12/322,996, mailed Apr. 4, 2011.
U.S. Appl. No. 13/025,722, filed Feb. 11, 2011.
Reissue U.S. Appl. No. 12/966,674, filed Dec. 13, 2010.
U.S. Appl. No. 12/931,427, filed Feb. 1, 2011.
Non-final Office Action with regard to U.S. Appl. No. 12/381,072, mailed Jan. 20, 2011.
Non-final Office Action with regard to U.S. Appl. No. 12/924,132, mailed Mar. 1, 2011.
Guilak, Farshid: “Functional Tissue Engineering: The Role of Biomechanics in Articular Cartilage Repair”, Clinical Orthopaedics and Related Research, No. 391 S, pp. S295-S305, (c) 2001 Lipponcott Williams & Wilkins, Inc., (11 pages).
Spangenberg, Kimberly, M., et al. “Histomorphometric Analysis of a Cell-Based Model of Cartilage Repair”, Tissue Engineering, vol. 6, No. 5, 2002, (8 pages).
Crescenzi et al., “Hyaluronan Linear and Crosslinked Derivatives as Potential/Actual Biomaterials”, in Hyaluronan (2002), vol. 1 (Chemical, Biochemical and Biological Aspects), J. F. Kennedy et al., Ed., pp. 251-268.
Michielen et al., “Novel Biomaterials Based on Cross-linked Hyaluronan: Structural Investigations”, in Hyaluronan (2002), vol. 1 (Chemical, Biochemical and Biological Aspects), J. F. Kennedy et al., Ed., pp. 269-276.
U.S. Appl. No. 12/657,207, filed Jan. 14, 2010, entitled “Cartilage Particle Tissue Mixtures Optionally Combined With a Cancellous Construct”.
International Patent Application No. PCT/US2009/000108, filed Jan. 14, 2010, entitled “Cartilage Particle Tissue Mixtures Optionally Combined With a Cancellous Construct”.
Final Office Action mailed Mar. 15, 2010 in connection with U.S. Appl. No. 10/815,778.
Final Office Action mailed Mar. 22, 2010 in connection with U.S. Appl. No. 12/010,984.
U.S. Appl. No. 12/696,366, filed Jan. 29, 2010, entitled “Engineered Osteochondral Construct for Treatment of Articular Cartilage Defects”.
First Action Interview Pilot Program Pre-Interview Communication for U.S. Appl. No. 12/328,306, mailed Dec. 22, 2011.
Final Office Action for U.S. Appl. No. 12/328,306, mailed Apr. 19, 2012.
Final Office Action for U.S. Appl. No. 12/881,988, mailed May 11, 2012.
Final Office Action for U.S. Appl. No. 11/081,103, mailed May 18, 2012.
Final Office Action for U.S. Appl. No. 12/179,034, mailed Jan. 27, 2012.
Non-final Office Action for U.S. Appl. No. 12/381,072, mailed Jan. 23, 2012.
Non-final Office Action for U.S. Appl. No. 12/924,132, mailed Feb. 21, 2012.
Related Publications (1)
Number Date Country
20100015202 A1 Jan 2010 US
Provisional Applications (3)
Number Date Country
60904809 Mar 2007 US
61189252 Aug 2008 US
61205433 Jan 2009 US
Continuation in Parts (2)
Number Date Country
Parent 12043001 Mar 2008 US
Child 12508892 US
Parent 12381072 Mar 2009 US
Child 12043001 US