Cancer-related biological materials in microvesicles

Information

  • Patent Grant
  • 10793914
  • Patent Number
    10,793,914
  • Date Filed
    Monday, February 1, 2016
    8 years ago
  • Date Issued
    Tuesday, October 6, 2020
    4 years ago
Abstract
Disclosed herein are methods for assaying a biological sample from a subject by analyzing components of microvesicle fractions in aid of risk, diagnosis, prognosis or monitoring of, or directing treatment of the subject for, a disease or other medical condition in the subject. Also disclosed are methods of treatment and identifying biomarkers using a microvesicle fraction of a subject. Kits, pharmaceutical compositions, and profiles related to the methods are also disclosed.
Description
FIELD OF INVENTION

The present invention relates to the fields of biomarker analysis, diagnosis, prognosis, patient monitoring, therapy selection, risk assessment, and novel therapeutic agents for human or other animal subjects, particularly the profiling of biological materials from a microvesicle fraction of a biological sample, and novel therapies related to microvesicles.


BACKGROUND OF THE INVENTION

Increasing knowledge of the genetic and epigenetic changes occurring in cancer cells provides an opportunity to detect, characterize, and monitor tumors by analysing tumor-related nucleic acid sequences and profiles. Cancer-related changes include specific mutations in gene sequences (Cortez and Calin, 2009; Diehl et al., 2008; Network, 2008; Parsons et al., 2008), up- and down-regulation of mRNA and miRNA expression (Cortez and Calin, 2009; Itadani et al., 2008; Novakova et al., 2009), mRNA splicing variations, changes in DNA methylation patterns (Cadieux et al., 2006; Kristensen and Hansen, 2009), amplification and deletion of genomic regions (Cowell and Lo, 2009), and aberrant expression of repeated DNA sequences (Ting et al., 2011). Various molecular diagnostic tests such as mutational analysis, methylation status of genomic DNA, and gene expression analysis may detect these changes.


Research uncovering the molecular mechanisms underlying cancer improves our understanding of how to select and design optimal treatment regimes for a patient's disease based on the molecular makeup of his or her particular cancer. Over the past few years, this has led to a significant increase in the development of therapies specifically targeting gene mutations involved in disease progression. In parallel, the use of molecular diagnostic testing for cancer diagnosis, prognosis and treatment selection has expanded, driven by the need for more cost efficient applications of expensive therapies. Current molecular diagnostics has so far almost exclusively relied on assaying cancer cells from tissue biopsy by needle aspiration or surgical resection.


However, the ability to perform these tests using a blood sample is sometimes more desirable than using a tissue sample from a cancer patient because, frequently, fresh tissue samples are difficult or impossible to obtain, and archival tissue samples are often less relevant to the current status of the patient's disease. A less invasive approach using a more easily accessible biological sample, e.g., a blood sample, has wide ranging implications in terms of patient welfare, the ability to conduct longitudinal disease monitoring, and the ability to obtain expression profiles even when tissue cells are not easily accessible, e.g., in ovarian or brain cancer patients.


Currently, gene expression profiling of blood samples involves the analysis of RNA extracted from peripheral blood mononuclear cells (PBMC) (Hakonarson et al., 2005) or circulating tumor cells (CTC) (Cristofanilli and Mendelsohn, 2006).


Many types of cancer cells release an abundance of small membrane-bound vesicles, which have been observed on their surface in culture (Skog et al., 2008). These microvesicles are generated and released through several processes and vary in size (from about 30 nm to about 1 μm in diameter) and content (Simons and Raposo, 2009). Microvesicles can bud/bleb off the plasma membrane of cells, much like retrovirus particles (Booth et al., 2006), be released by fusion of endosomal-derived multivesicular bodies with the plasma membrane (Lakkaraju and Rodriguez-Boulan, 2008), or be formed as apoptotic bodies during programmed cell death (Halicka et al., 2000). In addition, defective (i.e., non-infectious without helper-virus) retrovirus particles derived from human endogenous retroviral (HERV) elements may be found within microvesicle populations (Voisset et al., 2008).


Microvesicles from various cell sources have been studied with respect to protein and lipid content (Iero et al., 2008; Thery et al., 2002; Wieckowski and Whiteside, 2006). They have also been observed to contain cellular RNAs and mitochondria DNA (Baj-Krzyworzeka et al., 2006; Guescini et al.; Skog et al., 2008; Valadi et al., 2007) and may facilitate the transfer of genetic information between cells and/or act as a “release hatch” for DNA, RNA, and/or proteins that the cell is trying to eliminate. Both mRNA and miRNA in microvesicles are observed to be functional following uptake by recipient cells (Burghoff et al., 2008; Deregibus et al., 2007; Ratajczak et al., 2006; Skog et al., 2008; Valadi et al., 2007; Yuan et al., 2009) and it has also been shown that apoptotic bodies can mediate horizontal gene transfer between cells (Bergsmedh et al., 2001).


Knowing the expression profile, mutational profile, or both expression and mutational profiles of individual cancer is helpful for personalized medicine as many drugs target specific pathways affected by the genetic status of the tumors. Detection of genetic biomarkers in blood samples from tumor patients is challenging due to the need for high sensitivity against a background of normal cellular nucleic acids found circulating in blood. Microvesicles released by tumor cells into the circulation can provide a window into the genetic status of individual tumors (Skog et al., 2008).


The present invention is directed to microvesicular nucleic acid profiles of microvesicle fractions obtained from a biological sample from a subject, methods for aiding in diagnosis, prognosis, patient monitoring, treatment selection, and risk assessment based on detecting the presence or absence of a genetic aberration in a nucleic acid profile, or changes in a polypeptide profile of a microvesicle fraction obtained from a biological sample from a patient, and therapeutic agents and methods of cancer treatment or prevention.


SUMMARY OF THE INVENTION

The present invention is based on the discovery of various types of cancer-related biological materials within microvesicles. The biological materials within microvesicles from a biological sample may be characterized and measured, and the results this analysis may be used to aid in biomarker discovery, as well as in diagnosis, prognosis, monitoring, treatment selection, or risk assessment for a disease or other medical condition.


In one aspect, the biological materials are nucleic acids and the invention is a method for assaying a biological sample comprising the steps of: a) obtaining or using a microvesicle fraction from a biological sample from a subject; b) extracting nucleic acid from the fraction; and c) detecting the presence or absence of a biomarker in the extracted nucleic acid. In a method for aiding in the diagnosis, prognosis or monitoring of a subject, the biomarker is a genetic aberration that is associated with the diagnosis, prognosis, or determination of the status or stage of a disease or other medical condition in the subject. In a method for aiding in treatment selection for a subject in need of or potentially in need of therapeutic treatment, the biomarker is a genetic aberration that is associated with a disease or other medical condition or with responsiveness to a specific therapy for the disease or other medical condition in the subject. In a method for aiding in a determination of a subject's risk of developing a disease or other medical condition, the biomarker is a genetic aberration that is associated with the subject's risk of developing a disease or other medical condition.


In some embodiments of the above methods, the genetic aberration is in or corresponds to a c-myc gene, a transposable element, a retrotransposon element, a satellite correlated gene, a repeated DNA element, a non-coding RNA other than miRNA, or a fragment of any of the foregoing.


In other embodiments of the above methods, the genetic aberration is in or corresponds to a transposable element listed in Table 4 or Table 5, or a fragment thereof. For one example, the genetic aberration is in or corresponds to retrotransposon elements including LINE, SINE or HERV, or a fragment thereof. For another example, the genetic aberration is in or corresponds to a retrotransposon element that is Line1 (L1), ALU, HERV-H, HERV-K, HERV-K6, HERV-W or HERV-C, or a fragment thereof.


In further embodiments of the above methods, the genetic aberration is in or corresponds to a satellite-correlated gene listed in Table 6, or a fragment thereof; a repeated DNA element listed in Table 8, or a fragment thereof; or a non-coding RNA listed in Table 9 (other than miRNA) or a fragment thereof. The non-coding RNA, for example, can be 7SL RNA.


In yet further embodiments of the above methods, the genetic aberration is in or corresponds to a cancer gene listed in Table 2 or 3, or a fragment thereof.


In another aspect, the biological material is protein or polypeptide and the invention is a method for assaying a biological sample from a subject comprising the steps of: a) obtaining or using a microvesicle fraction from a biological sample from a subject b) measuring a protein or polypeptide activity in the fraction; and c) determining whether the protein or polypeptide activity is higher or lower than a normal or average activity for the same protein or polypeptide. In a method for aiding in the diagnosis, prognosis or monitoring of a subject, an elevated or lowered activity is associated with a diagnosis, prognosis, status or stage of a disease or other medical condition in the subject. In a method for aiding in directing treatment of a subject, an elevated or lowered activity is associated with a disease or other medical condition or with the subject's responsiveness to a specific therapy for the disease or other medical condition. In a method in aid of a determination of a subject's risk of developing a disease or other medical condition, an elevated or lowered activity is associated with the subject's risk of developing a disease or other medical condition. In some embodiments of the foregoing methods, the polypeptide is an enzyme. For example, the polypeptide can be a reverse transcriptase and the method is to determine whether the reverse transcriptase activity is higher than a normal or average activity for reverse transcriptase.


In the present invention, the methods may further comprise a step of enriching the microvesicle fraction for microvesicles originating from a specific cell type. The enrichment may be achieved, for example, by affinity purification with antibody-coated magnetic beads.


In the present invention, the biological sample from a subject can be a bodily fluid, e.g., blood, serum, plasma, or urine. The subject can be a human subject. When the subject is a human, the disease or other medical condition may be brain cancer such as medulloblastoma and glioblastoma, or melanoma.


In the present invention, the presence or absence of a biomarker in the extracted nucleic acid can be determined by various techniques, e.g., microarray analysis, PCR, quantitative PCR, Digital Gene Expression, or direct sequencing.


In yet another aspect, the present invention is a kit for genetic analysis of a microvesicle fraction obtained from a body fluid sample from a subject, comprising, in a suitable container, one or more reagents capable of hybridizing to or amplifying a nucleic acid corresponding to one or more of the genetic aberrations referenced above.


In yet another aspect, the present invention is an oligonucleotide microarray for genetic analysis of a microvesicle preparation from a body fluid sample from a subject, wherein the oligonucleotides on the array are designed to hybridize to one or more nucleic acids corresponding to one or more of the genetic aberrations referenced above.


In yet another aspect, the present invention is a profile of microvesicular nucleic acid derived from a bodily fluid sample from a subject. The profile may be a genetic aberration in or corresponding to: a) cancer gene listed in Table 2 or 3, or a fragment thereof; b) a transposable element from the subject's genome, preferably an element listed in Table 4 or 5, or a fragment of any of the foregoing; c) a retrotransposon element from the subject's genome, preferably LINE, SINE or HERV, more preferably LINE1 (L1), ALU, HERV-H, HERV-K, HERV-K6, HERV-W or HERV-C, or a fragment of any of the foregoing; d) a satellite correlated gene from the subject's genome, preferably a satellite correlated gene listed in Table 6, or a fragment of any of the foregoing; e) an element of repeated DNA from the subject's genome, preferably an element listed in Table 8, or a fragment of any of the foregoing; or f) a non-coding RNA other than miRNA, preferably a species listed in Table 9, or a fragment of any of the foregoing. In one embodiment, the profile is a genetic aberration in the cancer gene c-myc. In another embodiment, the profile is a genetic aberration in the non-coding 7SL RNA.


In all of the foregoing nucleic acid-related embodiments of the invention, the genetic aberration can be a species of nucleic acid, the level of expression of a nucleic acid, a nucleic acid variant; or a combination of any of the foregoing. For example, the genetic aberration may be an RNA expression profile. For another example, the genetic aberration may be a fragment of a nucleic acid, and in some instances, the fragment contains more than 10 nucleotides.


In yet another aspect, the present invention is a method of identifying a potential new nucleic acid biomarker associated with a disease or other medical condition, status or stage of disease or other medical condition, a subject's risk of developing a disease or other medical condition, or a subject's responsiveness to a specific therapy for a disease or other medical condition. The method comprises the steps of: a) obtaining or using a microvesicle fraction from a biological sample from a subject; b) extracting nucleic acid from the fraction; c) preparing a profile according to any of the above-described profiles; and d) comparing the profile of step c) to a control or reference profile and selecting one or more potential new biomarkers based on one or more differences between the profile of step c) and the control or reference profile.


In yet anther aspect, the present invention is a method of treating a subject having a form of cancer in which cancer cells secrete microvesicles. The method comprises administering to the subject a therapeutically effective amount of a composition including an inhibitor of microvesicle secretion; an inhibitor of a reverse transcriptase; a microvesicle neutralizer that neutralizes the pro-tumor progression activity of tumor microvesicles; or any combination of the forgoing. In some embodiments, the inhibitor of microvesicle secretion is an inhibitor of RAB GTPase which may be Rab 27a, Rab 27b or Rab 35. In other embodiments, the inhibitor of a reverse transcriptase is a nucleoside analog selected from the group comprising 3′-azido2′,3′-dideoxythymidine (AZT); 2′,3′-dideoxyinosine (ddT), 2′,3′-didehyro-3′-deoxythymidine (d4T); nevirapine and efavirenz. In further embodiments, the inhibitor of a reverse transcriptase is RNAi targeting the reverse transcriptase gene. In still further embodiments, the microvesicle neutralizer is a biological agent that binds microvesicles and destroys the integrity of the microvesicles.


In yet another aspect, the present invention is a pharmaceutical composition comprising, in a suitable pharmaceutical carrier: a) an inhibitor of microvesicle secretion, particularly an inhibitor of RAB GTPase, and more particularly Rab 27a, Rab 27b or Rab 35); b) an inhibitor of reverse transcriptase, particularly a nucleoside analog, more particularly 3′-azido2′,3′-dideoxythymidine (AZT); 2′,3′-dideoxyinosine (ddI), 2′,3′-didehyro-3′-deoxythymidine (d4T); nevirapine, or efavirenz, or an RNAi targeting the reverse transcriptase gene; c) a microvesicle neutralizer that neutralizes the pro-tumor progression activity of tumor microvesicles, particularly a biological agent that binds microvesicles and destroys the integrity of the microvesicles; or d) a combination of any of the foregoing.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a graph depicting the quantification, size distribution and RNA yield of microvesicles purified from the medulloblastoma cell line D384. Each bar represents the number of particles of a certain size that are present in the media and are released by one cell over 48 hours (hrs). The sum refers to the total number of particles released by one cell over 48 hrs. ExoRNA refers to the total RNA yield in microvesicles from 1×106 cells over 48 hrs. The result is presented as the mean±SEM (n=3).



FIG. 2 shows a graph depicting the quantification, size distribution and RNA yield of microvesicles purified from the medulloblastoma cell line D425 in the same manner as in FIG. 1.



FIG. 3 shows a graph depicting the quantification, size distribution and RNA yield of microvesicles purified from the medulloblastoma cell line D458 in the same manner as in FIG. 1.



FIG. 4 shows a graph depicting the quantification, size distribution and RNA yield of microvesicles purified from the melanoma cell line Yumel 0106 in the same manner as in FIG. 1.



FIG. 5 shows a graph depicting the quantification, size distribution and RNA yield of microvesicles purified from the glioblastoma cell line 20/3 in the same manner as in FIG. 1.



FIG. 6 shows a graph depicting the quantification, size distribution and RNA yield of microvesicles purified from the glioblastoma cell line 11/5 in the same manner as in FIG. 1.



FIG. 7 shows a graph depicting the quantification, size distribution and RNA yield of microvesicles purified from the normal fibroblast cell line HF19 in the same manner as in FIG. 1.



FIG. 8 shows a graph depicting the quantification, size distribution and RNA yield of microvesicles purified from the normal fibroblast cell line HF27 in the same manner as in FIG. 1.



FIG. 9 shows a graph depicting the c-Myc gene yields in terms of genomic DNA extracted from cells of the following cell lines: one normal human fibroblast line (HF19), one GBM line (11/5), one atypical teratoid rhabdoid tumor (AT/RT) line (NS224) and three medulloblastoma (MB) lines (D425, D458 and D384). Quantitative PCR was used to obtain c-Myc Ct values, which were normalized to GAPDH Ct values in the same preparation. The X-axis lists the names of the cell lines tested. The Y-axis is the fold change, represented as the ratio of the Ct value for each cell line to the Ct value for the normal fibroblast cell line HF19. In all cases, the Ct values are expressed as mean±SEM (n=3) and analyzed by a two-tailed t-test.



FIG. 10 shows a graph depicting the c-Myc gene yields in terms of RNA extracted from microvesicles secreted by cells of the same cell lines and in the same manner as in FIG. 9. Quantitative Reverse Transcription PCR was used to obtain c-Myc RNA Ct values.



FIG. 11 shows a graph depicting the c-Myc gene yields in terms of DNA extracted from microvesicles secreted by cells of the same cell lines and in the same manner as in FIG. 9. Quantitative PCR was used to obtain c-Myc DNA Ct values.



FIG. 12 shows a graph depicting the c-Myc gene yields in terms of RNA extracted from xenograft subcutaneous tumor cells. The subcutaneous tumors were generated by xenografting medulloblastoma cells (MBT; D425 cell line) or epidermoid carcinoma (ECT; A431 cell line) cells in nude mice. The X-axis refers to the different tumor-bearing mice characterized by the type of tumor cell and the tumor mass weight at sacrifice. MBT tumor mass weights are as follows: MBT 1: 3.4 g; MBT 2: 1.7 g; MBT 3: 2.4 g; MBT 4: 2.9 g; and MBT 5: 1.7 g. ECT tumor mass weights are as follows: ECT 1: 1.7 g; ECT 2: 2.3 g; ECT 3: 3.1 g; ECT 4: 1.9 g; and ECT 5: 2.2 g. Ct values were normalized to GAPDH. The Y-axis refers to the Ct values generated by quantitative reverse transcription PCR of the extracted RNA in each sample. For each RNA extract, two replicate qPCR were performed.



FIG. 13 shows a gel picture depicting the c-Myc gene yields in terms of RNA extracted from serum microvesicles from mice that bear subcutaneous tumors. The subcutaneous tumors were generated by xenografting medulloblastoma cells (MBT; D425 cell line) in nude mice. C-Myc product was amplified by reverse transcription PCR method using human c-Myc specific primers and the RNA extracted from serum microvesicles as templates. The amplified c-Myc product should be 89 bp in length. The amplified c-Myc products were resolved by electrophoresis in a 2% agarose gel and visualized with ethidium bromide staining. The arrow points to the position where an 89 bp product appears on the agarose gel. The lanes are referenced as follows: MW: DNA size marker; 1: MBT tumor mass weight of 3.4 g; 2: MBT tumor mass weight of 1.7 g; 3: MBT tumor mass weight of 2.4 g; 4: MBT tumor mass weight of 2.9 g; 5: MBT tumor mass weight of 1.7 g; NC: negative control where no RNA/cDNA was used.



FIG. 14 shows a gel picture depicting the c-Myc gene yields in terms of RNA extracted from serum microvesicles from mice that bear subcutaneous tumors in the same manner as in FIG. 13 except that the subcutaneous tumors were generated by xenografting epidermoid carcinoma (ECT; A431 cell line) in nude mice. The lanes are referenced as follows: MW: DNA size marker; 1: ECT tumor mass weight of 1.7 g; 2: ECT tumor mass weight of 2.3 g; 3: ECT tumor mass weight of 3.1 g; 4: ECT tumor mass weight of 1.9 g; 5: ECT tumor mass weight of 2.2 g; NC: negative control where no RNA/cDNA was used.



FIG. 15 shows a MA plot depicting relative levels of all represented RNA sequences (using 44,000 RNA probes on the Agilent microarray chip) in cells and microvesicles derived from the cells. The levels of transposon and retrotransposon sequences were compared to the rest of the RNA transcriptome in cells and microvesicles. ExoRNA and cellular RNA were isolated from GBM 20/3 cells and analyzed on an Agilent two-color 44 k array. Y-axis (M)=log2Exo−log2Cell, X-axis (A)=0.5×(log2Exo+log2Cell).



FIG. 16 shows a MA plot similar to the plot in FIG. 15 except that the present plot only depicts relative levels of the following four HERV family sequences: HERV-H, HERV-K6, HERV-W and HERV-C, all of which are enriched in microvesicles more than 16-fold as compared to the host cells, i.e., M≥4.



FIG. 17 shows a MA plot similar to the plot in FIG. 15 except that the present plot only depicts relative levels of DNA transposons.



FIG. 18 shows a MA plot similar to the plot in FIG. 15 except that the present plot only depicts relative levels of L1 sequences.



FIG. 19 shows a MA plot similar to the plot in FIG. 15 except that the present plot only depicts relative levels of HERV sequences with HERV-H, HERV-C, HERV-K6 and HERV-W being more than 16 fold enriched.



FIG. 20 shows a MA plot similar to the plot in FIG. 15 except that the present plot only depicts relative levels of Alu sequences.



FIGS. 21A, 21B and 21C show MA plots depicting relative expression levels of L1 (FIG. 21A), ALU (FIG. 21B) and HERV-K (FIG. 21C) RNA in cells and microvesicles derived from the cells. qRT-PCR was carried out for retrotransposon elements in cell RNA and exoRNA from three medulloblastoma (D425, D384 and D458), one GBM (11/5), one melanoma (0106) and one human fibroblast (HF19) line. The RNA expression levels were measured and normalized to GAPDH. HERV-K RNA was not detectable in exoRNA from normal human fibroblasts (HF19), so it was given a Ct value of 36 (below detection limit).



FIG. 22 shows a chart depicting the expression levels of HERV-K at different time points in HUVEC cells. The HUVEC cells were exposed to medulloblastoma D384 microvesicles and their expression level of HERV-K RNA was analyzed by qRT-PCR over 72 hrs following exposure. MOCK is non-exposed cells. HERV-K was normalized to GAPDH. P values were calculated using the two-tailed t-test, comparing levels to MOCK infected cells.



FIGS. 23A, 23B and 23C show MA plots depicting relative levels of L1 (FIG. 23A), ALU (FIG. 23B) and HERV-K (FIG. 23C) DNA in cells and microvesicles derived from the cells. q-PCR was carried out for retrotransposon elements with cell genomic DNA and microvesicle DNA from three medulloblastoma (D425, D384 and D458), one GBM (11/5), one melanoma (0106) and one human fibroblast (HF19) line. The DNA levels were measured and normalized to GAPDH. Results are expressed as average±SEM (n=3).



FIG. 24 shows a chart depicting the Reverse Transcriptase (RT) activity in microvesicles secreted by three medulloblastoma (D425, D384 and D458), one GBM (11/5), one melanoma (0106) and one human fibroblast (HF19) line. The RT activity was measured in the microvesicles using the EnzChek RT Assay Kit (Invitrogen) and normalized to protein content. The RT activity is measured as RT units calculated based on the standard curve generated using SuperScript III (Invitrogen). Results are expressed as average±SEM (n=3).



FIGS. 25A, 25B, 25C and 25D show charts depicting Bioanalyzer profiles of exoRNA and exoDNA from tumor or normal cell. FIG. 25A depicts the profile of exoRNA from GBM 11/5 cells. Both 18S and 28S rRNA peaks are detectable (arrowheads). FIG. 25B depicts the profile of exoDNA GBM 11/5 cells. Sizes ranged from 25 to 1000 nucleotides with a peak at 200 nt. FIG. 25C depicts the profile of ExoRNA from human fibroblasts HF19, which was extracted and analyzed as in FIG. 25A. The RNA yield was too low to yield distinct 18S and 28S rRNA peaks. After concentration, these peaks were visible (data not shown). FIG. 25D depicts the profile of ExoDNA from human fibroblasts HF19, which was not readily detectable on the Bioanalyzer even after it was concentrated 30 times. Bioanalyzer profiles were generated using the RNA Pico Chip (Agilent).



FIGS. 26A and 26B show charts depicting the Bioanalyzer profiles of exoDNA from microvesicles isolated from medulloblastoma D384 cells. FIG. 26A depicts the profile of exoDNA purified from externally DNase-treated microvesicles using the Agilent DNA 7500 bioanalyzer chip (Agilent Technologies Inc., Santa Clara, Calif. Cat. Number 5067-1506) that detects dsDNA. FIG. 26B depicts the profile of exoDNA after a second-strand synthesis treatment. Here the same sample as in (A) was subjected to second strand synthesis with Superscript Double-Stranded cDNA synthesis kit (Invitrogen) according to manufacturer's recommendation.



FIG. 27 is an agarose gel picture depicting electrophoresis of GAPDH (112 bp) PCR products using templates from different samples. The different samples were exoDNA samples extracted from microvesicles isolated from three medulloblastoma cell lines (D425, D384 and D556) and genomic DNA extracted from L2132 normal fibroblasts as a control double stranded DNA, all four of which were mock treated or treated with S1 nuclease enzyme which degrades single-stranded nucleic acids.



FIG. 28 depicts representative bioanalyzer profiles of exoDNA extracted from medulloblastoma cell line D384 before and after S1 nuclease treatment.



FIGS. 29A and 29B show charts depicting quantitative PCR results of c-Myc and POU5F1B, respectively, using as templates genomic DNA from cells or exoDNA extracted from microvesicles isolated from cells. FIG. 29A depicts the results for c-Myc gene. FIG. 29B depicts the results for POU5F1B, which gene sequence (AF268618) is found 319 kb upstream of the c-Myc gene in the genome, but still within the commonly amplified region in tumor cells. The cell lines are medulloblastoma cell lines D458 and D384, glioblastomas (11/5), and fibroblasts HF19.



FIG. 30 illustrates the c-Myc copy number analysis results in tumor cell lines using an Affymetrix 250K SNP array. The c-Myc genomic region was analyzed in medulloblastoma lines, D425, D458 and D384, as well as rhabdoid tumor line, NS224.



FIGS. 31A and 31B show charts depicting the qPCR results of the n-Myc gene in cells lines medulloblastoma D425, D458 and D384, rhabdoid tumor, GBM, and normal fibroblasts using genomic DNA FIG. 31A or exoDNA FIG. 31B extracted from microvesicles isolated from the cells as templates.



FIG. 32 shows a chart depicting the amount of exoDNA extracted from microvesicles isolated from medulloblastoma D384 cell culture media. D384 cells were seeded in 6-well plates and treated with increasing dosages of L-mimosine (200, 400 and 600 μM) or mock treated. Microvesicles were isolated from the medium after 48 hrs and ssDNA was extracted using the Qiagen PCR purification kit. Single-stranded DNA yields were quantified using the Bioanalyzer and the yields were compared to mock treated cells (normalized to 1.0).



FIG. 33 depicts the results of quantitative RT-PCR analysis of the expression levels of 7SL RNA, EGFR and GAPDH in microvesicles isolated from serum samples obtained from a GBM patient or a normal individual. The X-axis is the number of PCR cycles. The Y-axis is the fluorescent intensity (delta Rn) measured by the ABI7500 machine.



FIG. 34 depicts a series of signaling pathways related to cell proliferation, growth and/or survival.





DETAILED DESCRIPTION OF THE INVENTION

As described above, cell-derived vesicles are heterogeneous in size with diameters ranging from about 10 nm to about 1 μm. For example, “exosomes” have diameters of approximately 30 to 100 nm, with shedding microvesicles and apoptotic bodies often described as larger (Orozco and Lewis, 2010). Exosomes, shedding microvesicles, microparticles, nanovesicles, apoptotic bodies, nanoparticles and membrane vesicles co-isolate using various techniques and will, therefore, collectively be referred to throughout this specification as “microvesicles” unless otherwise expressly denoted.


The present invention is based on the discovery that cancer-related biological materials such as transposable elements, oncogenes, and reverse transcriptase (RT) can be detected in microvesicles.


The biological materials in microvesicles can be genetic materials, protein materials, lipid materials, or any combination of genetic, protein and lipid materials.


Genetic materials include nucleic acids, which can be DNA and its variations, e.g., double-stranded DNA (“dsDNA”), single-stranded DNA (“ssDNA”), genomic DNA, cDNA; RNA and its variations, e.g., mRNA, rRNA, tRNA, microRNA, siRNA, piwi-RNA, coding RNA, non-coding RNA, transposons, satellite repeats, minisatellite repeats, microsatellite repeats, Interspersed repeats such as short interspersed nuclear elements (SINES), e.g. but not limited to Alus, and long interspersed nuclear elements (LINES), e.g. but not limited to LINE-1, human endogenous retroviruses (HERVs), e.g. but not limited to HERV-K; or any combination of any of the above DNA and RNA species.


Protein materials can be any polypeptides and polypeptide variants recognized in the art. For convenience, “polypeptide” as disclosed in this application refers to both a polypeptide without modifications and a polypeptide variant with modifications. Polypeptides are composed of a chain of amino acids encoded by genetic materials as is well known in the art. For example, a reverse transcriptase is a polypeptide that can function as an enzyme to transcribe RNA into DNA. Polypeptide variants can include, e.g. polypeptides modified by acylation, ubiquitination, SUMOYlation, alkylation, amidation, glycosylation, hydroxylation, carboxylation, phosphorylations, oxidation, sulfation, selenoylation, nitrosylation, or glutathionylation.


Lipid materials include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, fatty acids, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids, and polyketides.


Microvesicles may be isolated from tissue, cells or other biological samples from a subject. For example, the biological sample may be a bodily fluid from the subject, preferably collected from a peripheral location. Bodily fluids include but are not limited to blood, plasma, serum, urine, sputum, spinal fluid, pleural fluid, nipple aspirates, lymph fluid, fluid of the respiratory, intestinal, and genitourinary tracts, tear fluid, saliva, breast milk, fluid from the lymphatic system, semen, cerebrospinal fluid, intra-organ system fluid, ascitic fluid, tumor cyst fluid, amniotic fluid and combinations thereof. In some embodiments, the preferred bodily fluid for use as the biological sample is urine. In other embodiments, the preferred bodily fluid is serum.


The term “subject” is intended to include all animals shown to or expected to harbor nucleic acid-containing microvesicles. In particular embodiments, the subject is a mammal, e.g., a human or nonhuman primate, a dog, cat, horse, cow, other farm animal, or rodent (e.g. a mouse, rat, guinea pig, etc.). In one embodiment, the subject is an avian, amphibian or fish. The terms “subject,” “individual” and “patient” are used interchangeably herein.


Methods for isolating microvesicles from a biological sample and extracting biological materials from the isolated microvesicles are described in this application as well as in scientific publications and patent applications, e.g. (Chen et al., 2010; Miranda et al., 2010; Skog et al., 2008). See also WO 2009/100029, WO 2011/009104, WO 2011/031892 and WO 2011/031877. These publications are incorporated herein by reference for their disclosure pertaining to isolation and extraction methods and techniques.


A profile, as used herein, refers to a set of data or a collection of characteristics or features, which can be determined through the quantitative or qualitative analysis of one or more biological materials, particularly biological materials contained in microvesicles isolated from a subject. The biological materials, extraction of the biological materials, and various types of analysis of the biological materials are described herein. A control or reference profile is a profile obtained from the literature, from an independent subject or subjects, or from the same subject at a different time point.


In one aspect, the present invention includes a profile of one or more nucleic acids extracted from microvesicles. The nucleic acids include both RNA and DNA. A nucleic acid profile may be an RNA profile, a DNA profile, or may include profiles of both RNA and DNA. In other aspects, the present invention includes a profile of one or more protein or polypeptide species extracted from microvesicles, particularly, a level of protein activity.


In all of the various aspects of the invention described herein in relation to RNA, the RNA can be coding RNA, e.g., messenger RNA. The RNA can also be non-coding RNA (ncRNA), e.g., ribosomal RNA (rRNA), transfer RNA (tRNA), microRNA, and other non-coding transcripts that may originate from genomic DNA. See Table 9 for more examples of non-coding RNA. Non-coding RNA transcripts may include transcripts from satellite repeats or from transposons, which may be Class I retrotransposons or Class II DNA transposons.


In all of the various aspects of the invention described herein in relation to DNA, the DNA can be single-stranded DNA, e.g., cDNA, which is reverse transcribed from RNA. Reverse transcription is usually mediated by reverse transcriptase encoded by a reverse transcriptase gene in a cell. The DNA can also be single stranded DNA generated during DNA replication. Genomic DNA replicates in the nucleus while the cell is dividing. Some of the replicated DNA may come off its template, be exported out of the nucleus, and packaged into microvesicles. The DNA can further be fragments of double-stranded DNA.


In addition, the DNA can be non-coding DNA (ncDNA). The human genome contains only about 20,000 protein-coding genes, representing less than 2% of the genome. The ratio of non-coding to protein-coding DNA sequences increases as a function of developmental complexity (Mattick, 2004). Prokaryotes have less than 25% ncDNA, simple eukaryotes have between 25-50%, more complex multicellular organisms like plants and animals have more than 50% ncDNA, with humans having about 98.5% ncDNA (Mattick, 2004)


Some of the ncDNA from the genome is transcribed into ncRNA. NcRNAs have been implicated in many important processes in the cell, e.g., enzymes (ribozymes), binding specifically to proteins (aptamers), and regulating gene activity at both the transcriptional and post-transcriptional levels. Examples of ncRNA classes and examples of their functions are shown in Table 9.


Many of the ncRNA species have multiple functions. For example, Ribonuclease P (RNase P) is a ribozyme which is involved in maturation of tRNA by cleaving the precursor tRNA, and nuclear RNaseP can also act as a transcription factor (Jarrous and Reiner, 2007). In addition, bifunctional RNAs have also been described that function both as mRNA and as regulatory ncRNAs (Dinger et al., 2008) or have two different ncRNA functions (Ender et al., 2008).


One example of the many long ncRNAs is the X-inactive specific transcript (Xist) expressed by the inactive X-chromosome, which is used to silence the extra X-chromosome in females (Ng et al., 2007). This RNA transcript binds to and inactivates the same X chromosome from which it is produced.


Another example is the HOX antisense intergenic RNA (HOTAIR) (Rinn et al., 2007). This RNA is expressed from chromosome 12, but controls gene expression on chromosome 2, affecting the skin phenotype on different parts of the body surface (Rinn et al., 2007) and also being involved in cancer metastasis (Gupta et al., 2010).


Yet another example of ncRNA is PCA3, a biomarker for prostate cancer (Day et al., 2011). PCA3 can be readily measured in the RNA from urine microvesicles which can be extracted using a rapid filtration concentrator method (Miranda et al., 2010; Nilsson et al., 2009). Another biomarker for prostate cancer is PCGEM1, which is an ncRNA transcript over-expressed in prostate cancer (Srikantan et al., 2000).


Yet another example of ncRNA is NEAT2/MALAT1, which has been found to be upregulated during metastasis of non-small cell lung cancer, and was correlated with poor patient survival (Ji et al., 2003).


Microvesicles contain a substantial array of the cellular gene expression profile from the cells from which they originate (their parent cells) at any given time. That is, substantially all the RNAs expressed in the parent cell are present within the microvesicle, although the quantitative levels of these RNAs may differ in the microvesicle compared to the parent cell. Substantially all the genes from the parent cell can, therefore, be tracked in the microvesicle fraction. In addition, microvesicles contain DNA from the parent cell, which corresponds to diagnostically relevant aspects of the subject's genome. Therefore, a nucleic acid profile from microvesicles may be associated with a disease or other medical condition.


In one embodiment, the disease is a neurological disease or other medical condition, e.g., Alzheimer's disease. The nucleic acid profile for Alzheimer's disease may be a profile of early-onset familial Alzheimer's disease, associated genes including, but not limited to, amyloid beta (A4) precursor protein gene, presenilin 1 and presenilin 2.


In another embodiment, the disease is a cancer. The microvesicular nucleic acid profile for cancer may, e.g., include nucleic acids of one or more cancer-related genes (e.g., known or suspected oncogenes or tumor suppressor genes; or genes whose expression levels correlate with the expression levels of nearby satellites). The determination of a cancer nucleic acid profile, including such cancer related genes, can aid in understanding the status of the cancer cells. In one embodiment, the oncogenes or tumor suppressor genes are one or more of those listed in Tables 2 and 3. In another embodiment, the cancer-related genes are one or more of those genes whose expression levels correlate with the expression levels of nearby satellites, such as but not limited to the satellite correlated genes listed in Table 6.


In some instances, the cancer-related gene is c-myc. The copy number of c-myc oncogene is usually increased in tumor cells, e.g., medullablastoma cells. The detection of increased c-myc gene copy number in microvesicles indicates an increased c-myc copy number in tumor cells that secret the microvesicles.


In other instances, the cancer-related gene is one or more members in the signaling pathways depicted in FIG. 34. These signaling pathways control the growth, proliferation and/or survival of cells (Alessi et al., 2009; Dowling et al.; Hanahan and Weinberg, 2000; Sarbassov et al., 2006). These pathways are sometimes cross-linked to each other, and thus enable extracellular signals to elicit multiple biological effects. For example, the growth promoting Ras protein interacts with the survival promoting PI3K and thus growth signals can concurrently evoke survival signals in the cell (Hanahan and Weinberg, 2000).


For one example, the member is from the RAS/RAF/MEK/MAPK pathway related to melanoma, brain and lung cancers. The MAP kinase is a convergence point for diverse receptor-initiated signaling events at the plasma membrane. The RAS/RAF/MEK/MAPK pathway regulates cell proliferation, differentiation, migration and invasion (Hanahan and Weinberg, 2000). In addition, extracellular signal-regulated kinases (ERKs) become activated upon integrin ligation and, thereby, regulate cell migration (Klemke et al., 1997).


For another sample, the member is from the PI3K/PTEN/AKT pathway related to prostate, bladder and kidney cancers. The PI3K/PTEN/AKT pathway is responsible for regulating cell survival (Cheng et al., 2008). Genetic variations in AKT1, AKY2, PIK3CA, PTEN, and FRAP1 are associated with clinical outcomes in patients who receive chemoradiotherapy (Hildebrandt et al., 2009). Therefore, the determination of genetic variations in members of the pathway may help evaluating cancer treatment efficacy.


The microvesicular nucleic acid profile of the present invention may also reflect the nucleic acid profile of DNA repeats and/or transposable elements in cells from which the microvesicles originate.


DNA repeats include one or more repeated DNA elements that are composed of arrays of tandemly repeated DNA with the repeat unit being a simple or moderately complex sequence. The array of tandemly repeated DNA can be of varying size, thereby giving rise to categories of megasatellite, satellite, minisatellite and microsatellite repeats. See Table 7. Repeated DNA of this type is not transcribed and accounts for the bulk of the heterochromatic regions of the genome, being notably found in the vicinity of the centromeres (i.e., pericentromeric heterochromatin). The base composition, and therefore density, of such DNA regions is dictated by the base composition of constituent short repeat units and may diverge from the overall base composition of other cellular DNA. The nucleic acid profiles of the present invention comprising satellite repeats may include profiles of satellite repeat DNA and/or profiles of transcripts that are transcribed from satellite repeats.


DNA repeats may serve as biomarkers of cancer cells. For example, some satellite repeats like HSATII are over-expressed in many types of cancers including pancreatic, lung, kidney, ovarian and prostate cancers (Ting et al., 2011). The RNA expression level of such satellite repeats correlates with cancer disease status. DNA repeats encompassed within the scope of the present invention can be one or more of those recited in Table 8. In some embodiments, the DNA repeats may be HSATII, ALR, (CATTC)n, or a combination of the HSATII, ALR, and (CATTC)n.


Transposable elements encompassed within the scope of the present invention may be one or more DNA transposons and/or retrotransposons. The retrotransposon can be one or more of those recited in Tables 3 and 4. In other embodiments, the retrotransposon can be one or more LINEs, Alus, HERVs or a combination of the LINES, Alus and HERVs.


Transposable elements can serve as biomarkers of cancer cells. These repetitive elements constitute almost 50% of the human genome and include: half a million LINE-1 (L1) elements, of which about 100 are transcriptionally active and encode proteins involved in retrotransposition, including reverse transcriptase (RT) and integrase; a million Alu elements, which depend on L1 functions for integration; and thousands of provirus HERV sequences, some of which contain near-to-full length coding sequences (Goodier and Kazazian, 2008; Vois set et al., 2008). Without being bound by theory, increased expression of retrotransposon elements in cancer appears to result in part from overall hypomethylation of the genome, which is also associated with genomic instability (Daskalos et al., 2009; Estecio et al., 2007) and tumor progression (Cho et al., 2007; Roman-Gomez et al., 2008).


Increased transcription of retrotransposon elements in the human genome has been noted in a number of cancer cell types. For example, increased expression of L1 and HERV, as well as formation of retrovirus-like particles, has been reported in tumor tissue from breast cancer, melanoma, germ cell carcinoma and prostate cancer. See U.S. Pat. No. 7,776,523 and Bratthauer et al., 1994; Golan et al., 2008; Ruprecht et al., 2008. Retrotransposon RNA and proteins, as well as antibodies against HERV proteins and virus-like particles, have also been found in blood of some cancer patients (Contreras-Galindo et al., 2008; Kleiman et al., 2004; Ruprecht et al., 2008; Wang-Johanning et al., 2008).


High level expression of retrotransposon genes and/or endogenous reverse transcriptase are sometimes associated with cancer. For example, human LINE-1 p40 protein is often expressed at a higher level in breast cancer than in normal mammary gland (Asch et al., 1996). Thus, the microvesicular nucleic acid profiles of retrotransposable elements are suitable for use in aiding the diagnosis, prognosis, and/or monitoring of medical conditions such as cancer, as well as for use in aiding in treatment selection for therapies whose efficacy is affected by the subject's genetic make-up.


In one embodiment of the present invention, the microvesicular profile(s) of retrotransposable element(s) are determined by analyzing the content of microvesicles originating from brain cancer, e.g., medullablastoma, glioblastoma, lymphoma, and breast cancer cells. In one instance, the profile comprises one or more RNA expression levels of L1, Alu and HERV elements. In another instance, the profile comprises one or more DNA levels of L1 and HERV elements.


In one embodiment, the profile comprises a profile of the HERV-K element. For example, the profile may comprise the expression of the HERV-K element in microvesicles isolated from plasma from a subject. The expression of the HERV-K element may be assessed by determining the expression of any gene that the HERV-K element may encode, e.g., the group-specific antigen gene (gag), the protease gene (prt), the polymerase gene (pol), and the envelope gene (env) (Lower et al., 1996).


In one instance, the present invention may comprise a profile of the expression of the gag gene in microvesicles. The gag gene is from the HERV-K element and the profile of gag expression reflects the profile of HERV-K expression. The expression of the gag gene can be measured by methods known in the art, e.g., quantitative reverse transcription PCR analysis.


In another instance, the present invention may comprise a profile of the expression of the env gene in microvesicles. The env gene is from the HERV-K element and the profile of env expression reflects the profile of HERV-K expression. The expression of env gene can be measured by methods known in the art, e.g., quantitative reverse transcription PCR analysis.


In addition to the mRNA expression levels of one or more nucleic acids, the nucleic acid profiles of the present invention may also comprise the copy number of one or more nucleic acids, the fusion of several nucleic acids, the mutations of one or more nucleic acids, the alternative splicing of one or more nucleic acids, the methylation of one or more nucleic acids, and the single nucleotide polymorphism of one or more nucleic acids. The nucleic acids may correspond to genes, repeats, transposable elements, or other non-coding parts of the genomes of various organisms, including human beings.


The present invention encompasses all forms of cancer and pre-cancerous conditions. For example, without limitation, the present invention encompasses cancer and pre-cancer cells in brain, esophagus, lung, liver, stomach, ovary, testicle, kidney, skin, colon, blood, prostate, breast, uterus, and spleen.


The profile of nucleic acids can be obtained through analyzing nucleic acids obtained from isolated microvesicles according to standard protocols in the art.


In one embodiment, the nucleic acid is DNA. The analysis of the DNA may be performed by one or more various methods known in the art, including microarray analysis for determining the nucleic acid species in the extract, Quantitative PCR for measuring the expression levels of genes, DNA sequencing for detecting mutations in genes, and bisulfite methylation assays for detecting methylation patterns of genes.


In some embodiments of the present invention, data analysis may be performed by any of a variety of methods know in the art, e.g., Clustering Analysis, Principle Component Analysis, Linear Discriminant Analysis, Receiver Operating Characteristic Curve Analysis, Binary Analysis, Cox Proportional Hazards Analysis, Support Vector Machines and Recursive Feature Elimination (SVM-RFE), Classification to Nearest Centroid, Evidence-based Analysis, or a combination thereof.


In another embodiment, the nucleic acid extracted and analyzed from the microvesicles is RNA. In some instance, the RNA may be subject to Digital Gene Expression (DGE) analysis (Lipson et al., 2009). In this method, the RNA may be digested and converted into single stranded cDNA which may then be subject to sequencing analysis on a DNA sequencing machine, e.g., the HeliScope™ Single Molecule Sequencer from Helicos BioSciences as described in a publication by Ting et al. (Ting et al., 2011).


In other instances, the RNA is preferably reverse-transcribed into complementary DNA (cDNA) before further amplification. Such reverse transcription may be performed alone or in combination with an amplification step. One example of a method combining reverse transcription and amplification steps is reverse transcription polymerase chain reaction (RT-PCR), which may be further modified to be quantitative, e.g., quantitative RT-PCR as described in U.S. Pat. No. 5,639,606, which is incorporated herein by reference for this teaching. Another example of the method comprises two separate steps: a first step of reverse transcription to convert RNA into cDNA and a second step of quantifying the amount of cDNA using quantitative PCR.


Nucleic acid amplification methods include, without limitation, polymerase chain reaction (PCR) (U.S. Pat. No. 5,219,727) and its variants such as in situ polymerase chain reaction (U.S. Pat. No. 5,538,871), quantitative polymerase chain reaction (U.S. Pat. No. 5,219,727), nested polymerase chain reaction (U.S. Pat. No. 5,556,773), self-sustained sequence replication and its variants (Guatelli et al., 1990), transcriptional amplification system and its variants (Kwoh et al., 1989), Qb Replicase and its variants (Miele et al., 1983), cold-PCR (Li et al., 2008), BEAMing (Li et al., 2006) or any other nucleic acid amplification methods, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. Especially useful are those detection schemes designed for the detection of nucleic acid molecules if such molecules are present in very low numbers. The foregoing references are incorporated herein for their teachings of these methods. In other embodiment, the step of nucleic acid amplification is not performed. Instead, the extracted nucleic acids are analyzed directly, e.g., through next-generation sequencing.


The analysis of nucleic acids present in the isolated microvesicles can be quantitative, qualitative, or both quantitative and qualitative. For quantitative analysis, the amounts (expression levels), either relative or absolute, of specific nucleic acids of interest within the isolated microvesicles are measured with methods known in the art (some of which are described below). For qualitative analysis, the species of specific nucleic acids of interest within the isolated particles, whether wild type or variants, are identified with methods known in the art.


The present invention further encompasses methods of creating and using the microvesicular nucleic acid profiles described herein. In one embodiment of a method for creating a microvesicular profile, the method comprises the steps of isolating microvesicles from a biological sample (e.g., from a body fluid) obtained from a subject or obtaining a microvesicle fraction isolated from a biological sample obtained from a subject, extracting nucleic acids from the isolated microvesicles or microvesicle fraction (or obtaining such as extraction), and determining the profile of the nucleic acids in the extract.


The microvesicular profiles of the present invention may be used in methods of aiding diagnosis, prognosis, monitoring, therapy selection, or risk assessment of a disease or other medical condition for a subject as described herein and in the claims.


In some embodiments of the present invention, the one or more nucleic acid(s) may be one or more genes listed in Table 2 (cancer genes), Table 3 (cancer-related somatic mutations) and Table 6 (satellite-correlated genes). In one embodiment, the one or more nucleic acid(s) may be a fragment of a c-myc gene, for example, a fragment of c-myc gene containing more than 10 nucleotides. The fragment may contain incrementally longer sequences of 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 nucleotides, up to the full length of the gene.


In other embodiments, the one or more nucleic acids may be one or more sequences listed in Table 4 (GBM transposable elements), Table 5 (human transposable elements) and Table 8 (repeated DNA). In one embodiment, the one or more nucleic acids may be L1, Alu, HERV, fragments thereof, or any combination of any of the foregoing. The fragment may contain incrementally longer sequences of 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 nucleotides up to the full length of each gene sequence.


In one embodiment, the invention comprises microvesicular profiles and methods based on microvesicular polypeptide species, polypeptide activities, or both the species and activities of polypeptides. The polypeptide may be any polypeptide in microvesicles. In some embodiments, the polypeptide is a reverse transcriptase. The activity of the reverse transcriptase (RT) can be measured by standard protocols known in the art. For example, the RT activity can be measured by the EnzChek RT Assay Kit (Invitrogen).


The human endogenous retrovirus K (HERV-K) reverse transcriptase may serve as a breast cancer prognostic marker (Golan et al., 2008). As such, one particular embodiment of the present invention encompasses profiles and related methods based on detecting the activity of HERV-K reverse transcriptase in microvesicles.


The present invention also includes a kit for genetic analysis of a microvesicle preparation from a biological sample (e.g., a bodily fluid sample) from a subject. The kit in a suitable container may include one or more reagents capable of hybridizing to or amplifying one or more nucleic acids extracted from microvesicles. In some embodiments, the nucleic acids correspond to one or more of those genes listed in Tables 2, 3, 4, 5, 6 and/or 8. In some further embodiments, the nucleic acids correspond to one or more RNA transcripts of one or more genes listed in Tables 2, 3, 4, 5, 6 and/or 8. In other further embodiments, the nucleic acid is DNA corresponding to one or more of the genes listed in Tables 2, 3, 4, 5, 6 and/or 8.


The present invention further includes an oligonucleotide microarray for genetic analysis of a microvesicle preparation from a body fluid sample from a subject, wherein the various oligonucleotides on the array are designed to hybridize exclusively to nucleic acids corresponding to one or more genes listed in Tables 2, 3, 4, 5, 6 and/or 8. The arrays can be made by standard methods known in the art. For example, SurePrint Technology (Agilent Technologies Corp.) may be used to make as many as 8 arrays on a single slide.


The present invention also includes a method of aiding the discovery of one or more biomarkers for a disease or other medical condition. The method may comprise, e.g., the steps of isolating microvesicles from subjects having a disease or other medical condition of interest and also from subjects who do not have the disease or other medical condition of interest; measuring the level of one or more target biological materials extracted from the isolated microvesicles from each of the subjects; comparing the measured levels of the one or more target biological materials from each of the subjects; and determining whether there is a statistically significant difference in the measured levels. The step of determination of a statistically significant difference in the measured levels identifies the one or more target biological materials as potential biomarkers for the disease or other medical condition. As an alternative to isolating microvesicles, the method may be carried out with pre-isolated microvesicle fractions.


The one or more biomarkers and nucleic acids in each of the various embodiments of the invention described herein can be one or a collection of genetic aberrations. The term “genetic aberration” is used herein to refer to the nucleic acid amounts as well as nucleic acid variants within the nucleic acid-containing particles. Specifically, genetic aberrations include, without limitation, over-expression of a gene (e.g., an oncogene) or a panel of genes, under-expression of a gene (e.g., a tumor suppressor gene such as p53 or RB) or a panel of genes, alternative production of splice variants of a gene or a panel of genes, gene copy number variants (CNV) (e.g., DNA double minutes) (Hahn, 1993), nucleic acid modifications (e.g., methylation, acetylation and phosphorylations), single nucleotide polymorphisms (SNPs) (e.g., polymorphisms in Alu elements), chromosomal rearrangements (e.g., inversions, deletions and duplications), and mutations (insertions, deletions, duplications, missense, nonsense, synonymous or any other nucleotide changes) of a gene or a panel of genes, which mutations, in many cases, ultimately affect the activity and function of the gene products, lead to alternative transcriptional splice variants and/or changes of gene expression level, or combinations of any of the foregoing.


Genetic aberrations can be found in many types of nucleic acids. The determination of such genetic aberrations can be performed by a variety of techniques known to the skilled practitioner. For example, expression levels of nucleic acids, alternative splicing variants, chromosome rearrangement and gene copy numbers can be determined by microarray analysis (see, e.g., U.S. Pat. Nos. 6,913,879, 7,364,848, 7,378,245, 6,893,837 and 6,004,755) and quantitative PCR. Particularly, copy number changes may be detected with the Illumina Infinium II whole genome genotyping assay or Agilent Human Genome CGH Microarray (Steemers et al., 2006).


Nucleic acid modifications can be assayed by methods described in, e.g., U.S. Pat. No. 7,186,512 and patent publication WO/2003/023065. Particularly, methylation profiles may be determined by Illumina DNA Methylation OMA003 Cancer Panel.


SNPs and mutations can be detected by hybridization with allele-specific probes, enzymatic mutation detection, chemical cleavage of mismatched heteroduplex (Cotton et al., 1988), ribonuclease cleavage of mismatched bases (Myers et al., 1985), mass spectrometry (U.S. Pat. Nos. 6,994,960, 7,074,563, and 7,198,893), single strand conformation polymorphism (SSCP) (Orita et al., 1989), denaturing gradient gel electrophoresis (DGGE)(Fischer and Lerman, 1979a; Fischer and Lerman, 1979b), temperature gradient gel electrophoresis (TGGE) (Fischer and Lerman, 1979a; Fischer and Lerman, 1979b), restriction fragment length polymorphisms (RFLP) (Kan and Dozy, 1978a; Kan and Dozy, 1978b), oligonucleotide ligation assay (OLA), allele-specific PCR (ASPCR) (U.S. Pat. No. 5,639,611), ligation chain reaction (LCR) and its variants (Abravaya et al., 1995; Landegren et al., 1988; Nakazawa et al., 1994), flow-cytometric heteroduplex analysis (WO/2006/113590), nucleic acid sequencing, and combinations/modifications thereof.


Nucleic acid sequencing is to determine the base pair sequences of nucleic acids. Two traditional techniques for sequencing DNA are the Sanger dideoxy termination method (Sanger et al., 1977) and the Maxam-Gilbert chemical degradation method (Maxam and Gilbert, 1977). Both methods deliver four samples with each sample containing a family of DNA strands in which all strands terminate in the same nucleotide. Gel electrophoresis, or more recently capillary array electrophoresis is used to resolve the different length strands and to determine the nucleotide sequence, either by differentially tagging the strands of each sample before electrophoresis to indicate the terminal nucleotide, or by running the samples in different lanes of the gel or in different capillaries. Related methods using dyes or fluorescent labels associated with the terminal nucleotide have been developed, where sequence determination is also made by gel electrophoresis and automated fluorescent detectors. For example, the Sanger-extension method has recently been modified for use in an automated micro-sequencing system which requires only sub-microliter volumes of reagents and dye-labelled dideoxyribonucleotide triphosphates. U.S. Pat. No. 5,846,727.


More recently, high throughput DNA sequencing methods of various types have been developed and used to delineate nuclei acis sequences. These new methods are applied in sequencing machines including the 454 GenomeSequencer FLX instrument (Roche Applied Science), the lumina (Solexa) Genome Analyzer, the Applied Biosystems ABI SOLiD system, the Helicos single-molecule sequencing device (HeliScope), and the Ion semiconductor sequencing by Ion Torrent Systems Inc. See also US patent application publications No. 20110111401 and No. 20110098193. It is understood that as the sequencing technology evolves, the analysis of nucleic acids obtained in the invention may be performed using any new sequencing method as one skilled in the art sees appropriate.


Gene expression levels may be determined by the serial analysis of gene expression (SAGE) technique (Velculescu et al., 1995), quantitative PCR, quantitative reverse transcription PCR, microarray analysis, and next generation DNA sequencing as known in the art.


In general, the methods for analyzing genetic aberrations are reported in numerous publications, not limited to those cited herein, and are available to skilled practitioners. The appropriate method of analysis will depend upon the specific goals of the analysis, the condition/history of the patient, and the specific cancer(s), diseases or other medical conditions to be detected, monitored or treated. The forgoing references are incorporated herein for their teaching of these methods.


Many biomarkers may be associated with the presence or absence of a disease or other medical condition in a subject. Therefore, detection of the presence or absence of such biomarkers in nucleic acids extracted from isolated microvesicles, according to the methods disclosed herein, may aid diagnosis of the disease or other medical condition in the subject.


For example, as described in WO 2009/100029, detection of the presence or absence of the EGFRvIII mutation in nucleic acids extracted from microvesicles isolated from a patient serum sample aided in the diagnosis and/or monitoring of glioblastoma in the patient. This is so because the expression of the EGFRvIII mutation is specific to some tumors and defines a clinically distinct subtype of glioma (Pelloski et al., 2007).


For another example, as described in WO 2009/100029, detection of the presence or absence of the TMPRSS2-ERG fusion gene, PCA-3, or both TMPRSS2-ERG and PCA-3 in nucleic acids extracted from microvesicles isolated from a patient's urine sample may aid in the diagnosis of prostate cancer in the patient.


Further, many biomarkers may be associated with disease or medical status monitoring in a subject. Therefore, the detection of the presence or absence of such biomarkers in a nucleic acid extraction from isolated microvesicles, according to the methods disclosed herein, may aid in monitoring the progress or reoccurrence of a disease or other medical condition in a subject.


For example, as described in WO 2009/100029, the determination of matrix metalloproteinase (MMP) levels in nucleic acids extracted from microvesicles isolated from an organ transplantation patient may be used to monitor the post-transplantation condition, as a significant increase in the expression level of MMP-2 after kidney transplantation may indicate the onset and/or deterioration of post-transplantation complications. Similarly, a significantly elevated level of MMP-9 after lung transplantation, suggests the onset and/or deterioration of bronchiolitis obliterans syndrome.


Many biomarkers have also been found to influence the effectiveness of treatment in a particular patient. Therefore, the detection of the presence or absence of such biomarkers in a nucleic acid extraction from isolated microvesicles, according to the methods disclosed herein, may aid in evaluating the efficacy of a given treatment in a given patient. For example, as disclosed in Table 1 in the publication by Furnari et al. (Furnari et al., 2007), biomarkers, e.g., mutations in a variety of genes, affect the effectiveness of specific medicines used in chemotherapy for treating brain tumors. The identification of these and other biomarkers in nucleic acids extracted from isolated particles from a biological sample from a patient can guide the skilled practitioner in the selection of treatment for the patient.


Without limitation, all of the methods mentioned above may further comprise the step of enriching the isolated microvesicles for microvesicles originating from a specific cell type. For example, the cell can be a cancer or pre-cancer cell.


Another aspect of the present invention is a method of treating a subject suffering from a form of cancer in which the cancer cells secret microvesicles. The method comprises administering to the subject a therapeutically effective amount of a composition comprising: an inhibitor of microvesicle secretion; an inhibitor of a reverse transcriptase; another microvesicle neutralizer that neutralizes the pro-tumor progression activity of tumor microvesicles; or any combination of the inhibitors/neutralizers.


In one embodiment, the inhibitor of microvesicle secretion is an inhibitor of the Rab GTPase pathway (Ostrowski et al.).


In some instances, the Rab GTPases are Rab 27a and Rab 27b. The inhibition of the Rab 27a and Rab 27b can be effectuated by silencing the Slp4 gene (also known as SYTL4, synaptotagmin-like 4) and the Slac2b gene (also known as EXPH5, exophilin5), respectively. Gene silencing techniques are well known in the art. One example of such a gene silencing technique is an RNA interference technique that selectively silences genes by delivering shRNA with viral vectors (Sliva and Schnierle).


In other instances, the Rab GTPase is Rab35. The inactivation of Rab35 decreases microvesicle secretion. Therefore, silencing Rab35 may decrease the secretion of microvesicles by cells. Inactivation of Rab35 may be achieved by administering TBC1D10B (TBC1 domain family, member 10B) polypeptide (Sliva and Schnierle).


In another embodiment, instead of, or in addition to, inhibiting microvesicle secretion, the reverse transcriptase activity is inhibited by administration of an RT inhibitor. RT inhibitors may be any one of 3′-azido2′,3′-dideoxythymidine (AZT), 2′,3′-dideoxyinosine (ddI), 2′,3′-didehyro-3′-deoxythymidine (d4T), nevirapine and efavirenz.


Further, a microvesicle neutralizer may be used to block the effects of microvesicles. For example, such neutralizer may bind to microvesicles and destroy the integrity of microvesicles so that the biological materials in microvesicles are not transferred to other intact cells.


It should be understood that this invention is not limited to the particular methodologies, protocols and reagents, described herein, which may vary. The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention, which is defined solely by the claims.


The contents of earlier filed provisional applications U.S. Ser. No. 61/378,860, filed Aug. 31, 2010, U.S. Ser. No. 61/421,421, filed Dec. 9, 2010, U.S. Ser. No. 61/437,547, filed Jan. 28, 2011, U.S. Ser. No. 61/438,199, filed Jan. 31, 2011, and 61/493,261 filed Jun. 3, 2011 are herein incorporated by reference in their entirety.


All patents, patent applications, and publications cited herein are expressly incorporated herein by reference for the purpose of describing and disclosing, for example, the methodologies and techniques described in such publications that might be used in connection with the present invention. These publications are provided solely for their disclosure prior to the filing date of the present application. Nothing in this regard should be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention or for any other reason. All statements as to the date or representation as to the contents of these documents is based on the information available to the applicants and does not constitute any admission as to the correctness of the dates or contents of these documents.


The present invention may be as defined in any one of the following numbered paragraphs.

  • 1. A method for assaying a biological sample from a subject in aid of diagnosis, prognosis or monitoring of a disease or other medical condition in the subject, comprising the steps of:
    • a. obtaining or using a microvesicle fraction from a biological sample from a subject;
    • b. extracting nucleic acid from the fraction; and
    • c. detecting the presence or absence of a biomarker in the extracted nucleic acid; wherein the biomarker is a genetic aberration associated with diagnosis, prognosis, status or stage of a disease or other medical condition, and wherein the genetic aberration is in or corresponds to:
      • i. a c-myc gene;
      • ii. a transposable element;
      • iii. a retrotransposon element;
      • iv. a satellite correlated gene;
      • v. a repeated DNA element;
      • vi. non-coding RNA other than miRNA; or
      • vii. a fragment of any of the foregoing.
  • 2. The method of paragraph 1, wherein the genetic aberration is in or corresponds to a transposable element listed in Table 4 or Table 5, or a fragment thereof.
  • 3. The method of paragraph 1, wherein the genetic aberration is in or corresponds to a retrotransposon element that is LINE, SINE or HERV, or a fragment thereof.
  • 4. The method of paragraph 3, wherein the genetic aberration is in or corresponds to a retrotransposon element that is Line1 (L1), ALU, HERV-H, HERV-K, HERV-K6, HERV-W or HERV-C, or a fragment thereof.
  • 5. The method of paragraph 1, wherein the genetic aberration is in or corresponds to a satellite correlated gene listed in Table 6, or a fragment thereof.
  • 6. The method of paragraph 1, wherein the genetic aberration is in or corresponds to a repeated DNA element listed in Table 8, or a fragment thereof.
  • 7. The method of paragraph 1, wherein the genetic aberration is in or corresponds to a non-coding RNA listed in Table 9 (or a fragment thereof), other than miRNA.
  • 8. The method of paragraph 7, wherein the non-coding RNA is 7SL.
  • 9. A method for assaying a biological sample from a subject in aid of directing treatment of the subject for a disease or other medical condition, comprising the steps of:
    • a. obtaining or using a microvesicle fraction from a biological sample from a subject;
    • b. extracting nucleic acid from the fraction; and
    • c. detecting the presence or absence of a biomarker in the extracted nucleic acid; wherein the biomarker is a genetic aberration associated with a disease or other medical condition or with responsiveness to a specific therapy for the disease or other medical condition, and wherein the genetic aberration is in or corresponds to:
      • i. a c-myc gene;
      • ii. a transposable element;
      • iii. a retrotransposon element;
      • iv. a satellite correlated gene;
      • v. a repeated DNA element;
      • vi. non-coding RNA other than miRNA; or
      • vii. a fragment of any of the foregoing.
  • 10. The method of paragraph 9, wherein the genetic aberration is in or corresponds to a transposable element listed in Table 4 or Table 5, or a fragment thereof.
  • 11. The method of paragraph 9, wherein the genetic aberration is in or corresponds to a retrotransposon element that is LINE, SINE or HERV, or a fragment thereof.
  • 12. The method of paragraph 11, wherein the genetic aberration is in or corresponds to a retrotransposon element that is Line1 (L1), ALU, HERV-H, HERV-K, HERV-K6, HERV-W or HERV-C, or a fragment thereof.
  • 13. The method of paragraph 9, wherein the genetic aberration is in or corresponds to a satellite correlated gene listed in Table 6, or a fragment thereof.
  • 14. The method of paragraph 9, wherein the genetic aberration is in or corresponds to a repeated DNA element listed in Table 8, or a fragment thereof.
  • 15. The method of paragraph 9, wherein the genetic aberration is in or corresponds to a non-coding RNA listed in Table 9 (or a fragment thereof), other than miRNA.
  • 16. The method of paragraph 15, wherein the non-coding RNA is 7SL.
  • 17. A method for assaying a biological sample from a subject in aid of a determination of the subject's risk of developing a disease or other medical condition, comprising the steps of:
    • a. obtaining or using a microvesicle fraction from a biological sample from a subject;
    • b. extracting nucleic acid from the fraction; and
    • c. detecting the presence or absence of a biomarker in the extracted nucleic acid, wherein the biomarker is a genetic aberration associated with a determination of the subject's risk of developing a disease or other medical condition, and wherein the genetic aberration is in or corresponds to:
      • i. a c-myc gene;
      • ii. a transposable element;
      • iii. a retrotransposon element;
      • iv. a satellite correlated gene;
      • v. a repeated DNA element;
      • vi. non-coding RNA other than miRNA; or
      • vii. a fragment of any of the foregoing.
  • 18. The method of paragraph 17, wherein the genetic aberration is in or corresponds to a transposable element listed in Table 4 or Table 5, or a fragment thereof.
  • 19. The method of paragraph 17, wherein the genetic aberration is in or corresponds to a retrotransposon element that is LINE, SINE or HERV, or a fragment thereof.
  • 20. The method of paragraph 19, wherein the genetic aberration is in or corresponds to a retrotransposon element that is Line1 (L1), ALU, HERV-H, HERV-K, HERV-K6, HERV-W or HERV-C, or a fragment thereof.
  • 21. The method of paragraph 17, wherein the genetic aberration is in or corresponds to a satellite correlated gene listed in Table 6, or a fragment thereof.
  • 22. The method of paragraph 17, wherein the genetic aberration is in or corresponds to a repeated DNA element listed in Table 8, or a fragment thereof.
  • 23. The method of paragraph 17, wherein the genetic aberration is in or corresponds to a non-coding RNA listed in Table 9 (or a fragment thereof), other than miRNA.
  • 24. The method of paragraph 23, wherein the non-coding RNA is 7SL.
  • 25. A method for assaying a biological sample from a subject in aid of diagnosis, prognosis or monitoring of a disease or other medical condition in the subject, comprising the steps of:
    • a. obtaining or using a microvesicle fraction from a biological sample from a subject;
    • b. extracting nucleic acid from the fraction; and
    • c. detecting the presence or absence of a biomarker in the extracted nucleic acid; wherein the biomarker is a genetic aberration associated with diagnosis, prognosis, status or stage of a disease or other medical condition, and wherein the genetic aberration is in or corresponds to a cancer gene listed in Table 2 or 3, or a fragment thereof.
  • 26. A method for assaying a biological sample from a subject in aid of directing treatment of the subject for a disease or other medical condition, comprising the steps of:
    • a. obtaining or using a microvesicle fraction from a biological sample from a subject;
    • b. extracting nucleic acid from the fraction; and
    • c. detecting the presence or absence of a biomarker in the extracted nucleic acid; wherein the biomarker is a genetic aberration associated with a disease or other medical condition or with responsiveness to a specific therapy for the disease or other medical condition, and wherein the genetic aberration is in or corresponds to a cancer gene listed in Table 2 or 3, or a fragment thereof
  • 27. A method for assaying a biological sample from a subject in aid of a determination of the subject's risk of developing a disease or other medical condition, comprising the steps of:
    • a. obtaining or using a microvesicle fraction from a biological sample from a subject;
    • b. extracting nucleic acid from the fraction; and
    • c. detecting the presence or absence of a biomarker in the extracted nucleic acid; wherein the biomarker is a genetic aberration associated with a determination of the subject's risk of developing a disease or other medical condition, and wherein the genetic aberration is in or corresponds to a cancer gene listed in Table 2 or 3, or a fragment thereof.
  • 28. A method for assaying a biological sample from a subject in aid of diagnosis, prognosis or monitoring of a disease or other medical condition in the subject, comprising the steps of:
    • a. obtaining or using a microvesicle fraction from a biological sample from a subject;
    • b. measuring a polypeptide activity in the fraction; and
    • c. determining whether the polypeptide activity is higher or lower than a normal or average activity for the polypeptide;
    • wherein an elevated or lowered activity is associated with diagnosis, prognosis, status or stage of a disease or other medical condition.
  • 29. The method of paragraph 28, wherein the polypeptide is an enzyme.
  • 30. The method of paragraph 29, wherein the enzyme is reverse transcriptase.
  • 31. The method of paragraph 30, wherein step (c) involves determining whether the reverse transcriptase activity is higher than a normal or average activity for reverse transcriptase.
  • 32. A method for assaying a biological sample from a subject in aid of directing treatment of the subject for a disease or other medical condition, comprising the steps of:
    • a. obtaining or using a microvesicle fraction from a biological sample from a subject;
    • b. measuring a polypeptide activity in the fraction; and
    • c. determining whether the polypeptide activity is higher or lower than a normal or average activity for the same polypeptide;
    • wherein an elevated or lowered activity is associated with a disease or other medical condition or with responsiveness to a specific therapy for the disease or other medical condition.
  • 33. The method of paragraph 32, wherein the polypeptide is an enzyme.
  • 34. The method of paragraph 33, wherein the enzyme is reverse transcriptase.
  • 35. The method of paragraph 34, wherein step (c) involves determining whether the reverse transcriptase activity is higher than a normal or average activity for reverse transcriptase.
  • 36. A method for assaying a biological sample from a subject in aid of a determination of the subject's risk of developing a disease or other medical condition, comprising the steps of:
    • a. obtaining or using a microvesicle fraction from a biological sample from a subject;
    • b. measuring a polypeptide activity in the fraction; and
    • c. determining whether the polypeptide activity is higher or lower than a normal or average activity for the same polypeptide;
    • wherein an elevated or lowered activity is associated with a subject's risk of developing a disease or other medical condition.
  • 37. The method of paragraph 36, wherein the polypeptide is an enzyme.
  • 38. The method of paragraph 37, wherein the enzyme is reverse transcriptase.
  • 39. The method of paragraph 38, wherein step (c) involves determining whether the reverse transcriptase activity is higher than a normal or average activity for reverse transcriptase.
  • 40. The method of any of paragraphs 1-27, wherein the genetic aberration is:
    • a. a species of nucleic acid;
    • b. the level of expression of a nucleic acid;
    • c. a nucleic acid variant; or
    • d. a combination of any of the foregoing.
  • 41. The method of any of paragraphs 1-27, wherein the nucleic acid is RNA and the genetic aberration is an expression profile.
  • 42. The method of any of paragraphs 1-27, wherein the fragment contains more than 10 nucleotides.
  • 43. The method of any of paragraphs 1-39, wherein the biological sample is a bodily fluid.
  • 44. The method of paragraph 43, wherein the bodily fluid is blood, serum, plasma, or urine.
  • 45. The method of any of paragraphs 1-39, wherein the subject is a human subject.
  • 46. The method of paragraph 45, wherein the disease or other medical condition is brain cancer.
  • 47. The method of paragraph 46, wherein the brain cancer is medulloblastoma or glioblastoma.
  • 48. The method of paragraph 45, wherein the disease or other medical condition is melanoma.
  • 49. The method of any of paragraphs 1-27, wherein the step of detecting the presence or absence of a biomarker in the extracted nucleic acid comprises microarray analysis, PCR, quantitative PCR, Digital Gene Expression, or direct sequencing.
  • 50. The method of any of paragraphs 1-39, further comprising the step of enriching the microvesicle fraction for microvesicles originating from a specific cell type.
  • 51. A kit for genetic analysis of a microvesicle fraction obtained from a body fluid sample from a subject, comprising, in a suitable container, one or more reagents capable of hybridizing to or amplifying a nucleic acid corresponding to one or more of the genetic aberrations referenced in any of paragraphs 1-27.
  • 52. An oligonucleotide microarray for genetic analysis of a microvesicle preparation from a body fluid sample from a subject, wherein the oligonucleotides on the array are designed to hybridize to one or more nucleic acids corresponding to one or more of the genetic aberrations referenced in any of paragraphs 1-27.
  • 53. A profile of microvesicular nucleic acid derived from a bodily fluid sample from a subject, wherein the profile comprises a genetic aberration in or corresponding to a cancer gene listed in Table 2 or 3, or a fragment thereof.
  • 54. The profile of paragraph 53, wherein the cancer gene is a c-myc gene.
  • 55. A profile of microvesicular nucleic acid derived from a bodily fluid sample from a subject, wherein the profile comprises a genetic aberration in or corresponding to transposable element from the subject's genome, preferably an element listed in Table 4 or 5, or a fragment of any of the foregoing.
  • 56. A profile of microvesicular nucleic acid derived from a bodily fluid sample from a subject, wherein the profile comprises a genetic aberration in or corresponding to a retrotransposon element from the subject's genome, preferably LINE, SINE or HERV, more preferably LINE1 (L1), ALU, HERV-H, HERV-K, HERV-K6, HERV-W or HERV-C, or a fragment of any of the foregoing.
  • 57. A profile of microvesicular nucleic acid derived from a bodily fluid sample from a subject, wherein the profile comprises a genetic aberration in or corresponding to a satellite correlated gene from the subject's genome, preferably a satellite correlated gene listed in Table 6, or a fragment of any of the foregoing.
  • 58. A profile of microvesicular nucleic acid derived from a bodily fluid sample from a subject, wherein the profile comprises a genetic aberration in or corresponding to an element of repeated DNA from the subject's genome, preferably an element listed in Table 8, or a fragment of any of the foregoing.
  • 59. A profile of microvesicular nucleic acid derived from a bodily fluid sample from a subject, wherein the profile comprises a genetic aberration in or corresponding to non-coding RNA other than miRNA, preferably a species listed in Table 9, or a fragment of any of the foregoing.
  • 60. The profile of paragraph 59, wherein the non-coding RNA is 7SL.
  • 61. The profile of any of paragraphs 53-60, wherein the genetic aberration is:
    • a. a species of nucleic acid;
    • b. the level of expression of a nucleic acid;
    • c. a nucleic acid variant; or
    • d. a combination of any of the foregoing.
  • 62. A method of identifying a potential new nucleic acid biomarker associated with a disease or other medical condition, status or stage of disease or other medical condition, a subject's risk of developing a disease or other medical condition, or a subject's responsiveness to a specific therapy for a disease or other medical condition, comprising the steps of:
    • (a) obtaining or using a microvesicle fraction from a biological sample from a subject;
    • (b) extracting nucleic acid from the fraction;
    • (c) preparing a profile according to any of paragraphs 53-60; and
    • (d) comparing the profile of step (c) to a control or reference profile and selecting one or more potential new biomarkers based on one or more differences between the profile of step (c) and the control or reference profile.
  • 63. A method of treating a subject having a form of cancer in which cancer cells secrete microvesicles, the method comprising administering to the subject a therapeutically effective amount of a composition comprising:
    • a. an inhibitor of microvesicle secretion;
    • b. an inhibitor of a reverse transcriptase;
    • c. a microvesicle neutralizer that neutralizes the pro-tumor progression activity of tumor microvesicles; or
    • d. any combination of the forgoing.
  • 64. The method of paragraph 63, wherein the inhibitor of microvesicle secretion is an inhibitor of RAB GTPase.
  • 65. The method of paragraph 64, where in the Rab GTPase is Rab 27a, Rab 27b or Rab 35.
  • 66. The method of paragraph 63, wherein the inhibitor of a reverse transcriptase is a nucleoside analog selected from the group comprising 3′-azido2′,3′-dideoxythymidine (AZT), 2′,3′-dideoxyinosine (ddI), 2′,3′-didehyro-3′-deoxythymidine (d4T), nevirapine and efavirenz.
  • 67. The method of paragraph 63, wherein the inhibitor of a reverse transcriptase is RNAi targeting the reverse transcriptase gene.
  • 68. The method of paragraph 63, wherein the microvesicle neutralizer is a biological agent that binds microvesicles and destroys the integrity of the microvesicles.
  • 69. A pharmaceutical composition comprising, in a suitable pharmaceutical carrier: (a) an inhibitor of micro vesicle secretion, particularly an inhibitor of RAB GTPase, and more particularly Rab 27a, Rab 27b or Rab 35); (b) an inhibitor of reverse transcriptase, particularly a nucleoside analog, more particularly 3′-azido2′,3′-dideoxythymidine (AZT), 2′,3′-dideoxyinosine (ddI), 2′,3′-didehyro-3′-deoxythymidine (d4T), nevirapine, or efavirenz, or an RNAi targeting the reverse transcriptase gene; (c) a microvesicle neutralizer that neutralizes the pro-tumor progression activity of tumor microvesicles, particularly a biological agent that binds microvesicles and destroys the integrity of the microvesicles; or (d) a combination of any of the foregoing.


1.


The invention is further illustrated by the following examples, which should not be construed as further limiting. Examples of the disclosed subject matter are set forth below. Other features, objects, and advantages of the disclosed subject matter will be apparent from the detailed description, figures, examples and claims. Methods and materials substantially similar or equivalent to those described herein can be used in the practice or testing of the presently disclosed subject matter. Exemplary methods and materials are now described as follows.


EXAMPLES
Example 1 Cultured Cells Release an Abundance of Microvesicles

We found that cultured tumor cells as well as normal cells release microvesicles. Here, we analyzed microvesicles produced by tumor cells from glioblastoma (GBM), a common and malignant brain tumor in adults; medulloblastoma, a common and malignant tumor in children with frequent amplification of c-Myc (Bigner et al., 1990); atypical teratoid rhabdoid tumor (AT/RT), a high-grade malignant tumor in children (Tez et al., 2008); and malignant melanoma, a peripheral tumor which can metastasize to the brain (Jemal et al., 2008). We analyzed microvesicles produced by epidermoid carcinoma cells as a control for the study. Increased expression of EGFR, but not c-Myc gene, was found in epidermoid carcinoma cells (Giard et al., 1973).


We cultured glioblastoma, medulloblastoma, melanoma and normal human fibroblast cells and monitored the release of microvesicles from each cell type. Specifically, primary GBM cell lines 20/3 and 11/5 were generated in our laboratory from tumor specimens kindly provided by Dr. Bob Carter (Massachusetts General Hospital), and diagnosed as GBM by a neuropathologist at Massachusetts General Hospital (Skog et al., 2008). Glioblastoma cells were cultured in Dulbecco modified essential medium (DMEM; Invitrogen, Carlsbad, Calif.) containing 10% fetal bovine serum (FBS; JRH Biosciences, Carlsbad, Calif.), and penicillin and streptomycin (10 IU/ml and 10 respectively; Cellgro, Herndon, Va.).


Primary medulloblastoma cell lines D458, D384 and D425, as well as rhabdoid AT/RT tumor cell line, NS224, were provided by Drs. Y.-J. Cho and S. L. Pomeroy (Children's Hospital, Boston, Mass.). All medulloblastoma cell lines were cultured in suspension in DMEM containing 10% FBS, 1× GlutaMAX (lnvitrogen) and penicillin/streptomycin. Rhabdoid tumor cell line NS224 was cultured in suspension in DMEM/F12 containing B27 supplement, 20 ng/ml EGF, 20 ng/ml FGF and penicillin/streptomycin.


Melanoma cell line, Yumel 0106, was kindly provided by Dr. R. Halaban (Yale New Haven Hospital, New Haven, Conn.) and cultured in OptiMEM (Invitrogen) containing 10% FBS and penicillin/streptomycin. Epidermoid carcinoma cell line, A431 (ATCC) was kindly provided by Huilin Shao (Massachusetts General Hospital) and cultured in DMEM containing 10% FBS and penicillin/streptomycin.


Normal human fibroblast lines, HF19 and HF27 were derived from human skin biopsies in the Breakefield laboratory; L2131 was derived in Dr. Christine Klein's laboratory (Univ. Lübeck, Lübeck, Germany) and cultured in DMEM supplemented with 10% FBS, 10 mM HEPES (Invitrogen) and penicillin/streptomycin. All cells were grown in media with 5% exosome-depleted fetal bovine serum (dFBS) (Skog et al., 2008). All cell lines were used over a few passages, as microvesicle yield tended to change over extended passages.


To characterize the size distribution and amount of microvesicles released from tumor cells and normal fibroblasts in culture using Nanosight LM10 nanoparticle tracking analysis (NTA), we isolated microvesicles from the culture media of three medulloblastoma cell lines (D384, D425 and D458), one melanoma (Yumel 0106), two GBMs (20/3 and 11/5) and two normal fibroblasts (HF19 and HF27). The media was first spun at 500×g for 10 min. The supernatant was removed and spun again at 16,500×g, filtered through a 0.22 μm filter and used for Nanosight analysis. The nanosight LM10 nanoparticle characterization system (NanoSight Ltd, UK) equipped with a blue laser (405 nm) illumination was used for real-time characterization of the vesicles. The result is presented as the average±SEM of three independent experiments.


We found that medulloblastoma cells released more microvesicles/cell than the other cells types analyzed. The amount of microvesicles released by each cell type was: 13,400-25,300/cell/48 hrs for medulloblastomas (FIGS. 1-3), 12,600/cell/48 hrs for the melanoma (FIG. 4), 7,000-13,000/cell/48 hrs for the GBM cells (FIGS. 5-6), and 3,800-6,200/cell/48 hrs for the normal human fibroblasts (FIG. 7-8). Normal human fibroblasts were of low passage and grew with similar rates as the tumor lines in culture, but were of larger size and hence greater surface area per cell.


To measure the amount of RNA in the microvesicles released in the culture media from these cells, we collected each conditioned medium after culturing for 48 hr and isolated microvesicles by differential centrifugation and filtration through a 0.22 μm filter followed by ultracentrifugation at 110,000×g as detailed in WO 2009/100029.


For purposes of RNA extraction from microvesicles, microvesicle pellets generated from 39 ml conditioned medium produced from 0.5×106-3.5×106 cells over 48 hours were resuspended in 50 μL PBS and incubated at 37° C. for 30 min with DNAse I (DNA-Free™ kit, Ambion) and Exonuclease III (Fermentas, Glen Burnie, Md.), according to the manufacturer's instructions. After treatment, the enzymes were inactivated (using the kit's inactivation reagent and heat inactivation, respectively) and samples processed for RNA extraction.


Microvesicles were lysed in 300 μl MirVana lysis buffer (Ambion, Austin, Tex.) followed by extraction with an equal amount of acid-phenol:chloroform. After centrifugation at 10,000×g for 5 min, the upper aqueous phase was removed and further processed to extract RNA using the mirVana RNA isolation kit (Ambion), according to the manufacturer's instructions. RNA extracts were then treated with DNAse (DNA-free kit, Ambion) to exclude DNA carryover. RNA was quantified using a Nanodrop ND-1000 (Thermo Fisher Scientific, Waltham, Mass.) and the quantity and size ranges were evaluated using a 2100 Bioanalyzer (Agilent, Santa Clara, Calif.).


ExoRNA in microvesicles was measured using a 2100 Bioanalyzer (Agilent) with RNA 6000 Pico Chip for RNA. The Bioanalyzer RNA 6000 Pico Chip kit detects mainly single strand nucleic acids, but can also detect double strand DNA when present in large amounts. As shown in FIGS. 1-8, the amount of RNA in microvesicles (exoRNA) from medulloblastoma cells was 120- to 310-fold higher than the amount of exoRNA from normal fibroblasts; the amount of exoRNA from glioblastoma cells was 2.8- to 6.5-fold higher than from normal fibroblasts; and the amount from exoRNA from melanoma cells was similar to that from normal fibroblasts even though melanoma cells shed more than twice as many microvesicles. Thus, medulloblastoma tumor cells, in particular, release abundant microvesicles with a high content of exoRNA.


Example 2 Characterization of RNA and DNA in Microvesicles

To characterize the RNA and DNA in microvesicles, we isolated microvesicles from culture media of medulloblastoma cell line D384, glioblastoma cell line 11/5 and fibroblast cell line H19 as detailed in Example 1. Isolated microvesicles were treated extensively with DNase prior to nucleic acid extraction to reduce the chance of external DNA contamination. Isolated microvesicles may also be treated with RNase prior to nucleic acid extraction although such treatment did not affect the RNA yield from microvesicles probably due to the absence of any significant amounts of external RNA.


ExoRNA was extracted from isolated microvesicles as detailed in Example 1.


For exoDNA extraction, microvesicle pellets generated from 39 ml conditioned medium produced from 0.5×106-3.5×106 cells over 48 hr were resuspended in 50 μL PBS and incubated at 37° C. for 30 min with DNAse I (DNA-Free™ kit, Ambion) and Exonuclease TIT (Fermentas, Glen Burnie, Md.), according to manufacturer's instructions. After treatment, the enzymes were inactivated (using the kit's inactivation reagent and heat inactivation, respectively) and samples processed for DNA extraction.


Microvesicles were lysed in 300 μl MirVana lysis buffer (Ambion, Austin, Tex.) followed by extraction with an equal amount of acid-phenol:chloroform. After centrifugation at 10,000×g for 5 min, the upper aqueous phase was removed and further processed to extract DNA using the Qiagen PCR purification kit according to manufacturer's instructions. DNA extracts were then treated with RNase (e.g., RNase A, Fermentas, Glen Burnie, Md.) to exclude RNA carryover. DNA were quantified using a Nanodrop ND-1000 (Thermo Fisher Scientific, Waltham, Mass.) and the quantity and size ranges were evaluated using a 2100 Bioanalyzer (Agilent, Santa Clara, Calif.). ExoDNA in microvesicles was measured using a 2100 Bioanalyzer (Agilent) with RNA 6000 Pico Chip and/or DNA 7500 LabChip kits. The Bioanalyzer RNA 6000 Pico Chip kit detects mainly single stranded (“ss”) nucleic acids, but can also detect double-stranded DNA (dsDNA) when present in large amounts, while the DNA 7500 LabChip kit only detects dsDNA. 51 nuclease (200 U/ml; Fermentas) was also used to digest single stranded nucleic acid at 37° C. for 30 min. Genomic cell DNA was isolated from cells with the Flexigene DNA kit (Qiagen, Valencia, Calif.), according to manufacturers' recommendation.


As shown in FIGS. 25A and 25C, the RNA profile varied among cell types and culture conditions, but in general, RNA with intact 18S and 28S ribosomal peaks were isolated from microvesicles.


The DNA profile also varied among cell types. ExoDNA was much more abundant in microvesicles secreted by glioblastoma tumor cells (FIG. 25B) as compared to normal fibroblast cells (FIG. 25D).


We also found that exoDNA was primarily single stranded. When exoDNA from medulloblastoma tumor cells (D384) was analyzed using a dsDNA detection chip, no DNA was detected (FIG. 26A). However, when this same exoDNA was subjected to second strand synthesis, this same chip detected abundant dsDNA (FIG. 26B). Similar results were obtained with exoDNA extracted from microvesicles secreted by GBM cells (GBM 20/3).


That exoDNA was primarily single stranded DNA was also supported by our S1 exonuclease assays and PicoGreen assays. In the S1 exonuclease assays, we isolated exoDNA from three medulloblastoma cell lines (D435, D384, D556) and gDNA from one normal human fibroblast cell line (L2132). Samples were incubated with S1 nuclease (200 U/ml) at 37° C. for 30 minutes or MOCK treated. PCR for the house-keeping gene GAPDH was then performed on treated and MOCK treated samples. S1 exonuclease specifically digests single stranded nucleic acids. As shown in FIG. 27, without S1 treatment, the bands for exoDNAs extracted from microvesicles secreted by medulloblastoma cell lines (D425 m, D384 and D556) were observed on the gel. In contrast, after S1 treatment, the bands for exoDNAs extracted from microvesicles secreted by medulloblastoma cell lines (D425 m, D384 and D556) did not show up. As a control, the band for the genomic DNA extracted from fibroblast cell line L2132 still showed up after S1 exonuclease digestion. Therefore, exoDNA was sensitive to S1 exonuclease digestion, suggesting that exoDNA is likely to be single stranded DNA.


Further, quantitative analysis of exoDNA using PicoGreen® (Thermo Scientific, Waltham, Mass.), which is a sensitive dsDNA binding fluorescent dye, showed an 18-fold lower amount of nucleic acids in comparison with the amount detected using the Bioanalyzer RNA chip. Since the Bioanalyzer RNA chip detection method can detect only single stranded nucleic acids, the exoDNA extract contained mainly single stranded nucleic acids.


Example 3 c-Myc Oncogene Amplification in Cultured Medulloblastoma Tumor Cells can be Detected in Both exoRNA and exoDNA

We detected c-Myc oncogene amplification using either exoRNA or exoDNA from medulloblastoma tumor cells. To measure the amount of c-Myc amplification, we extracted exoRNA and exoDNA, from culture media of three medulloblastoma cell lines (D458, D425 and D384), one atypical teratoid/rhabdoid (AT/RT) tumor cell line NS224, one glioblastoma cell line (11/5), and one normal fibroblast cell line H19 using the same method as detailed in Example 1, respectively. The genomic DNA from each of the same cell lines was extracted according to standard protocols in the art, which can be found in books such as Molecular Cloning: A Laboratory Manual (3-Volume Set) Ed. Joseph Sambrook, David W. Russel, and Joe Sambrook, Cold Spring Harbor Laboratory, 3rd edition (Jan. 15, 2001), ISBN: 0879695773. The extracted nucleic acids were then used in PCR analysis to measure the level of amplifications.


For PCR analysis of exoRNA, total exoRNA (50 ng) was converted into cDNA with the Sensiscript RT Kit (Qiagen) using random primers, according to the manufacturer's instructions, and a 1:20 fraction (corresponding to 2.5 ng reverse transcribed RNA) was used for quantitative PCR (qPCR). For PCR analysis of the gDNA and exoDNA, qPCR was carried out using 10 ng DNA as a template. All reactions were performed in a 25 μl reaction using Power SYBR® Green PCR Master Mix (Applied Biosystems, Foster City, Calif.) and 160 nM of each primer. Amplification conditions consisted of: (1) 1 cycle of 50° C., 2 min; (2) 1 cycle of 95° C., 10 min; (3) 40 cycles of 95° C., 15 sec; and 60° C., 1 min, and (4) a dissociation stage consisting of 1 cycle of 95° C., 15 sec; 60° C., 20 sec; and 95° C., 15 sec on the 7000 ABI Prism PCR system (Applied Biosystems). Cycle threshold (“Ct”) values were analyzed in auto mode and manually inspected for accuracy. The Ct values of both RNA and DNA levels were normalized to the housekeeping gene GAPDH in each sample. Primer dimers were excluded by evaluation of dissociation curve and agarose gel electrophoresis.











Sequences of the primers used were as follows



n-Myc primers:



1) Forward



(SEQ ID NO: 1)



TCTACCCGGACGAAGATGAC,







Reverse



(SEQ ID NO: 2)



AGCTCGTTCTCAAGCAGCAT;



(primers within exon 2)







c-Myc primer:



Forward



(SEQ ID NO: 3)



TCAAGAGGCGAACACACAAC,







Reverse



(SEQ ID NO: 4)



TAACTACCTTGGGGGCCTTT;



(both primers in exon 3)







c-Myc primer:



Forward



(SEQ ID NO: 5)



CCTACCCTCTCAACGACAGC,







Reverse



(SEQ ID NO: 6)



CTCTGACCTTTTGCCAGGAG.



(spanning intron 2)







c-Myc human specific primers:



Forward



(SEQ ID NO: 7)



CAACCCTTGCCGCATCCAC,







Reverse



(SEQ ID NO: 8)



AGTCGCGTCCTTGCTCGG.



(both primers in exon 1) 







POU5F1B primers:



Forward



(SEQ ID NO: 9)



ATCCTGGGGGTTCTATTTGG,







Reverse



(SEQ ID NO: 10)



CTCCAGGTTGCCTCTCACTC;



and







GAPDH primers:



Forward



(SEQ ID NO: 11)



CTCTGCTCCTCCTGTTCGAC,



(exon 8)







Reverse



(SEQ ID NO: 12)



ACGACCAAATCCGTTGACTC.



(exon 9)






Levels of c-Myc amplification were measured at the genomic level (gDNA) by qPCR (FIG. 9). All three medulloblastoma cell lines had significant amplifications of c-Myc sequences (16-34-fold) compared to fibroblasts and other tumor cell types. RNA and DNA were extracted from microvesicles shed by these cell lines and quantitated by RT-PCR and PCR respectively, using primers in exon 3 with values for c-Myc sequences normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a housekeeping gene constitutively expressed in cells and found in exoRNA14 and here in exoDNA. Microvesicles from all medulloblastoma cell lines showed elevated levels of c-Myc sequences, both for exoRNA (8-45-fold) and exoDNA (10-25 fold), compared to microvesicles from fibroblasts and tumor cells with diploid c-Myc copy numbers (FIGS. 10-11). Also, using primers that span a full intron, we successfully detected a 1.6 kb fragment corresponding to the unspliced c-Myc genomic DNA (verified by sequencing) in exoDNA from all three medulloblastoma cell lines, but not in any of the other cell lines.


Furthermore, to establish that this genomic fragment of c-Myc in microvesicles was derived from a genomic amplicon, we verified the presence of elevated levels of a flanking gene, POU5F1B gene (Storlazzi et al., 2006) at levels matching those of c-Myc (FIG. 29B). POU5F1B PCR product was also verified by sequencing.


Levels of n-Myc sequences in cellular genomic DNA (gDNA) or exoRNA were also measured by qPCR and qRT-PCR and none of the other tumor types showed genomic amplification of n-Myc sequences or elevated levels of n-Myc exoRNA (FIGS. 31A and B).


The levels of c-Myc DNA quantitated for gDNA and exoDNA/RNA in these medulloblastoma lines were also compared to levels estimated by 250K single nucleotide polymorphism (SNP) analysis. For gene copy number estimation by the SNP array analysis, genomic DNA was extracted from medulloblastoma cell pellets using the Puregene DNA Extraction Kit (Gentra Systems, Minneapolis, Minn.), according to the manufacturer's instructions. To obtain signal intensities and genotype calls, genomic DNA samples were digested, labeled and hybridized to Affymetrix 250K Styl SNP arrays, according to the manufacturer's protocol (Affymetrix, Santa Clara, Calif.). Signal intensities were normalized using rank invariant set normalization, and copy numbers for altered genomic regions were inferred using the GLAD (Gain and Loss of DNA) algorithm available in the Genepattem software package (www.genepattern.org). C-Myc and n-Myc copy numbers were inferred by analyzing the smoothed copy number data at genomic regions ch8q24.12 and ch2p24, respectively.


The results are shown in Table 1 and in FIG. 30 in a representative heat map. Increased levels of c-Myc exoDNA corresponded well to the genomic copy number estimated by 250 k SNP and qPCR in medulloblastoma lines, as compared to normal diploid levels in other cell lines, with correspondingly elevated c-Myc exoRNA in medulloblastoma microvesicles.









TABLE 1







Assessment of c-Myc gene amplification


levels in different cell types.













c-Myc genomic
c-Myc amount
c-Myc amount



Method
copy number
exoRNAa
exoDNAb















D425
FISH
>25 





250k
15 



SNPc



qPCR
 8 ± 3.6

8 ± 2.0

13 ± 0.2


D384
250k
25



SNP



qPCR
12 ± 4.7
42 ± 22
25 ± 3.7


D458
250k
17



SNP



qPCR
17 ± 3.0
45 ± 11
10 ± 0.6


NS224
250k
2



SNP



qPCR
2
0.8 ± 0.3
4.2 ± 0.1 


GBM11/5
qPCR
2
2.8 ± 1.4
0.4 ± 0.1 


HF19
qPCR
2
1
1






a2.5 ng reverse transcribed exoRNA and 10 ng of exoDNA were used as template for qPCR.



All values were normalized to GAPDH mRNA.



bFISH = Fluorescence in situ hybridization of metaphase chromosome spread.63




cSee representative heat map shown in FIG. 30.







Example 4 c-Myc Oncogene Amplification in Xenografted Medulloblastoma Tumor Cells In Vivo can be Detected with Both exoRNA and exoDNA

To assess the potential diagnostic utility of using exoRNA to detect c-Myc amplification in tumors, human medulloblastoma cells (c-Myc amplified) and epidermoid carcinoma tumor cells (non-amplified) were grown as xenograft tumors in nude mice. In the xenograft experiments, two groups of five adult immunodeficient mice (nu/nu NCI) were each injected subcutaneously in both flanks with 5×106 medulloblastoma cells (line D425) or epidermoid carcinoma cells (line A431). Tumors were allowed to grow for three weeks; the mice were then sacrificed and blood was drawn by cardiac puncture. Approximately 1 ml of blood was obtained from each mouse and allowed to clot at room temperature for 15 min and then centrifuged at 1300×g for 10 min. The serum was then filtered through a 0.22 μm filter and stored at −80° C. Samples were thawed and centrifuged for 1 hr at 100,000×g to obtain microvesicles for RNA extraction, as described above.


As shown in FIG. 12, microvesicles were isolated from serum samples in tumor-bearing mice and exoRNA was extracted from the isolated microvesicles. Human c-Myc was detected in exoRNA s from 2/5 (40%) of the medulloblastoma-bearing mice (FIG. 13) and from 0/5 (0%) of the epidermoid carcinoma-bearing mice (FIG. 14).


Example 5 Retrotransposon Elements are Enriched in Tumor Microvesicles

We analyzed the RNA species in cellular RNA and exoRNA preparations from a low passage GBM line by microarray analysis using a whole genome array (Agilent Technologies). Briefly, RNA was extracted from microvesicles, as described above. RNA (0.5 μg) was used for linear T7-based amplification and Cy-3/Cy-5 labeling (Agilent Low RNA Input Linear Amp Kit, Agilent Technologies) following the manufacturer's protocol. The microarray experiments were performed by Miltenyi Biotec (Auburn, Calif.) using the Agilent whole human genome microarray, 4×44K (44,000 probes), two-color array. The array was performed on two different RNA preparations from primary GBM cells and their microvesicles.


The microarray results have been deposited with a Geo accession number GSE13470. The results indicate the presence of higher transcription levels of a number of retrotransposon sequences in exoRNA extracts as compared to cellular RNA extracts.


From the two-color Agilent array data, we generated MA plots as previously described (Storey and Tibshirani, 2003). The intensities of the expression levels for each transcript were obtained from the array data for both exoRNA extracts from microvesicles and cellular RNA extracts from cells. The intensity of exoRNA is here designated “Microvesicle.” The intensity of cellular RNA is here designated “Cell”. The log ratio of the intensities of microvesicle/cell is plotted on the Y-axis (M=log2Microvesicle−log2Cell) and the mean log expression of the two on the X-axis (A=0.5×(log2Microvesicle+log2Cell)).


As shown in FIG. 15, the microarray data was represented on a MA plot as the cumulative abundance (in microvesicles and cells) of specific RNAs (X-axis) and the relative ratio of these RNAs in microvesicles versus cells (Y-axis). The Y-axis scale was log 2, so RNAs above 4 or below −4 on the Y-axis have at least a 16-fold different level in the microvesicles vs. cells. There were many RNA species that were at least 16 fold more abundant in microvesicles than in cells (M value above 4). Similarly, there were also many RNA species that were at least 16 fold less abundant in microvesicles than in cells (M value below −4).


As shown in FIG. 17, RNA from DNA transposons was similar in content in cells and microvesicles with the M values spreading between −4 and 4. In contrast, as shown in FIGS. 18-20, RNA from retrotransposons, e.g. HERV, Alu and L1, was frequently higher in microvesicles than in cells. This was particularly notable for the HERV sequences. As shown in FIG. 16, HERV-H was the most abundant and microvesicle-enriched in these GBM cells, followed by HERV-C, HERV-K6 and HERV-W. Therefore, some retrotransposon RNAs, e.g., HERV RNA, may be selectively packaged or enriched, in tumor microvesicles.


Since only a selected subset of transposon/retrotransposon probes are represented on the Agilent arrays, other retrotransposons that are not represented on the Agilent arrays may be enriched in microvesicles from tumor cells as well.


Since L1 and HERV-K retrotransposons, as well as Alu elements (Goodier and Kazazian, 2008), have been implicated in tumor progression, we further assayed their levels in cellular RNA and exoRNA from tumor and normal cells by qRT-PCR (again with the caveat that the primers used only detect a subset of these sequences). See FIGS. 21A-C. The expression levels were normalized to that of the GAPDH mRNA. L1 and Alu sequences were abundant in both cells and microvesicles (high values on the X-axis) and enriched in most of the microvesicles compared to the cells (M>0). The levels of retrotransposon sequences tended to be higher in exoRNA vs. cellular RNA, with HERV-K being relatively high in some tumors. Interestingly, HERV-K RNA was not detectable in exoRNA from normal human fibroblasts (HF19), with a Ct value of 36 (below detection limit). This difference between levels of HERV-K RNA in microvesicles from fibroblasts and tumor cells is shown in the MA plot (FIG. 21C).


Example 6 The Non-Coding 7SL RNA in Microvesicles as Biomarkers for Cancer Cells

We found that the expression profiles of the non-coding 7SL RNA in microvesicles from plasma may serve as biomarkers for glioblastoma. We obtained de-identified blood samples from a GBM patient and healthy control from the biobank at Massachusetts General Hospital. We took the serum for each blood sample and isolated microvesicles from the serum using the method as described in Example 1. RNA was extracted from the isolated microvesicles for further analysis. The expression levels of the 7SL RNA, EGFR and GAPDH were determined using qRT-PCR following a procedure as detailed in Example 3. The primers used for the qRT-PCR are as follows: 7SL-RNA:











Forward primer



(SEQ ID NO: 13)



5′ CAAAACTCCCGTGCTGATCA 3′,







Reverse primer



(SEQ ID NO: 14)



5′ GGCTGGAGTGCAGTGGCTAT 3′,







Probe (FAM labeled MGB probe),



(SEQ ID NO: 15)



5′ TGGGATCGCGCCTGT 3′;







EGFR:



Forward primer



(SEQ ID NO: 16)



5′ TATGTCCTCATTGCCCTCAACA 3′,







Reverse primer



(SEQ ID NO: 17)



5′ CTGATGATCTGCAGGTTTTCCA 3′,







Probe (FAM labeled MGB probe),



(SEQ ID NO: 18)



5′ AAGGAATTCGCTCCACTG 3′;



GAPDH, huGAPDH ID 4326317E from



the vendor Applied Biosystems Inc..






The results show that the expression profile of the 7SL RNA in microvesicles correlates with the disease status of the subject from which the microvesicles were isolated (FIG. 34). The expression levels of the 7SL RNA in microvesicles from GBM serum samples were about 200 times higher than the levels from normal serum samples. In contrast, the expression levels of EGFR in microvesicles from GBM serum samples were about 2 times higher than the levels from normal serum samples. Further, the expression levels of GAPDH in microvesicles from GBM serum samples were roughly the same as the levels in normal serum samples.


As such, one aspect of the present invention is directed to the profile of 7SL RNA in microvesicles isolated from a subject, e.g., a human being. The profile of 7SL RNA may be the expression profile of the 7SL RNA. The profile of 7SL RNA may be correlated with the medical condition of the subject wherefrom the microvesicles are isolated.


Another aspect of the present invention is directed to a method of aiding the diagnosis, prognosis or selection of treatment therapy of a medical condition by determining the profile of the 7SL RNA. The determination of the profile of 7SL RNA may be the determination of the expression profile of the 7SL RNA. Since the profile of 7SL RNA may be correlated with the medical condition of the subject wherefrom the microvesicles are isolated, the determination of the profile in microvesicles may therefore aid the diagnosis, prognosis or selection of treatment therapy for the subject.


Example 7 Retrotransposon Elements in Tumor Microvesicles are Transferrable

To determine whether microvesicles could transfer HERV-K RNA to normal cells, human umbilical vein endothelial cells (HUVEC) were exposed to microvesicles from medulloblastoma cells and levels of HERV-K RNA were measured in HUVEC cells over time. Human umbilical vein endothelial cells (HUVEC) cells, kindly provided by Dr. Jonathan Song (Massachusetts General Hospital), were cultured in gelatin-coated flasks in endothelial basal medium (Lonza, Walkersville, Md.) supplemented with hEGF, hydrocortisone, GA-1000 and FBS (Singlequots from Lonza). All cell lines were used over a few passages, as microvesicle yield tended to change over extended passages.


Specifically, HUVEC cells were seeded in 12-well plates at a density of 1.5×105 cells/well. Microvesicles were isolated from 1.2×107 D384 cells over a 48 hour period and added to each well in a total volume of 400 μl DMEM. Mock treated cells were incubated in 400 μl exosome-free DMEM. The cells were incubated for 2 hrs at 37° C. and were then replenished with 1.5 ml DMEM (with 5% dFBS). Cells were collected at different time points after the microvesicle exposure and cell RNA was extracted for qRT-PCR analysis. The result is presented as the average±SEM of three independent experiments.


As shown in FIG. 22, HERV-K RNA expression was increased in HUVEC cells at 2, 6, 12, 24, 48 and 72 hours after microvesicle exposure. The increased HERV-K RNA expression in HUVEC cells indicated that the microvesicles contained active HERV-K genes and such genes were transferred to the HUVEC cells.


Example 8 Retrotransposon Elements in the Form of exoDNA were Enriched in Tumor Microvesicles with Elevated RT Activities

ExoDNA was also analyzed at the retrotransposon level with qPCR. ExoDNAs were extracted from microvesicles as detailed in Example 2. gDNA were extracted from cells as detailed in Example 3. The primers used for qPCR are as follows:











GAPDH primers:



Forward



(SEQ ID NO: 19)



CTCTGCTCCTCCTGTTCGAC,



(exon 8)







Reverse 



(SEQ ID NO: 20)



ACGACCAAATCCGTTGACTC;



(exon 9)







L1 primers:



Forward



(SEQ ID NO: 21)



TAAGGGCAGCCAGAGAGAAA,







Reverse



(SEQ ID NO: 22)



GCCTGGTGGTGACAAAATCT;







HERV-K6 primers:



Forward



(SEQ ID NO: 23)



GGAGAGAAGCTGTCCTGTGG,







Reverse



(SEQ ID NO: 24)



TGACTGGACTTGCACGTAGG;







Alu primers:



Forward



(SEQ ID NO: 25)



CATGTGGGTTAGCCTGGTCT,







Reverse



(SEQ ID NO: 26)



TTCCCACATTGCGTCATTTA.






The exoDNA levels were compared to nuclear gDNA isolated from the cells in MA plots. The levels of exoDNA in microvesicles and gDNA in corresponding cells were normalized to levels of GAPDH. The exoDNA (presumably originating from the cytoplasmic compartment) and gDNA (isolated from the nuclear compartment of the cells) showed clearly different patterns (M≠0). L1 was slightly enriched in all medulloblastomas (FIG. 23A). HERV-K DNA was enriched in two of the medulloblastomas (D425 and D384) (FIG. 23C). In contrast, Alu was not enriched in any of the medulloblastoma tested (FIG. 23B).


We further found that the enrichment of the transposable elements at the exoDNA level in the medulloblastoma cell lines corresponded to high levels of endogenous Reverse Transcription (RT) activity in exosomes. To measure RT activities, microvesicles were lysed in RIPA buffer [50 mM Tris-HCl (pH 8); 150 mM NaCl, 2.5% sodium dodecyl sulfate, 2.5% deoxycholic acid, 2.5% Nonidet P-40] for 20 min at 4° C. Exosomal debris was removed by centrifugation at 14,000×g for 15 min. Proteins were quantified by Bradford assay and diluted 1:6 for each RT reaction. The RT assay was performed using the EnzCheck RT assay kit (Invitrogen) on a 25 μL reaction, as described by the manufacturer. Fluorescence signal of the samples was measured before and after the RT incubation. The difference between the two values indicates newly synthesized DNA. Serial dilutions of SuperScript™ III First Strand (Invitrogen) were used as standards. The result is presented as the average±SEM of three independent experiments.


As shown in FIG. 24, RT activities in the 0106, GBM11/5, GBM 20/3 and HF19 cells are significantly less than those in D384, D425 and D458 cells. This decreased RT activities correlate well with the reduced levels of L1 and HERV-K exoDNA in 0106, GBM11/5, GBM 20/3 and HF19 cells (as shown by the negative values on the MA plots in FIGS. 23 A and C). Such correlation suggests that a fraction of exoDNA may be cDNA.


In addition, we found that exoDNA might also include fragments of genomic DNA. We used L-mimosine to inhibit DNA replication and examined whether the inhibition affected the yield of exoDNA. If the exoDNA yield is decreased after inhibition, it is very likely that exoDNA may contain fragments of genomic DNA.


Specifically, D384 cells were plated on 6-well plates (2×106 cells/well) and treated with increasing amounts (200, 400 and 600 μM) of L-mimosine (Sigma-Aldrich, St. Louis, Mo.) which is an inhibitor of DNA replication. The drug was added at one time point and 48 hrs after, the media was collected and processed for the isolation of microvesicles. Cell viability was assessed by cell count using the Countess Automated Cell Counter (Invitogen). SsDNA yields are normalized to one.


As shown in FIG. 32, the exoDNA yield in microvesicles was decreased by about 50% following inhibition of DNA replication with L-mimosine. Therefore, some of the exoDNA may also be fragments of genomic DNA generated during DNA replication and mitosis.


While the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations, and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claims. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.









TABLE 2







Cancer Genes.

























Cancer





Locuslink
Protein
Chromosome
Tumour types
Tumour types
Cancer
Tissue
molecular
Mutation
Translocation


Symbol
ID
ID*
band
(somatic)
(germline)
syndrome
type
genetics
type
partner




















ABL1
25
P00519
9q34.1
CML, ALL


L
Dom
T
BCR, ETV6


ABL2
27
P42684
1q24-q25
AML


L
Dom
T
ETV6


AF15Q14
57082
NP_065113
15q14
AML


L
Dom
T
MLL


AF1Q
10962
Q13015
1q21
ALL


L
Dom
T
MLL


AF3p21
51517
Q9NZQ3
3p21
ALL


L
Dom
T
MLL


AF5q31
27125
NP 055238
5q31
ALL


L
Dom
T
MLL


AKT2
208
P31751
19q13.1-q13.2
Ovarian,


E
Dom
A







pancreatic








ALK
238
Q9UM73
2p23
ALCL


L
Dom
T
NPM1, TPM3,












TFG, TPM4,












ATIC, CLTC,












MSN, ALO17


ALO17
57714
XP 290769
17q25.3
ALCL


L
Dom
T
ALK


APC
324
P25054
5q21
Colorectal,
Colorectal,
Adenomatous
E, M, O
Rec
D, Mis, N,







pancreatic,
pancreatic,
polyposis coli;


F, S







desmoid,
desmoid,
Turcot










hepatoblastoma,
hepatoblastoma,
syndrome










glioma, other
glioma, other











CNS
CNS







ARHGEF12
23365
NP_056128
11q23.3
AML


L
Dom
T
MLL


ARHH
399
Q15669
4p13
NHL


L
Dom
T
BCL6


ARNT
405
P27540
1q21
AML


L
Dom
T
ETV6


ASPSCR1
79058
NP_076988
17q25
Alveolar soft


M
Dom
T
TFE3






part sarcoma








ATF1
466
P18846
12q13
Malignant


E, M
Dom
T
EWSR1






melanoma of












soft parts,












angiomatoid












fibrous












histiocytoma








ATIC
471
P31939
2q35
ALCL


L
Dom
T
ALK


ATM
472
Q13315
11q22.3
T-PLL
Leukaemia,
Ataxia
L, O
Rec
D, Mis, N,








lymphoma,
telangiectasia


F, S








medulloblastoma,












glioma







BCL10
8915
O95999
1p22
MALT


L
Dom
T
IGHα


BCL11A
53335
NP_060484
2p13
B-CLL


L
Dom
T
IGHα


BCL11B
64919
NP_612808
14q32.1
T-ALL


L
Dom
T
TLX3


BCL2
596
P10415
18q21.3
NHL, CLL


L
Dom
T
IGHα


BCL3
602
P20749
19q13
CLL


L
Dom
T
IGHα


BCL5
603
I52586
17q22
CLL


L
Dom
T
MYC


BCL6
604
P41182
3q27
NHL, CLL


L
Dom
T, Mis
IG loci,












ZNFN1A1,












LCP1, PIM1,












TFRC,












MHC2TA,












NACA, HSPCB,












HSPCA,












HIST1H4I,












IL21R,












POU2AF1,












ARHH, EIF4A2


BCL7A
605
NP_066273
12q24.1
B-NHL


L
Dom
T
MYC


BCL9
607
O00512
1q21
B-ALL


L
Dom
T
IGHα, IGLα


BCR
613
P11274
22q11.21
CML, ALL


L
Dom
T
ABL1, FGFR1


BHD
201163
NP_659434
17p11.2

Renal,
Birt-Hogg-
E, M
Rec?
Mis, N, F








fibrofolliculomas,
Dube syndrome











trichodiscomas







BIRC3
330
Q13489
11q22-q23
MALT


L
Dom
T
MALT1


BLM
641
P54132
15q26.1

Leukaemia,
Bloom
L, E
Rec
Mis, N, F








lymphoma,
Syndrome











skin squamous












cell,












other cancers







BMPR1A
657
P36894
10q22.3

Gastrointestinal
Juvenile
E
Rec
Mis, N, F








polyps
polyposis






BRAF
673
P15056
7q34
Melanoma,


E
Dom
M







colorectal,












papillary












thyroid, borderline












ovarian, NSCLC,












cholangiocarcinoma








BRCA1
672
P38398
17q21
Ovarian
Breast, ovarian
Hereditary
E
Rec
D, Mis, N,









breast/ovarian


F, S



BRCA2
675
P51587
13q12
Breast,
Breast, ovarian,
Hereditary
L, E
Rec
D, Mis, N,
— F, S






ovarian,
pancreatic,
breast/
ovarian









pancreatic
leukaemia












(FANCB,












FANCD1)







BRD4
23476
O60885
19p13.1
Lethal midline


E
Dom
T
NUT






carcinoma of












young people








BTG1
694
P31607
12q22
BCLL


L
Dom
T
MYC


CBFA2T1
862
Q06455
8q22
AML


L
Dom
T
MLL, RUNX1


CBFA2T3
863
NP_005178
16q24
AML


L
Dom
T
RUNX1


CBFB
865
Q13951
16q22
AML


L
Dom
T
MYH11


CBL
867
P22681
11q23.3
AML


L
Dom
T
MLL


CCND1
595
P24385
11q13
CLL, B-ALL,


L, E
Dom
T
IGHα, FSTL3






breast








CDII1
999
P12830
16q22.1
Lobular breast,
Gastric
Familial
E
Rec
Mis, N, F, S







gastric

gastric












carcinoma






CDK4
1019
P11802
12q14

Melanoma
Familial
E
Dom
Mis









malignant












melanoma






CDKN2A-
1029
NP 478102
9p21
Melanoma,
Melanoma,
Familial
L, E, M, O
Rec
D, S



p14ARF



multiple
pancreatic
malignant










other

melanoma






CDKN2A-
1029
P42771
9p21
Melanoma,
Melanoma,
Familial
L, E, M, O
Rec
D, Mis, N,



p16INK4A



multiple
pancreatic
malignant


F, S







other

melanoma






CDX2
1045
Q99626
13q12.3
AML


L
Dom
T
ETV6


CEBPA
1050
NP 004355
11p15.5
AML, MDS


L
Dom
Mis, N, F



CEP1
11064
NP_008949
9q33
MPD/NHL


L
Dom
T
FGFR1


CHIC2
26511
NP_036242
4q11-q12
AML


L
Dom
T
ETV6


CHN1
1123
P15882
2q31-q32.1
Extraskeletal


M
Dom
T
TAF15






myxoid












chondrosarcoma








CLTC
1213
Q00610
17q11-qter
ALCL


L
Dom
T
ALK


COL1A1
1277
P02452
17q21.31-q22
Dermatofibrosarcoma


M
Dom
T
PDGFB






protuberans








COPEB
1316
Q99612
10p15
Prostatic,


E, O
Rec
Mis, N







glioma








COX6C
1345
P09669
8q22-q23
Uterine


M
Dom
T
HMGA2






leiomyoma








CREBBP
1387
Q92793
16p13.3
AL, AML


L
Dom
T
MLL, MORF,












RUNXBP2


CTNNB1
1499
P35222
3p22-p21.3
Colorectal,


E, M, O
Dom
H, Mis







ovarian,












hepatoblastoma,












others








CYLD
1540
NP_056062
16q12-q13
Cylindroma
Cylindroma
Familial
E
Rec
Mis, N, F,









cylindromatosis


S



D10S170
8030
NP_005427
10q21
Papillary


E
Dom
T
RET, PDGFRB






thyroid,












CML








DDB2
1643
Q92466
11p12

Skin basal cell,
Xeroderma
E
Rec
M, N








skin
pigmentosum E











squamous cell,












melanoma







DDIT3
1649
P35638
12q13.1-q13.2
Liposarcoma


M
Dom
T
FUS


DDX10
1662
Q13206
11q22-q23
AML§


L
Dom
T
NUP98


DEK
7913
P35659
6p23
AML


L
Dom
T
NUP214


EGFR
1956
P00533
7p12.3-p12.1
Glioma


O
Dom
A, O



EIF4A2
1974
Q14240
3q27.3
NHL


L
Dom
T
BCL6


ELKS
23085
NP_055879
12p13.3
Papillary


E
Dom
T
RET






thyroid








ELL
8178
P55199
19p13.1
AL


L
Dom
T
MLL


EP300
2033
Q09472
22q13
Colorectal


L, E
Rec
T
MLL, RUNXBP2






breast,












pancreatic,












AML








EPS15
2060
P42566
1p32
ALL


L
Dom
T
MLL


ERBB2
2064
P04626
17q21.1
Breast,


E
Dom
A







ovarian,












other tumour












types








ERCC2
2068
P18074
19q13.2-q13.3

Skin basal cell,
Xeroderma
E
Rec
M, N, F, S








skin
pigmentosum D











squamous cell,












melanoma







ERCC3
2071
P19447
2q21

Skin basal cell,
Xeroderma
E
Rec
M, S








skin
pigmentosum B











squamous cell,












melanoma







ERCC4
2072
Q92889
16p13.3-

Skin basal cell,
Xeroderma
E
Rec
M, N, F








skin
pigmentosum F











squamous cell,












melanoma







ERCC5
2073
P28715
13q33

Skin basal cell,
Xeroderma
E
Rec
M, N, F








skin
pigmentosum G











squamous cell,












melanoma







ERG
2078
P11308
21q22.3
Ewing's sarcoma


M
Dom
T
EWSR1


ETV1
2115
P50549
7p22
Ewing's sarcoma


M
Dom
T
EWSR1


ETV4
2118
P43268
17q21
Ewing's sarcoma


M
Dom
T
EWSR1


ETV6
2120
P41212
12p13
Congenital


L, E, M
Dom
T
NTRK3, RUNX1,






fibrosarcoma,





PDGFRB,






multiple





ABL1, MN1,






leukaemia





ABL2, FACL6,






and lymphoma,





CHIC2, ARNT,






secretory





JAK2, EVI1,






breast





CDX2, STL


EVI1
2122
Q03112
3q26
AML, CML


L
Dom
T
RUNX1, ETV6


EWSR1
2130
NP_005234
22q12
Ewing's


L, M
Dom
T
FLI1, ERG,






sarcoma,





ZNF278,






desmoplastic





NR4A3, TEC,






small





FEV, ATF1,






round cell,





ETV1, ETV4,






ALL





WT1, ZNF384


EXT1
2131
NP_000118
8q24.11-q24.13

Exostoses,
Multiple
M
Rec
Mis, N, F,








osteosarcoma
exostoses


S









type 1






EXT2
2132
Q93063
11p12-p11

Exostoses;
Multiple
M
Rec
Mis, N, F,








osteosarcoma
exostoses


S









type 2






FACL6
23305
NP_056071
5q31
AML, AEL


L
Dom
T
ETV6


FANCA
2175
NP_000126
16q24.3

AML, leukaemia
Fanconi
L
Rec
D, Mis, N,









anaemia A


F, S



FANCC
2176
Q00597
9q22.3

AML, leukaemia
Fanconi
L
Rec
D, Mis, N,









anaemia C


F, S



FANCD2
2177
NP_149075
3p26

AML, leukaemia
Fanconi
L
Rec
D, Mis, N,









anaemia D2


F



FANCE
2178
NP_068741
6p21-p22

AML, leukaemia
Fanconi
L
Rec
N, F, S









anaemia E






FANCF
2188
Q9NPI8
11p15

AML, leukaemia
Fanconi
L
Rec
N, F









anaemia F






FANCG
2189
O15287
9p13

AML, leukaemia
Fanconi
L
Rec
Mis, N, F,









anaemia G


S



FEV
54738
NP_059991
2q36
Ewing's sarcoma


M
Dom
T
EWSR1


FGFR1
2260
P11362
8p11.2-p11.1
MPD/NHL


L
Dom
T
BCR, FOP,












ZNF198, CEP1


FGFR1OP
11116
NP_008976
6q27
MPD/NHL


L
Dom
T
FGFR1


FGFR2
2263
P21802
10q26
Gastric


E
Dom
Mis



FGFR3
2261
P22607
4p16.3
Bladder, MM


L, E
Dom
Mis, T
IGHα


FH
2271
P07954
1q42.1

Leiomyomatosis,
Hereditary
E, M
Rec
Mis, N, F








renal
leiomyomatosis












and renal-cell












cancer






FIP1L1
81608
N_112179
4q12
Idiopathic


L
Dom
T
PDGFRA






hypereosinophilic












syndrome








FLI1
2313
Q01543
11q24
Ewing's sarcoma


M
Dom
T
EWSR1


FLT3
2322
P36888
13q12
AML, ALL


L
Dom
Mis, O



FLT4
2324
P35916
5q35.3
Angiosarcoma


M
Dom
Mis



FNBP1
23048
XP_052666
9q23
AML


L
Dom
T
MLL


FOXO1A
2308
Q12778
13q14.1
Alveolar


M
Dom
T
PAX3






rhabdomyosarcomas








FOXO3A
2309
O43524
6q21
AL


L
Dom
T
MLL


FSTL3
10272
O95633
19p13
B-CLL


L
Dom
T
CCND1


FUS
2521
P35637
16p11.2
Liposarcoma


M
Dom
T
DDIT3


GAS7
8522
O60861
17p
AML§


L
Dom
T
MLL


GATA1
2623
P15976
Xp11.23
Megakaryoblastic


L
Dom
Mis, F







leukaemia of












Down syndrome








GMPS
8833
P49915
3q24
AML


L
Dom
T
MLL


GNAS
2778
P04895
20q13.2
Pituitary


E
Dom
Mis







adenoma








GOLGA5
9950
NP_005104
14q
Papillary


E
Dom
T
RET






thyroid








GPC3
2719
P51654
Xq26.1

Wilms' tumour
Simpson-
O
Rec
T, D, Mis,









Golabi-Behmel


N, F, S









O syndrome






GPHN
10243
Q9NQX3
14q24
AL


L
Dom
T
MLL


GRAF
23092
NP_055886
5q31
AML, MDS


L
Dom
T, F, S
MLL


HEI10
57820
NP_067001
14q11.1
Uterine


M
Dom
T
HMGA2






leiomyoma








HIP1
3092
O00291
7q11.23
CMML


L
Dom
T
PDGFRB


HIST1H4I
8294
NP_003486
6p21.3
NHL


L
Dom
T
BCL6


HLF
3131
Q16534
17q22
ALL


L
Dom
T
TCF3


HMGA2
8091
P52926
12q15
Lipoma


M
Dom
T
LHFP,












RAD51L1, LPP,












HEI10, COX6C


HOXA11
3207
P31270
7p15-p14.2
CML


L
Dom
T
NUP98


HOXA13
3209
P31271
7p15-p14.2
AML


L
Dom
T
NUP98


HOXA9
3205
P31269
7p15-p14.2
AML§


L
Dom
T
NUP98


HOXC13
3229
P31276
12q13.3
AML


L
Dom
T
NUP98


HOXD11
3237
P31277
2q31-q32
AML


L
Dom
T
NUP98


HOXD13
3239
P35453
2q31-q32
AML§


L
Dom
T
NUP98


HRAS
3265
P01112
11p15.5
Infrequent


L, M
Dom
Mis







sarcomas, rare












other types








HRPT2
3279
NP_013522
1q21-q31
Parathyroid
Parathyroid
Hyperpara-
E, M
Rec
Mis, N, F







adenoma
adenoma,
thyroidism jaw











multiple
tumour











ossifying
syndrome











jaw fibroma







HSPCA
3320
P07900
1q21.2-q22
NHL


L
Dom
T
BCL6


HSPCB
3326
P08238
6p12
NHL


L
Dom
T
BCL6


IGHα
3492

14q32.33
MM, Burkitt's


L
Dom
T
MYC, FGFR3,






lymphoma, NHL,





PAX5, IRTA1,






CLL, B-ALL,





IRF4, CCND1,






MALT





BCL9, BCL6,












BCL8, BCL2,












BCL3, BCL10,












BCL11A. LHX4


IGKα
50802

2p12
Burkitt's


L
Dom
T
MYC






lymphoma








IGLα
3535

22q11.1-q11.2
Burkitt's


L
Dom
T
BCL9, MYC






lymphoma








IL21R
50615
Q9HBE5
16p11
NHL


L
Dom
T
BCL6


IRF4
3662
Q15306
6p25-p23
MM


L
Dom
T
IGHα


IRTA1
83417
NP_112572
1q21
B-NHL


L
Dom
T
IGHα


JAK2
3717
O60674
9p24
ALL, AML


L
Dom
T
ETV6


KIT
3815
P10721
4q12
GIST, AML,
GIST,
Familial
L, M, O
Dom
Mis, O







TGCT
epithelioma
gastrointestinal












stromal






KRAS2
3845
NP_004976
12p12.1
Pancreatic,


L, E,
Dom
Mis







colorectal,


M, O









lung,












thyroid, AML,












others








LAF4
3899
P51826
2q11.2-q12
ALL


L
Dom
T
MLL


LASP1
3927
Q14847
17q11-q21.3
AML


L
Dom
T
MLL


LCK
3932
NP_005347
1p35-p34.3
T-ALL


L
Dom
T
TRBα


LCP1
3936
P13796
13q14.1-q14.3
NHL


L
Dom
T
BCL6


LCX
80312
XP 167612
10q21
AML


L
Dom
T
TMLL


LHFP
10186
NP_005771
13q12
Lipoma


M
Dom
T
HMGA2


LMO1
4004
P25800
11p15
T-ALL


L
Dom
T
TRDα


LMO2
4005
P25791
11p13
T-ALL


L
Dom
T
TRDα


LPP
4026
NP_005569
3q28
Lipoma,


L, M
Dom
T
HMGA2, MLL






leukaemia








LYL1
4066
P12980
19p13.2-p13.1
T-ALL


L
Dom
T
TRBα


MADH4
4089
Q13485
18q21.1
Colorectal,
Gastrointestinal
Juvenile
E
Rec
D, Mis, N,







pancreatic,
polyps
polyposis


F







small












intestine








MALT1
10892
Q9UDY8
18q21
MALT


L
Dom
T
BIRC3


MAML2
84441
XP_045716
11q22-q23
Salivary-gland


E
Dom
T
MECT1






mucoepidermoid








MAP2K4
6416
P45985
17p11.2
Pancreatic,


E
Rec
D, Mis, N







breast,












colorectal








MDS1
4197
Q13465
3q26
MDS, AML


L
Dom
T
RUNX1


MECTl
94159
AAK93832.1
19p13
Salivary-gland


E
Dom
T
MAML2






mucoepidermoid








MEN1
4221
O00255
11q13
Parathyroid
Parathyroid
Multiple
E
Rec
D, Mis, N,








adenoma,
endocrine


F, S








pituitary
neoplasia











adenoma,
type 1











pancreatic












islet cell,












carcinoid







MET
4233
P08581
7q31
Papillary
Papillary
Familial
E
Dom
Mis







renal,
renal
papillary renal










head-neck












squamous cell








MHC2TA
4261
P33076
16p13
NHL


L
Dom
T
BCL6


MLF1
4291
P58340
3q25.1
AML


L
Dom
T
NPM1


MLH1
4292
P40692
3p21.3
Colorectal,
Colorectal, endometrial,
Hereditary non-
E, O
Rec
D, Mis, N,







endometrial,
ovarian, CNS
polyposis


F, S







ovarian, CNS

colorectal,












Turcot












syndrome






MLL
4297
Q03164
11q23
AML, ALL


L
Dom
T, O
MLL, MLLT1,












MLLT2, MLLT3,












MLLT4, MLLT7,












MLLT10,












MLLT6, ELL,












EPS15, AF1Q,












CREBBP,












SH3GL1,












FNBP1,












PNUTL1, MSF,












GPHN, GMPS,












SSH3BP1,












ARHGEF12,












GAS7,












FOXO3A,












LAF4, LCX,












SEPT6, LPP,












CBFA2T1,












GRAF, EP300,












PICALM


MLLT1
4298
Q03111
19p13.3
AL


L
Dom
T
MLL


MLLT10
8028
P55197
10p12
AL


L
Dom
T
MLL, PICALM


MLLT2
4299
P51825
4q21
AL


L
Dom
T
MLL


MLLT3
4300
P42568
9p22
ALL


L
Dom
T
MLL


MLLT4
4301
P55196
6q27
AL


L
Dom
T
MLL


MLLT6
4302
P55198
17q21
AL


L
Dom
T
MLL


MLLT7
4303
NP_005929
Xq13.1
AL


L
Dom
T
MLL


MN1
4330
Q10571
22q13
AML, meningioma


L, O
Dom
T
ETV6


MSF
10801
NP_006631
17q25
AML§


L
Dom
T
MLL


MSH2
4436
P43246
2p22-p21
Colorectal,
Colorectal,
Hereditary non-
E
Rec
D, Mis, N







endometrial,
endometrial,
polyposis


F, S







ovarian
ovarian
colorectal






MSH6
2956
P52701
2p16
Colorectal
Colorectal,
Hereditary non-
E
Rec
Mis, N, F,








endometrial,
polyposis


S








ovarian
colorectal






MSN
4478
P26038
Xq11.2-q12
ALCL


L
Dom
T
ALK


MUTYH
4595
NP_036354
1p34.3-1p32.1

Colorectal
Adenomatous
E
Rec
Mis, N, F,









polyposis coli


S



MYC
4609
P01106
8q24.12-q24.13
Burkitt's


L, E
Dom
A, T
IGKα, BCL5,






lymphoma,





BCL7A, BTG1,






amplified in





TRAα, IGHα






other cancers,












B-CLL








MYCL1
4610
P12524
1p34.3
Small cell lung


E
Dom
A



MYCN
4613
P04198
2p24.1
Neuroblastoma


O
Dom
A



MYH11
4629
P35749
16p13.13-p13.12
AML


L
Dom
T
CBFB


MYH9
4627
P35579
22q13.1
ALCL


L
Dom
T
ALK


MYST4
23522
NP_036462
10q22
AML


L
Dom
T
CREBBP


NACA
4666
NP_005585
12q23-q24.1
NHL


L
Dom
T
BCL6


NBS1
4683
NP_002476
8q21

NHL, glioma,
Nijmegen
L, E, M, O
Rec
Mis, N, F








medulloblastoma,
breakage











rhabdomyosarcoma
syndrome






NCOA2
10499
Q15596
8q13.1
AML


L
Dom
T
RUNXBP2


NCOA4
8031
Q13772
10q11.2
Papillary


E
Dom
T
RET






thyroid








NF1
4763
P21359
17q12
Neurofibroma,
Neurofibroma,
Neurofibromatosis
O
Rec
D, Mis, N,







glioma
glioma
type 1


F, S, O



NF2
4771
P35240
22q12.2
Meningioma,
Meningioma,
Neurofibromatosis
O
Rec
D, Mis, N,







acoustic
acoustic
type 2


F, S, O







neuroma
neuroma







NOTCH1
4851
P46531
9q34.3
T-ALL


L
Dom
T
TRBα


NPM1
4869
P06748
5q35
NHL, APL, AML


L
Dom
T
ALK, RARA,












MLF1


NR4A3
8013
Q92570
9q22
Extraskeletal


M
Dom
T
EWSR1






myxoid












chondrosarcoma








NRAS
4893
P01111
1p13.2
Melanoma, MM,


L, E
Dom
Mis







AML, thyroid








NSD1
64324
NP_071900
5q35
AML


L
Dom
T
NUP98


NTRK1
4914
P04629
1q21-q22
Papillary


E
Dom
T
TPM3, TPR,






thyroid





TFG


NTRK3
4916
Q16288
15q25
Congenital


E, M
Dom
T
ETV6






fibrosarcoma,












secretory breast








NUMA1
4926
NP_006176
11q13
APL


L
Dom
T
RARA


NUP214
8021
P35658
9q34.1
AML


L
Dom
T
DEK, SET


NUP98
4928
P52948
11p15
AML


L
Dom
T
HOXA9, NSD1,












WHSC1L1,












DDX10, TOP1,












HOXD13,












PMX1,












HOXA13,












HOXD11,












HOXA11,












RAP1GDS1


NUT
256646
XP_171724
15q13
Lethal midline


E
Dom
T
BRD4






carcinoma of young












people








OLIG2
10215
Q13516
21q22.11
T-ALL


L
Dom
T
TRAα


PAX3
5077
P23760
2q35
Alveolar


M
Dom
T
FOXO1A






rhabdomyosarcoma








PAX5
5079
Q02548
9p13
NHL


L
Dom
T
IGHα


PAX7
5081
P23759
1p36.2-p36.12
Alveolar


M
Dom
T
FOXO1A






rhabdomyosarcoma








PAX8
7849
Q06710
2q12-q14
Follicular thyroid


E
Dom
T
PPARG


PBX1
5087
NP_002576
1q23
Pre-B-ALL


L
Dom
T
TCF3


PCM1
5108
NP_006188
8p22-p21.3
Papillary thyroid


E
Dom
T
RET


PDGFB
5155
P01127
22q12.3-q13.1
DFSP


M
Dom
T
COL1A1


PDGFRA
5156
P16234
4q11-q13
GIST


M, O
Dom
Mis, O



PDGFRB
5159
NP_002600
5q31-q32
MPD, AML,


L
Dom
T
ETV6, TRIP11,






CMML, CML





HIP1, RAB5EP,












H4


PICALM
8301
Q13492
11q14
T-ALL, AML


L
Dom
T
MLLT10, MLL


PIM1
5292
P11309
6p21.2
NHL


L
Dom
T
BCL6


PML
5371
P29590
15q22
APL


L
Dom
T
RARA


PMS1
5378
P54277
2q31-q33

Colorectal,
Hereditary non-
E
Rec
Mis, N








endometrial,
polyposis











ovarian
colorectal cancer






PMS2
5395
P54278
7p22

Colorectal,
Hereditary non-
E
Rec
Mis, N, F








endometrial,
polyposis











ovarian,
colorectal











medulloblastoma,
cancer, Turcot











glioma
syndrome






PMX1
5396
P54821
1q24
AML


L
Dom
T
NUP98


PNUTL1
5413
NP_002679
22q11.2
AML


L
Dom
T
MLL


POU2AF1
5450
Q16633
11q23.1
NHL


L
Dom
T
BCL6


PPARG
5468
P37231
3p25
Follicular


E
Dom
T
PAX8






thyroid








PRCC
5546
Q92733
1q21.1
Papillary renal


E
Dom
T
TFE3


PRKAR1A
5573
P10644
17q23-q24
Papillary
Myxoma,
Carney complex
E, M
Dom, Rec
T, Mis, N,
RET






thyroid
endocrine,



F, S








papillary












thyroid







PRO1073
29005
Q9UHZ2
11q31.1
Renal-cell


E
Dom
T
TFEB






carcinoma












(childhood












epithelioid)








PSIP2
11168
NP_150091
9p22.2
AML


L
Dom
T
NUP98


PTCH
5727
Q13635
9q22.3
Skin basal cell,
Skin basal cell,
Nevoid basal-
E, M
Rec
Mis, N, F,







medulloblastoma
medulloblastoma
cell carcinoma


S









syndrome






PTEN
5728
O00633
10q23.3
Glioma,
Harmartoma,
Cowden
L, E, M, O
Rec
D, Mis, N,







prostatic,
glioma,
syndrome,


F, S







endometrial
prostatic,
Bannayan-











endometrial
Riley-












Ruvalcaba












syndrome






PTPN11
5781
Q06124
12q24.1
JMML, AML,


L
Dom
Mis







MDS








RAB5EP
9135
NP_004694
17p13
CMML


L
Dom
T
PDGFRB


RAD51L1
5890
NP_002868
14q23-q24.2
Lipoma, uterine


M
Dom
T
HMGA2






leiomyoma








RAP1GDS1
5910
P52306
4q21-q25
T-ALL


L
Dom
T
NUP98


RARA
5914
P10276
17q12
APL


L
Dom
T
PML, ZNF145,












TIF1,












NUMA1,












NPM1


RB1
5925
P06400
13q14
Retinoblastoma,
Retinoblastoma,
Familial
L, E, M, O
Rec
D, Mis, N,







sarcoma, breast,
sarcoma, breast,
retinoblastoma


F, S







small-cell lung
small-cell lung







RECQL4
9401
O94761
8q24.3

Osteosarcoma,
Rothmund-
M
Rec
N, F, S








skin basal
Thompson











and squamous cell
syndrome






REL
5966
Q04864
2p13-p12
Hodgkin


L
Dom
A







Lymphoma








RET
5979
P07949
10q11.2
Medullary
Medullary
Multiple
E, O
Dom
T, Mis, N,
H4, PRKAR1A,






thyroid,
thyroid,
endocrine


F
NCOA4, PCM1,






papillary
papillary
2A/2B



GOLGA5, TRIM33






thyroid,
thyroid,











pheochromocytoma
pheochromo-












cytomaneoplasia







RPL22
6146
P35268
3q26
AML, CML


L
Dom
T
RUNX1


RUNX1
861
Q01196
21q22.3
AML, pre-B-ALL


L
Dom
T
RPL22, MDS1












EVI1,












CBFA2T3,












CBFA2T1,












ETV6


RUNXBP2
799
NP_006757
8p11
AML


L
Dom
T
CREBBP,












NCOA2, EP300


SBDS
51119
Q9Y3A5
7q11

AML, MDS
Schwachman-
L
Rec
Gene









Diamond


conversion









syndrome






SDHB
6390
P21912
1p36.1-p35

Paraganglioma,
Familial
O
Rec
Mis, N, F








pheochromocytoma
paraganglioma






SDHC
6391
O75609
1q21

Paraganglioma,
Familial
O
Rec
Mis, N, F








pheochromocytoma
paraganglioma






SDHD
6392
O14521
11q23

Paraganglioma,
Familial
O
Rec
Mis, N, F,








pheochromocytoma
paraganglioma


S



SEPT6
23157
N 055944
Xq24
AML


L
Dom
T
MLL


SET
6418
Q01105
9q34
AML


L
Dom
T
NUP214


SFPQ
6421
P23246
1p34.3
Papillary renal


E
Dom
T
TFE3






cell








SH3GL1
6455
Q99961
19p13.3
AL


L
Dom
T
MLL


SMARCB1
6598
Q12824
22q11
Malignant
Malignant
Rhabdoid
M
Rec
D, N, F,







rhabdoid
rhabdoid
predisposition


S









syndrome






SMO
6608
Q99835
7q31-q32
Skin basal cell


E
Dom
Mis



SS18
6760
Q15532
18q11.2
Synovial sarcoma


M
Dom
T
SSX1, SSX2


SS18L1
26039
O75177
20q13.3
Synovial sarcoma


M
Dom
T
SSX1


SSH3BP1
10006
NP_005461
10p11.2
AML


L
Dom
T
MLL


SSX1
6756
Q16384
Xp11.23-p11.22
Synovial sarcoma


M
Dom
T
SS18


SSX2
6757
Q16385
Xp11.23-p11.22
Synovial sarcoma


M
Dom
T
SS18


SSX4
6759
O60224
Xp11.23
Synovial sarcoma


M
Dom
T
SS18


STK11
6794
Q15831
19p13.3
NSCLC
Jejunal
Peutz-Jeghers
E, M, O
Rec
D, Mis, N,








harmartoma,
syndrome











ovarian,












testicular,












pancreatic







STL
7955
NOPROTEIN
6q23
B-ALL


L
Dom
T
ETV6


SUFU
51684
NP_057253
10q24.32
Medulloblastoma
Medulloblastoma
Medulloblastoma
O
Rec
D, F, S









predisposition






TAF15
8148
Q92804
17q11.1-q11.2
Extraskeletal


L, M
Dom
T
TEC, CHN1,






myxoid





ZNF384






chondrosarcomas,












ALL








TAL1
6886
P17542
1p32
Lymphoblastic


L
Dom
T
TRDα






leukaemia/biphasic








TAL2
6887
Q16559
9q31
T-ALL


L
Dom
T
TRBα


TCF1
6927
P20823
12q24.2
Hepatic adenoma,
Hepatic adenoma,
Familial hepatic
E
Rec
Mis, F







hepatocellular
hepatocellular
adenoma










carcinoma
carcinoma







TCF12
6938
Q99081
15q21
Extraskeletal


M
Dom
T
TEC






myxoid












chondrosarcoma








TCF3
6929
P15923
19p13.3
pre-B-ALL


L
Dom
T
PBX1, HLF,












TFPT


TCL1A
8115
NP_068801
14q32.1
T-CLL


L
Dom
T
TRAα


TEC
7006
P42680
4p12
Extraskeletal


M
Dom
T
EWSR1, TAF15,






myxoid





TCF12






chondrosarcoma








TFE3
7030
P19532
Xp11.22
Papillary renal,


E
Dom
T
SFPQ,






alveolar soft part





ASPSCR1,






sarcoma





PRCC


TFEB
7942
P19484
6p21
Renal (childhood


E, M
Dom
T
ALPHA






epithelioid)








TFG
10342
NP_006061
3q11-q12
Papillary thyroid,


E, L
Dom
T
NTRK1, ALK






ALCL








TFPT
29844
NP 037474
19q13
Pre-B-ALL


L
Dom
T
TCF3


TFRC
7037
P02786
3q29
NHL


L
Dom
T
BCL6


TIF1
8805
O15164
7q32-q34
APL


L
Dom
T
RARA


TLX1
3195
P31314
10q24
T-ALL


L
Dom
T
TRBα, TRDα


TLX3
30012
O43711
5q35.1
T-ALL


L
Dom
T
BCL11B


TNFRSF6
355
P25445
10q24.1
TGCT, nasal NK/T


L, E, O
Rec
Mis







lymphoma, skin












squamous-cell












carcinoma (burn-












scar related)








TOP1
7150
P11387
20q12-q13.1
AMI§


L
Dom
T
NUP98


TP53
7157
P04637
17p13
Breast, colorectal,
Breast, sarcoma,
Li-Fraumeni
L, E, M, O
Rec
Mis, N, F







lung, sarcoma,
adrenocortical
syndrome










adrenocortical,
carcinoma,











glioma, multiple
glioma, multiple











other types
other types







TPM3
7170
P06753
1q22-q23
Papillary thyroid,


E, L
Dom
T
NTRK1, ALK






ALCL








TPM4
7171
P07226
19p13.1
ALCL


L
Dom
T
ALK


TPR
7175
P12270
1q25
Papillary thyroid


E
Dom
T
NTRK1


TRAα
6955

14q11.2
T-ALL


L
Dom
T
ATL, OLIG2,












MYC, TCL1A


TRBα
6957

7q35
T-ALL


L
Dom
T
HOX11, LCK,












NOTCH1,












TAL2, LYL1


TRDα
6964

14q11
T-cell leukaemia


L
Dom
T
TAL1, HOX11,












TLX1, LMO1,












LMO2


TRIM33
51592
Q9UPN9
1p13
Papillary thyroid


E
Dom
T
RET


TRIP11
9321
NP_004230
14q31-q32
AML


L
Dom
T
PDGFRB


TSC1
7248
Q92574
9q34

Hamartoma, renal
Tuberous
E, O
Rec
D, Mis, N,








cell
sclerosis 1


F, S



TSC2
7249
P49815
16p13.3

Hamartoma, renal
Tuberous
E, O
Rec
D, Mis, N,








cell
sclerosis 2


F, S



TSHR
7253
P16473
14q31
Toxic thyroid
Thyroid adenoma

E
Dom
Mis







adenoma








VHL
7428
P40337
3p25
Renal,
Renal,
von Hippel-
E, M, O
Rec
D, Mis, N,







hemangioma,
hemangioma,
Lindau


F, S







pheochromocytoma
pheochromocytoma
syndrome






WAS
7454
P42768
Xp11.23-p11.22

Lymphoma
Wiskott-Aldrich
L
Rec
Mis, N, F,









syndrome


S



WHSC1L1
54904
NP 060248
8p12
AML


L
Dom
T
NUP98


WRN
7486
Q14191
8p12-p11.2

Osteosarcoma,
Werner
L, E, M,
Rec
Mis, N, F,








meningioma,
syndrome
O

S








others







WT1
7490
NP_000369
11p13
Wilms',
Wilms'
Denys-Drash
O
Rec
D, Mis, N,
EWSR1






desmoplastic small

syndrome,


F, S







round cell

Frasier












syndrome,












Familial Wilms'












tumour






XPA
7507
P23025
9q22.3

Skin basal cell,
Xeroderma
E
Rec
Mis, N, F,








skin
pigmentosum A


S








squamous cell,












melanoma







XPC
7508
Q01831
3p25

Skin basal cell,
Xeroderma
E
Rec
Mis, N, F,








skin
pigmentosum C


S








squamous cell,












melanoma







ZNF145
7704
Q05516
11q23.1
APL


L
Dom
T
RARA


ZNF198
7750
Q9UBW7
13q11-q12
MPD/NHL


L
Dom
T
FGFR1


ZNF278
23598
NP_055138
22q12-q14
Ewing's sarcoma


M
Dom
T
EWSR1


ZNF384
171017
NP_597733
12p13
ALL


L
Dom
T
EWSR1, TAF15


ZNFN1A1
10320
NP_006051
7p12
ALL, DLBCL


L
Dom
T
BCL6





*From Swiss-Prot/Refseq.



D (large deletion) covers the abnormalities that result in allele loss/loss of heterozygosity at many recessive cancer genes.




§Refers to cases of acute myeloid leukaemia that are associated with treatment.




O (other) in the ‘mutation type’ column refers primarily to small in-frame deletions/insertions as found in KIT/PDGFRA, and larger duplications/insertions as found in FLT3 and EGFR. Note that where an inversion/large deletion has been shown to result in a fusions protein, these have been listed under translocations. The Wellcome Trust Sanger Institute web version of the cancer-gene set can be found at http://www.sanger.ac.uk/genetics/CPG/Census/.



A, amplification; AEL, acute eosinophilic leukaemia; AL, acute leukaemia; ALCL, anaplastic large-cell lymphoma; ALL, acute lymphocytic leukaemia; AML, acute myelogenous leukaemia; APL, acute promyelocytic leukaemia; B-ALL, B-cell acute lymphocytic leukaemia; B-CLL, B-cell lymphocytic leukaemia; B-NHL, B-cell non-Hodgkin's lymphoma; CLL, chronic lymphatic leukaemia; CML, chronic myeloid leukaemia; CMML, chronic myelomonocytic leukaemia; CNS, central nervous system; D, large deletion; DFSP, dermatofibrosarcoma protuberans; DLBCL, diffuse large B-cell lymphoma; Dom, dominant; E, epithelial; F, frameshift; GIST, gastrointestinal stromal tumour; JMML, juvenile myelomonocytic leukaemia; L, leukaemia/lymphoma; M, mesenchymal; MALT, mucosa-associated lymphoid tissue; MDS, myelodysplastic syndrome; MM, multiple myeloma; Mis, missense; N, nonsense; NHL, non-Hodgkin's lymphoma; NK/T, natural killer T cell; NSCLC, non-small-cell lung cancer; O, other; pre-B-ALL, pre-B-cell acute lymphoblastic leukaemia; Rec, recessive; S, splice site; T, translocation; T-ALL, T-cell acute lymphoblastic leukaemia; T-CLL, T-cell chronic lymphocytic leukaemia; TGCT, testicular germ-cell tumour; T-PLL, T-cell prolymphocytic leukaemia.













TABLE 3







List of genes which contain cancer-related somatic mutations. The list was adapted from Sanger


Center's COSMIC database(Bamford et al, 2004; Forbes et al., 2008; Forbes et al.; Forbes


et al.; Friedberg; Pleasance et al.). The gene names are uniquely assigned by HUGO Gene Nomenclature


Committee (http://www.genenames.org/index.html, accessed Jan. 31, 2011).











HGNC Gene Name
HGNC Gene Name
HGNC Gene Name
HGNC Gene Name
HGNC Gene Name





39340
A1BG
A1CF
A2BP1
A2LD1


A2M
A2ML1
A2RRG4_HUMAN
A3GALT2
A4D198_HUMAN


A4D226_HUMAN
A4GALT
A4GNT
AAAS
AACS


AADAC
AADACL2
AADACL3
AADACL4
AADAT


AAGAB
AAK1
AAMP
AANAT
AARS


AARS2
AARSD1
AASDH
AASDHPPT
AASS


AATF
AATK
AB019437_1
ABAT
ABBA-1


ABCA1
ABCA10
ABCA12
ABCA13
ABCA2


ABCA3
ABCA4
ABCA5
ABCA6
ABCA7


ABCA8
ABCA9
ABCB1
ABCB10
ABCB11


ABCB4
ABCB5
ABCB6
ABCB7
ABCB8


ABCB9
ABCC1
ABCC10
ABCC11
ABCC12


ABCC2
ABCC3
ABCC4
ABCC5
ABCC6


ABCC8
ABCC9
ABCD1
ABCD2
ABCD3


ABCD4
ABCE1
ABCF1
ABCF2
ABCF3


ABCG1
ABCG2
ABCG4
ABCG5
ABCG8


ABHD1
ABHD10
ABHD11
ABHD12
ABHD12B


ABHD13
ABHD14A
ABHD14B
ABHD15
ABHD2


ABHD3
ABHD4
ABHD5
ABHD6
ABHD8


ABI1
ABI2
ABI3
ABI3BP
ABL1


ABL2
ABLIM1
ABLIM3
ABO
ABP1


ABR
ABRA
ABT1
ABTB1
ABTB2


AC002472.13
AC007731_16
AC008537_5-2
AC008969.1
AC010872_2


AC012100.1
AC013469_8-2
AC021593.2
AC022098.2
AC023469_1


AC027369_8
AC068473.1
AC079612.1
AC092070_2
AC093393.1


AC097374_3
AC099524.1
AC103710_2
AC112491_4
AC114273.2


AC120042.2
AC127391_4
AC142381_2
AC142381_2
ACAA1





ENST00000356559


ACAA2
ACACA
ACACB
ACAD10
ACAD11


ACAD8
ACAD9
ACADL
ACADM
ACADS


ACADSB
ACADVL
ACAN
ACAP1
ACAP2


ACAP3
ACAT1
ACAT2
ACBD3
ACBD4


ACBD5
ACBD6
ACBD7
ACCN1
ACCN2


ACCN3
ACCN4
ACCN5
ACCS
ACCSL


ACD
ACE
ACE2
ACER1
ACER2


ACER3
ACHE
ACIN1
ACLY
ACMSD


ACN9
ACO1
ACO2
ACOT1
ACOT11


ACOT12
ACOT13
ACOT2
ACOT4
ACOT6


ACOT7
ACOT8
ACOT9
ACOX1
ACOX2


ACOX3
ACOXL
ACP1
ACP2
ACP5


ACP6
ACPL2
ACPP
ACPT
ACR


ACRBP
ACRC
ACRV1
ACSBG1
ACSBG2


ACSF2
ACSF3
ACSL1
ACSL3
ACSL4


ACSL5
ACSL6
ACSM1
ACSM2A
ACSM2B


ACSM3
ACSM5
ACSS1
ACSS2
ACSS3


ACTA1
ACTA2
ACTB
ACTBL2
ACTC1


ACTG1
ACTG2
ACTL6A
ACTL6B
ACTL7A


ACTL7B
ACTL8
ACTL9
ACTN1
ACTN2


ACTN3
ACTN4
ACTR10
ACTR1A
ACTR1B


ACTR2
ACTR3
ACTR3B
ACTR5
ACTR6


ACTR8
ACTRT1
ACTRT2
ACVR1
ACVR1B


ACVR1C
ACVR2A
ACVR2B
ACVRL1
ACY1


ACY3
ACYP1
ACYP2
ADA
ADAD1


ADAD2
ADAL
ADAM10
ADAM11
ADAM12


ADAM15
ADAM17
ADAM18
ADAM19
ADAM2


ADAM20
ADAM21
ADAM22
ADAM22
ADAM23





ENST00000315984


ADAM28
ADAM29
ADAM30
ADAM32
ADAM33


ADAM7
ADAM8
ADAM9
ADAMDEC1
ADAMTS1


ADAMTS10
ADAMTS12
ADAMTS13
ADAMTS14
ADAMTS15


ADAMTS16
ADAMTS16
ADAMTS17
ADAMTS18
ADAMTS19



ENST00000274181


ADAMTS2
ADAMTS20
ADAMTS3
ADAMTS4
ADAMTS5


ADAMTS6
ADAMTS6
ADAMTS7
ADAMTS8
ADAMTS9



ENST00000381055


ADAMTSL1
ADAMTSL1
ADAMTSL2
ADAMTSL3
ADAMTSL4



ENST00000380548


ADAMTSL5
ADAP1
ADAP2
ADAR
ADARB1


ADARB2
ADAT1
ADAT2
ADAT3
ADC


ADCK1
ADCK2
ADCK4
ADCK5
ADCY1


ADCY10
ADCY2
ADCY3
ADCY4
ADCY5


ADCY6
ADCY7
ADCY8
ADCY9
ADCYAP1


ADCYAP1R1
ADD1
ADD2
ADD3
ADH1A


ADH1B
ADH4
ADH5
ADH6
ADH7


ADHFE1
ADI1
ADIPOQ
ADIPOR1
ADIPOR2


ADK
ADM
ADM2
ADNP
ADNP2


ADO
ADORA1
ADORA2A
ADORA2B
ADORA3


ADPGK
ADPRH
ADPRHL1
ADPRHL2
ADRA1A


ADRA1B
ADRA1D
ADRA2A
ADRA2B
ADRA2C


ADRB1
ADRB2
ADRB3
ADRBK1
ADRBK2


ADRM1
ADSL
ADSS
ADSSL1
AEBP1


AEN
AES
AFAP1
AFAP1L1
AFAP1L2


AFF1
AFF2
AFF3
AFF4
AFG3L2


AFM
AFMID
AFP
AFTPH
AGA


AGAP1
AGAP2
AGAP3
AGAP4
AGAP5


AGAP7
AGAP8
AGBL2
AGBL4
AGBL5


AGC1
AGER
AGFG1
AGFG2
AGGF1


AGK
AGL
AGMAT
AGPAT1
AGPAT2


AGPAT3
AGPAT4
AGPAT5
AGPAT6
AGPAT9


AGPHD1
AGPS
AGR2
AGR3
AGRN


AGRP
AGT
AGTPBP1
AGTR1
AGTR2


AGTRAP
AGXT
AGXT2
AGXT2L1
AGXT2L2


AHCTF1
AHCTF1P
AHCY
AHCYL1
AHCYL2


AHDC1
AHI1
AHNAK
AHNAK2
AHR


AHRR
AHSA1
AHSA2
AHSG
AHSP


AICDA
AIDA
AIF1
AIF1L
AIF1






ENST00000376051


AIFM1
AIFM2
AIFM3
AIG1
AIM1


AIM1L
AIM2
AIMP1
AIMP2
AIP


AIPL1
AIRE
AJAP1
AK1
AK2


AK3
AK3L1
AK5
AK7
AKAP1


AKAP10
AKAP11
AKAP12
AKAP13
AKAP14


AKAP2
AKAP3
AKAP4
AKAP5
AKAP6


AKAP7
AKAP8
AKAP9
AKAP9_NM_005751
AKD1


AKIRIN1
AKIRIN2
AKNA
AKNAD1
AKR1A1


AKR1B1
AKR1B10
AKR1B1P8
AKR1C1
AKR1C2


AKR1C3
AKR1C4
AKR1CL1
AKR1D1
AKR1E2


AKR7A2
AKR7A3
AKR7L
AKT1
AKT1S1


AKT2
AKT3
AKTIP
AL121675_36-2
AL122001_32


AL161645_14
AL512274_9
ALAD
ALAS1
ALAS2


ALB
ALCAM
ALDH16A1
ALDH18A1
ALDH1A1


ALDH1A2
ALDH1A3
ALDH1B1
ALDH1L1
ALDH1L2


ALDH2
ALDH3A1
ALDH3A2
ALDH3B2
ALDH4A1


ALDH5A1
ALDH6A1
ALDH7A1
ALDH8A1
ALDH9A1


ALDOA
ALDOB
ALDOC
ALG1
ALG10


ALG10B
ALG11
ALG12
ALG13
ALG14


ALG1L
ALG2
ALG5
ALG6
ALG8


ALG9
ALK
ALKBH1
ALKBH2
ALKBH3


ALKBH4
ALKBH5
ALKBH6
ALKBH7
ALKBH8


ALLC
ALMS1
ALOX12
ALOX12B
ALOX12P2


ALOX15
ALOX15B
ALOX5
ALOX5AP
ALOXE3


ALPI
ALPK1
ALPK2
ALPK2
ALPK3





ENST00000361673


ALPL
ALPP
ALPPL2
ALS2
ALS2CL


ALS2CR11
ALS2CR12
ALS2CR8
ALX1
ALX3


ALX4
AMAC1
AMAC1L2
AMACR
AMBN


AMBP
AMBRA1
AMD1
AMDHD1
AMDHD2


AMELX
AMELY
AMFR
AMH
AMHR2


AMICA1
AMIGO1
AMIGO2
AMIGO3
AMMECR1


AMMECR1L
AMN
AMOT
AMOTL1
AMOTL2


AMPD1
AMPD2
AMPD2
AMPD3
AMPH




ENST00000393689


AMT
AMTN
AMY1A
AMY1B
AMY1C


AMY2A
AMY2B
AMZ1
AMZ2
ANAPC1


ANAPC10
ANAPC11
ANAPC13
ANAPC2
ANAPC4


ANAPC5
ANAPC7
ANG
ANGEL1
ANGEL2


ANGPT1
ANGPT2
ANGPT4
ANGPTL1
ANGPTL2


ANGPTL3
ANGPTL4
ANGPTL5
ANGPTL6
ANGPTL7


ANK1
ANK2
ANK3
ANKAR
ANKDD1A


ANKFN1
ANKFY1
ANKH
ANKHD1
ANKHD1-EIF4EBP3


ANKK1
ANKLE2
ANKMY1
ANKMY2
ANKRA2


ANKRD1
ANKRD10
ANKRD11
ANKRD12
ANKRD13A


ANKRD13B
ANKRD13C
ANKRD13D
ANKRD16
ANKRD17


ANKRD18A
ANKRD2
ANKRD20A1
ANKRD20A2
ANKRD20A3


ANKRD20A4
ANKRD20A5
ANKRD22
ANKRD23
ANKRD24


ANKRD26
ANKRD27
ANKRD28
ANKRD29
ANKRD30A


ANKRD31
ANKRD32
ANKRD33
ANKRD34A
ANKRD34B


ANKRD35
ANKRD37
ANKRD39
ANKRD40
ANKRD42


ANKRD43
ANKRD44
ANKRD45
ANKRD46
ANKRD49


ANKRD5
ANKRD50
ANKRD52
ANKRD53
ANKRD54


ANKRD55
ANKRD56
ANKRD57
ANKRD58
ANKRD6


ANKRD60
ANKRD7
ANKRD9
ANKS1A
ANKS3


ANKS4B
ANKS6
ANKZF1
ANLN
ANO10


ANO2
ANO3
ANO4
ANO5
ANO6


ANO7
ANO8
ANO9
ANP32B
ANP32C


ANP32D
ANP32E
ANPEP
ANTXR1
ANTXRL


ANUBL1
ANXA1
ANXA10
ANXA11
ANXA13


ANXA2
ANXA3
ANXA4
ANXA5
ANXA6


ANXA7
ANXA8
ANXA8L1
ANXA8L2
ANXA9


AOAH
AOC2
AOC3
AOF2
AOX1


AP001011.2
AP001011.3
AP005901_2
AP1AR
AP1B1


ENST00000261598
ENST00000320876


AP1G1
AP1G2
AP1M1
AP1M2
AP1S1


AP1S2
AP1S3
AP2A1
AP2A2
AP2B1


AP2M1
AP2S1
AP3B1
AP3B2
AP3D1


AP3M1
AP3M2
AP3S1
AP3S2
AP4B1


AP4E1
AP4M1
AP4S1
APAF1
APBA1


APBA2
APBA3
APBB1
APBB1IP
APBB2


APBB3
APC
APC2
APCDD1
APCDD1L


APCS
APEH
APEX1
APEX2
APH1A


APH1B
API5
APIP
APITD1
APLF


APLN
APLNR
APLP1
APLP2
APOA1


APOA1BP
APOA2
APOA4
APOA5
APOB


APOB48R
APOBEC1
APOBEC2
APOBEC3A
APOBEC3B


APOBEC3C
APOBEC3D
APOBEC3F
APOBEC3G
APOBEC3H


APOBEC4
APOC1
APOC2
APOC3
APOC4


APOD
APOE
APOH
APOL1
APOL2


APOL3
APOL4
APOL5
APOL6
APOLD1


APOM
APOO
APOOL
APP
APPBP2


APPL1
APPL2
APRT
APTX
AQP1


AQP10
AQP11
AQP12A
AQP2
AQP3


AQP4
AQP5
AQP6
AQP7
AQP8


AQP9
AQR
AR
ARAF
ARAP1


ARAP2
ARAP3
ARC
ARCN1
ARD1B


AREG
ARF1
ARF3
ARF4
ARF5


ARF6
ARFGAP1
ARFGAP2
ARFGAP3
ARFGEF1


ARFGEF2
ARFIP1
ARFIP2
ARFRP1
ARG1


ARG2
ARGFX
ARGLU1
ARHGAP1
ARHGAP10


ARHGAP11A
ARHGAP11B
ARHGAP12
ARHGAP15
ARHGAP17


ARHGAP18
ARHGAP19
ARHGAP19
ARHGAP20
ARHGAP21




ENST00000358531


ARHGAP22
ARHGAP23
ARHGAP24
ARHGAP25
ARHGAP26


ARHGAP27
ARHGAP28
ARHGAP29
ARHGAP30
ARHGAP31


ARHGAP32
ARHGAP32
ARHGAP33
ARHGAP36
ARHGAP4



ENST00000310343


ARHGAP5
ARHGAP6
ARHGAP8
ARHGAP9
ARHGDIA


ARHGDIB
ARHGDIG
ARHGEF1
ARHGEF10
ARHGEF10L


ARHGEF10
ARHGEF11
ARHGEF12
ARHGEF15
ARHGEF16


ENST00000398564


ARHGEF17
ARHGEF18
ARHGEF19
ARHGEF2
ARHGEF3


ARHGEF4
ARHGEF5
ARHGEF5L
ARHGEF6
ARHGEF7


ARHGEF9
ARID1A
ARID1B
ARID2
ARID3A


ARID3B
ARID3C
ARID4A
ARID4B
ARID4B






ENST00000264183


ARID5A
ARID5B
ARIH1
ARIH2
ARL1


ARL10
ARL11
ARL13A
ARL13B
ARL14


ARL15
ARL17B
ARL2
ARL2BP
ARL3


ARL4A
ARL4C
ARL4D
ARL4P
ARL5A


ARL5B
ARL5C
ARL6
ARL6IP1
ARL6IP4


ARL6IP5
ARL6IP6
ARL8A
ARL8B
ARL9


ARMC1
ARMC10
ARMC2
ARMC3
ARMC4


ARMC6
ARMC7
ARMC8
ARMC9
ARMCX1


ARMCX2
ARMCX3
ARMCX4
ARMCX5
ARMCX6


ARNT
ARNT2
ARNTL
ARNTL2
ARPC1A


ARPC1B
ARPC2
ARPC3
ARPC4
ARPC5


ARPC5L
ARPM1
ARPP-21
ARPP19
ARR3


ARRB1
ARRB2
ARRDC1
ARRDC2
ARRDC3


ARRDC4
ARSA
ARSB
ARSD
ARSE


ARSF
ARSG
ARSH
ARSI
ARSJ


ARSK
ART1
ART3
ART4
ART5


ARTN
ARV1
ARVCF
ARX
AS3MT


ASAH1
ASAH2
ASAH2B
ASAM
ASAP1


ASAP2
ASAP3
ASB1
ASB10
ASB11


ASB12
ASB13
ASB14
ASB15
ASB16


ASB17
ASB18
ASB2
ASB3
ASB4


ASB5
ASB6
ASB7
ASB8
ASB9


ASCC1
ASCC2
ASCC3
ASCL1
ASCL2


ASCL3
ASCL4
ASF1B
ASGR1
ASGR1






ENST00000380920


ASGR2
ASH1L
ASH2L
ASIP
ASL


ASMT
ASMTL
ASNA1
ASNS
ASNSD1


ASNS
ASPA
ASPDH
ASPH
ASPHD1


ENST00000394309


ASPHD2
ASPM
ASPN
ASPRV1
ASPSCR1


ASRGL1
ASS1
ASTE1
ASTL
ASTN1


ASTN2
ASXL1
ASXL2
ASXL3
ASZ1


ATAD1
ATAD2
ATAD2B
ATAD2B
ATAD3A





ENST00000238789


ATAD3B
ATAD3B
ATAD5
ATCAY
ATE1



ENST00000378741


ATF1
ATF2
ATF3
ATF4
ATF5


ATF6
ATF6B
ATF7IP
ATF7IP2
ATG10


ATG12
ATG16L1
ATG16L2
ATG2A
ATG2B


ATG3
ATG4A
ATG4A
ATG4C
ATG4D




ENST00000372232


ATG5
ATG7
ATG9A
ATG9B
ATHL1


ATIC
ATL1
ATL2
ATL3
ATM


ATMIN
ATN1
ATOH1
ATOH7
ATOH8


ATP10A
ATP10B
ATP10D
ATP11A
ATP11B


ATP11C
ATP12A
ATP13A1
ATP13A2
ATP13A3


ATP13A4
ATP13A5
ATP1A1
ATP1A2
ATP1A3


ATP1A4
ATP1B1
ATP1B2
ATP1B3
ATP1B4


ATP2A1
ATP2A2
ATP2A3
ATP2B1
ATP2B2


ATP2B3
ATP2B3
ATP2B4
ATP2C1
ATP2C2



ENST00000370186


ATP4A
ATP4B
ATP5A1
ATP5B
ATP5C1


ATP5D
ATP5E
ATP5F1
ATP5G1
ATP5G2


ATP5G3
ATP5H
ATP5I
ATP5J
ATP5J2


ATP5L
ATP5O
ATP5S
ATP5SL
ATP6AP1


ATP6AP1L
ATP6AP2
ATP6V0A1
ATP6V0A2
ATP6V0A4


ATP6V0B
ATP6V0C
ATP6V0D1
ATP6V0D2
ATP6V0E1


ATP6V0E2L
ATP6V1A
ATP6V1B1
ATP6V1B2
ATP6V1C1


ATP6V1C2
ATP6V1D
ATP6V1E1
ATP6V1E2
ATP6V1F


ATP6V1G1
ATP6V1G2
ATP6V1G3
ATP6V1H
ATP7A


ATP7B
ATP8A1
ATP8A2
ATP8B1
ATP8B2


ATP8B4
ATP9A
ATP9B
ATPAF1
ATPAF2


ATPBD3
ATPBD4
ATPGD1
ATPIF1
ATR


ATRIP
ATRN
ATRNL1
ATRX
ATXN1


ATXN10
ATXN2
ATXN2L
ATXN3
ATXN3L


ATXN7
ATXN7L1
ATXN7L2
ATXN7L3
AUH


AUP1
AURKA
AURKAIP1
AURKB
AURKC


AUTS2
AVEN
AVIL
AVL9
AVP


AVPI1
AVPR1A
AVPR1B
AVPR2
AWAT1


AWAT2
AXIN1
AXIN2
AXL
AZGP1


AZI1
AZI2
AZIN1
AZU1
B2M


B3GALNT1
B3GALNT2
B3GALT1
B3GALT2
B3GALT4


B3GALT5
B3GALT6
B3GALTL
B3GAT1
B3GAT2


B3GAT3
B3GNT1
B3GNT2
B3GNT3
B3GNT4


B3GNT5
B3GNT6
B3GNT7
B3GNT8
B3GNTL1


B3Gn-T6
B4GALNT1
B4GALNT2
B4GALNT3
B4GALNT4


B4GALT1
B4GALT2
B4GALT3
B4GALT4
B4GALT5


B4GALT6
B4GALT7
B7
B9D1
B9D2


BAALC
BAAT
BACE1
BACE2
BACH1


BACH2
BAD
BAG1
BAG2
BAG3


BAG4
BAG5
BAHD1
BAI1
BAI2


BAI3
BAIAP2
BAIAP2L1
BAIAP2L2
BAIAP3


BAK1
BAMBI
BANF1
BANF2
BANK1


BANP
BAP1
BARD1
BARHL1
BARHL2


BARX1
BARX2
BASP1
BAT1
BAT2


BAT2D1
BAT2D1
BAT3
BAT4
BAT5



ENST00000392078


BATF
BATF2
BATF3
BAX
BAZ1A


BAZ1B
BAZ2A
BAZ2B
BBC3
BBOX1


BBS1
BBS10
BBS12
BBS2
BBS4


BBS5
BBS7
BBS9
BBX
BCAM


BCAN
BCAP29
BCAP31
BCAR1
BCAR3


BCAS1
BCAS2
BCAS3
BCAS4
BCAS4






ENST00000358791


BCAT1
BCAT2
BCCIP
BCDIN3D
BCHE


BCKDHA
BCKDHB
BCKDK
BCL10
BCL11A


BCL11B
BCL2
BCL2A1
BCL2L1
BCL2L10


BCL2L11
BCL2L12
BCL2L13
BCL2L14
BCL2L15


BCL2L2
BCL3
BCL6
BCL6B
BCL7A


BCL7B
BCL7C
BCL9
BCL9L
BCLAF1


BCMO1
BCO2
BCOR
BCORL1
BCORL2


BCR
BCS1L
BDH1
BDH2
BDKRB1


BDKRB2
BDNF
BDP1
BECN1
BEGAIN


BEND2
BEND3
BEND4
BEND5
BEND6


BEND7
BEST1
BEST2
BEST3
BEST4


BET1
BET1L
BEX1
BEX2
BEX4


BEX5
BFAR
BFSP1
BFSP2
BGLAP


BGN
BHLHA15
BHLHB9
BHLHE22
BHLHE23


BHLHE40
BHLHE41
BHMT
BHMT2
BICC1


BICD1
BICD2
BID
BIK
BIN1


BIN2
BIRC2
BIRC3
BIRC5
BIRC6


BIRC7
BIRC8
BIVM
BLCAP
BLID


BLK
BLM
BLMH
BLNK
BLOC1S1


BLOC1S2
BLOC1S3
BLVRA
BLVRB
BLYM_HUMAN


BLZF1
BMF
BMI1
BMP1
BMP10


BMP15
BMP2
BMP2K
BMP2KL
BMP2K






ENST00000335016


BMP3
BMP4
BMP5
BMP6
BMP7


BMP8A
BMP8B
BMPER
BMPR1A
BMPR1B


BMPR2
BMS1
BMX
BNC1
BNC2


BNIP1
BNIP2
BNIP3
BNIP3L
BNIPL


BOC
BOD1
BOD1L
BOK
BOLA1


BOLA2
BOLA2B
BOLA3
BOLL
BOP1


BPGM
BPHL
BPI
BPIL1
BPIL2


BPIL3
BPNT1
BPTF
BPY2B
BPY2C


BRAF
BRAP
BRCA1
BRCA2
BRCC3


BRD1
BRD2
BRD2
BRD3
BRD3




ENST00000395289

ENST00000303407


BRD4
BRD4
BRD7
BRD8
BRD9



ENST00000263377


BRDT
BRE
BRF1
BRF2
BRI3


BRI3BP
BRIP1
BRIX1
BRMS1
BRMS1L


BRP44
BRP44L
BRPF1
BRPF3
BRS3


BRSK1
BRSK2
BRWD1
BRWD3
BSCL2


BSDC1
BSG
BSN
BSND
BSPRY


BST1
BST2
BSX
BTAF1
BTBD1


BTBD10
BTBD11
BTBD12
BTBD16
BTBD17


BTBD2
BTBD3
BTBD6
BTBD7
BTBD8


BTBD9
BTBD9
BTC
BTD
BTF3



ENST00000403056


BTF3L1
BTF3L3
BTF3L4
BTG1
BTG2


BTG3
BTG4
BTK
BTLA
BTN1A1


BTN2A1
BTN2A2
BTN2A3
BTN3A1
BTN3A2


BTN3A3
BTNL2
BTNL8
BTNL9
BTRC


BUB1
BUB1B
BUB3
BUD13
BUD31


BVES
BYSL
BZRAP1
BZW1
BZW2


C10orf10
C10orf104
C10orf107
C10orf11
C10orf111


C10orf113
C10orf113
C10orf114
C10orf116
C10orf118



ENST00000377118


C10orf119
C10orf12
C10orf120
C10orf125
C10orf128


C10orf129
C10orf131
C10orf137
C10orf18
C10orf2


C10orf25
C10orf26
C10orf27
C10orf28
C10orf31


C10orf32
C10orf35
C10orf4
C10orf46
C10orf47


C10orf53
C10orf54
C10orf57
C10orf58
C10orf6


C10orf61
C10orf62
C10orf64
C10orf68
C10orf71


C10orf71
C10orf72
C10orf76
C10orf78
C10orf79


ENST00000374144


C10orf81
C10orf82
C10orf84
C10orf88
C10orf90


C10orf91
C10orf92
C10orf93
C10orf95
C10orf96


C10orf99
C11orf1
C11orf10
C11orf16
C11orf17


C11orf2
C11orf24
C11orf30
C11orf34
C11orf35


C11orf40
C11orf41
C11orf42
C11orf44
C11orf45


C11orf46
C11orf47
C11orf48
C11orf49
C11orf51


C11orf52
C11orf53
C11orf54
C11orf57
C11orf58


C11orf59
C11orf60
C11orf61
C11orf63
C11orf65


C11orf66
C11orf67
C11orf68
C11orf70
C11orf73


C11orf74
C11orf75
C11orf76
C11orf77
C11orf82


C11orf83
C11orf84
C11orf85
C11orf86
C11orf87


C11orf88
C11orf9
C11orf92
C12orf10
C12orf11


C12orf12
C12orf23
C12orf24
C12orf26
C12orf28


C12orf29
C12orf32
C12orf34
C12orf35
C12orf36


C12orf37
C12orf39
C12orf4
C12orf40
C12orf42


C12orf43
C12orf44
C12orf45
C12orf48
C12orf49


C12orf5
C12orf50
C12orf52
C12orf54
C12orf55


C12orf56
C12orf57
C12orf59
C12orf60
C12orf61


C12orf62
C12orf63
C12orf64
C12orf65
C12orf66


C12orf67
C12orf68
C12orf69
C12orf72
C12orf74


C12orf76
C13orf1
C13orf15
C13orf16
C13orf23


C13orf26
C13orf27
C13orf28
C13orf30
C13orf31


C13orf33
C13orf34
C13orf35
C13orf36
C13orf37


C13orf39
C13orf40
C14orf1
C14orf100
C14orf101


C14orf102
C14orf104
C14orf105
C14orf106
C14orf109


C14orf115
C14orf118
C14orf119
C14orf126
C14orf128


C14orf129
C14orf135
C14orf138
C14orf142
C14orf143


C14orf145
C14orf147
C14orf148
C14orf149
C14orf153


C14orf156
C14orf159
C14orf166
C14orf167
C14orf173


C14orf174
C14orf177
C14orf178
C14orf179
C14orf180


C14orf181
C14orf182
C14orf183
C14orf2
C14orf20


C14orf21
C14orf23
C14orf28
C14orf37
C14orf38


C14orf39
C14orf4
C14orf43
C14orf45
C14orf48


C14orf49
C14orf50
C14orf68
C14orf73
C14orf79


C14orf80
C14orf93
C15orf17
C15orf2
C15orf23


C15orf24
C15orf26
C15orf27
C15orf29
C15orf32


C15orf33
C15orf38
C15orf39
C15orf40
C15orf42


C15orf43
C15orf44
C15orf48
C15orf52
C15orf53


C15orf54
C15orf55
C15orf56
C15orf57
C15orf58


C15orf59
C15orf63
C16orf11
C16orf13
C16orf3


C16orf35
C16orf38
C16orf42
C16orf45
C16orf46


C16orf48
C16orf5
C16orf53
C16orf54
C16orf55


C16orf57
C16orf58
C16orf59
C16orf61
C16orf62


C16orf63
C16orf65
C16orf68
C16orf7
C16orf70


C16orf71
C16orf72
C16orf73
C16orf75
C16orf78


C16orf79
C16orf80
C16orf85
C16orf87
C16orf88


C16orf89
C16orf91
C16orf92
C16orf93
C17orf101


C17orf102
C17orf103
C17orf28
C17orf37
C17orf38


C17orf39
C17orf42
C17orf46
C17orf47
C17orf48


C17orf49
C17orf50
C17orf53
C17orf55
C17orf56


C17orf57
C17orf58
C17orf59
C17orf60
C17orf61


C17orf62
C17orf64
C17orf65
C17orf66
C17orf67


C17orf68
C17orf70
C17orf71
C17orf74
C17orf76


C17orf77
C17orf79
C17orf80
C17orf81
C17orf82


C17orf85
C17orf87
C17orf90
C17orf91
C17orf92


C17orf97
C17orf98
C18orf1
C18orf10
C18orf19


C18orf21
C18orf22
C18orf25
C18orf26
C18orf32


C18orf34
C18orf45
C18orf54
C18orf55
C18orf56


C18orf62
C18orf8
C19orf10
C19orf12
C19orf16


C19orf18
C19orf2
C19orf20
C19orf21
C19orf22


C19orf24
C19orf26
C19orf28
C19orf29
C19orf29






ENST00000429344


C19orf33
C19orf35
C19orf36
C19orf39
C19orf40


C19orf41
C19orf42
C19orf43
C19orf44
C19orf45


C19orf46
C19orf47
C19orf48
C19orf50
C19orf51


C19orf52
C19orf53
C19orf56
C19orf57
C19orf59


C19orf6
C19orf60
C19orf61
C19orf63
C19orf67


C19orf75
C1D
C1GALT1
C1GALT1C1
C1QA


C1QB
C1QBP
C1QC
C1QL1
C1QL2


C1QL3
C1QL4
C1QTNF1
C1QTNF2
C1QTNF3


C1QTNF4
C1QTNF5
C1QTNF6
C1QTNF7
C1QTNF8


C1QTNF9
C1RL
C1S
C1orf100
C1orf101


C1orf103
C1orf105
C1orf106
C1orf107
C1orf109


C1orf111
C1orf112
C1orf113
C1orf114
C1orf115


C1orf116
C1orf122
C1orf123
C1orf124
C1orf125


C1orf127
C1orf128
C1orf129
C1orf130
C1orf131


C1orf135
C1orf14
C1orf141
C1orf144
C1orf146


C1orf147
C1orf150
C1orf151
C1orf156
C1orf158


C1orf161
C1orf162
C1orf163
C1orf164
C1orf167


C1orf168
C1orf170
C1orf172
C1orf173
C1orf174


C1orf175
C1orf177
C1orf182
C1orf183
C1orf186


C1orf187
C1orf189
C1orf190
C1orf192
C1orf194


C1orf198
C1orf201
C1orf21
C1orf210
C1orf212


C1orf213
C1orf216
C1orf218
C1orf220
C1orf222


C1orf227
C1orf229
C1orf25
C1orf26
C1orf31


C1orf34
C1orf35
C1orf38
C1orf43
C1orf49


C1orf50
C1orf51
C1orf52
C1orf54
C1orf55


C1orf56
C1orf57
C1orf58
C1orf59
C1orf61


C1orf63
C1orf64
C1orf65
C1orf66
C1orf67


C1orf68
C1orf69
C1orf74
C1orf77
C1orf83


C1orf84
C1orf85
C1orf86
C1orf87
C1orf88


C1orf89
C1orf9
C1orf91
C1orf92
C1orf93


C1orf94
C1orf95
C1orf96
C2
C20orf103


C20orf106
C20orf107
C20orf108
C20orf11
C20orf111


C20orf112
C20orf114
C20orf118
C20orf133
C20orf134


C20orf134
C20orf135
C20orf141
C20orf144
C20orf151


ENST00000330271


C20orf152
C20orf160
C20orf165
C20orf166
C20orf177


C20orf185
C20orf186
C20orf187
C20orf191
C20orf194


C20orf195
C20orf196
C20orf197
C20orf20
C20orf200


C20orf201
C20orf24
C20orf26
C20orf27
C20orf29


C20orf3
C20orf30
C20orf4
C20orf43
C20orf46


C20orf54
C20orf62
C20orf7
C20orf70
C20orf71


C20orf72
C20orf74
C20orf78
C20orf79
C20orf80


C20orf85
C20orf94
C20orf95
C20orf96
C21orf105


C21orf124
C21orf13
C21orf15
C21orf2
C21orf29


C21orf33
C21orf34
C21orf45
C21orf56
C21orf57


C21orf58
C21orf59
C21orf62
C21orf63
C21orf66


C21orf7
C21orf70
C21orf74
C21orf88
C21orf89


C21orf9
C21orf91
C22orf13
C22orf15
C22orf23


C22orf24
C22orf25
C22orf26
C22orf28
C22orf29


C22orf30
C22orf31
C22orf32
C22orf33
C22orf36


C22orf39
C22orf40
C22orf42
C22orf43
C22orf9


C2CD2
C2CD2L
C2CD3
C2CD4A
C2CD4B


C2orf15
C2orf16
C2orf18
C2orf24
C2orf27A


C2orf27B
C2orf28
C2orf29
C2orf3
C2orf34


C2orf39
C2orf40
C2orf42
C2orf43
C2orf44


C2orf47
C2orf48
C2orf49
C2orf50
C2orf51


C2orf52
C2orf53
C2orf54
C2orf55
C2orf56


C2orf57
C2orf60
C2orf61
C2orf62
C2orf63


C2orf63
C2orf64
C2orf65
C2orf66
C2orf67


ENST00000407122


C2orf68
C2orf69
C2orf7
C2orf70
C2orf71


C2orf76
C2orf77
C2orf79
C2orf80
C2orf82


C2orf83
C2orf84
C2orf85
C2orf86
C2orf88


C3
C3AR1
C3P1
C3orf1
C3orf14


C3orf15
C3orf17
C3orf18
C3orf19
C3orf20


C3orf21
C3orf22
C3orf23
C3orf24
C3orf25


C3orf26
C3orf27
C3orf28
C3orf30
C3orf31


C3orf32
C3orf33
C3orf34
C3orf35
C3orf36


C3orf37
C3orf38
C3orf39
C3orf43
C3orf45


C3orf46
C3orf49
C3orf53
C3orf54
C3orf57


C3orf58
C3orf59
C3orf62
C3orf63
C3orf64


C3orf67
C3orf70
C3orf72
C3orf75
C3orf77


C4A
C4B
C4BPA
C4BPB
C4orf14


C4orf17
C4orf19
C4orf21
C4orf22
C4orf23


C4orf26
C4orf27
C4orf31
C4orf32
C4orf33


C4orf34
C4orf35
C4orf36
C4orf37
C4orf39


C4orf40
C4orf41
C4orf42
C4orf43
C4orf44


C4orf46
C4orf49
C4orf50
C4orf6
C4orf7


C5
C5AR1
C5orf13
C5orf15
C5orf22


C5orf23
C5orf24
C5orf28
C5orf30
C5orf32


C5orf33
C5orf34
C5orf35
C5orf36
C5orf37


C5orf38
C5orf39
C5orf4
C5orf40
C5orf41


C5orf42
C5orf43
C5orf45
C5orf46
C5orf48


C5orf49
C5orf5
C5orf50
C5orf51
C5orf53


C5orf54
C5orf56
C6
C6orf1
C6orf10


C6orf103
C6orf105
C6orf106
C6orf108
C6orf114


C6orf115
C6orf118
C6orf12
C6orf120
C6orf124


C6orf125
C6orf129
C6orf130
C6orf134
C6orf136


C6orf138
C6orf142
C6orf145
C6orf146
C6orf15


C6orf150
C6orf153
C6orf154
C6orf162
C6orf163






ENST00000369574


C6orf165
C6orf167
C6orf168
C6orf170
C6orf173


C6orf174
C6orf182
C6orf186
C6orf191
C6orf192


C6orf195
C6orf201
C6orf203
C6orf204
C6orf211


C6orf213
C6orf218
C6orf221
C6orf222
C6orf223


C6orf224
C6orf225
C6orf227
C6orf25
C6orf26


C6orf27
C6orf35
C6orf47
C6orf48
C6orf49


C6orf57
C6orf58
C6orf62
C6orf64
C6orf70


C6orf72
C6orf81
C6orf87
C6orf89
C6orf94


C6orf97
C6orf98
C7
C7orf11
C7orf16


C7orf20
C7orf23
C7orf25
C7orf26
C7orf27


C7orf28A
C7orf28B
C7orf29
C7orf30
C7orf31


C7orf33
C7orf34
C7orf36
C7orf41
C7orf42


C7orf43
C7orf44
C7orf45
C7orf46
C7orf47


C7orf49
C7orf50
C7orf51
C7orf52
C7orf53


C7orf54
C7orf55
C7orf58
C7orf59
C7orf60


C7orf62
C7orf63
C7orf64
C7orf66
C7orf68


C7orf69
C7orf70
C7orf72
C8A
C8B




ENST00000297001


C8G
C8orf12
C8orf13
C8orf14
C8orf30A


C8orf31
C8orf33
C8orf34
C8orf37
C8orf38


C8orf4
C8orf40
C8orf41
C8orf44
C8orf45


C8orf46
C8orf47
C8orf55
C8orf58
C8orf59


C8orf76
C8orf79
C8orf8
C8orf80
C8orf82


C8orf84
C8orf85
C8orf86
C9
C9orf100


C9orf102
C9orf103
C9orf106
C9orf11
C9orf114


C9orf116
C9orf117
C9orf119
C9orf123
C9orf125


C9orf128
C9orf129
C9orf131
C9orf135
C9orf139


C9orf140
C9orf142
C9orf144
C9orf150
C9orf152


C9orf153
C9orf156
C9orf16
C9orf163
C9orf164


C9orf167
C9orf170
C9orf171
C9orf21
C9orf23


C9orf24
C9orf25
C9orf3
C9orf30
C9orf37


C9orf4
C9orf40
C9orf41
C9orf43
C9orf46


C9orf47
C9orf48
C9orf5
C9orf50
C9orf51


C9orf56
C9orf6
C9orf62
C9orf64
C9orf66


C9orf68
C9orf7
C9orf71
C9orf72
C9orf75


C9orf78
C9orf79
C9orf80
C9orf82
C9orf84


C9orf85
C9orf86
C9orf89
C9orf9
C9orf91


C9orf93
C9orf95
C9orf96
C9orf98
C9orf98






ENST00000298545


CA1
CA10
CA11
CA12
CA13


CA14
CA2
CA3
CA4
CA5A


CA5B
CA5BP
CA6
CA7
CA8


CA9
CAB39
CAB39L
CABC1
CABIN1


CABLES1
CABLES2
CABP1
CABP2
CABP4


CABP5
CABP7
CABYR
CACHD1
CACNA1A


CACNA1A
CACNA1B
CACNA1C
CACNA1D
CACNA1E


ENST00000357018


CACNA1F
CACNA1G
CACNA1H
CACNA1H
CACNA1I





ENST00000358590


CACNA1S
CACNA2D1
CACNA2D2
CACNA2D3
CACNB1


CACNB2
CACNB3
CACNG1
CACNG2
CACNG3


CACNG4
CACNG5
CACNG6
CACNG7
CACNG8


CACYBP
CAD
CADM1
CADM2
CADM3


CADM4
CADPS
CADPS2
CAGE1
CALB1


CALB2
CALCA
CALCB
CALCOCO1
CALCOCO2


CALCR
CALCRL
CALD1
CALHM1
CALHM2


CALM1
CALM2
CALM3
CALML3
CALML4


CALML5
CALML6
CALN1
CALR
CALR3


CALU
CALY
CAMK1
CAMK1D
CAMK1G


CAMK2A
CAMK2B
CAMK2D
CAMK2G
CAMK2N1


CAMK2N2
CAMK4
CAMKK1
CAMKK2
CAMKV


CAMKV
CAMLG
CAMP
CAMSAP1
CAMSAP1L1


ENST00000477224


CAMTA1
CAMTA2
CAND1
CAND2
CANT1


CANX
CAP1
CAP2
CAPG
CAPN1


CAPN10
CAPN11
CAPN12
CAPN13
CAPN2


CAPN3
CAPN5
CAPN6
CAPN7
CAPN9


CAPNS1
CAPRIN1
CAPRIN2
CAPS
CAPS2


CAPSL
CAPZA1
CAPZA2
CAPZA3
CAPZB


CARD10
CARD11
CARD14
CARD16
CARD17


CARD18
CARD6
CARD8
CARD9
CARHSP1


CARKD
CARM1
CARS
CARS2
CARTPT


CASC1
CASC3
CASC4
CASC5
CASD1


CASK
CASKIN1
CASKIN2
CASP1
CASP10


CASP14
CASP2
CASP3
CASP4
CASP5


CASP6
CASP7
CASP8
CASP9
CASQ1


CASQ2
CASR
CASS4
CAST
CASZ1


CAT
CATSPER1
CATSPER2
CATSPER3
CATSPER4


CATSPERB
CATSPERG
CAV1
CAV2
CAV3


CBARA1
CBFA2T2
CBFA2T3
CBFB
CBL


CBLB
CBLC
CBLL1
CBLN1
CBLN2


CBLN3
CBLN4
CBR1
CBR3
CBR4


CBS
CBWD1
CBWD2
CBWD3
CBWD5


CBWD6
CBX1
CBX2
CBX3
CBX4


CBX5
CBX6
CBX7
CBX8
CBY1


CC2D1A
CC2D1B
CC2D2A
CC2D2B
CCAR1


CCBE1
CCBL1
CCBL2
CCBL2
CCBP2





ENST00000370491


CCDC101
CCDC102A
CCDC102B
CCDC103
CCDC104


CCDC105
CCDC106
CCDC107
CCDC108
CCDC109A


CCDC109B
CCDC11
CCDC110
CCDC111
CCDC112


CCDC113
CCDC114
CCDC115
CCDC116
CCDC117


CCDC12
CCDC120
CCDC121
CCDC122
CCDC123


CCDC124
CCDC125
CCDC126
CCDC127
CCDC128


CCDC13
CCDC130
CCDC132
CCDC132
CCDC134





ENST00000305866


CCDC135
CCDC137
CCDC138
CCDC14
CCDC140


CCDC141
CCDC142
CCDC144B
CCDC144NL
CCDC146


CCDC147
CCDC148
CCDC149
CCDC15
CCDC151


CCDC153
CCDC155
CCDC157
CCDC158
CCDC160


CCDC18
CCDC19
CCDC21
CCDC22
CCDC23


CCDC24
CCDC25
CCDC27
CCDC28A
CCDC28B


CCDC29
CCDC3
CCDC30
CCDC33
CCDC34


CCDC35
CCDC36
CCDC37
CCDC38
CCDC39


CCDC40
CCDC41
CCDC42
CCDC46
CCDC47


CCDC48
CCDC50
CCDC51
CCDC52
CCDC54


CCDC55
CCDC56
CCDC58
CCDC59
CCDC6


CCDC60
CCDC62
CCDC63
CCDC64
CCDC65


CCDC66
CCDC67
CCDC68
CCDC69
CCDC7


CCDC70
CCDC71
CCDC72
CCDC73
CCDC74A


CCDC74B
CCDC76
CCDC77
CCDC78
CCDC8


CCDC80
CCDC81
CCDC82
CCDC83
CCDC84


CCDC85A
CCDC85B
CCDC86
CCDC87
CCDC88A


CCDC88B
CCDC89
CCDC9
CCDC90A
CCDC90B


CCDC91
CCDC92
CCDC93
CCDC94
CCDC96


CCDC97
CCDC99
CCHCR1
CCIN
CCK


CCKAR
CCKBR
CCL1
CCL11
CCL13


CCL14
CCL15
CCL16
CCL17
CCL18


CCL19
CCL2
CCL20
CCL21
CCL22


CCL23
CCL24
CCL25
CCL26
CCL27


CCL28
CCL3
CCL3L1
CCL3L3
CCL4


CCL4L1
CCL4L2
CCL5
CCL7
CCL8


CCM2
CCNA1
CCNA2
CCNB1
CCNB1IP1


CCNB2
CCNB3
CCNB3
CCNC
CCND1




ENST00000376042


CCND2
CCND3
CCNDBP1
CCNE1
CCNE2


CCNF
CCNG1
CCNG2
CCNH
CCNI


CCNI2
CCNJ
CCNJL
CCNL1
CCNL2


CCNO
CCNT1
CCNT2
CCNY
CCNYL1


CCNYL2
CCPG1
CCR1
CCR10
CCR2


CCR3
CCR4
CCR5
CCR6
CCR7


CCR8
CCR9
CCRL1
CCRL2
CCRN4L


CCS
CCT2
CCT3
CCT4
CCT5


CCT6A
CCT6B
CCT7
CCT8
CCT8L1


CCT8L2
CD101
CD109
CD14
CD151


CD160
CD163
CD163L1
CD164
CD164L2


CD180
CD19
CD1A
CD1B
CD1C


CD1D
CD1E
CD2
CD200
CD200R1


CD200R1L
CD207
CD209
CD22
CD226


CD244
CD247
CD248
CD27
CD274


CD276
CD28
CD2AP
CD2BP2
CD300A


CD300C
CD300E
CD300LB
CD300LD
CD300LF


CD300LG
CD302
CD320
CD33
CD34


CD36
CD36
CD37
CD38
CD3D



ENST00000433696


CD3E
CD3EAP
CD3G
CD4
CD40


CD40LG
CD44
CD46
CD47
CD48


CD5
CD52
CD53
CD55
CD58


CD59
CD5L
CD6
CD63
CD68


CD69
CD7
CD70
CD72
CD74


CD79A
CD79B
CD80
CD81
CD82


CD83
CD84
CD86
CD8A
CD8B


CD9
CD93
CD96
CD97
CD99


CD99L2
CDA
CDADC1
CDAN1
CDC123


CDC14A
CDC14B
CDC16
CDC20
CDC20B


CDC23
CDC25A
CDC25B
CDC25C
CDC26


CDC27
CDC2L2
CDC34
CDC37
CDC37L1


CDC37P1
CDC40
CDC42
CDC42BPA
CDC42BPB


CDC42BPG
CDC42EP1
CDC42EP2
CDC42EP3
CDC42EP4


CDC42EP5
CDC42SE1
CDC42SE2
CDC45L
CDC5L


CDC6
CDC7
CDC73
CDCA2
CDCA3


CDCA4
CDCA5
CDCA7
CDCA7L
CDCA8


CDCP1
CDCP2
CDH1
CDH10
CDH11


CDH12
CDH13
CDH15
CDH16
CDH17


CDH18
CDH19
CDH2
CDH20
CDH22


CDH23
CDH24
CDH26
CDH3
CDH4


CDH5
CDH6
CDH7
CDH8
CDH9


CDHR1
CDHR5
CDIPT
CDK1
CDK10


CDK11B
CDK12
CDK13
CDK14
CDK15


CDK16
CDK17
CDK18
CDK19
CDK1






ENST00000395284


CDK2
CDK20
CDK2AP1
CDK2AP2
CDK3


CDK4
CDK5
CDK5R1
CDK5R2
CDK5RAP1


CDK5RAP2
CDK5RAP3
CDK6
CDK7
CDK8


CDK9
CDKAL1
CDKL1
CDKL2
CDKL3


CDKL4
CDKL5
CDKN1A
CDKN1B
CDKN1C


CDKN2A
CDKN2AIP
CDKN2AIPNL
CDKN2B
CDKN2C


CDKN2D
CDKN2a(p14)
CDKN3
CDNF
CDO1


CDON
CDR1
CDR2
CDRT1
CDRT15


CDRT4
CDS1
CDS2
CDSN
CDT1


CDV3
CDX1
CDX2
CDX4
CDY1


CDY1B
CDY2A
CDY2B
CDYL
CDYL2


CEACAM1
CEACAM18
CEACAM18
CEACAM19
CEACAM20




ENST00000451626


CEACAM3
CEACAM4
CEACAM5
CEACAM6
CEACAM7


CEACAM8
CEBPA
CEBPB
CEBPE
CEBPG


CEBPZ
CECR1
CECR2
CECR5
CECR6


CEL
CELA1
CELA2A
CELA2B
CELA3A


CELA3B
CELF1
CELF2
CELF3
CELF4


CELF5
CELF6
CELP
CELSR1
CELSR2


CELSR3
CEMP1
CEND1
CENPA
CENPB


CENPC1
CENPE
CENPF
CENPH
CENPI


CENPJ
CENPK
CENPL
CENPM
CENPN


CENPO
CENPP
CENPQ
CENPT
CENPV


CEP110
CEP120
CEP135
CEP152
CEP164


CEP170
CEP170L
CEP192
CEP250
CEP290


CEP55
CEP57
CEP63
CEP68
CEP70


CEP72
CEP76
CEP78
CEP97
CEPT1


CER1
CERCAM
CERK
CERKL
CES1


CES1
CES2
CES3
CES7
CES8


ENST00000360526


CETN1
CETN2
CETN3
CETP
CFB


CFC1
CFC1B
CFD
CFDP1
CFH


CFHR1
CFHR2
CFHR3
CFHR4
CFHR5


CFI
CFL1
CFL2
CFLAR
CFP


CFTR
CGA
CGB
CGB1
CGB2


CGB5
CGB7
CGB8
CGGBP1
CGI-77


CGN
CGNL1
CGREF1
CGRRF1
CH25H


CHAC1
CHAC2
CHAD
CHADL
CHAF1A


CHAF1B
CHAT
CHCHD1
CHCHD10
CHCHD2


CHCHD3
CHCHD4
CHCHD5
CHCHD6
CHCHD7


CHCHD8
CHCHD9
CHD1
CHD1L
CHD2


CHD3
CHD4
CHD5
CHD6
CHD7


CHD8
CHD9
CHDH
CHEK1
CHEK2


CHERP
CHFR
CHGA
CHGB
CHI3L1


CHI3L2
CHIA
CHIC1
CHIC2
CHID1


CHIT1
CHKA
CHKB
CHL1
CHM


CHML
CHMP2A
CHMP2B
CHMP4A
CHMP4B


CHMP4C
CHMP5
CHMP6
CHMP7
CHN1


CHN2
CHODL
CHORDC1
CHP
CHP2


CHPF
CHPF2
CHPT1
CHRAC1
CHRD


CHRDL1
CHRDL2
CHRFAM7A
CHRM1
CHRM2


CHRM3
CHRM5
CHRNA1
CHRNA10
CHRNA2


CHRNA3
CHRNA4
CHRNA5
CHRNA6
CHRNA7


CHRNA9
CHRNB1
CHRNB2
CHRNB3
CHRNB4


CHRND
CHRNE
CHRNG
CHST1
CHST10


CHST11
CHST12
CHST13
CHST14
CHST15


CHST2
CHST3
CHST4
CHST5
CHST6


CHST7
CHST8
CHST9
CHSY1
CHSY3


CHTF18
CHTF8
CHUK
CHURC1
CIAO1


CIAPIN1
CIB1
CIB2
CIB3
CIB4


CIC
CIDEA
CIDEB
CIDEC
CIITA


CILP
CILP2
CINP
CIR1
CIRBP


CIRH1A
CISD1
CISD1B
CISD2
CISH


CIT
CITED1
CITED2
CITED4
CIZ1


CKAP2
CKAP2L
CKAP4
CKAP5
CKB


CKLF
CKM
CKMT1A
CKMT1B
CKMT2


CKS1B
CKS2
CLASP1
CLASP2
CLC


CLCA1
CLCA2
CLCA3P
CLCA4
CLCC1


CLCF1
CLCN1
CLCN2
CLCN3
CLCN4


CLCN5
CLCN6
CLCN7
CLCNKA
CLCNKB


CLDN1
CLDN10
CLDN11
CLDN12
CLDN14


CLDN15
CLDN16
CLDN17
CLDN18
CLDN19


CLDN2
CLDN20
CLDN22
CLDN3
CLDN4


CLDN5
CLDN6
CLDN7
CLDN8
CLDN9


CLDND1
CLDND2
CLEC10A
CLEC11A
CLEC12A


CLEC12B
CLEC14A
CLEC16A
CLEC18A
CLEC18B


CLEC18C
CLEC1A
CLEC1B
CLEC2B
CLEC2D


CLEC3A
CLEC3B
CLEC4A
CLEC4C
CLEC4D


CLEC4E
CLEC4F
CLEC4G
CLEC4M
CLEC5A


CLEC6A
CLEC7A
CLEC9A
CLECL1
CLGN


CLIC1
CLIC2
CLIC3
CLIC4
CLIC5


CLIC6
CLIP1
CLIP2
CLIP3
CLIP4


CLK1
CLK2
CLK3
CLK4
CLLU1


CLLU1OS
CLMN
CLN3
CLN5
CLN6


CLN8
CLNS1A
CLOCK
CLP1
CLPB


CLPP
CLPS
CLPTM1
CLPTM1L
CLPX


CLRN1
CLRN2
CLRN3
CLSPN
CLSTN1


CLSTN2
CLSTN3
CLTA
CLTB
CLTC


CLTCL1
CLU
CLUAP1
CLUL1
CLVS2


CLYBL
CMA1
CMAS
CMBL
CMC1


CMKLR1
CMPK1
CMPK2
CMTM1
CMTM2


CMTM3
CMTM4
CMTM5
CMTM6
CMTM7


CMTM8
CMYA5
CNBP
CNDP1
CNDP2


CNFN
CNGA1
CNGA2
CNGA3
CNGA4


CNGB1
CNGB3
CNIH
CNIH2
CNIH3


CNIH4
CNKSR1
CNKSR2
CNKSR3
CNN1


CNN2
CNN3
CNNM1
CNNM2
CNNM3


CNNM4
CNO
CNOT1
CNOT10
CNOT2


CNOT3
CNOT4
CNOT6
CNOT6L
CNOT7


CNOT8
CNP
CNPY1
CNPY2
CNPY3


CNPY4
CNR1
CNR2
CNRIP1
CNST


CNTD1
CNTD2
CNTF
CNTFR
CNTLN


CNTN1
CNTN2
CNTN3
CNTN4
CNTN5


CNTN6
CNTNAP1
CNTNAP2
CNTNAP3
CNTNAP4


CNTNAP5
CNTROB
COASY
COBL
COBLL1


COBRA1
COCH
COE4_HUMAN
COG1
COG2


COG3
COG4
COG5
COG6
COG7


COG8
COIL
COL10A1
COL11A1
COL11A2


COL12A1
COL13A1
COL14A1
COL15A1
COL16A1


COL17A1
COL18A1
COL19A1
COL1A1
COL1A2


COL20A1
COL22A1
COL23A1
COL24A1
COL25A1


COL27A1
COL28A1
COL2A1
COL3A1
COL4A1


COL4A2
COL4A3
COL4A3BP
COL4A4
COL4A5


COL4A6
COL5A1
COL5A2
COL5A3
COL6A1


COL6A2
COL6A3
COL6A6
COL7A1
COL8A1


COL8A2
COL9A1
COL9A2
COL9A3
COLEC10


COLEC11
COLEC12
COLQ
COMMD1
COMMD10


COMMD2
COMMD3
COMMD4
COMMD5
COMMD6


COMMD7
COMMD8
COMMD9
COMP
COMT


COMTD1
COPA
COPB1
COPB2
COPE


COPG
COPS2
COPS3
COPS4
COPS5


COPS6
COPS7A
COPS7B
COPS8
COPZ1


COQ10A
COQ10B
COQ2
COQ3
COQ4


COQ5
COQ6
COQ7
COQ9
CORIN


CORO1A
CORO1B
CORO1C
CORO2A
CORO2B


CORO6
CORO7
CORT
COTL1
COX10


COX11
COX15
COX16
COX17
COX18


COX19
COX4I1
COX4I2
COX4NB
COX5A


COX5B
COX6A1
COX6A2
COX6B1
COX6B1






ENST00000392201


COX6B2
COX6BP3
COX6C
COX7A1
COX7A2


COX7A2L
COX7AP2
COX7B
COX7B2
COX7C


COX8A
COX8C
CP
CP110
CPA1


CPA2
CPA3
CPA4
CPA5
CPA6


CPAMD8
CPB1
CPB2
CPD
CPE


CPEB1
CPEB2
CPEB3
CPEB4
CPLX2


CPLX3
CPLX4
CPM
CPN1
CPN2


CPNE1
CPNE2
CPNE3
CPNE4
CPNE5


CPNE6
CPNE7
CPNE8
CPNE9
CPO


CPOX
CPPED1
CPS1
CPSF1
CPSF2


CPSF3
CPSF3L
CPSF4
CPSF4L
CPSF6


CPSF7
CPT1A
CPT1B
CPT1C
CPT2


CPVL
CPXCR1
CPXM1
CPXM2
CPZ


CR1
CR1L
CR2
CRABP1
CRABP2


CRADD
CRAT
CRB1
CRB2
CRB3


CRBN
CRCP
CRCT1
CREB1
CREB3


CREB3L1
CREB3L2
CREB3L3
CREB3L4
CREB5


CREBBP
CREBL2
CREBZF
CREG1
CREG2


CRELD1
CRELD2
CREM
CREM
CRH





ENST00000395887


CRHBP
CRHR1
CRHR2
CRIM1
CRIP1


CRIP2
CRIP3
CRIPAK
CRIPT
CRISP1


CRISP2
CRISP3
CRISPLD1
CRISPLD2
CRK


CRKL
CRLF1
CRLF2
CRLF3
CRLS1


CRMP1
CRNKL1
CRNN
CROCC
CROT


CRP
CRSP3
CRTAC1
CRTAM
CRTAP


CRTC1
CRTC2
CRTC3
CRX
CRY1


CRY2
CRYAA
CRYAB
CRYBA1
CRYBA2


CRYBA4
CRYBB1
CRYBB2
CRYBB3
CRYBG3


CRYGA
CRYGB
CRYGC
CRYGD
CRYGN


CRYGS
CRYL1
CRYM
CRYZ
CRYZL1


CS
CSAD
CSAG1
CSAG2
CSAG3


CSAG4
CSDA
CSDC2
CSDE1
CSE1L


CSF1
CSF1R
CSF2
CSF2RA
CSF2RB


CSF3
CSF3R
CSGALNACT1
CSGALNACT2
CSH1


CSH2
CSHL1
CSK
CSMD1
CSMD1






ENST00000318252


CSMD2
CSMD3
CSN2
CSN3
CSNK1A1


CSNK1A1L
CSNK1D
CSNK1E
CSNK1E
CSNK1G1





ENST00000403904


CSNK1G2
CSNK1G3
CSNK2A1
CSNK2A2
CSNK2B


CSPG4
CSPG5
CSPP1
CSRNP1
CSRNP2


CSRNP3
CSRP1
CSRP2
CSRP2BP
CSRP3


CST1
CST11
CST2
CST3
CST4


CST5
CST6
CST7
CST8
CST9


CST9L
CSTA
CSTB
CSTF1
CSTF2


CSTF2T
CSTF3
CSTL1
CT45-1
CT45A2


CT45A3
CT45A4
CT45A5
CT45A6
CT47A1


CT47A10
CT47A11
CT47A2
CT47A3
CT47A4


CT47A5
CT47A6
CT47A7
CT47A8
CT47A9


CTAG1A
CTAG1B
CTAG2
CTAG2
CTAGE5





ENST00000247306


CTBP1
CTBP2
CTBS
CTCF
CTCFL


CTD-2267G17_3
CTDP1
CTDSP1
CTDSP2
CTDSPL


CTDSPL2
CTF1
CTGF
CTH
CTHRC1


CTLA4
CTNNA1
CTNNA2
CTNNA2
CTNNA3





ENST00000466387


CTNNAL1
CTNNB1
CTNNBIP1
CTNNBL1
CTNND1


CTNND2
CTNS
CTPS
CTPS2
CTR9


CTRB1
CTRB2
CTRC
CTRL
CTSA


CTSB
CTSC
CTSD
CTSE
CTSF


CTSG
CTSH
CTSK
CTSL1
CTSL2


CTSL3
CTSO
CTSS
CTSW
CTSZ


CTTN
CTTNBP2
CTTNBP2NL
CTU2
CTXN1


CTXN3
CU041_HUMAN
CU085_HUMAN
CUBN
CUEDC1


CUEDC2
CUL1
CUL2
CUL3
CUL4A


CUL4B
CUL4B
CUL5
CUL7
CUL9



ENST00000371322


CUTA
CUTC
CUX1
CUX1
CUX2





ENST00000292538


CUZD1
CWC22
CWC27
CWF19L1
CWF19L2


CWH43
CX3CL1
CX3CR1
CXADR
CXCL1


CXCL10
CXCL11
CXCL12
CXCL13
CXCL14


CXCL16
CXCL17
CXCL2
CXCL3
CXCL5


CXCL6
CXCL9
CXCR1
CXCR2
CXCR3


CXCR4
CXCR5
CXCR6
CXCR7
CXXC1


CXXC4
CXXC5
CXorf1
CXorf15
CXorf19


CXorf21
CXorf22
CXorf23
CXorf24
CXorf25


CXorf26
CXorf27
CXorf28
CXorf29
CXorf30


CXorf31
CXorf35
CXorf36
CXorf38
CXorf40A


CXorf40B
CXorf41
CXorf42
CXorf48
CXorf56


CXorf57
CXorf58
CXorf59
CXorf61
CXorf62


CXorf65
CXorf66
CXorf67
CYB561
CYB561D1


CYB561D2
CYB5A
CYB5B
CYB5D1
CYB5D2


CYB5R1
CYB5R2
CYB5R3
CYB5R4
CYBA


CYBASC3
CYBB
CYBRD1
CYC1
CYCS


CYCSP52
CYFIP1
CYFIP2
CYGB
CYHR1


CYLC1
CYLC2
CYLD
CYP11A1
CYP11B1


CYP11B2
CYP17A1
CYP19A1
CYP1A1
CYP1A2


CYP1B1
CYP20A1
CYP21A2
CYP24A1
CYP26A1


CYP26B1
CYP26C1
CYP27A1
CYP27B1
CYP27C1


CYP2A13
CYP2A6
CYP2A7
CYP2B6
CYP2B7P1


CYP2C18
CYP2C19
CYP2C8
CYP2C9
CYP2D6


CYP2E1
CYP2F1
CYP2J2
CYP2R1
CYP2S1


CYP2U1
CYP2W1
CYP39A1
CYP3A4
CYP3A43


CYP3A5
CYP3A7
CYP46A1
CYP4A11
CYP4A22


CYP4B1
CYP4F11
CYP4F12
CYP4F2
CYP4F22


CYP4F3
CYP4F8
CYP4V2
CYP4X1
CYP4Z1


CYP51A1
CYP7A1
CYP7B1
CYP8B1
CYR61


CYS1
CYSLTR1
CYSLTR2
CYTH1
CYTH2


CYTH3
CYTH4
CYTIP
CYTL1
CYTSA


CYTSB
CYYR1
CYorf15B
CaMK1b
D2HGDH


D4S234E
DAAM1
DAAM2
DAB1
DAB2


DAB2IP
DACH1
DACH2
DACH2
DACT1





ENST00000373131


DACT2
DAD1
DAG1
DAGLA
DAGLB


DAK
DALRD3
DAMS_HUMAN
DAND5
DAO


DAOA
DAP
DAP3
DAPK1
DAPK2


DAPK3
DAPL1
DAPP1
DARC
DARS


DARS2
DAXX
DAZ2
DAZ3
DAZAP1


DAZAP2
DAZL
DBC1
DBF4
DBF4B


DBF4B
DBH
DBI
DBN1
DBNDD1


ENST00000315005


DBNDD2
DBNL
DBP
DBR1
DBT


DBX1
DBX2
DCAF10
DCAF12
DCAF12L1


DCAF12L2
DCAF13
DCAF15
DCAF16
DCAF17


DCAF4
DCAF4L1
DCAF4L2
DCAF5
DCAF6


DCAF7
DCAF8
DCAF8L1
DCAF8L2
DCAKD


DCBLD1
DCBLD2
DCC
DCD
DCDC1


DCDC2
DCDC5
DCHS1
DCHS2
DCI


DCK
DCLK1
DCLK2
DCLK3
DCLRE1A


DCLRE1B
DCLRE1C
DCLRE1C
DCN
DCP1A




ENST00000378278


DCP1B
DCP2
DCPS
DCST1
DCST2


DCT
DCTD
DCTN1
DCTN3
DCTN4


DCTN5
DCTN6
DCTPP1
DCUN1D1
DCUN1D2


DCUN1D3
DCUN1D4
DCUN1D5
DCX
DCXR


DDA1
DDAH1
DDAH2
DDB1
DDB2


DDC
DDHD1
DDHD2
DDI1
DDI2


DDIT3
DDIT4
DDIT4L
DDN
DDO


DDOST
DDR1
DDR2
DDRGK1
DDT


DDTL
DDX1
DDX10
DDX11
DDX12


DDX12
DDX17
DDX18
DDX19A
DDX19B


ENST00000432996


DDX20
DDX21
DDX23
DDX24
DDX25


DDX26B
DDX27
DDX28
DDX31
DDX39


DDX3X
DDX3Y
DDX4
DDX41
DDX42


DDX43
DDX46
DDX47
DDX49
DDX5


DDX50
DDX51
DDX52
DDX53
DDX54


DDX55
DDX56
DDX58
DDX59
DDX6


DDX60
DDX60L
DDX60
DEAF1
01-Dec




ENST00000393743


DECR1
DECR2
DEDD
DEDD2
DEF6


DEF8
DEFA1
DEFA1B
DEFA3
DEFA4


DEFA5
DEFA6
DEFB1
DEFB103A
DEFB103B


DEFB104A
DEFB104B
DEFB105A
DEFB105B
DEFB106A


DEFB106B
DEFB107A
DEFB107B
DEFB108B
DEFB110


DEFB111
DEFB112
DEFB113
DEFB114
DEFB115


DEFB116
DEFB118
DEFB119
DEFB121
DEFB123


DEFB124
DEFB125
DEFB126
DEFB127
DEFB128


DEFB129
DEFB130
DEFB131
DEFB132
DEFB134


DEFB135
DEFB136
DEFB4A
DEGS1
DEGS2


DEK
DEM1
DENND1A
DENND1B
DENND1C


DENND2A
DENND2C
DENND2D
DENND3
DENND4A


DENND4B
DENND4C
DENND5A
DENND5B
DEPDC1


DEPDC1B
DEPDC4
DEPDC5
DEPDC6
DEPDC7


DERL1
DERL2
DERL3
DES
DET1


DEXI
DFFA
DFFB
DFNA5
DFNB31


DFNB59
DGAT1
DGAT2
DGAT2L6
DGCR14


DGCR2
DGCR6
DGCR6L
DGCR8
DGKA


DGKB
DGKD
DGKE
DGKG
DGKH


DGKI
DGKK
DGKQ
DGKZ
DGUOK


DHCR24
DHCR7
DHDDS
DHDH
DHDPSL


DHFR
DHFRL1
DHH
DHODH
DHPS


DHRS1
DHRS11
DHRS12
DHRS13
DHRS2


DHRS3
DHRS4
DHRS4L2
DHRS7
DHRS7B


DHRS9
DHRSX
DHTKD1
DHX15
DHX16


DHX29
DHX30
DHX32
DHX33
DHX34


DHX35
DHX36
DHX37
DHX38
DHX40


DHX57
DHX58
DHX8
DHX9
DIABLO


DIAPH1
DIAPH2
DIAPH3
DICER1
DIDO1


DIMT1L
DIO1
DIO3
DIP2B
DIP2C


DIRAS1
DIRAS2
DIRAS3
DIRC1
DIRC2


DIS3
DIS3L
DIS3L2
DISC1
DISP1


DISP2
DIXDC1
DKC1
DKFZP434P1750
DKFZP564O0823


DKFZP566M114
DKK1
DKK2
DKK3
DKK4


DKKL1
DLAT
DLC1
DLC1
DLD





ENST00000316609


DLEC1
DLEU2L
DLG1
DLG2
DLG3


DLG4
DLG5
DLGAP1
DLGAP2
DLGAP2


ENST00000293813



ENST00000356067


DLGAP3
DLGAP4
DLGAP5
DLK1
DLK2


DLL1
DLL3
DLL4
DLST
DLX1


DLX2
DLX3
DLX4
DLX5
DLX6


DMAP1
DMBT1
DMBX1
DMC1
DMD


DMD
DMGDH
DMKN
DMP1
DMPK


ENST00000378687


DMRT1
DMRT2
DMRT2
DMRT3
DMRTA1




ENST00000302441


DMRTB1
DMRTC1
DMRTC1B
DMRTC2
DMTF1


DMWD
DMXL1
DMXL2
DNA2L
DNAH1


DNAH10
DNAH10_same_name
DNAH11
DNAH12L
DNAH14


DNAH17
DNAH1
DNAH2
DNAH3
DNAH5



ENST00000420323


DNAH6
DNAH7
DNAH8
DNAH9
DNAI1


DNAI2
DNAJA1
DNAJA2
DNAJA3
DNAJA4


DNAJB1
DNAJB11
DNAJB12
DNAJB13
DNAJB14


DNAJB2
DNAJB4
DNAJB5
DNAJB6
DNAJB7


DNAJB8
DNAJB9
DNAJC1
DNAJC10
DNAJC11


DNAJC12
DNAJC13
DNAJC14
DNAJC15
DNAJC16


DNAJC17
DNAJC18
DNAJC19
DNAJC2
DNAJC21


DNAJC22
DNAJC24
DNAJC25
DNAJC25-GNG10
DNAJC27


DNAJC28
DNAJC3
DNAJC30
DNAJC4
DNAJC5


DNAJC5B
DNAJC5G
DNAJC6
DNAJC7
DNAJC8


DNAJC9
DNAL4
DNALI1
DNAPTP6
DNASE1


DNASE1L1
DNASE1L2
DNASE1L3
DNASE2
DNASE2B


DND1
DNER
DNHD1
DNHL1
DNLZ




ENST00000254579


DNM1
DNM1L
DNM2
DNM3
DNMBP


DNMT1
DNMT3A
DNMT3B
DNMT3L
DNPEP


DNTT
DNTTIP1
DOC2A
DOCK1
DOCK10


DOCK10
DOCK11
DOCK2
DOCK3
DOCK3


ENST00000373702



ENST00000266037


DOCK4
DOCK5
DOCK6
DOCK7
DOCK8


DOCK9
DOHH
DOK1
DOK2
DOK3


DOK4
DOK5
DOK6
DOK7
DOLK


DOLPP1
DOM3Z
DONSON
DOPEY1
DOPEY2


DOT1L
DPAGT1
DPCR1
DPEP1
DPEP2


DPEP3
DPF1
DPF2
DPH1
DPH1-OVCA2


DPH2
DPH3
DPH3B
DPH5
DPM1


DPM2
DPM3
DPP10
DPP3
DPP4


DPP6
DPP7
DPP8
DPP9
DPPA2


DPPA3
DPPA4
DPPA5
DPRX
DPT


DPY19L1
DPY19L2
DPY19L3
DPY19L4
DPY30


DPYD
DPYS
DPYSL2
DPYSL3
DPYSL4


DPYSL5
DQX1
DR1
DRAM1
DRAM2


DRAP1
DRD1
DRD2
DRD3
DRD4


DRD5
DRD5P1
DRG1
DRG2
DRP2


DSC1
DSC2
DSC3
DSCAM
DSCAML1


DSCC1
DSCR3
DSCR4
DSCR6
DSE


DSEL
DSG1
DSG2
DSG3
DSG4


DSN1
DSP
DSPP
DST
DSTN


DSTYK
DST
DST
DTD1
DTHD1



ENST00000370754
ENST00000370769


DTL
DTNA
DTNB
DTNBP1
DTWD1


DTWD2
DTX1
DTX2
DTX3
DTX3L


DTX4
DTYMK
DULLARD
DUOX1
DUOX2


DUOXA1
DUOXA2
DUPD1
DUS1L
DUS2L


DUS3L
DUS4L
DUSP1
DUSP10
DUSP11


DUSP12
DUSP13
DUSP13
DUSP14
DUSP15




ENST00000356369


DUSP16
DUSP18
DUSP19
DUSP2
DUSP21


DUSP22
DUSP23
DUSP26
DUSP27
DUSP28


DUSP3
DUSP4
DUSP5
DUSP5P
DUSP6


DUSP7
DUSP8
DUSP9
DUT
DUXA


DVL1
DVL2
DVL3
DYDC1
DYDC2


DYM
DYNC1H1
DYNC1I1
DYNC1I2
DYNC1LI1


DYNC1LI2
DYNC2H1
DYNC2H1
DYNC2LI1
DYNLL1




ENST00000398093


DYNLL2
DYNLRB1
DYNLRB2
DYNLT1
DYNLT3


DYRK1A
DYRK1B
DYRK2
DYRK3
DYRK4


DYSF
DYSFIP1
DYX1C1
DZIP1
DZIP1L


DZIP3
E2F1
E2F2
E2F3
E2F4


E2F5
E2F6
E2F7
E2F8
E4F1


EAF1
EAF2
EAPP
EARS2
EBAG9


EBF1
EBF3
EBI3
EBNA1BP2
EBP


EBPL
ECD
ECE1
ECE2
ECEL1


ECH1
ECHDC1
ECHDC2
ECHDC3
ECHS1


ECM1
ECM2
ECOP
ECSIT
ECT2


ECT2L
EDA
EDA2R
EDAR
EDARADD


EDC3
EDC4
EDDM3A
EDDM3B
EDEM1


EDEM2
EDEM3
EDF1
EDG6
EDIL3


EDN1
EDN2
EDN3
EDNRA
EDNRB


EEA1
EED
EEF1A1
EEF1A1P11
EEF1A2


EEF1B2
EEF1D
EEF1E1
EEF2
EEF2K


EEFSEC
EEPD1
EFCAB1
EFCAB2
EFCAB3


EFCAB4A
EFCAB4B
EFCAB5
EFCAB6
EFCAB7


EFEMP1
EFEMP2
EFHA1
EFHA2
EFHB


EFHC1
EFHC2
EFHD1
EFHD2
EFNA1


EFNA2
EFNA3
EFNA4
EFNA5
EFNB1


EFNB2
EFNB3
EFR3A
EFS
EFTUD1


EFTUD2
EGF
EGFL4
EGFL6
EGFL7


EGFL8
EGFLAM
EGFR
EGFR
EGLN1





ENST00000344576


EGLN2
EGLN3
EGR1
EGR2
EGR3


EGR4
EHBP1
EHBP1L1
EHD1
EHD2


EHD3
EHD4
EHF
EHHADH
EHMT1


EHMT2
EI24
EID1
EID2
EID2B


EIF1
EIF1AD
EIF1AX
EIF1AY
EIF1B


EIF2A
EIF2AK1
EIF2AK2
EIF2AK3
EIF2AK4


EIF2A
EIF2B1
EIF2B2
EIF2B3
EIF2B4


ENST00000487799


EIF2B5
EIF2C1
EIF2C2
EIF2C3
EIF2C4


EIF2S1
EIF2S2
EIF2S3
EIF3A
EIF3B


EIF3C
EIF3CL
EIF3D
EIF3E
EIF3EIP


EIF3F
EIF3G
EIF3H
EIF3I
EIF3J


EIF3K
EIF3M
EIF3S8
EIF4A1
EIF4A2


EIF4A3
EIF4B
EIF4E
EIF4E2
EIF4E3


EIF4EBP1
EIF4EBP2
EIF4EBP3
EIF4ENIF1
EIF4G1


EIF4G2
EIF4G3
EIF4H
EIF5
EIF5A


EIF5A2
EIF5B
EIF6
ELAC1
ELAC2


ELANE
ELAVL1
ELAVL2
ELAVL3
ELAVL4


ELF1
ELF2
ELF3
ELF4
ELF5


ELFN2
ELK1
ELK3
ELK4
ELL


ELL2
ELL3
ELMO1
ELMO2
ELMO3


ELMOD2
ELMOD3
ELN
ELOF1
ELOVL1


ELOVL2
ELOVL3
ELOVL4
ELOVL5
ELOVL6


ELOVL7
ELP2
ELP3
ELP4
ELSPBP1


ELTD1
EMB
EMCN
EMD
EME1


EME2
EMID1
EMID2
EMILIN1
EMILIN2


EMILIN3
EML1
EML2
EML3
EML4


EML5
EMP1
EMP2
EMP3
EMR1


EMR2
EMR3
EMR4
EMX1
EMX2


EN1
EN2
ENAH
ENAM
ENC1


ENDOD1
ENDOG
ENDOU
ENG
ENGASE


ENHO
ENKUR
ENO1
ENO2
ENO3


ENO4
ENOPH1
ENOSF1
ENOX1
ENOX2


ENPEP
ENPP1
ENPP2
ENPP3
ENPP4


ENPP5
ENPP6
ENPP7
ENSA
ENSG00000038102


ENSG00000064489
ENSG00000068650
ENSG00000101152
ENSG00000102445
ENSG00000104880


ENSG00000106232
ENSG00000107816
ENSG00000115339
ENSG00000117540
ENSG00000118519


ENSG00000118928
ENSG00000123257
ENSG00000124224
ENSG00000124677
ENSG00000124854


ENSG00000124915
ENSG00000125631
ENSG00000125822
ENSG00000125881
ENSG00000125964


ENSG00000126002
ENSG00000126217
ENSG00000128422
ENSG00000128563
ENSG00000129973


ENSG00000130225
ENSG00000130241
ENSG00000131484
ENSG00000135213
ENSG00000135702


ENSG00000135749
ENSG00000137021
ENSG00000137746
ENSG00000139239
ENSG00000140209


ENSG00000142832
ENSG00000142951
ENSG00000143910
ENSG00000144396
ENSG00000145642


ENSG00000146736
ENSG00000147113
ENSG00000148667
ENSG00000148713
ENSG00000148805


ENSG00000149618
ENSG00000149658
ENSG00000150980
ENSG00000153081
ENSG00000154732


ENSG00000156367
ENSG00000156509
ENSG00000157819
ENSG00000157999
ENSG00000158185


ENSG00000158301
ENSG00000158403
ENSG00000159239
ENSG00000161643
ENSG00000162568


ENSG00000162621
ENSG00000162644
ENSG00000162734
ENSG00000162767
ENSG00000162872


ENSG00000163144
ENSG00000163182
ENSG00000163612
ENSG00000164159
ENSG00000164236


ENSG00000164241
ENSG00000164500
ENSG00000164845
ENSG00000164860
ENSG00000164946


ENSG00000165114
ENSG00000165124
ENSG00000165429
ENSG00000165851
ENSG00000165935


ENSG00000166013
ENSG00000166329
ENSG00000166492
ENSG00000166593
ENSG00000166707


ENSG00000167281
ENSG00000167390
ENSG00000167433
ENSG00000167442
ENSG00000167475


ENSG00000168038
ENSG00000168113
ENSG00000168561
ENSG00000169664
ENSG00000169697


ENSG00000170238
ENSG00000170817
ENSG00000170987
ENSG00000171084
ENSG00000171459


ENSG00000171841
ENSG00000171878
ENSG00000171995
ENSG00000172070
ENSG00000172212


ENSG00000172261
ENSG00000172764
ENSG00000172786
ENSG00000172823
ENSG00000172895


ENSG00000172899
ENSG00000172900
ENSG00000172963
ENSG00000173115
ENSG00000173213


ENSG00000173609
ENSG00000173671
ENSG00000173679
ENSG00000173774
ENSG00000173780


ENSG00000173820
ENSG00000173863
ENSG00000173961
ENSG00000173968
ENSG00000174028


ENSG00000174057
ENSG00000174104
ENSG00000174121
ENSG00000174126
ENSG00000174144


ENSG00000174398
ENSG00000174440
ENSG00000174459
ENSG00000174483
ENSG00000174658


ENSG00000174681
ENSG00000174880
ENSG00000175117
ENSG00000175143
ENSG00000175267


ENSG00000175822
ENSG00000175856
ENSG00000176050
ENSG00000176207
ENSG00000176220


ENSG00000176757
ENSG00000176819
ENSG00000176900
ENSG00000176937
ENSG00000176951


ENSG00000176960
ENSG00000177111
ENSG00000177634
ENSG00000177835
ENSG00000177858


ENSG00000177863
ENSG00000178006
ENSG00000178225
ENSG00000178322
ENSG00000178510


ENSG00000178546
ENSG00000178585
ENSG00000179294
ENSG00000179312
ENSG00000179326


ENSG00000179360
ENSG00000179574
ENSG00000179702
ENSG00000179755
ENSG00000179824


ENSG00000179851
ENSG00000180150
ENSG00000180494
ENSG00000180518
ENSG00000180519


ENSG00000180649
ENSG00000180715
ENSG00000180882
ENSG00000181437
ENSG00000181669


ENSG00000181882
ENSG00000181922
ENSG00000182053
ENSG00000182065
ENSG00000182150


ENSG00000182553
ENSG00000182625
ENSG00000182729
ENSG00000182933
ENSG00000182957


ENSG00000183000
ENSG00000183059
ENSG00000183096
ENSG00000183122
ENSG00000183144


ENSG00000183190
ENSG00000183239
ENSG00000183317
ENSG00000183355
ENSG00000183397


ENSG00000183405
ENSG00000183445
ENSG00000183455
ENSG00000183514
ENSG00000183627


ENSG00000183817
ENSG00000183851
ENSG00000183920
ENSG00000183981
ENSG00000183983


ENSG00000184008
ENSG00000184064
ENSG00000184100
ENSG00000184263
ENSG00000184352


ENSG00000184353
ENSG00000184391
ENSG00000184490
ENSG00000184493
ENSG00000184521


ENSG00000184543
ENSG00000184653
ENSG00000184673
ENSG00000184844
ENSG00000184888


ENSG00000184902
ENSG00000185034
ENSG00000185055
ENSG00000185082
ENSG00000185095


ENSG00000185319
ENSG00000185448
ENSG00000185467
ENSG00000185636
ENSG00000185641


ENSG00000185685
ENSG00000185758
ENSG00000185834
ENSG00000185863
ENSG00000185929


ENSG00000185945
ENSG00000185956
ENSG00000186218
ENSG00000186259
ENSG00000186381


ENSG00000186400
ENSG00000186414
ENSG00000186483
ENSG00000186659
ENSG00000186663


ENSG00000186709
ENSG00000186728
ENSG00000186743
ENSG00000186756
ENSG00000186773


ENSG00000186787
ENSG00000187042
ENSG00000187072
ENSG00000187080
ENSG00000187522


ENSG00000187534
ENSG00000187544
ENSG00000187600
ENSG00000187615
ENSG00000187653


ENSG00000187661
ENSG00000187686
ENSG00000187791
ENSG00000187809
ENSG00000187828


ENSG00000187851
ENSG00000187900
ENSG00000187938
ENSG00000187963
ENSG00000187988


ENSG00000187999
ENSG00000188013
ENSG00000188023
ENSG00000188031
ENSG00000188075


ENSG00000188082
ENSG00000188144
ENSG00000188292
ENSG00000188405
ENSG00000188423


ENSG00000188438
ENSG00000188447
ENSG00000188463
ENSG00000188469
ENSG00000188604


ENSG00000188668
ENSG00000188683
ENSG00000188796
ENSG00000188831
ENSG00000188841


ENSG00000188873
ENSG00000188890
ENSG00000188912
ENSG00000188926
ENSG00000188974


ENSG00000188985
ENSG00000188989
ENSG00000189118
ENSG00000189119
ENSG00000189128


ENSG00000189244
ENSG00000189258
ENSG00000189279
ENSG00000189290
ENSG00000189311


ENSG00000189378
ENSG00000189384
ENSG00000196076
ENSG00000196094
ENSG00000196115


ENSG00000196121
ENSG00000196183
ENSG00000196230
ENSG00000196285
ENSG00000196292


ENSG00000196306
ENSG00000196454
ENSG00000196527
ENSG00000196681
ENSG00000196690


ENSG00000196926
ENSG00000196930
ENSG00000196940
ENSG00000196960
ENSG00000197023


ENSG00000197049
ENSG00000197149
ENSG00000197185
ENSG00000197218
ENSG00000197246


ENSG00000197320
ENSG00000197335
ENSG00000197369
ENSG00000197407
ENSG00000197438


ENSG00000197450
ENSG00000197475
ENSG00000197481
ENSG00000197490
ENSG00000197526


ENSG00000197575
ENSG00000197585
ENSG00000197608
ENSG00000197630
ENSG00000197680


ENSG00000197799
ENSG00000197825
ENSG00000197865
ENSG00000197883
ENSG00000198059


ENSG00000198079
ENSG00000198107
ENSG00000198154
ENSG00000198179
ENSG00000198229


ENSG00000198273
ENSG00000198322
ENSG00000198326
ENSG00000198475
ENSG00000198544


ENSG00000198615
ENSG00000198616
ENSG00000198649
ENSG00000198684
ENSG00000198694


ENSG00000198706
ENSG00000198725
ENSG00000198726
ENSG00000198731
ENSG00000198760


ENSG00000198778
ENSG00000198789
ENSG00000198801
ENSG00000198810
ENSG00000198902


ENSG00000198921
ENSG00000198957
ENSG00000198965
ENTHD1
ENTPD1


ENTPD2
ENTPD3
ENTPD4
ENTPD5
ENTPD6


ENTPD7
ENTPD8
ENY2
EOMES
EP300


EP400
EPAS1
EPB41
EPB41L1
EPB41L2


EPB41L3
EPB41L4A
EPB41L4B
EPB41L5
EPB42


EPB49
EPC1
EPC2
EPCAM
EPDR1


EPGN
EPHA1
EPHA10
EPHA2
EPHA3


EPHA4
EPHA5
EPHA6
EPHA7
EPHA8


EPHB1
EPHB1
EPHB2
EPHB3
EPHB4



ENST00000398015


EPHB6
EPHX1
EPHX2
EPHX3
EPHX4


EPM2A
EPN2
EPN3
EPO
EPOR


EPRS
EPS15
EPS15L1
EPS8
EPS8L1


EPS8L2
EPS8L3
EPSTI1
EPX
EPYC


ERAL1
ERAP1
ERAP2
ERAS
ERBB2


ERBB2IP
ERBB3
ERBB3
ERBB4
ERC1




ENST00000267101


ERCC1
ERCC2
ERCC3
ERCC4
ERCC5


ERCC6
ERCC6L
ERCC8
EREG
ERF


ERG
ERGIC1
ERGIC2
ERGIC3
ERH


ERI1
ERI2
ERI3
ERICH1
ERLEC1


ERLIN2
ERMAP
ERMN
ERMP1
ERN1


ERN2
ERO1L
ERO1LB
ERP27
ERP29


ERP44
ERRFI1
ERVFC1
ERVWE1
ESAM


ESCO1
ESCO2
ESD
ESF1
ESM1


ESPL1
ESPN
ESPNL
ESR1
ESR2


ESRP1
ESRP2
ESRRA
ESRRB
ESRRG


ESSPL
ESX1
ESYT1
ESYT2
ESYT3


ETAA1
ETF1
ETFA
ETFB
ETFDH


ETHE1
ETNK1
ETNK2
ETS1
ETS2


ETV1
ETV2
ETV3
ETV3L
ETV4


ETV5
ETV6
ETV7
EVC
EVC2


EVI2A
EVI2B
EVI5
EVI5L
EVL


EVPL
EVX1
EVX2
EWSR1
EXD1


EXD3
EXDL2
EXO1
EXOC1
EXOC2


EXOC3
EXOC3L
EXOC3L2
EXOC4
EXOC5


EXOC6
EXOC6B
EXOC7
EXOC8
EXOG


EXOSC1
EXOSC10
EXOSC2
EXOSC3
EXOSC4


EXOSC5
EXOSC6
EXOSC7
EXOSC8
EXOSC9


EXPH5
EXT1
EXT2
EXTL1
EXTL2


EXTL3
EYA1
EYA2
EYAS
EYA4


EYS
EZH1
EZH2
EZH2
EZR





ENST00000350995


F10
F11
F11R
F12
F13A1


F13B
F2
F2R
F2RL1
F2RL2


F2RL3
F3
F5
F7
F8


F8A1
F8A2
F8A3
F8
F9





ENST000000360256


FA2H
FA87B_HUMAN
FAAH
FAAH2
FABP1


FABP12
FABP2
FABP3
FABP4
FABP5


FABP6
FABP7
FABP9
FABPE_HUMAN
FADD


FADS1
FADS2
FADS3
FADS6
FAF1


FAF2
FAH
FAHD1
FAHD2A
FAHD2B


FAIM
FAIM2
FAIM3
FAM100A
FAM100B


FAM101A
FAM102A
FAM102B
FAM103A1
FAM104B


FAM105A
FAM105B
FAM107A
FAM107B
FAM108A1


FAM108A3
FAM108B1
FAM109A
FAM109B
FAM110A


FAM110B
FAM11OC
FAM111A
FAM111B
FAM113A


FAM113B
FAM114A1
FAM114A2
FAM115A
FAM115C


FAM116A
FAM117A
FAM117B
FAM118A
FAM118B


FAM119A
FAM119B
FAM120A
FAM120AOS
FAM120B


FAM120C
FAM122A
FAM122B
FAM122C
FAM123A


FAM123B
FAM123C
FAM124A
FAM124B
FAM125A


FAM125B
FAM126A
FAM126B
FAM127A
FAM127B


FAM127C
FAM128A
FAM128B
FAM129A
FAM129B


FAM129C
FAM131A
FAM131B
FAM131C
FAM132A


FAM133A
FAM134A
FAM134B
FAM134C
FAM135A


FAM135B
FAM136A
FAM13A1
FAM13C
FAM149A


FAM150A
FAM151A
FAM151B
FAM153A
FAM153B


FAM153C
FAM154A
FAM154B
FAM155A
FAM155B


FAM156A
FAM156B
FAM158A
FAM159A
FAM160A2


FAM160B1
FAM161A
FAM161B
FAM162A
FAM162B


FAM163A
FAM163B
FAM164A
FAM164C
FAM165B


FAM166A
FAM167B
FAM168A
FAM168B
FAM169A


FAM170A
FAM171A1
FAM171B
FAM172A
FAM173A


FAM173B
FAM174A
FAM174B
FAM175A
FAM175B


FAM176A
FAM176B
FAM177A1
FAM177B
FAM178B


FAM179A
FAM179B
FAM180A
FAM181A
FAM181B


FAM184A
FAM184B
FAM186A
FAM186B
FAM187B


FAM188A
FAM188B
FAM189A1
FAM189A2
FAM189B


FAM18B
FAM18B2
FAM190A
FAM190B
FAM192A


FAM193A
FAM194A
FAM194B
FAM195A
FAM196A


FAM198A
FAM198B
FAM199X
FAM19A2
FAM19A3


FAM19A4
FAM19A5
FAM200A
FAM20A
FAM20B


FAM21A
FAM21C
FAM22A
FAM22D
FAM22F


FAM22G
FAM23A
FAM23B
FAM24A
FAM24B


FAM26A
FAM26D
FAM26E
FAM26F
FAM32A


FAM33A
FAM35A
FAM36A
FAM38B
FAM39B


FAM3A
FAM3B
FAM3C
FAM3D
FAM40A


FAM40B
FAM43A
FAM43B
FAM45A
FAM45B


FAM46A
FAM46B
FAM46C
FAM46D
FAM47A


FAM47B
FAM47C
FAM48A
FAM48B1
FAM48B2


FAM49A
FAM49B
FAM50A
FAM50B
FAM53A


FAM53B
FAM53C
FAM54A
FAM54B
FAM55A


FAM55C
FAM55D
FAM57A
FAM57B
FAM58A


FAM58B
FAM59A
FAM5B
FAM5C
FAM60A


FAM63A
FAM63B
FAM64A
FAM65A
FAM65B


FAM65C
FAM69B
FAM69C
FAM70A
FAM70B


FAM71A
FAM71B
FAM71C
FAM71E1
FAM71F1


FAM72A
FAM72B
FAM73A
FAM73B
FAM74A3


FAM75A1
FAM75A2
FAM75A6
FAM75A7
FAM76A


FAM76B
FAM78A
FAM78B
FAM81A
FAM81B


FAM82A1
FAM82A2
FAM82B
FAM83A
FAM83B


FAM83C
FAM83D
FAM83E
FAM83F
FAM83G


FAM83H
FAM84A
FAM84B
FAM86A
FAM86C


FAM87B
FAM89A
FAM89B
FAM8A1
FAM90A1


FAM90A20
FAM91A1
FAM92B
FAM96A
FAM98A


FAM98B
FAM98C
FAM9A
FAM9B
FAM9C


FANCA
FANCB
FANCC
FANCD2
FANCE


FANCF
FANCG
FANCI
FANCL
FANCM


FANK1
FAP
FAR1
FAR2
FARP1


FARP2
FARS2
FARSA
FARSB
FAS


FASLG
FASN
FASTK
FASTKD1
FASTKD2


FASTKD3
FASTKD5
FAT
FAT1
FAT2


FAT3
FAT4
FAT4
FATE1
FAU




ENST00000394329


FBF1
FBL
FBLIM1
FBLN1
FBLN2


FBLN2
FBLN5
FBLN7
FBN1
FBN2


ENST00000492059


FBN3
FBP1
FBP2
FBRSL1
FBXL12


FBXL13
FBXL14
FBXL15
FBXL16
FBXL17


FBXL18
FBXL19
FBXL2
FBXL20
FBXL21


FBXL21
FBXL22
FBXL3
FBXL4
FBXL5


ENST00000297158


FBXL6
FBXL7
FBXL8
FBXO10
FBXO11


FBXO15
FBXO16
FBXO17
FBXO18
FBXO2


FBXO21
FBXO22
FBXO24
FBXO25
FBXO27


FBXO28
FBXO3
FBXO30
FBXO31
FBXO32


FBXO33
FBXO34
FBXO36
FBXO38
FBXO39


FBXO4
FBXO40
FBXO41
FBXO42
FBXO43


FBXO44
FBXO45
FBXO46
FBXO47
FBXO48


FBXO5
FBXO6
FBXO7
FBXO8
FBXO9


FBXW10
FBXW11
FBXW12
FBXW2
FBXW4


FBXW5
FBXW7
FBXW7_NM_018315_2
FBXW8
FBXW9


FCAMR
FCAR
FCER1A
FCER1G
FCER2


FCF1
FCGBP
FCGR1A
FCGR1B
FCGR2A


FCGR2B
FCGR3A
FCGR3B
FCGRT
FCHO1


FCHSD1
FCHSD2
FCN1
FCN2
FCN3


FCRL1
FCRL2
FCRL3
FCRL4
FCRL5


FCRL6
FCRLA
FCRLB
FDFT1
FDPS


FDX1
FDX1L
FDXR
FECH
FEM1A


FEM1B
FEM1C
FEN1
FER
FER1L6


FERD3L
FERMT1
FERMT2
FERMT3
FES


FETUB
FEV
FEZ1
FEZF1
FEZF2


FFAR1
FFAR2
FFAR3
FGA
FGB


FGD1
FGD2
FGD3
FGD4
FGD5


FGD6
FGF1
FGF10
FGF11
FGF12


FGF13
FGF14
FGF16
FGF17
FGF18


FGF19
FGF2
FGF20
FGF21
FGF22


FGF23
FGF3
FGF4
FGF5
FGF6


FGF7
FGF7P2
FGF8
FGF9
FGFBP1


FGFBP2
FGFBP3
FGFR1
FGFR1OP
FGFR1OP2


FGFR1
FGFR2
FGFR3
FGFR4
FGFR4


ENST00000425967



ENST00000292408


FGFRL1
FGG
FGGY
FGL1
FGL2


FGR
FH
FHAD1
FHDC1
FHIT


FHL1
FHL2
FHL3
FHL5
FHOD1


FHOD3
FIBCD1
FIBIN
FIBP
FICD


FIG4
FIGF
FIGN
FIGNL1
FILIP1


FILIP1L
FIP1L1
FIS1
FITM1
FITM2


FIZ1
FKBP10
FKBP11
FKBP14
FKBP1A


FKBP1B
FKBP1C
FKBP2
FKBP3
FKBP4


FKBP5
FKBP6
FKBP7
FKBP8
FKBP9


FKBP9L
FKBPL
FKRP
FKTN
FLAD1


FLCN
FLG
FLG2
FLI1
FLII


FLJ10357
FLJ10404
FLJ10490
FLJ13236
FLJ13855


FLJ14075
FLJ14627
FLJ14775
FLJ16165
FLJ16171


FLJ16331
FLJ16360
FLJ16369
FLJ16542
FLJ20184


FLJ20273
FLJ20366
FLJ20584
FLJ23356
FLJ23584


FLJ25006
FLJ25917
FLJ31132
FLJ34521
FLJ35880


FLJ38348
FLJ38451
FLJ38576
FLJ39257
FLJ39369


FLJ41131
FLJ41603
FLJ42177
FLJ42418
FLJ42957


FLJ43374
FLJ43806
FLJ43980
FLJ44048
FLJ44060


FLJ44216
FLJ44635
FLJ44817
FLJ44874
FLJ45224


FLJ45422
FLJ45455
FLJ45831
FLJ45910
FLJ45983


FLJ46321
FLJ90650
FLNA
FLNB
FLNC


FLOT1
FLOT2
FLRT1
FLRT2
FLRT3


FLT1
FLT3
FLT3LG
FLT4
FLT4






ENST00000261937


FLVCR1
FLVCR2
FLYWCH1
FLYWCH2
FMN2


FMNL1
FMNL2
FMNL3
FMO1
FMO2


FMO3
FMO4
FMO5
FMO6P
FMOD


FMR1
FMR1NB
FN1
FN3K
FN3KRP


FNBP1L
FNBP1
FNBP4
FNDC1
FNDC3A



ENST00000372416


FNDC3B
FNDC4
FNDC5
FNDC7
FNDC8


FNIP1
FNIP2
FNTA
FNTB
FOLH1


FOLH1B
FOLR1
FOLR2
FOS
FOSB


FOSL1
FOSL2
FOXA1
FOXA2
FOXA3


FOXB1
FOXB2
FOXC1
FOXC2
FOXD2


FOXD3
FOXD4
FOXD4L1
FOXD4L2
FOXD4L3


FOXD4L4
FOXD4L6
FOXE1
FOXE3
FOXF1


FOXF2
FOXG1
FOXH1
FOXI1
FOXI2


FOXI3
FOXJ1
FOXJ2
FOXJ3
FOXK1


FOXK2
FOXL1
FOXL2
FOXM1
FOXN1


FOXN2
FOXN3
FOXN4
FOXO1
FOXO3


FOXO4
FOXP1
FOXP2
FOXP3
FOXP4


FOXQ1
FOXR1
FOXR2
FOXRED1
FOXRED2


FOXS1
FPGS
FPGT
FPR1
FPR2


FPR3
FRAG1
FRAS1
FRAS1
FRAT1





ENST00000325942


FRAT2
FREM1
FREM2
FREM3
FRG1


FRG2
FRG2C
FRK
FRMD1
FRMD3


FRMD4A
FRMD4B
FRMD5
FRMD6
FRMD7


FRMD8
FRMPD1
FRMPD2
FRMPD2L1
FRMPD2L2


FRMPD3
FRMPD4
FRRS1
FRS2
FRS3


FRY
FRYL
FRZB
FSCB
FSCN1


FSCN3
FSD1
FSD2
FSHB
FSHR


FSIP1
FST
FSTL1
FSTL3
FSTL4


FSTL5
FTCD
FTH1
FTHL17
FTHL19


FTL
FTLP2
FTMT
FTO
FTSJ1


FTSJ2
FTSJ3
FTSJD1
FTSJD2
FUBP1


FUBP3
FUCA1
FUCA2
FUK
FUNDC1


FUNDC2
FUNDC2P1
FURIN
FUS
FUSIP1


FUT1
FUT10
FUT11
FUT2
FUT3


FUT4
FUT5
FUT6
FUT7
FUT8


FUT9
FUZ
FXC1
FXN
FXR1


FXYD1
FXYD2
FXYD3
FXYD4
FXYD5


FXYD6
FXYD7
FXYD8
FYCO1
FYN


FYTTD1
FZD1
FZD10
FZD2
FZD3


FZD4
FZD5
FZD6
FZD7
FZD8


FZD9
FZR1
G0S2
G2E3
G3BP1


G3BP2
G6PC
G6PC2
G6PC3
G6PD


GAA
GAB1
GAB2
GAB3
GAB4


GABARAP
GABARAPL1
GABARAPL2
GABARAPL3
GABBR1


GABBR2
GABPA
GABPB1
GABPB2
GABRA1


GABRA2
GABRA3
GABRA4
GABRA5
GABRA6


GABRB1
GABRB2
GABRB3
GABRD
GABRE


GABRG1
GABRG2
GABRP
GABRQ
GABRR1


GABRR2
GABRR3
GAD1
GAD2
GADD45A


GADD45B
GADD45G
GADD45GIP1
GADL1
GAGE1


GAGE10
GAGE12C
GAGE12E
GAGE12F
GAGE12G


GAGE12H
GAGE12J
GAGE2C
GAGE2D
GAGE2E


GAK
GAL
GAL3ST1
GAL3ST2
GAL3ST3


GAL3ST4
GALC
GALE
GALK1
GALK2


GALM
GALNS
GALNT1
GALNT10
GALNT11


GALNT12
GALNT13
GALNT14
GALNT2
GALNT3


GALNT5
GALNT6
GALNT7
GALNT8
GALNT9


GALNTL1
GALNTL2
GALNTL4
GALNTL5
GALNTL6


GALP
GALR1
GALR2
GALR3
GALT


GAMT
GAN
GANAB
GANC
GAP43


GAPDH
GAPDHS
GAPT
GAPVD1
GAR1


GARNL3
GARS
GART
GAS1
GAS2


GAS2L1
GAS2L2
GAS2L3
GAS6
GAS7


GAS8
GAST
GATA1
GATA2
GATA3


GATA4
GATA5
GATA6
GATAD1
GATAD2A


GATAD2B
GATC
GATM
GATS
GATSL3


GBA
GBA2
GBAP
GBAS
GBF1


GBG5L_HUMAN
GBGT1
GBP1
GBP2
GBP3


GBP4
GBP5
GBP6
GBP7
GBX1


GBX2
GC
GCA
GCAT
GCC1


GCC2
GCDH
GCET2
GCH1
GCHFR


GCK
GCKR
GCLC
GCLM
GCM1


GCM2
GCN1L1
GCNT1
GCNT2
GCNT3


GCNT4
GCOM1
GCSH
GDA
GDAP1


GDAP1L1
GDAP2
GDE1
GDF1
GDF10


GDF11
GDF15
GDF2
GDF3
GDF5


GDF6
GDF7
GDF9
GDI1
GDI2


GDNF
GDPD1
GDPD2
GDPD3
GDPD4


GDPD5
GEFT
GEM
GEMIN4
GEMIN5


GEMIN6
GEMIN7
GEMIN8
GEN1
GFAP


GFER
GFI1
GFI1B
GFM1
GFM2


GFOD1
GFOD2
GFPT1
GFPT2
GFRA1


GFRA3
GFRA4
GFRAL
GGA1
GGA2


GGA3
GGCT
GGCX
GGH
GGN


GGNBP2
GGPS1
GGT1
GGT5
GGT6


GGT7
GGTLA4
GGTLC1
GGTLC2
GH1


GH2
GHDC
GHITM
GHR
GHRH


GHRHR
GHRL
GHSR
GIF
GIGYF1


GIGYF2
GIMAP1
GIMAP2
GIMAP4
GIMAP5


GIMAP6
GIMAP7
GIMAP8
GIN1
GINS1


GINS2
GINS3
GINS4
GIOT-1
GIP


GIPC1
GIPC2
GIPC3
GIPR
GIT1


GIT2
GIYD1
GIYD2
GJA1
GJA10


GJA3
GJA4
GJA5
GJA8
GJA9


GJB1
GJB2
GJB3
GJB4
GJB5


GJB6
GJB7
GJC1
GJC2
GJC3


GJD2
GJD4
GK
GK2
GK3P


GK5
GKAP1
GKN1
GKN2
GLA


GLB1
GLB1L
GLB1L2
GLB1L3
GLCCI1


GLCE
GLDC
GLDN
GLE1
GLE1L


GLG1
GLI1
GLI2
GLI3
GLI4


GLIPR1
GLIPR1L1
GLIPR1L2
GLIPR2
GLIS1


GLIS2
GLIS3
GLMN
GLO1
GLOD4


GLOD5
GLP1R
GLP2R
GLRA1
GLRA2


GLRA3
GLRA4
GLRB
GLRX
GLRX2


GLRX3
GLRX5
GLRXP3
GLS
GLS2


GLT1D1
GLT25D1
GLT25D2
GLT28D1
GLT6D1


GLT8D1
GLT8D2
GLTP
GLTPD1
GLTPD2


GLTSCR2
GLUD1
GLUD2
GLUL
GLYAT


GLYATL1
GLYATL2
GLYCTK
GLYR1
GM2A


GMCL1
GMDS
GMEB1
GMEB2
GMFB


GMFG
GMIP
GML
GMNN
GMPPA


GMPPB
GMPR
GMPR2
GMPS
GNA11


GNA12
GNA13
GNA14
GNA15
GNAI1


GNAI2
GNAI3
GNAL
GNAO1
GNAQ


GNAS
GNAS
GNAS_NM_016592_1
GNAT1
GNAT2



ENST00000371100


GNAZ
GNB1
GNB1L
GNB2
GNB2L1


GNB3
GNB4
GNB5
GNE
GNG10


GNG11
GNG12
GNG13
GNG2
GNG3


GNG4
GNG5
GNG7
GNG8
GNGT1


GNGT2
GNL1
GNL2
GNL3
GNL3L


GNLY
GNMT
GNPAT
GNPDA1
GNPDA2


GNPNAT1
GNPTAB
GNPTG
GNRH1
GNRH2


GNRHR
GNRHR2
GNS
GOLGA1
GOLGA2


GOLGA2B
GOLGA3
GOLGA4
GOLGA5
GOLGA6A


GOLGA7
GOLGA7B
GOLGA8A
GOLGA8E
GOLGA8G


GOLGB1
GOLIM4
GOLM1
GOLPH3
GOLPH3L


GOLT1A
GOLT1B
GON4L
GOPC
GORAB


GORASP1
GORASP2
GOSR1
GOSR2
GOT1


GOT2
GP1BB
GP2
GP5
GP6


GP9
GPA33
GPAA1
GPAM
GPAT2


GPATCH1
GPATCH2
GPATCH3
GPATCH4
GPATCH8


GPBP1
GPBP1L1
GPC1
GPC2
GPC3


GPC4
GPC5
GPC6
GPCPD1
GPD1


GPD1L
GPD2
GPER
GPHA2
GPHB5


GPHN
GPI
GPIHBP1
GPKOW
GPLD1


GPM6A
GPM6B
GPN1
GPN2
GPN3


GPNMB
GPR1
GPR101
GPR107
GPR108


GPR109A
GPR110
GPR111
GPR112
GPR113


GPR114
GPR115
GPR116
GPR119
GPR12


GPR120
GPR123
GPR124
GPR125
GPR126


GPR128
GPR132
GPR133
GPR135
GPR137


GPR137B
GPR137C
GPR139
GPR141
GPR142


GPR143
GPR146
GPR148
GPR149
GPR15


GPR150
GPR151
GPR152
GPR153
GPR155


GPR156
GPR157
GPR158
GPR160
GPR161


GPR162
GPR165P
GPR17
GPR171
GPR172A


GPR172B
GPR173
GPR174
GPR176
GPR179


GPR18
GPR180
GPR182
GPR183
GPR19


GPR20
GPR21
GPR22
GPR25
GPR26


GPR27
GPR3
GPR31
GPR32
GPR34


GPR35
GPR37
GPR37L1
GPR39
GPR4


GPR42
GPR44
GPR45
GPR50
GPR52


GPR55
GPR56
GPR6
GPR61
GPR62


GPR63
GPR64
GPR65
GPR68
GPR75


GPR77
GPR78
GPR81
GPR82
GPR82






ENST00000302548


GPR83
GPR84
GPR85
GPR87
GPR88


GPR89A
GPR89B
GPR97
GPR98
GPRASP1


GPRASP2
GPRC5A
GPRC5B
GPRC5C
GPRC5D


GPRC6A
GPRIN1
GPRIN2
GPRIN3
GPS1


GPS2
GPSM1
GPSM2
GPSM3
GPT


GPT2
GPX1
GPX2
GPX3
GPX4


GPX5
GPX6
GPX7
GPX8
GRAMD1A


GRAMD1B
GRAMD1C
GRAMD2
GRAMD3
GRAMD4


GRAP
GRAP2
GRASP
GRB10
GRB14


GRB2
GRB7
GREB1
GREB1
GREM1





ENST00000381486


GREM2
GRHL1
GRHL2
GRHL3
GRHPR


GRIA1
GRIA2
GRIA3
GRIA3
GRIA4





ENST00000264357


GRID1
GRID2
GRIK1
GRIK2
GRIK2






ENST00000421544


GRIK3
GRIK4
GRIK5
GRIN1
GRIN2A


GRIN2B
GRIN2C
GRIN2D
GRIN3A
GRIN3B


GRINA
GRINL1A
GRINL1B
GRIP1
GRIP2


GRIPAP1
GRK1
GRK4
GRK5
GRK6


GRK7
GRLF1
GRM1
GRM2
GRM3


GRM4
GRM4
GRM5
GRM6
GRM7



ENST00000374177


GRM8
GRN
GRP
GRPEL1
GRPEL2


GRPR
GRRP1
GRTP1
GRWD1
GRXCR1


GRXCR2
GSC
GSC2
GSDMA
GSDMB


GSDMC
GSDMD
GSG1
GSG1L
GSG2


GSK3A
GSK3B
GSN
GSPT1
GSPT2


GSR
GSS
GSTA1
GSTA2
GSTA3


GSTA4
GSTA5
GSTCD
GSTK1
GSTM1


GSTM2
GSTM3
GSTM4
GSTM5
GSTO1


GSTO2
GSTP1
GSTT1
GSTT2
GSTT2B


GSTZ1
GSX1
GSX2
GTDC1
GTF2A1


GTF2A2
GTF2B
GTF2E1
GTF2E2
GTF2F1


GTF2F2
GTF2H1
GTF2H2
GTF2H2C
GTF2H3


GTF2H4
GTF2H5
GTF2I
GTF2IRD1
GTF2IRD2


GTF2IRD2B
GTF3C1
GTF3C2
GTF3C3
GTF3C4


GTF3C5
GTF3C6
GTPBP1
GTPBP10
GTPBP2


GTPBP3
GTPBP4
GTPBP5
GTPBP6
GTPBP8


GTSE1
GTSF1
GTSF1L
GUCA1A
GUCA1B


GUCA1C
GUCA2A
GUCA2B
GUCY1A2
GUCY1A3


GUCY2C
GUCY2D
GUCY2F
GUF1
GUK1


GUK1
GULP1
GUSB
GUSL1_HUMAN
GXYLT1


ENST00000366719


GYG1
GYG2
GYLTL1B
GYPA
GYPB


GYPC
GYS1
GYS2
GZF1
GZMA


GZMB
GZMH
GZMK
GZMM
H19


H1F0
H1FNT
H1FOO
H1FX
H2AFB1


H2AFB2
H2AFB3
H2AFJ
H2AFV
H2AFX


H2AFY
H2AFY2
H2AFZ
H2AFZP2
H2BFM


H2BFWT
H3F3A
H3F3B
H3F3C
H6PD


HAAO
HABP2
HABP4
HACE1
HACL1


HADH
HADHA
HADHB
HAGH
HAGHL


HAL
HAMP
HAND1
HAND2
HAO1


HAO2
HAP1
HAPLN1
HAPLN2
HAPLN3


HAPLN4
HARBI1
HARS
HARS2
HAS1


HAS2
HAS3
HAT1
HAUS1
HAUS2


HAUS3
HAUS4
HAUS5
HAUS6
HAUS7


HAUS8
HAVCR1
HAVCR2
HAX1
HBA1


HBA2
HBB
HBD
HBE1
HBEGF


HBG1
HBG2
HBM
HBP1
HBQ1


HBS1L
HBXIP
HBZ
HCCS
HCFC1


HCFC1R1
HCFC2
HCG9
HCK
HCLS1


HCN1
HCN2
HCN3
HCN4
HCP1


HCP5
HCRT
HCRTR1
HCRTR2
HCST


HDAC1
HDAC10
HDAC11
HDAC2
HDAC3


HDAC4
HDAC5
HDAC6
HDAC7
HDAC8


HDAC9
HDC
HDDC2
HDDC3
HDGF


HDGF2
HDGFL1
HDGFRP3
HDHD1A
HDHD2


HDHD3
HDLBP
HDX
HEATR1
HEATR2


HEATR3
HEATR4
HEATR5B
HEATR6
HEATR7B1


HEATR7B2
HEBP1
HEBP2
HECA
HECTD1


HECTD2
HECTD3
HECTD3
HECW1
HECW2




ENST00000372172


HEG1
HEJ1
HELB
HELLS
HELQ


HELT
HELZ
HEMGN
HEMK1
HEPACAM


HEPACAM2
HEPH
HEPHL1
HERC1
HERC2


HERC2P3
HERC3
HERC4
HERC5
HERC6


HERPUD1
HERPUD2
HERV-FRD
HES1
HES2


HES3
HES4
HESS
HES6
HES7


HESX1
HEXA
HEXB
HEXDC
HEXIM1


HEXIM2
HEY1
HEY2
HEYL
HFE


HFE2
HFM1
HGD
HGF
HGFAC


HGS
HGSNAT
HGSNAT
HHAT
HHATL




ENST00000458501


HHEX
HHIP
HHIPL1
HHIPL2
HHLA3


HIAT1
HIATL1
HIATL2
HIBADH
HIBCH


HIC1
HIC2
HIF1A
HIF1AN
HIF3A


HIGD1A
HIGD1B
HIGD2A
HIGD2BP
HIN1L_HUMAN


HINFP
HINT1
HINT2
HINT3
HIP1


HIP1R
HIPK1
HIPK2
HIPK3
HIPK4


HIRA
HIRIP3
HIST1H1A
HIST1H1B
HIST1H1C


HIST1H1D
HIST1H1E
HIST1H1T
HIST1H2AA
HIST1H2AB


HIST1H2AC
HIST1H2AD
HIST1H2AE
HIST1H2AG
HIST1H2AH


HIST1H2AI
HIST1H2AJ
HIST1H2AK
HIST1H2AL
HIST1H2AM


HIST1H2BA
HIST1H2BB
HIST1H2BC
HIST1H2BD
HIST1H2BE


HIST1H2BF
HIST1H2BG
HIST1H2BH
HIST1H2BI
HIST1H2BJ


HIST1H2BK
HIST1H2BL
HIST1H2BM
HIST1H2BN
HIST1H2BO


HIST1H3A
HIST1H3B
HIST1H3C
HIST1H3D
HIST1H3E


HIST1H3F
HIST1H3G
HIST1H3H
HIST1H3I
HIST1H3J


HIST1H4A
HIST1H4B
HIST1H4C
HIST1H4D
HIST1H4E


HIST1H4F
HIST1H4G
HIST1H4H
HIST1H4I
HIST1H4J


HIST1H4K
HIST1H4L
HIST2H2AA3
HIST2H2AA4
HIST2H2AB


HIST2H2AC
HIST2H2BE
HIST2H2BF
HIST2H3A
HIST2H3C


HIST2H3D
HIST2H4A
HIST2H4B
HIST3H2A
HIST3H2BB


HIST3H3
HIST4H4
HIVEP1
HIVEP2
HIVEP3


HJURP
HK1
HK2
HK3
HKDC1


HKR1
HLA-A
HLA-B
HLA-C
HLA-DMA


HLA-DMB
HLA-DOA
HLA-DOB
HLA-DPA1
HLA-DPB1


HLA-DQA1
HLA-DQA2
HLA-DQB1
HLA-DRA
HLA-DRB5


HLA-E
HLA-F
HLA-G
HLCS
HLF


HLTF
HLX
HM13
HMBOX1
HMBS


HMCN1
HMG1L10
HMG20A
HMG20B
HMGA1


HMGA2
HMGB1
HMGB1L1
HMGB2
HMGB3


HMGB4
HMGCL
HMGCLL1
HMGCR
HMGCS1


HMGCS2
HMGN1
HMGN2
HMGN3
HMGN4


HMGN5
HMGXB3
HMGXB4
HMHA1
HMHB1


HMMR
HMOX1
HMOX2
HMP19
HMX2


HMX3
HN1
HN1L
HNF1A
HNF1B


HNF4A
HNF4G
HNMT
HNRNPA0
HNRNPA1


HNRNPA1L2
HNRNPA2B1
HNRNPA3
HNRNPAB
HNRNPC


HNRNPCL1
HNRNPD
HNRNPF
HNRNPH1
HNRNPH2


HNRNPH3
HNRNPK
HNRNPL
HNRNPM
HNRNPR


HNRNPU
HNRNPUL1
HNRNPUL2
HNRPD
HNRPDL


HNRPF
HNRPH1
HNRPL
HNRPLL
HNRPR


HNRPU
HOMER1
HOMER2
HOMER3
HOOK1


HOOK2
HOOK3
HOPX
HORMAD1
HOXA1


HOXA10
HOXA11
HOXA13
HOXA2
HOXA3


HOXA4
HOXA5
HOXA6
HOXA7
HOXA9


HOXB1
HOXB13
HOXB2
HOXB3
HOXB4


HOXB5
HOXB6
HOXB7
HOXB8
HOXB9


HOXC10
HOXC11
HOXC12
HOXC13
HOXC4


HOXC5
HOXC6
HOXC8
HOXC9
HOXD1


HOXD10
HOXD11
HOXD13
HOXD3
HOXD4


HOXD8
HOXD9
HP
HP1BP3
HPCA


HPCAL1
HPCAL4
HPD
HPDL
HPGD


HPGDS
HPN
HPR
HPRT1
HPS1


HPS3
HPS4
HPS5
HPS6
HPSE


HPSE2
HPX
HR
HRAS
HRASLS


HRASLS2
HRASLS5
HRAS
HRC
HRCT1




ENST00000397594


HRG
HRH1
HRH2
HRH3
HRH4


HRK
HRNR
HRSP12
HS1BP3
HS2ST1


HS3ST1
HS3ST2
HS3ST3A1
HS3ST3B1
HS3ST4


HS3ST5
HS6ST1
HS6ST1P
HS6ST2
HS6ST3


HSCB
HSD11B1
HSD11B1L
HSD11B2
HSD17B1


HSD17B10
HSD17B11
HSD17B12
HSD17B13
HSD17B14


HSD17B2
HSD17B3
HSD17B4
HSD17B6
HSD17B7


HSD17B8
HSD3B1
HSD3B2
HSD3B7
HSDL1


HSDL2
HSF1
HSF2
HSF2BP
HSF4


HSF5
HSFX1
HSFY1
HSFY2
HSP90AA1


HSP90AA2
HSP90AB1
HSP90AB2P
HSP90AB6P
HSP90B1


HSPA12A
HSPA12B
HSPA13
HSPA14
HSPA1A


HSPA1B
HSPA1L
HSPA2
HSPA4
HSPA4L


HSPA5
HSPA6
HSPA8
HSPA9
HSPB1


HSPB11
HSPB2
HSPB3
HSPB6
HSPB7


HSPB8
HSPB9
HSPBAP1
HSPBP1
HSPC159


HSPD1
HSPE1
HSPG2
HSPH1
HTATIP2


HTATSF1
HTN1
HTN3
HTR1A
HTR1B


HTR1D
HTR1E
HTR1F
HTR2A
HTR2B


HTR2C
HTR3A
HTR3B
HTR3C
HTR3D


HTR3E
HTR4
HTR5A
HTR6
HTR7


HTRA1
HTRA2
HTRA3
HTRA4
HTT


HUMPPA
HUNK
HUS1
HUS1B
HUWE1


HVCN1
HYAL1
HYAL2
HYAL3
HYAL4


HYDIN
HYI
HYLS1
HYOU1
IAH1


IAPP
IARS
IARS2
IBSP
IBTK


ICA1
ICA1L
ICAM1
ICAM2
ICAM3


ICAM4
ICAM5
ICK
ICMT
ICOS


ICOSLG
ICT1
ID1
ID2
ID2B


ID3
ID4
IDE
IDH1
IDH2


IDH3A
IDH3B
IDH3G
IDI1
IDI2


IDO1
IDS
IDUA
IER2
IER3


IER3IP1
IER5
IER5L
IFFO1
IFI16


IFI27
IFI27L1
IFI27L2
IFI30
IFI35


IFI44
IFI44L
IFI6
IFIH1
IFIT1


IFIT1L
IFIT2
IFIT3
IFIT5
IFITM2


IFITM3
IFITM5
IFLTD1
IFNA1
IFNA10


IFNA13
IFNA14
IFNA16
IFNA17
IFNA2


IFNA21
IFNA4
IFNA5
IFNA6
IFNA7


IFNA8
IFNAR1
IFNAR2
IFNB1
IFNE


IFNG
IFNGR1
IFNGR2
IFNK
IFNW1


IFRD1
IFRD2
IFT122
IFT140
IFT172


IFT20
IFT52
IFT57
IFT74
IFT80


IFT81
IFT88
IGBP1
IGDCC3
IGDCC4


IGF1
IGF1R
IGF2
IGF2AS
IGF2BP1


IGF2BP2
IGF2BP3
IGF2R
IGFALS
IGFBP1


IGFBP2
IGFBP3
IGFBP4
IGFBP5
IGFBP6


IGFBP7
IGFBPL1
IGFL3
IGFL4
IGFN1


IGHMBP2
IGHV1OR15-1
IGHV1OR15-5
IGJ
IGLL1


IGLL3
IGSF1
IGSF10
IGSF11
IGSF21


IGSF22
IGSF3
IGSF5
IGSF6
IGSF8


IGSF9
IGSF9B
IHH
IK
IKBIP


IKBKAP
IKBKB
IKBKE
IKBKG
IKZF1


IKZF2
IKZF3
IKZF4
IKZF4
IKZF5





ENST00000262032


IL10
IL10RA
IL10RB
IL11
IL11RA


IL12A
IL12B
IL12RB1
IL12RB2
IL13


IL13RA1
IL13RA2
IL15
IL15RA
IL16


IL17A
IL17B
IL17C
IL17D
IL17F


IL17RA
IL17RB
IL17RC
IL17RD
IL17RE


IL17REL
IL18
IL18BP
IL18R1
IL18RAP


IL19
IL1A
IL1B
IL1F10
IL1F5


IL1F6
IL1F7
IL1F8
IL1F9
IL1R1


IL1R2
IL1RAP
IL1RAPL1
IL1RAPL2
IL1RL1


IL1RL2
IL1RN
IL2
IL20
IL20RA


IL20RB
IL21
IL21R
IL22
IL22RA1


IL22RA2
IL23A
IL23R
IL24
IL25


IL26
IL27
IL27RA
IL28A
IL28B


IL28RA
IL29
IL2RA
IL2RB
IL2RG


IL2RG
IL3
IL31
IL31RA
IL32


ENST00000374202


IL33
IL34
IL3RA
IL4
IL4I1


IL4R
IL5
IL5RA
IL6
IL6R


IL6ST
IL7
IL7R
IL8
IL9


IL9R
ILDR1
ILDR2
ILF2
ILF3


ILK
ILKAP
ILK
ILVBL
IMMP1L




ENST00000299421


IMMP2L
IMMT
IMP3
IMP4
IMP5


IMPA1
IMPA2
IMPACT
IMPAD1
IMPDH1


IMPDH2
IMPG1
IMPG2
INA
INADL


INCA1
INCENP
INE1
INF2
INF2_NEW


ING1
ING2
ING3
ING4
ING5


INGX
INHA
INHBA
INHBB
INHBC


INHBE
INMT
INO80
INO80B
INO80C


INO80D
INO80E
INOC1
INPP1
INPP4A


INPP4B
INPP5A
INPP5B
INPP5B
INPP5D





ENST00000373026


INPP5E
INPP5F
INPP5J
INPP5K
INPPL1


INS
INS-IGF2
INSC
INSIG1
INSIG2


INSL3
INSL4
INSL5
INSL6
INSM1


INSM2
INSR
INSRR
INTS10
INTS12


INTS2
INTS3
INTS4
INTS5
INTS6


INTS7
INTS8
INTS9
INTU
INVS


IP6K1
IP6K2
IP6K3
IPCEF1
IPMK


IPO11
IPO13
IPO4
IPO5
IPO7


IPO8
IPO9
IPP
IPPK
IQCB1


IQCC
IQCD
IQCE
IQCF1
IQCF2


IQCG
IQCH
IQCK
IQGAP1
IQGAP2


IQGAP3
IQSEC1
IQSEC2
IQSEC3
IQUB


IRAK1
IRAK1BP1
IRAK2
IRAK3
IRAK4


IREB2
IRF1
IRF2
IRF2BP1
IRF2BP2


IRF3
IRF4
IRF5
IRF6
IRF7


IRF8
IRF9
IRGC
IRGQ
IRS1


IRS2
IRS4
IRX1
IRX2
IRX3


IRX4
IRX5
IRX6
ISCA1
ISCA2


ISCU
ISG15
ISG20
ISG20L2
ISL1


ISL2
ISLR
ISLR2
ISM1
ISM2


ISOC1
ISOC2
ISX
ISY1
ISYNA1


ITCH
ITFG1
ITFG2
ITFG3
ITGA1


ITGA10
ITGA11
ITGA2
ITGA2B
ITGA3


ITGA4
ITGA5
ITGA6
ITGA7
ITGA8


ITGA9
ITGAD
ITGAE
ITGAL
ITGAM


ITGAV
ITGAX
ITGB1
ITGB1BP1
ITGB1BP2


ITGB1BP3
ITGB2
ITGB3
ITGB3BP
ITGB4


ITGB5
ITGB6
ITGB7
ITGB8
ITGBL1


ITIH1
ITIH2
ITIH3
ITIH4
ITIH5


ITIH5L
ITK
ITLN1
ITLN2
ITM2A


ITM2B
ITM2C
ITPA
ITPK1
ITPKA


ITPKB
ITPKC
ITPR1
ITPR2
ITPR3


ITPRIP
ITPRIPL1
ITPRIPL2
ITSN1
ITSN2


IVD
IVL
IVNS1ABP
IWS1
IYD


IZUMO1
JAG1
JAG2
JAGN1
JAK1


JAK2
JAK3
JAKMIP1
JAKMIP2
JAKMIP3


JAM2
JAM3
JARID2
JAZF1
JDP2


JHDM1D
JMJD1C
JMJD4
JMJD5
JMJD6


JMJD7-PLA2G4B
JMY
JOSD1
JOSD2
JPH1


JPH2
JPH3
JPH4
JRKL
JSRP1


JTB
JUB
JUN
JUNB
JUND


JUP
K0087_HUMAN
K0401_HUMAN
KAAG1
KAL1


KALRN
KANK1
KANK2
KANK3
KANK4


KARCA1
KARS
KAT2A
KAT2B
KAT5


KATNA1
KATNAL1
KATNAL2
KATNB1
KAZALD1


KBTBD10
KBTBD11
KBTBD2
KBTBD3
KBTBD4


KBTBD5
KBTBD6
KBTBD7
KBTBD8
KCNA1


KCNA10
KCNA2
KCNA3
KCNA4
KCNA5


KCNA6
KCNA7
KCNAB1
KCNAB2
KCNAB3


KCNB1
KCNB2
KCNC1
KCNC2
KCNC3


KCNC4
KCND1
KCND2
KCND3
KCNE1


KCNE1L
KCNE2
KCNE3
KCNE4
KCNF1


KCNG1
KCNG2
KCNG3
KCNG4
KCNH1


KCNH2
KCNH3
KCNH4
KCNH5
KCNH6


KCNH7
KCNH8
KCNIP1
KCNIP2
KCNIP3


KCNIP4
KCNJ1
KCNJ10
KCNJ11
KCNJ12


KCNJ13
KCNJ14
KCNJ15
KCNJ16
KCNJ2


KCNJ3
KCNJ4
KCNJ5
KCNJ6
KCNJ8


KCNJ9
KCNK1
KCNK10
KCNK12
KCNK13


KCNK15
KCNK16
KCNK17
KCNK18
KCNK2


KCNK3
KCNK4
KCNK5
KCNK6
KCNK7


KCNK9
KCNMA1
KCNMB1
KCNMB2
KCNMB3


KCNMB4
KCNN1
KCNN1
KCNN2
KCNN3




ENST00000222249


KCNN4
KCNQ1
KCNQ2
KCNQ3
KCNQ4


KCNQ5
KCNRG
KCNS1
KCNS2
KCNS3


KCNT1
KCNT2
KCNV1
KCNV2
KCP


KCTD1
KCTD10
KCTD11
KCTD12
KCTD13


KCTD14
KCTD15
KCTD16
KCTD17
KCTD18


KCTD19
KCTD2
KCTD20
KCTD21
KCTD3


KCTD4
KCTD5
KCTD6
KCTD7
KCTD8


KCTD9
KCTD9L
KDELC1
KDELC2
KDELR1


KDELR2
KDELR3
KDM1A
KDM1B
KDM2A


KDM2B
KDM3A
KDM3B
KDM4A
KDM4B


KDM4C
KDM4D
KDM5A
KDM5B
KDM5C


KDM5D
KDM6A
KDM6B
KDR
KDSR


KEAP1
KEL
KERA
KHDC1
KHDRBS1


KHDRBS2
KHDRBS3
KHK
KHNYN
KHSRP


KIAA0020
KIAA0090
KIAA0100
KIAA0101
KIAA0141


KIAA0146
KIAA0174
KIAA0182
KIAA0195
KIAA0196


KIAA0226
KIAA0226
KIAA0232
KIAA0240
KIAA0247



ENST00000273582


KIAA0284
KIAA0317
KIAA0319
KIAA0319L
KIAA0355


KIAA0368
KIAA0391
KIAA0406
KIAA0408
KIAA0415


KIAA0415
KIAA0427
KIAA0430
KIAA0467
KIAA0467


ENST00000450194



ENST00000372442


KIAA0494
KIAA0513
KIAA0528
KIAA0556
KIAA0562


KIAA0564
KIAA0649
KIAA0664
KIAA0664
KIAA0672





ENST00000322335


KIAA0701
KIAA0746
KIAA0748
KIAA0753
KIAA0776


KIAA0802
KIAA0831
KIAA0892
KIAA0895
KIAA0895L


KIAA0895
KIAA0907
KIAA0913
KIAA0922
KIAA0947


ENST00000338533


KIAA0953
KIAA1009
KIAA1012
KIAA1024
KIAA1033


KIAA1045
KIAA1109
KIAA1143
KIAA1147
KIAA1161


KIAA1191
KIAA1199
KIAA1210
KIAA1211
KIAA1217


KIAA1244
KIAA1267
KIAA1274
KIAA1279
KIAA1324


KIAA1324L
KIAA1328
KIAA1377
KIAA1404
KIAA1407


KIAA1409
KIAA1429
KIAA1430
KIAA1432
KIAA1443


KIAA1462
KIAA1467
KIAA1468
KIAA1486
KIAA1509


KIAA1522
KIAA1524
KIAA1529
KIAA1530
KIAA1539


KIAA1542
KIAA1543
KIAA1549
KIAA1586
KIAA1598


KIAA1609
KIAA1614
KIAA1618
KIAA1632
KIAA1644


KIAA1671
KIAA1683
KIAA1688
KIAA1704
KIAA1712


KIAA1715
KIAA1737
KIAA1751
KIAA1755
KIAA1772


KIAA1797
KIAA1804
KIAA1826
KIAA1841
KIAA1853


KIAA1875
KIAA1913
KIAA1919
KIAA1949
KIAA1958


KIAA1967
KIAA1984
KIAA2013
KIAA2018
KIAA2022


KIAA2026
KIDINS220
KIF11
KIF12
KIF13A


KIF13B
KIF14
KIF15
KIF16B
KIF17


KIF18A
KIF18B
KIF19
KIF1A
KIF1B


KIF1C
KIF20A
KIF20B
KIF21A
KIF21B


KIF22
KIF23
KIF25
KIF27
KIF2A


KIF2B
KIF2C
KIF3A
KIF3B
KIF3C


KIF4A
KIF5A
KIF5B
KIF5C
KIF6


KIF7
KIF9
KIFAP3
KIFC1
KIFC2


KIFC3
KIN
KIR2DL1
KIR2DL3
KIR2DL4


KIR2DS4
KIR3DL1
KIR3DL2
KIR3DL3
KIR3DX1


KIRREL
KIRREL2
KIRREL3
KISS1
KISS1R


KIT
KITLG
KL
KLB
KLC1


KLC2
KLC3
KLC4
KLF1
KLF10


KLF11
KLF12
KLF13
KLF14
KLF15


KLF16
KLF17
KLF2
KLF3
KLF4


KLF5
KLF6
KLF7
KLF8
KLF9


KLHDC1
KLHDC10
KLHDC2
KLHDC3
KLHDC4


KLHDC5
KLHDC6
KLHDC7A
KLHDC7B
KLHDC8A


KLHDC8B
KLHDC9
KLHL1
KLHL10
KLHL11


KLHL12
KLHL13
KLHL14
KLHL15
KLHL17


KLHL18
KLHL2
KLHL20
KLHL21
KLHL22


KLHL23
KLHL24
KLHL25
KLHL26
KLHL28


KLHL29
KLHL3
KLHL31
KLHL32
KLHL34


KLHL36
KLHL38
KLHL4
KLHL5
KLHL6


KLHL7
KLHL8
KLHL9
KLK1
KLK10


KLK11
KLK12
KLK13
KLK14
KLK15


KLK2
KLK3
KLK4
KLK5
KLK6


KLK7
KLK8
KLK9
KLKB1
KLRA1


KLRB1
KLRC1
KLRC2
KLRC3
KLRC4


KLRD1
KLRF1
KLRG1
KLRG2
KLRK1


KMO
KNDC1
KNG1
KNTC1
KPNA1


KPNA2
KPNA3
KPNA4
KPNA5
KPNA6


KPNA7
KPNB1
KPRP
KPTN
KRAS


KRBA1
KRBA2
KRCC1
KREMEN1
KREMEN2


KRI1
KRIT1
KRR1
KRT1
KRT10


KRT12
KRT13
KRT14
KRT15
KRT16


KRT17
KRT18
KRT19
KRT2
KRT20


KRT222
KRT23
KRT24
KRT25
KRT26


KRT27
KRT28
KRT3
KRT31
KRT32


KRT33A
KRT33B
KRT34
KRT35
KRT36


KRT37
KRT38
KRT39
KRT4
KRT40


KRT5
KRT6A
KRT6B
KRT6C
KRT7


KRT71
KRT72
KRT73
KRT74
KRT75


KRT76
KRT77
KRT78
KRT79
KRT8


KRT80
KRT81
KRT82
KRT83
KRT84


KRT85
KRT86
KRT9
KRTAP1-1
KRTAP1-3


KRTAP10-1
KRTAP10-10
KRTAP10-11
KRTAP10-12
KRTAP10-2


KRTAP10-3
KRTAP10-4
KRTAP10-5
KRTAP10-6
KRTAP10-8


KRTAP11-1
KRTAP12-1
KRTAP12-3
KRTAP12-4
KRTAP13-1


KRTAP13-2
KRTAP13-3
KRTAP13-4
KRTAP15-1
KRTAP17-1


KRTAP19-1
KRTAP19-2
KRTAP19-3
KRTAP19-4
KRTAP19-5


KRTAP19-6
KRTAP19-7
KRTAP19-8
KRTAP2-1
KRTAP2-4


KRTAP20-1
KRTAP20-2
KRTAP21-1
KRTAP21-2
KRTAP22-1


KRTAP23-1
KRTAP24-1
KRTAP26-1
KRTAP27-1
KRTAP3-1


KRTAP3-2
KRTAP3-3
KRTAP4-12
KRTAP4-2
KRTAP4-3


KRTAP4-4
KRTAP4-5
KRTAP5-1
KRTAP5-10
KRTAP5-11


KRTAP5-2
KRTAP5-3
KRTAP5-5
KRTAP5-6
KRTAP5-7


KRTAP5-8
KRTAP6-1
KRTAP6-2
KRTAP8-1
KRTAP9-2


KRTAP9-3
KRTAP9-4
KRTAP9-8
KRTAP9L2
KRTCAP2


KRTCAP3
KRTDAP
KSR1
KSR2
KTELC1


KTI12
KTN1
KYNU
Klkbl4
L1CAM


L1TD1
L2HGDH
L3MBTL
L3MBTL2
L3MBTL3


L3MBTL4
LACE1
LACRT
LACTB
LACTB2


LAD1
LAG3
LAGE3
LAIR1
LAIR2


LALBA
LAMA1
LAMA2
LAMA3
LAMA4


LAMA5
LAMB1
LAMB2
LAMB3
LAMB4


LAMC1
LAMC2
LAMC3
LAMP1
LAMP2


LAMP3
LANCL1
LANCL2
LANCL3
LAP3


LAPTM4A
LAPTM4B
LAPTM5
LARGE
LARP1


LARP1B
LARP4
LARP4B
LARP6
LARP7


LARS
LARS2
LAS1L
LASP1
LASS1


LASS2
LASS3
LASS4
LASS5
LASS6


LAT
LAT2
LATS1
LATS2
LAX1


LAYN
LBH
LBP
LBR
LBX1


LBX2
LBXCOR1
LCA5
LCA5L
LCAP


LCAT
LCE1A
LCE1B
LCE1C
LCE1D


LCE1E
LCE1F
LCE2A
LCE2B
LCE2C


LCE2D
LCE3A
LCE3B
LCE3C
LCE3D


LCE3E
LCE4A
LCE5A
LCK
LCLAT1


LCMT1
LCMT2
LCN1
LCN10
LCN12


LCN15
LCN2
LCN6
LCN8
LCN9


LCOR
LCORL
LCP1
LCT
LCTL


LDB1
LDB2
LDB3
LDHA
LDHAL6A


LDHAL6B
LDHB
LDHC
LDHD
LDLR


LDLRAD1
LDLRAD2
LDLRAD3
LDLRAP1
LDOC1


LDOC1L
LEAP2
LECT1
LECT2
LEF1


LEFTY1
LEFTY2
LEKR1
LELP1
LEMD1


LEMD2
LEMD3
LENEP
LENG1
LENG8


LENG9
LEO1
LEP
LEPR
LEPRE1


LEPREL1
LEPREL2
LEPROT
LEPROTL1
LETM1


LETM2
LETMD1
LFNG
LGALS1
LGALS12


LGALS13
LGALS14
LGALS2
LGALS3
LGALS3BP


LGALS4
LGALS7
LGALS8
LGALS9
LGALS9B


LGALS9C
LGI1
LGI2
LGI3
LGI4


LGMN
LGR4
LGR5
LGR6
LGSN


LGTN
LHB
LHCGR
LHFP
LHFPL1


LHFPL2
LHFPL4
LHFPL5
LHPP
LHX1


LHX2
LHX3
LHX4
LHX5
LHX6


LHX8
LHX9
LIAS
LIF
LIFR


LIG1
LIG3
LIG4
LILRA1
LILRA2


LILRA3
LILRA4
LILRA5
LILRA6
LILRB1


LILRB2
LILRB3
LILRB4
LILRB5
LIM2


LIMA1
LIMCH1
LIMD1
LIMD2
LIME1


LIMK1
LIMK2
LIMS1
LIMS2
LIMS3


LIN28
LIN28B
LIN52
LIN54
LIN7A


LIN7B
LIN7C
LIN9
LINGO1
LINGO2


LINGO4
LINS1
LIPA
LIPC
LIPE


LIPF
LIPG
LIPH
LIPI
LIPJ


LIPM
LIPT1
LIPT2
LITAF
LIX1


LIX1L
LL0XNC01-209G1_2
LL0XNC01-237H1_1
LLGL1
LLGL2


LLPH
LMAN1
LMAN1L
LMAN2
LMAN2L


LMBR1
LMBR1L
LMBRD1
LMBRD2
LMCD1


LMF1
LMF2
LMLN
LMNA
LMNB1


LMNB2
LMO1
LMO2
LMO3
LMO4


LMO7
LMOD1
LMOD2
LMTK2
LMTK3


LMX1A
LMX1B
LNP1
LNPEP
LNX1


LNX2
LOC114984
LOC120364
LOC133308
LOC139116


LOC139249
LOC139263
LOC139431
LOC139516
LOC139542


LOC145814
LOC148213
LOC152485
LOC153328
LOC157567


LOC158572
LOC158730
LOC158825
LOC158957
LOC165186


LOC168850
LOC200420
LOC203510
LOC203604
LOC220686


LOC223075
LOC257106
LOC283232
LOC283398
LOC283412


LOC283849
LOC284023
LOC284100
LOC284288
LOC286404


LOC286408
LOC286411
LOC286467
LOC286478
LOC286512


LOC286528
LOC339123
LOC340096
LOC340549
LOC340571


LOC340578
LOC340581
LOC341457
LOC342541
LOC344165


LOC345630
LOC347376
LOC347381
LOC347411
LOC347421


LOC347424
LOC347549
LOC349136
LOC387867
LOC388972


LOC389669
LOC389841
LOC389842
LOC389846
LOC389848


LOC389858
LOC389873
LOC389888
LOC389895
LOC389899


LOC389900
LOC389901
LOC389904
LOC390335
LOC390956


LOC391370
LOC392434
LOC392439
LOC392459
LOC392467


LOC392473
LOC392487
LOC392512
LOC392528
LOC392529


LOC392531
LOC392533
LOC392539
LOC392546
LOC392549


LOC392554
LOC392556
LOC392559
LOC401052
LOC401584


LOC401588
LOC401599
LOC401605
LOC401611
LOC401613


LOC401616
LOC401621
LOC402120
LOC402414
LOC402418


LOC439951
LOC440055
LOC440345
LOC440354
LOC440917


LOC440925
LOC440944
LOC441344
LOC441480
LOC441481


LOC441483
LOC441485
LOC441486
LOC441488
LOC441493


LOC441494
LOC441496
LOC441497
LOC441498
LOC441499


LOC441504
LOC441507
LOC441510
LOC441511
LOC441513


LOC441515
LOC441526
LOC441795
LOC442425
LOC442439


LOC442444
LOC442447
LOC442451
LOC442452
LOC442454


LOC442456
LOC442461
LOC442464
LOC442465
LOC442466


LOC442470
LOC493829
LOC51058
LOC51059
LOC51123


LOC51321
LOC541473
LOC55954
LOC56901
LOC57149


LOC642755
LOC643751
LOC645864
LOC646049
LOC646625


LOC646853
LOC646870
LOC646871
LOC649445
LOC649587


LOC649618
LOC649930
LOC650875
LOC65121
LOC651271


LOC651503
LOC651746
LOC652153
LOC652737
LOC653192


LOC653698
LOC653720
LOC728194
LOC728350
LOC728378


LOC729903
LOC730029
LOC730445
LOC730735
LOC731028


LOC731173
LOC731740
LOC731796
LOC731890
LOC81691


LOC88523
LOC91461
LOC91807
LOC92249
LOC93081


LOH12CR1
LONP1
LONP2
LONRF1
LONRF2


LONRF3
LOR
LOX
LOXL1
LOXL2


LOXL3
LOXL4
LPA
LPAL2
LPAR1


LPAR2
LPAR3
LPAR4
LPAR5
LPAR6


LPCAT1
LPCAT2
LPCAT3
LPCAT4
LPGAT1


LPHN1
LPHN2
LPHN3
LPIN1
LPIN2


LPIN3
LPL
LPO
LPP
LPPR2


LPPR4
LPXN
LRAT
LRBA
LRCH1


LRCH2
LRCH3
LRCH4
LRDD
LRFN1


LRFN2
LRFN3
LRFN4
LRFN5
LRG1


LRGUK
LRIG1
LRIG2
LRIG3
LRIT1


LRIT2
LRIT3
LRMP
LRP1
LRP10


LRP11
LRP12
LRP1B
LRP2
LRP2BP


LRP3
LRP4
LRP5
LRP5L
LRP6


LRP8
LRPAP1
LRPPRC
LRRC1
LRRC10


LRRC14
LRRC14B
LRRC15
LRRC16A
LRRC16B


LRRC17
LRRC18
LRRC19
LRRC2
LRRC20


LRRC23
LRRC24
LRRC25
LRRC26
LRRC27


LRRC28
LRRC29
LRRC3
LRRC30
LRRC31


LRRC32
LRRC33
LRRC34
LRRC36
LRRC37A


LRRC37A2
LRRC37A3
LRRC37B
LRRC39
LRRC3B


LRRC4
LRRC40
LRRC41
LRRC42
LRRC43


LRRC45
LRRC46
LRRC47
LRRC49
LRRC4B


LRRC4C
LRRC50
LRRC52
LRRC55
LRRC56


LRRC57
LRRC59
LRRC6
LRRC61
LRRC66


LRRC67
LRRC68
LRRC7
LRRC8A
LRRC8B


LRRC8C
LRRC8D
LRRC8E
LRRCC1
LRRFIP1


LRRFIP1
LRRFIP2
LRRIQ1
LRRIQ3
LRRK1


ENST00000392000


LRRK2
LRRK2
LRRN1
LRRN2
LRRN3



ENST00000298910


LRRN4
LRRN4CL
LRRTM1
LRRTM3
LRRTM4


LRSAM1
LRTM1
LRTM2
LRTOMT
LRWD1


LSAMP
LSG1
LSM1
LSM10
LSM11


LSM12
LSM14A
LSM14B
LSM2
LSM3


LSM4
LSM5
LSM6
LSMD1
LSP1


LSR
LSS
LST1
LTA
LTA4H


LTB
LTB4R
LTB4R2
LTBP1
LTBP2


LTBP3
LTBP4
LTBR
LTC4S
LTF


LTK
LTV1
LUC7L
LUC7L2
LUC7L3


LUM
LUZP1
LUZP2
LUZP4
LXN


LY6D
LY6E
LY6G5B
LY6G5C
LY6G6C


LY6G6D
LY6G6F
LY6H
LY6K
LY75


LY86
LY9
LY96
LYAR
LYG1


LYG2
LYL1
LYN
LYNX1
LYNX1






ENST00000317543


LYPD1
LYPD2
LYPD3
LYPD4
LYPD5


LYPD6
LYPLA1
LYPLA2
LYPLAL1
LYRM1


LYRM2
LYRM4
LYRM5
LYRM7
LYSMD1


LYSMD2
LYSMD3
LYSMD4
LYST
LYVE1


LYZ
LYZL1
LYZL2
LYZL4
LYZL6


LZIC
LZTFL1
LZTR1
LZTS1
LZTS2


M6PR
MAB21L1
MAB21L2
MACC1
MACF1


MACF1
MACROD1
MACROD2
MAD1L1
MAD2L1


ENST00000361689


MAD2L1BP
MAD2L2
MADCAM1
MADD
MAEA


MAEL
MAF
MAF1
MAFA
MAFB


MAFF
MAFG
MAFK
MAG
MAGEA1


MAGEA10
MAGEA11
MAGEA12
MAGEA13P
MAGEA2


MAGEA2B
MAGEA3
MAGEA4
MAGEA5
MAGEA6


MAGEA8
MAGEA9
MAGEA9B
MAGEB1
MAGEB10


MAGEB16
MAGEB17
MAGEB18
MAGEB2
MAGEB3


MAGEB4
MAGEB5
MAGEB6
MAGEB6B
MAGEC1


MAGEC2
MAGEC3
MAGED1
MAGED2
MAGED4B


MAGEE1
MAGEE2
MAGEF1
MAGEH1
MAGI1


MAGI1
MAGI2
MAGI3
MAGIX
MAGOH


ENST00000402939


MAGOHB
MAGT1
MAK
MAK16
MAL


MALL
MALT1
MAMDC2
MAMDC4
MAML1


MAML2
MAMLD1
MAMSTR
MAN1A1
MAN1A2


MAN1B1
MAN1C1
MAN2A1
MAN2A2
MAN2B1


MAN2B2
MAN2C1
MANBA
MANBAL
MANEA


MANEAL
MANSC1
MAOA
MAOB
MAP1A


MAP1B
MAP1D
MAP1LC3A
MAP1LC3B
MAP1LC3B2


MAP1LC3C
MAP1S
MAP2
MAP2K1
MAP2K2


MAP2K3
MAP2K4
MAP2K5
MAP2K6
MAP2K7


MAP3K1
MAP3K10
MAP3K11
MAP3K12
MAP3K13


MAP3K14
MAP3K15
MAP3K2
MAP3K3
MAP3K4


MAP3K5
MAP3K6
MAP3K6
MAP3K7
MAP3K8




ENST00000374040


MAP3K9
MAP4
MAP4K1
MAP4K2
MAP4K3


MAP4K4
MAP4K5
MAP6
MAP6D1
MAP7


MAP7D1
MAP7D2
MAP7D3
MAP9
MAPK1


MAPK10
MAPK11
MAPK12
MAPK13
MAPK14


MAPK15
MAPK1IP1L
MAPK3
MAPK4
MAPK6


MAPK7
MAPK8
MAPK8IP1
MAPK8IP2
MAPK8IP3


MAPK9
MAPKAP1
MAPKAPK2
MAPKAPK3
MAPKAPK5


MAPKBP1
MAPKSP1
MAPRE1
MAPRE2
MAPRE3


MAPT
01-Mar
10-Mar
02-Mar
03-Mar


04-Mar
05-Mar
06-Mar
07-Mar
08-Mar


09-Mar
MARCKS
MARCKSL1
MARCO
MARK1


MARK2
MARK3
MARK4
MARS
MARS2


MARVELD2
MARVELD3
MAS1
MAS1L
MASP1


MASP2
MAST1
MAST2
MAST2
MAST3





ENST00000361297


MAST4
MASTL
MAT1A
MAT2A
MAT2B


MATK
MATN1
MATN4
MATR3
MAVS


MAX
MAZ
MB
MB3L2_HUMAN
MBD1


MBD2
MBD3
MBD3L1
MBD3L2
MBD4


MBD5
MBD6
MBIP
MBL2
MBLAC1


MBLAC2
MBNL1
MBNL1
MBNL2
MBNL3




ENST00000282488


MBOAT1
MBOAT2
MBOAT4
MBOAT7
MBP


MBTD1
MBTPS1
MBTPS2
MC2R
MC3R


MC4R
MC5R
MCAM
MCART1
MCART2


MCART6
MCAT
MCC
MCCC1
MCCC2


MCCD1
MCC
MCEE
MCF2
MCF2L



ENST00000408903


MCF2L2
MCFD2
MCHR1
MCHR2
MCL1


MCM10
MCM2
MCM3
MCM3AP
MCM4


MCM5
MCM6
MCM7
MCM8
MCM9


MCOLN1
MCOLN2
MCOLN3
MCPH1
MCRS1


MCTP1
MCTP2
MCTS1
MDC1
MDFI


MDFIC
MDGA1
MDGA2
MDH1
MDH1B


MDH2
MDK
MDM1
MDM2
MDM4


MDN1
MDP1
MDS1
MDS2
ME1


ME2
ME3
MEA1
MEAF6
MECOM


MECP2
MECR
MED1
MED10
MED11


MED12
MED12L
MED13
MED13L
MED14


MED15
MED16
MED17
MED18
MED19


MED20
MED21
MED22
MED23
MED24


MED25
MED26
MED27
MED28
MED29


MED30
MED31
MED4
MED6
MED7


MED8
MED9
MEF2B
MEF2C
MEF2D


MEFV
MEGF10
MEGF11
MEGF6
MEI1


MEIG1
MEIS1
MEIS2
MEIS3
MELK


MEMO1
MEMO1P
MEN1
MEOX1
MEOX2


MEP1A
MEP1B
MEPCE
MEPE
MERTK


MESDC1
MESDC2
MESP1
MESP2
MEST


MET
METAP2
METRN
METRNL
METT10D


METT11D1
METT5D1
METTL1
METTL10
METTL11A


METTL12
METTL13
METTL14
METTL2A
METTL2B


METTL3
METTL4
METTL5
METTL6
METTL7A


METTL7B
METTL8
METTL9
MEX3A
MEX3B


MEX3C
MEX3D
MFAP1
MFAP2
MFAP3


MFAP3L
MFAP4
MFAP5
MFF
MFGE8


MFHAS1
MFI2
MFN1
MFN2
MFNG


MFRP
MFSD1
MFSD10
MFSD11
MFSD2A


MFSD3
MFSD4
MFSD5
MFSD6
MFSD6L


MFSD7
MFSD8
MFSD9
MGA
MGAM


MGAM
MGAT1
MGAT2
MGAT3
MGAT4A


ENST00000473011


MGAT4B
MGAT4C
MGAT5
MGAT5B
MGC15476


MGC17624
MGC33414
MGC33530
MGC42105
MGC57359


MGC99813
MGEA5
MGLL
MGMT
MGP


MGRN1
MGST1
MGST2
MGST3
MIA


MIA2
MIA3
MIB1
MIB2
MICA3_HUMAN


MICAL1
MICAL2
MICAL3
MICALCL
MICALL1


MICALL2
MICB
MID1
MID1IP1
MID2


MIDN
MIER1
MIER2
MIER3
MIF


MIF4GD
MIIP
MINA
MINK1
MINPP1


MIOS
MIOX
MIP
MIPEP
MIPOL1


MIS12
MITD1
MITF
MIXL1
MKI67


MKI67IP
MKKS
MKL1
MKL2
MKLN1


MKNK1
MKNK2
MKNK2
MKRN1
MKRN2




ENST00000250896


MKRN3
MKRN4P
MKS1
MKX
MLANA


MLC1
MLEC
MLF1
MLF1IP
MLF2


MLH1
MLH3
MLKL
MLL
MLL2


MLL3
MLL4
MLL5
MLLT1
MLLT10


MLLT11
MLLT3
MLLT4
MLLT6
MLN


MLNR
MLPH
MLST8
MLST8
MLX





ENST00000301724


MLXIP
MLXIPL
MLYCD
MMAA
MMAB


MMACHC
MMADHC
MMD
MMD2
MME


MMEL1
MMGT1
MMP1
MMP10
MMP11


MMP12
MMP13
MMP14
MMP15
MMP16


MMP17
MMP19
MMP2
MMP20
MMP21


MMP23B
MMP25
MMP26
MMP27
MMP28


MMP3
MMP7
MMP8
MMP9
MMPL1


MMRN1
MMRN2
MN1
MNAT1
MND1


MNDA
MNS1
MNT
MNX1
MOAP1


MOBKL1A
MOBKL1B
MOBKL2A
MOBKL2B
MOBKL2C


MOBKL3
MOBP
MOCOS
MOCS1
MOCS2


MOCS3
MOG
MOGAT1
MOGAT2
MOGAT3


MOGS
MON1A
MON1B
MON2
MORC1


MORC2
MORC3
MORC4
MORF4L1
MORF4L2


MORN1
MORN3
MORN4
MORN5
MOS


MOSC1
MOSC2
MOSPD1
MOSPD2
MOSPD3


MOV10
MOV10L1
MOXD1
MOXD1
MPDU1





ENST00000336749


MPDZ
MPEG1
MPG
MPHOSPH10
MPHOSPH6


MPHOSPH8
MPHOSPH9
MPI
MPL
MPND


MPO
MPP1
MPP2
MPP3
MPP4


MPP5
MPP6
MPP7
MPPE1
MPPED2


MPRIP
MPST
MPV17
MPV17L
MPV17L2


MPZ
MPZL1
MPZL2
MPZL3
MR1


MRAP
MRAP2
MRAS
MRC1
MRC1L1


MRC2
MRE11A
MREG
MRFAP1
MRFAP1L1


MRGPRD
MRGPRE
MRGPRF
MRGPRG
MRGPRX1


MRGPRX2
MRGPRX3
MRGPRX4
MRI1
MRM1


MRO
MRP63
MRPL1
MRPL10
MRPL11


MRPL12
MRPL13
MRPL14
MRPL15
MRPL16


MRPL17
MRPL18
MRPL19
MRPL2
MRPL20


MRPL21
MRPL22
MRPL23
MRPL24
MRPL27


MRPL28
MRPL3
MRPL30
MRPL32
MRPL33


MRPL34
MRPL35
MRPL36
MRPL37
MRPL39


MRPL4
MRPL40
MRPL41
MRPL42
MRPL43


MRPL44
MRPL45
MRPL46
MRPL47
MRPL49


MRPL50
MRPL51
MRPL52
MRPL53
MRPL54


MRPL55
MRPL9
MRPS10
MRPS11
MRPS12


MRPS14
MRPS15
MRPS16
MRPS17
MRPS18A


MRPS18B
MRPS18C
MRPS2
MRPS21
MRPS22


MRPS23
MRPS24
MRPS25
MRPS26
MRPS27


MRPS28
MRPS30
MRPS31
MRPS33
MRPS34


MRPS35
MRPS36
MRPS5
MRPS6
MRPS7


MRPS9
MRRF
MRRFP1
MRS2
MRTO4


MRVI1
MS4A1
MS4A10
MS4A12
MS4A13


MS4A14
MS4A15
MS4A2
MS4A3
MS4A4A


MS4A5
MS4A6A
MS4A6E
MS4A7
MS4A8B


MSC
MSGN1
MSH2
MSH3
MSH4


MSH5
MSH6
MSI1
MSI2
MSL1


MSL2
MSL3
MSLN
MSLNL
MSMB


MSMP
MSN
MSR1
MSRA
MSRB2


MSRB3
MST1
MST1R
MST4
MSTN


MSTO1
MSX1
MSX2
MT1A
MT1B


MT1E
MT1F
MT1G
MT1H
MT1M


MT1P2
MT1X
MT2A
MT3
MT4


MTA1
MTA2
MTAC2D1
MTAP
MTBP


MTCH1
MTCH2
MTCP1
MTDH
MTERF


MTERFD1
MTERFD2
MTERFD3
MTF1
MTF2


MTFR1
MTG1
MTHFD1
MTHFD1L
MTHFD2


MTHFD2L
MTHFR
MTHFS
MTHFSD
MTIF2


MTIF3
MTL5
MTM1
MTMR1
MTMR10


MTMR11
MTMR12
MTMR14
MTMR15
MTMR2


MTMR3
MTMR3
MTMR4
MTMR6
MTMR7



ENST00000401950


MTMR8
MTMR9
MTNR1A
MTNR1B
MTO1


MTOR
MTP18
MTPAP
MTPN
MTR


MTRF1
MTRF1L
MTRR
MTSS1
MTTP


MTUS1
MTUS2
MTUS2
MTX1
MTX2




ENST00000431530


MUC1
MUC13
MUC15
MUC16
MUC16






ENST00000331986


MUC17
MUC2
MUC21
MUC4
MUC4






ENST00000405167


MUC5AC
MUC7
MUCL1
MUDENG
MUL1


MUM1
MUM1L1
MURC
MUS81
MUSK


MUT
MUTED
MUTYH
MVD
MVK


MVP
MX1
MX2
MXD1
MXD3


MXD4
MXI1
MXRA5
MXRA7
MXRA8


MYADM
MYADML2
MYB
MYBBP1A
MYBL1


MYBL2
MYBPC1
MYBPC2
MYBPC3
MYBPH


MYBPHL
MYB
MYC
MYCBP
MYCBP2



ENST00000341911


MYCBPAP
MYCL1
MYCL1
MYCL2
MYCN




ENST00000397332


MYCT1
MYD88
MYEF2
MYEOV
MYEOV2


MYF5
MYF6
MYH1
MYH10
MYH11


MYH14
MYH15
MYH16
MYH2
MYH3


MYH4
MYH6
MYH7
MYH7B
MYH8


MYH9
MYL1
MYL10
MYL12A
MYL12B


MYL2
MYL3
MYL4
MYL5
MYL6


MYL6B
MYL7
MYL9
MYLIP
MYLK


MYLK2
MYLK3
MYLK4
MYLPF
MYNN


MYO10
MYO15A
MYO16
MYO18A
MYO18B


MYO1A
MYO1B
MYO1C
MYO1D
MYO1E


MYO1F
MYO1G
MYO3A
MYO3B
MYO5A


MYO5B
MYO5C
MYO6
MYO7A
MYO9A


MYO9B
MYO9B
MYOC
MYOCD
MYOD1



ENST00000319396


MYOF
MYOG
MYOHD1
MYOM1
MYOM2


MYOM3
MYOT
MYOZ1
MYOZ2
MYOZ3


MYPN
MYPOP
MYRIP
MYSM1
MYST1


MYST2
MYST3
MYST4
MYT1
MYT1L


MZF1
Magmas
N4BP1
N4BP2
N4BP2L1


N4BP2L2
N4BP3
N6AMT1
N6AMT2
NAA10


NAA15
NAA16
NAA20
NAA25
NAA30


NAA35
NAA38
NAA40
NAA50
NAAA


NAALAD2
NAALADL1
NAB1
NAB2
NACA


NACA2
NACA3P
NACC1
NACC2
NADK


NADSYN1
NAE1
NAF1
NAG6
NAGA


NAGK
NAGLU
NAGPA
NAGS
NAIF1


NAIP
NALCN
NALP6
NAMPT
NANOG


NANOGP1
NANOS1
NANOS2
NANOS3
NANP


NANS
NAP1L1
NAP1L2
NAP1L3
NAP1L4


NAP1L5
NAP1L6
NAPA
NAPB
NAPEPLD


NAPRT1
NAPSA
NAPSB
NARF
NARFL


NARG2
NARS
NARS2
NASP
NAT1


NAT10
NAT14
NAT2
NAT6
NAT8


NAT8L
NAT9
NAV1
NAV2
NAV3


NBAS
NBEA
NBEAL1
NBEAL1
NBEAL2





ENST00000449802


NBL1
NBN
NBPF11
NBPF14
NBPF15


NBPF16
NBPF3
NBPF5
NBPF7
NBR1


NCALD
NCAM2
NCAN
NCAPD2
NCAPD3


NCAPG
NCAPG2
NCAPH
NCAPH2
NCBP1


NCBP2
NCBP2L
NCCRP1
NCDN
NCEH1


NCF1
NCF2
NCF4
NCK1
NCK2


NCKAP1
NCKAP1L
NCKAP5L
NCKAP5
NCKIPSD





ENST00000405974


NCL
NCLN
NCOA1
NCOA2
NCOA3


NCOA4
NCOA5
NCOA6
NCOA7
NCOR1


NCOR2
NCR1
NCR2
NCR3
NCRNA00086


NCRNA00103
NCRNA00105
NCRNA00169
NCRNA00174
NCRNA00175


NCRNA00176
NCRNA00188
NCS1
NCSTN
ND4


NDC80
NDE1
NDEL1
NDFIP1
NDFIP2


NDN
NDNL2
NDOR1
NDP
NDRG1


NDRG2
NDRG3
NDRG4
NDST1
NDST2


NDST3
NDST4
NDUFA1
NDUFA10
NDUFA11


NDUFA12
NDUFA13
NDUFA2
NDUFA3
NDUFA4


NDUFA4L2
NDUFA5
NDUFA6
NDUFA7
NDUFA8


NDUFA9
NDUFAB1
NDUFAF1
NDUFAF2
NDUFAF3


NDUFAF4
NDUFB1
NDUFB10
NDUFB11
NDUFB2


NDUFB3
NDUFB4
NDUFB5
NDUFB6
NDUFB7


NDUFB8
NDUFB9
NDUFC1
NDUFC2
NDUFS1


NDUFS2
NDUFS3
NDUFS4
NDUFS5
NDUFS6


NDUFS7
NDUFS8
NDUFV1
NDUFV2
NDUFV3


NEB
NEBL
NECAB1
NECAB2
NECAB3


NECAP1
NECAP2
NEDD1
NEDD4
NEDD4L


NEDD8
NEDD9
NEFH
NEFL
NEFM


NEGR1
NEIL1
NEIL2
NEIL3
NEK1


NEK10
NEK11
NEK2
NEK3
NEK4


NEK5
NEK6
NEK7
NEK8
NEK9


NELF
NELL1
NELL2
NENF
NEO1


NES
NET1
NETO1
NETO2
NEU1


NEU2
NEU4
NEURL
NEURL2
NEURL3


NEURL4
NEURL4
NEUROD1
NEUROD2
NEUROD4



ENST00000315614


NEUROD6
NEUROG1
NEUROG2
NEUROG3
NEXN


NF1
NF2
NFAM1
NFASC
NFAT5


NFATC1
NFATC2
NFATC2IP
NFATC3
NFATC4


NFE2
NFE2L1
NFE2L2
NFE2L3
NFIA


NFIB
NFIB
NFIC
NFIL3
NFIX



ENST00000397581


NFKB1
NFKB2
NFKBIA
NFKBIB
NFKBID


NFKBIE
NFKBIL1
NFKBIL2
NFKBIZ
NFRKB


NFS1
NFU1
NFX1
NFXL1
NFYA


NFYB
NFYC
NGB
NGDN
NGEF


NGF
NGFR
NGFRAP1
NGLY1
NGRN


NHEDC1
NHEDC2
NHEJ1
NHLH1
NHLH2


NHLRC1
NHLRC2
NHLRC3
NHP2
NHP2L1


NHS
NHSL1
NHSL2
NICN1
NID1


NID2
NIF3L1
NIN
NINJ1
NINJ2


NINL
NIP7
NIPA1
NIPA2
NIPAL1


NIPAL2
NIPAL3
NIPAL4
NIPBL
NIPSNAP1


NIPSNAP3A
NIPSNAP3B
NISCH
NIT1
NIT2


NKAIN1
NKAIN2
NKAIN4
NKAP
NKAPL


NKD1
NKD2
NKG7
NKIRAS1
NKIRAS2


NKPD1
NKRF
NKTR
NKX2-1
NKX2-2


NKX2-3
NKX2-4
NKX2-5
NKX2-6
NKX2-8


NKX3-1
NKX3-2
NKX6-1
NKX6-2
NKX6-3


NLE1
NLGN1
NLGN2
NLGN3
NLGN4X


NLGN4Y
NLK
NLN
NLRC3
NLRC4


NLRC5
NLRP1
NLRP10
NLRP11
NLRP12


NLRP13
NLRP14
NLRP2
NLRP3
NLRP4


NLRP5
NLRP6
NLRP7
NLRP8
NLRP9


NLRX1
NMB
NMBR
NMD3
NME1


NME1-NME2
NME2
NME2P1
NME3
NME4


NME5
NME6
NME7
NMI
NMNAT1


NMNAT2
NMNAT3
NMRAL1
NMS
NMT1


NMT2
NMU
NMUR1
NMUR2
NM0010129842


NM_001013679
NM_001031_4
NM_001039690_2
NM_001080470_1
NM024534


NM_024588_3
NM_032947_3
NM_198455_2
NNAT
NNMT


NNT
NOB1
NOBOX
NOC2L
NOC3L


NOC4L
NOD1
NOD2
NODAL
NOG


NOL11
NOL12
NOL3
NOL4
NOL6


NOL7
NOL9
NOLC1
NOM1
NOMO1


NOMO2
NOMO3
NONO
NOP10
NOP14


NOP16
NOP2
NOP56
NOP58
NOS1


NOS1AP
NOS1AP
NOS2
NOS3
NOSIP



ENST00000361897


NOSTRIN
NOTCH1
NOTCH2
NOTCH2NL
NOTCH3


NOTCH4
NOTUM
NOV
NOVA1
NOVA2


NOX1
NOX3
NOX4
NOX5
NOXA1


NOXO1
NP12_HUMAN
NPAS1
NPAS2
NPAS3


NPAS4
NPAT
NPB
NPBWR1
NPBWR2


NPC1
NPC1L1
NPC2
NPDC1
NPEPPS


NPFF
NPFFR1
NPFFR2
NPHP1
NPHP3


NPHP4
NPHS1
NPHS2
NPIP
NPIPL1


NPIPL2
NPL
NPLOC4
NPM1
NPM2


NPM3
NPNT
NPPA
NPPB
NPPC


NPR1
NPR2
NPR3
NPS
NPSR1


NPTN
NPTX1
NPTX2
NPTXR
NPVF


NPW
NPY
NPY1R
NPY2R
NPY5R


NPY6R
NP_001073948_1
NQO1
NQO2
NR0B1


NR0B2
NR1D1
NR1D2
NR1H2
NR1H3


NR1H4
NR1I2
NR1I3
NR2C1
NR2C2


NR2C2AP
NR2E1
NR2E3
NR2F1
NR2F2


NR2F6
NR3C1
NR3C2
NR4A1
NR4A2


NR4A3
NR5A1
NR5A2
NR6A1
NRAP


NRARP
NRAS
NRBF2
NRBP1
NRBP2


NRCAM
NRD1
NRF1
NRG1
NRG2


NRG3
NRG4
NRGN
NRIP1
NRIP2


NRIP3
NRK
NRL
NRM
NRN1


NRN1L
NRP1
NRP2
NRSN1
NRSN2


NRTN
NRXN1
NRXN2
NRXN3
NR_002168_1


NR_002217_1
NR_002453_4
NR_002730_1
NR_002733_1
NR_002781_1


NR_002938_2
NR_003034_1
NR_003148_2
NR_003276_1
NSA2


NSD1
NSDHL
NSF
NSFL1C
NSL1


NSMAF
NSMCE1
NSMCE2
NSMCE4A
NSUN2


NSUN3
NSUN4
NSUN5
NSUN5P1
NSUN5P2


NSUN6
NSUN7
NT5C
NT5C1A
NT5C1B


NT5C2
NT5C3
NT5C3L
NT5DC1
NT5DC2


NT5DC3
NT5E
NT5M
NTAN1
NTF3


NTF4
NTHL1
NTM
NTN1
NTN3


NTN4
NTN5
NTNG1
NTNG2
NTRK1


NTRK2
NTRK3
NTS
NTSR1
NTSR2


NUAK1
NUAK2
NUB1
NUBP1
NUBP2


NUBPL
NUCB1
NUCB2
NUCKS1
NUDC


NUDCD1
NUDCD2
NUDCD3
NUDT1
NUDT10


NUDT11
NUDT12
NUDT13
NUDT14
NUDT15


NUDT16
NUDT16L1
NUDT17
NUDT19
NUDT2


NUDT21
NUDT22
NUDT3
NUDT4
NUDT5


NUDT6
NUDT7
NUDT8
NUDT9
NUF2


NUFIP1
NUFIP2
NUMA1
NUMB
NUMBL


NUP107
NUP133
NUP153
NUP155
NUP160


NUP188
NUP205
NUP210
NUP210L
NUP214


NUP35
NUP37
NUP43
NUP50
NUP54


NUP62
NUP62CL
NUP85
NUP88
NUP93


NUP98
NUPL1
NUPL2
NUPR1
NUS1


NUTF2
NVL
NWD1
NXF1
NXF2


NXF2B
NXF3
NXF4
NXF5
NXN


NXNL1
NXNL2
NXPH1
NXPH2
NXPH3


NXPH4
NXT1
NXT2
NYNRIN
NYX


O00434_HUMAN
O10D4_HUMAN
O10J6_HUMAN
O52L2_HUMAN
O5AK3_HUMAN


O60374_HUMAN
O60384_HUMAN
O60411_HUMAN
O75863_HUMAN
O95014_HUMAN


O95431_HUMAN
OAF
OAS1
OAS2
OAS3


OASL
OAT
OAZ1
OBFC1
OBFC2A


OBFC2B
OBP2A
OBP2B
OBSCN
OBSCN






ENST00000359599


OBSL1
OC90
OC90
OCA2
OCEL1




ENST00000262283


OCIAD1
OCIAD2
OCLN
OCM
OCM2


OCRL
ODAM
ODC1
ODF1
ODF2


ODF2L
ODF3
ODF3B
ODF3L1
ODF3L2


ODF4
ODZ1
ODZ2
OFCC1
OFD1


OGDH
OGDHL
OGFOD1
OGFOD2
OGFR


OGFRL1
OGG1
OGN
OGT
OGT






ENST00000373719


OIP5
OIT3
OLA1
OLAH
OLFM1


OLFM2
OLFM3
OLFM4
OLFML1
OLFML2A


OLFML2B
OLFML3
OLIG1
OLIG2
OLIG3


OLR1
OMA1
OMD
OMG
ONECUT1


ONECUT2
OPA1
OPA3
OPALIN
OPCML


OPHN1
OPLAH
OPN1LW
OPN1MW
OPN1MW2


OPN1SW
OPN3
OPN4
OPN5
OPRD1


OPRK1
OPRL1
OPRM1
OPTC
OPTN


OR10A2
OR10A3
OR10A4
OR10A5
OR10A6


OR10A7
OR10AD1
OR10AG1
OR10C1
OR10G2


OR10G3
OR10G4
OR10G6
OR10G7
OR10G8


OR10G9
OR10H1
OR10H2
OR10H3
OR10H4


OR10H5
OR10J1
OR10J3
OR10J5
OR10K1


OR10K2
OR10P1
OR10Q1
OR10R2
OR10R3P


OR10S1
OR10T2
OR10V1
OR10W1
OR10X1


OR10Z1
OR11A1
OR11G2
OR11H1
OR11H12


OR11H4
OR11H6
OR11L1
OR12D2
OR12D3


OR13A1
OR13C2
OR13C3
OR13C4
OR13C5


OR13C8
OR13C9
OR13D1
OR13F1
OR13G1


OR13H1
OR13J1
OR14A16
OR14C36
OR14I1


OR14J1
OR1A1
OR1A2
OR1B1
OR1C1


OR1D2
OR1D4
OR1E1
OR1E2
OR1F1


OR1G1
OR1I1
OR1J1
OR1J2
OR1J4


OR1K1
OR1L1
OR1L3
OR1L4
OR1L6


OR1L8
OR1M1
OR1N1
OR1N2
OR1Q1


OR1S1
OR1S2
OR2A12
OR2A14
OR2A2


OR2A25
OR2A4
OR2A5
OR2AE1
OR2AG1


OR2AG2
OR2AJ1
OR2AK2
OR2AP1
OR2AT4


OR2B11
OR2B2
OR2B3P
OR2B6
OR2C1


OR2C3
OR2D2
OR2D3
OR2F1
OR2F2


OR2G2
OR2G3
OR2G6
OR2H1
OR2H2


OR2J1
OR2J2
OR2J3
OR2J3_HUMAN
OR2K2


OR2L13
OR2L1P
OR2L2
OR2L3
OR2L8


OR2M1P
OR2M2
OR2M3
OR2M4
OR2M5


OR2M7
OR2S2
OR2T1
OR2T10
OR2T11


OR2T12
OR2T2
OR2T27
OR2T3
OR2T33


OR2T34
OR2T35
OR2T4
OR2T5
OR2T6


OR2T8
OR2V2
OR2W1
OR2W3
OR2W5


OR2Y1
OR2Z1
OR3A1
OR3A3
OR3A4


OR4A13P
OR4A15
OR4A16
OR4A47
OR4A5


OR4B1
OR4C11
OR4C12
OR4C13
OR4C15


OR4C16
OR4C3
OR4C46
OR4C5_HUMAN
OR4C6


OR4D1
OR4D10
OR4D11
OR4D2
OR4D5


OR4D6
OR4D9
OR4E2
OR4F15
OR4F16


OR4F17
OR4F21
OR4F29
OR4F3
OR4F4


OR4F5
OR4F6
OR4K1
OR4K13
OR4K14


OR4K15
OR4K17
OR4K2
OR4K5
OR4L1


OR4M1
OR4M2
OR4N2
OR4N4
OR4N5


OR4P4
OR4Q3
OR4S1
OR4S2
OR4X1


OR4X2
OR51A2
OR51A4
OR51A7
OR51B2


OR51B4
OR51B5
OR51B6
OR51D1
OR51E1


OR51E2
OR51F1
OR51F2
OR51G1
OR51G2


OR51H1P
OR51I1
OR51I2
OR51J1
OR51L1


OR51M1
OR51Q1
OR51S1
OR51T1
OR51V1


OR52A1
OR52A4
OR52A5
OR52B4
OR52B6


OR52D1
OR52E2
OR52E4
OR52E6
OR52E8


OR52H1
OR52I1
OR52I2
OR52J3
OR52K1


OR52K2
OR52L1
OR52M1
OR52N1
OR52N2


OR52N4
OR52N5
OR52R1
OR52W1
OR56A1


OR56A3
OR56A4
OR56B1
OR56B4
OR5A1


OR5A2
OR5AC2
OR5AK2
OR5AN1
OR5AP2


OR5AR1
OR5AS1
OR5AU1
OR5AX1
OR5B12


OR5B17
OR5B2
OR5B21
OR5B3
OR5C1


OR5D13
OR5D14
OR5D16
OR5D18
OR5D3P


OR5E1P
OR5F1
OR5H1
OR5H14
OR5H15


OR5H2
OR5H6
OR5I1
OR5J2
OR5K1


OR5K2
OR5K3
OR5K4
OR5L1
OR5L2


OR5M1
OR5M3
OR5M8
OR5M9
OR5P2


OR5P3
OR5R1
OR5T1
OR5T2
OR5T3


OR5V1
OR5W2
OR6A2
OR6B1
OR6B3


OR6C1
OR6C2
OR6C3
OR6C4
OR6C6


OR6C65
OR6C68
OR6C70
OR6C74
OR6C75


OR6C76
OR6F1
OR6J1_HUMAN
OR6K2
OR6K3


OR6K6
OR6M1
OR6N1
OR6N2
OR6P1


OR6Q1
OR6S1
OR6T1
OR6W1P
OR6X1


OR6Y1
OR7A10
OR7A17
OR7A5
OR7C1


OR7C2
OR7D2
OR7D4
OR7E24
OR7E5P


OR7G1
OR7G2
OR7G3
OR8A1
OR8B12


OR8B2
OR8B3
OR8B4
OR8B8
OR8D1


OR8D2
OR8D4
OR8H1
OR8H2
OR8H3


OR8I2
OR8J1
OR8J3
OR8K1
OR8K3


OR8K5
OR8S1
OR8U1
OR9A2
OR9A4


OR9G1
OR9G4
OR9I1
OR9K2
OR9Q1


OR9Q2
ORAI1
ORAI2
ORAI3
ORAOV1


ORC1L
ORC2L
ORC3L
ORC4L
ORC5L


ORC6L
ORM1
ORM2
ORMDL1
ORMDL2


ORMDL3
OS9
OSBP
OSBP2
OSBPL10


OSBPL10
OSBPL11
OSBPL1A
OSBPL2
OSBPL3


ENST00000396556


OSBPL5
OSBPL6
OSBPL7
OSBPL8
OSBPL9


OSCAR
OSCP1
OSGEP
OSGIN1
OSGIN2


OSM
OSMR
OSR1
OSR2
OSTC


OSTCL
OSTF1
OSTM1
OSTN
OSTalpha


OSTbeta
OTC
OTOA
OTOF
OTOF






ENST00000361394


OTOG
OTOP1
OTOP2
OTOP3
OTOR


OTOS
OTP
OTUB1
OTUB2
OTUD1


OTUD3
OTUD4
OTUD5
OTUD5
OTUD6A





ENST00000453548


OTUD7A
OTUD7B
OTX1
OTX2
OVCH1


OVCH2
OVGP1
OVOL1
OVOL2
OXA1L


OXCT1
OXCT2
OXER1
OXGR1
OXNAD1


OXR1
OXSM
OXSR1
OXT
OXTR


P117
P2RX1
P2RX2
P2RX3
P2RX4


P2RX5
P2RX7
P2RXL1
P2RY1
P2RY10


P2RY11
P2RY12
P2RY13
P2RY14
P2RY2


P2RY4
P2RY6
P2RY8
P461_HUMAN
P4HA1


P4HA2
P4HA3
P4HB
P4HTM
P78389_HUMAN


P78561_HUMAN
PA2G4
PAAF1
PABPC1
PABPC1L


PABPC1L2A
PABPC1L2B
PABPC3
PABPC4
PABPC5


PABPCP2
PABPN1
PACRG
PACRGL
PACS1


PACS2
PACSIN1
PACSIN2
PACSIN3
PADI1


PADI2
PADI3
PADI4
PADI6
PAEP


PAF1
PAFAH1B1
PAFAH1B2
PAFAH1B3
PAFAH2


PAG1
PAGE1
PAGE2
PAGE2B
PAGE3


PAGE4
PAGE5
PAH
PAICS
PAIP1


PAIP2
PAIP2B
PAK1
PAK1IP1
PAK2


PAK3
PAK4
PAK6
PAK7
PALB2


PALLD
PALM
PALM2
PALM2-AKAP2
PALMD


PAM
PAMR1
PAN2
PAN3
PANK1


PANK2
PANK3
PANK4
PANX1
PANX2


PANX3
PAOX
PAOX
PAP2D
PAPD4




ENST00000357296


PAPD5
PAPD5
PAPD7
PAPLN
PAPOLA



ENST00000436909


PAPOLB
PAPOLG
PAPPA
PAPPA2
PAPSS1


PAPSS2
PAQR3
PAQR4
PAQR5
PAQR6


PAQR7
PAQR8
PAQR9
PARD3
PARD3B


PARD6A
PARD6B
PARD6G
PARG
PARK2


PARK7
PARL
PARP1
PARP10
PARP11


PARP12
PARP14
PARP15
PARP16
PARP2


PARP3
PARP4
PARP6
PARP8
PARP9


PARS2
PARVA
PARVB
PARVG
PASD1


PASK
PATE1
PATE2
PATZ1
PAWR


PAX1
PAX2
PAX3
PAX4
PAX5


PAX6
PAX7
PAX8
PAX9
PAXIP1


PBK
PBLD
PBRM1
PBX1
PBX2


PBX3
PBX4
PBXIP1
PC
PCBD1


PCBD2
PCBP1
PCBP2
PCBP3
PCBP4


PCCA
PCCB
PCDH1
PCDH10
PCDH11X


PCDH11Y
PCDH12
PCDH15
PCDH17
PCDH18


PCDH19
PCDH19_NM_020766_1
PCDH20
PCDH24
PCDH7


PCDH8
PCDH9
PCDHA1
PCDHA10
PCDHA10






ENST00000505235


PCDHA11
PCDHA13
PCDHA2
PCDHA3
PCDHA4


PCDHA5
PCDHA6
PCDHA7
PCDHA8
PCDHA9


PCDHAC1
PCDHAC2
PCDHB1
PCDHB10
PCDHB11


PCDHB12
PCDHB13
PCDHB14
PCDHB15
PCDHB16


PCDHB18
PCDHB2
PCDHB3
PCDHB4
PCDHB5


PCDHB6
PCDHB7
PCDHB8
PCDHGA1
PCDHGA12


PCDHGA12
PCDHGA2
PCDHGA3
PCDHGA6
PCDHGB7


ENST00000252085


PCDHGC3
PCDHGC3
PCDHGC4
PCDHGC5
PCDHGC5



ENST00000308177


ENST00000252087


PCF11
PCGF1
PCGF2
PCGF3
PCGF5


PCGF6
PCID2
PCIF1
PCK1
PCK2


PCM1
PCMT1
PCMTD1
PCMTD2
PCNA


PCNP
PCNT
PCNX
PCNXL2
PCNXL3


PCOLCE
PCOLCE2
PCP2
PCP4
PCQAP


PCSK1
PCSK1N
PCSK2
PCSK4
PCSK5


PCSK5
PCSK7
PCSK9
PCTP
PCYOX1


ENST00000376767


PCYOX1L
PCYT1A
PCYT1B
PCYT2
PDAP1


PDC
PDCD1
PDCD10
PDCD11
PDCD1LG2


PDCD2
PDCD2L
PDCD4
PDCD5
PDCD6


PDCD6IP
PDCD7
PDCD8
PDCL
PDCL3


PDDC1
PDE10A
PDE11A
PDE12
PDE1A


PDE1B
PDE1C
PDE2A
PDE3A
PDE3B


PDE4A
PDE4B
PDE4B
PDE4C
PDE4D




ENST00000423207


PDE4DIP
PDE5A
PDE6A
PDE6B
PDE6C


PDE6D
PDE6G
PDE6H
PDE7A
PDE7B


PDE8A
PDE8B
PDE9A
PDGFA
PDGFB


PDGFC
PDGFD
PDGFRA
PDGFRB
PDGFRL


PDHA1
PDHA2
PDHB
PDHX
PDIA2


PDIA3
PDIA4
PDIA5
PDIA6
PDIK1L


PDILT
PDK1
PDK2
PDK3
PDK4


PDLIM1
PDLIM2
PDLIM3
PDLIM4
PDLIM5


PDLIM7
PDP1
PDP2
PDPK1
PDPN


PDPR
PDRG1
PDS5B
PDSS1
PDSS2


PDX1
PDXDC1
PDXDC2
PDXK
PDXP


PDYN
PDZD11
PDZD2
PDZD3
PDZD4


PDZD7
PDZD8
PDZK1
PDZK1IP1
PDZRN3


PDZRN4
PEA15
PEAR1
PEBP1
PEBP4


PECI
PECR
PEF1
PEG10
PEG3


PELI1
PELI2
PELI3
PELO
PELP1


PEMT
PENK
PEPD
PER1
PER2


PER3
PERP
PES1
PET112L
PEX1


PEX10
PEX11A
PEX11B
PEX11G
PEX12


PEX13
PEX14
PEX16
PEX19
PEX2


PEX26
PEX3
PEX5
PEX5L
PEX6


PEX7
PF4
PF4V1
PFAS
PFDN1


PFDN2
PFDN4
PFDN5
PFDN6
PFKFB1


PFKFB2
PFKFB3
PFKFB4
PFKL
PFKM


PFKP
PFN1
PFN2
PFN3
PFN4


PGA3
PGA4
PGA5
PGAM1
PGAM1_HUMAN


PGAM2
PGAM4
PGAM5
PGAP1
PGAP3


PGBD1
PGBD2
PGBD3
PGBD4
PGBD5


PGC
PGCP
PGD
PGF
PGGT1B


PGK1
PGK2
PGLS
PGLYRP1
PGLYRP2


PGLYRP3
PGLYRP4
PGM1
PGM2
PGM2L1


PGM3
PGM5
PGP
PGPEP1
PGR


PGRMC1
PGRMC2
PGS1
PHACTR2
PHACTR3


PHACTR4
PHAX
PHB
PHC1
PHC1B


PHC2
PHC3
PHEX
PHF1
PHF10


PHF11
PHF12
PHF13
PHF14
PHF15


PHF16
PHF17
PHF19
PHF2
PHF20


PHF20L1
PHF21A
PHF21B
PHF23
PHF3


PHF5A
PHF6
PHF7
PHF8
PHGDH


PHIP
PHKA1
PHKA2
PHKB
PHKG1


PHKG2
PHLDA1
PHLDA2
PHLDA3
PHLDB1


PHLDB2
PHLDB3
PHLPP
PHLPP2
PHOSPHO1


PHOSPHO2
PHOX2A
PHOX2B
PHPT1
PHTF1


PHYH
PHYHD1
PHYHIP
PHYHIPL
PI15


PI16
PI3
PI4K2A
PI4K2B
PI4KA


PI4KAP2
PI4KB
PIAS1
PIAS2
PIAS3


PIAS4
PIBF1
PICALM
PICK1
PID1


PIF1
PIGA
PIGB
PIGC
PIGF


PIGG
PIGH
PIGK
PIGL
PIGM


PIGN
PIGO
PIGP
PIGQ
PIGR


PIGS
PIGT
PIGU
PIGV
PIGW


PIGX
PIGZ
PIH1D1
PIH1D2
PIK3AP1


PIK3C2A
PIK3C2B
PIK3C2G
PIK3C3
PIK3CA


PIK3CB
PIK3CD
PIK3CG
PIK3IP1
PIK3R1


PIK3R2
PIK3R3
PIK3R4
PIK3R5
PIKFYVE


PILRA
PILRB
PIM1
PIM2
PIM3


PIN1
PIN4
PINK1
PINX1
PION


PIP
PIP4K2A
PIP4K2B
PIP4K2C
PIP5K1A


PIP5K1B
PIP5K1C
PIP5KL1
PIPOX
PIR


PISD
PITPNA
PITPNB
PITPNC1
PITPNM1


PITPNM2
PITPNM3
PITRM1
PITX1
PITX2


PITX3
PIWIL1
PIWIL2
PIWIL3
PIWIL4


PJA1
PJA2
PKD1
PKD1L1
PKD1L2


PKD1L2
PKD1L3
PKD2
PKD2L1
PKD2L2


ENST00000360678


PKDREJ
PKHD1
PKHD1L1
PKIA
PKIB


PKIG
PKLR
PKM2
PKMYT1
PKN1


PKN2
PKN3
PKNOX1
PKNOX2
PKP1


PKP2
PKP3
PKP4
PLA1A
PLA2G10


PLA2G12A
PLA2G12B
PLA2G15
PLA2G16
PLA2G1B


PLA2G2A
PLA2G2C
PLA2G2D
PLA2G2E
PLA2G2F


PLA2G3
PLA2G4A
PLA2G4C
PLA2G4D
PLA2G4F


PLA2G5
PLA2G6
PLA2G7
PLA2R1
PLAA


PLAC1
PLAC1L
PLAC8
PLAC8L1
PLAC9


PLAG1
PLAGL1
PLAGL2
PLAT
PLAU


PLAUR
PLB1
PLBD1
PLBD2
PLCB1


PLCB2
PLCB3
PLCB4
PLCD1
PLCD3


PLCD4
PLCE1
PLCG1
PLCG2
PLCH1


PLCH2
PLCL1
PLCL2
PLCXD1
PLCXD2


PLCXD3
PLCZ1
PLD1
PLD2
PLD3


PLD4
PLD5
PLD6
PLDN
PLEC


PLEK
PLEK2
PLEKHA1
PLEKHA3
PLEKHA4


PLEKHA5
PLEKHA5
PLEKHA6
PLEKHA7
PLEKHA8



ENST00000429027


PLEKHA9
PLEKHB1
PLEKHB2
PLEKHF1
PLEKHF2


PLEKHG1
PLEKHG2
PLEKHG3
PLEKHG4
PLEKHG4B


PLEKHG4B
PLEKHG5
PLEKHG6
PLEKHG7
PLEKHH1


ENST00000283426


PLEKHH2
PLEKHH3
PLEKHJ1
PLEKHM1
PLEKHN1


PLEKHO1
PLEKHO2
PLG
PLGLB1
PLGLB2


PLIN1
PLIN2
PLIN3
PLIN4
PLIN5


PLK1
PLK2
PLK3
PLK4
PLLP


PLN
PLOD1
PLOD2
PLOD3
PLP1


PLP2
PLRG1
PLS1
PLS3
PLSCR1


PLSCR2
PLSCR3
PLSCR3
PLSCR4
PLTP




ENST00000324822


PLUNC
PLVAP
PLXDC1
PLXDC2
PLXNA1


PLXNA2
PLXNA3
PLXNA4
PLXNB1
PLXNB2


PLXNB3
PLXNC1
PLXND1
PM20D1
PM20D2


PMAIP1
PMCH
PMEPA1
PMF1
PMFBP1


PML
PMM1
PMM2
PMP2
PMP22


PMPCA
PMPCB
PMS1
PMS2
PMS2L1


PMS2L11
PMS2L3
PMS2L4
PMS2L5
PMVK


PNCK
PNKD
PNKP
PNLDC1
PNLIP


PNLIPRP1
PNLIPRP2
PNLIPRP3
PNMA1
PNMA2


PNMA3
PNMA5
PNMA6A
PNMAL1
PNMAL2


PNMT
PNN
PNO1
PNOC
PNP


PNPLA1
PNPLA2
PNPLA3
PNPLA4
PNPLA5


PNPLA6
PNPLA7
PNPLA8
PNPO
PNPT1


PNRC1
PNRC2
PODN
PODNL1
PODXL


PODXL2
POF1B
POFUT1
POFUT2
POGK


POGZ
POL3S
POLA1
POLA2
POLB


POLD1
POLD2
POLD3
POLD4
POLDIP3


POLE
POLE2
POLE3
POLE4
POLG


POLG2
POLH
POLI
POLK
POLL


POLM
POLN
POLQ
POLR1A
POLR1B


POLR1C
POLR1D
POLR1E
POLR2A
POLR2B


POLR2C
POLR2D
POLR2E
POLR2F
POLR2G


POLR2H
POLR2I
POLR2J
POLR2J2
POLR2K


POLR2L
POLR3A
POLR3B
POLR3C
POLR3D


POLR3E
POLR3F
POLR3G
POLR3GL
POLR3H


POLR3K
POLRMT
POM121
POM121L3
POMC


POMGNT1
POMP
POMT1
POMT2
POMZP3


PON1
PON2
PON3
POP1
POP4


POP5
POP7
POPDC2
POPDC3
POR


PORCN
POSTN
POT1
POT14_HUMAN
POTE2_HUMAN


POTEA
POTEB
POTED
POTEF
POTEG


POU1F1
POU2AF1
POU2F1
POU2F2
POU2F3


POU3F1
POU3F2
POU3F3
POU3F4
POU4F1


POU4F2
POU4F3
POU5F1
POU6F1
POU6F2


PPA1
PPA2
PPAN
PPAN-P2RY11
PPAP2A


PPAP2B
PPAP2C
PPAPDC1A
PPAPDC2
PPAPDC3


PPARA
PPARD
PPARG
PPARGC1A
PPARGC1B


PPAT
PPBP
PPCDC
PPCS
PPDPF


PPEF1
PPEF2
PPFIA1
PPFIA2
PPFIA3


PPFIA4
PPFIBP1
PPFIBP2
PPHLN1
PPIA


PPIAL4A
PPIAL4G
PPIA_HUMAN
PPIB
PPIC


PPID
PPIE
PPIF
PPIG
PPIH


PPIL1
PPIL2
PPIL3
PPIL4
PPIL5


PPIL6
PPIP5K1
PPIP5K2
PPL
PPM1A


PPM1B
PPM1D
PPM1E
PPM1F
PPM1G


PPM1H
PPM1J
PPM1K
PPM1L
PPOX


PPP1CA
PPP1CB
PPP1CC
PPP1R10
PPP1R11


PPP1R12A
PPP1R12B
PPP1R12C
PPP1R13B
PPP1R13L


PPP1R14A
PPP1R14B
PPP1R14C
PPP1R14D
PPP1R15A


PPP1R15B
PPP1R16A
PPP1R16B
PPP1R1A
PPP1R1B


PPP1R1C
PPP1R2
PPP1R2P9
PPP1R3A
PPP1R3B


PPP1R3C
PPP1R3D
PPP1R3E
PPP1R3F
PPP1R3G


PPP1R7
PPP1R8
PPP1R9A
PPP1R9B
PPP2CA


PPP2CB
PPP2R1A
PPP2R1B
PPP2R2A
PPP2R2B


PPP2R2C
PPP2R2D
PPP2R3A
PPP2R3B
PPP2R3C


PPP2R4
PPP2R5A
PPP2R5B
PPP2R5C
PPP2R5D


PPP2R5E
PPP3CA
PPP3CB
PPP3CC
PPP3R1


PPP3R2
PPP4C
PPP4R1
PPP4R1L
PPP4R2


PPP4R4
PPP5C
PPP6C
PPPDE1
PPPDE2


PPRC1
PPT1
PPT2
PPTC7
PPWD1


PPY
PPYR1
PQBP1
PQLC1
PQLC2


PQLC3
PRAF2
PRAME
PRAMEF1
PRAMEF10


PRAMEF12
PRAMEF13
PRAMEF14
PRAMEF16
PRAMEF17


PRAMEF18
PRAMEF19
PRAMEF2
PRAMEF20
PRAMEF21


PRAMEF22
PRAMEF3
PRAMEF4
PRAMEF5
PRAMEF6


PRAMEF7
PRAMEF8
PRAMEF9
PRAMEL
PRAP1


PRB1
PRB2
PRB4
PRC1
PRCC


PRCC
PRCD
PRCP
PRDM1
PRDM10


ENST00000353233


PRDM11
PRDM12
PRDM13
PRDM14
PRDM15


PRDM16
PRDM2
PRDM4
PRDM5
PRDM7


PRDM8
PRDM9
PRDX1
PRDX2
PRDX3


PRDX4
PRDX5
PRDX6
PREB
PRELID1


PRELID2
PRELP
PREP
PREPL
PREX1


PREX2
PRF1
PRG-3
PRG2
PRG3


PRG4
PRH2
PRIC285
PRICKLE1
PRICKLE2


PRICKLE3
PRICKLE4
PRIM2
PRIMA1
PRKAA1


PRKAA2
PRKAA2
PRKAB1
PRKAB2
PRKACA



ENST00000371244


PRKACB
PRKACB
PRKACG
PRKAG1
PRKAG2



ENST00000370685


PRKAG3
PRKAR1A
PRKAR1B
PRKAR2A
PRKAR2B


PRKCA
PRKCB
PRKCD
PRKCDBP
PRKCE


PRKCG
PRKCH
PRKCI
PRKCQ
PRKCSH


PRKCZ
PRKD1
PRKD1
PRKD2
PRKD3




ENST00000331968


PRKDC
PRKG1
PRKG2
PRKRA
PRKRIP1


PRKRIR
PRKX
PRKY
PRL
PRLH


PRLHR
PRLR
PRM1
PRM2
PRMT1


PRMT10
PRMT2
PRMT3
PRMT5
PRMT6


PRMT7
PRMT8
PRND
PRNP
PRO1073


PROC
PROCA1
PROCR
PRODH
PRODH2


PROK1
PROK2
PROKR1
PROKR2
PROL1


PROM1
PROM2
PROP1
PROS1
PROSC


PROX1
PROX2
PROZ
PRPF18
PRPF19


PRPF3
PRPF31
PRPF38A
PRPF38B
PRPF39


PRPF4
PRPF40A
PRPF40B
PRPF4B
PRPF4B






ENST00000337659


PRPF6
PRPF8
PRPH
PRPH2
PRPS1


PRPS2
PRPSAP1
PRPSAP2
PRR11
PRR12


PRR13
PRR14
PRR15
PRR15L
PRR16


PRR18
PRR19
PRR20A
PRR21
PRR22


PRR23B
PRR23C
PRR25
PRR3
PRR4


PRR5
PRR5-ARHGAP8
PRR5L
PRR5
PRR7





ENST00000432186


PRR8
PRRC1
PRRG1
PRRG2
PRRG3


PRRG4
PRRT1
PRRT2
PRRT3
PRRX1


PRRX2
PRSS1
PRSS12
PRSS16
PRSS2


PRSS21
PRSS22
PRSS23
PRSS27
PRSS3


PRSS33
PRSS35
PRSS36
PRSS37
PRSS38


PRSS42
PRSS50
PRSS7
PRSSL1
PRTFDC1


PRTG
PRTN3
PRUNE
PRUNE2
PRUNE2






ENST00000376718


PRX
PRY
PRY2
PSAP
PSAPL1


PSAT1
PSD
PSD2
PSD3
PSD4


PSD
PSEN1
PSEN2
PSENEN
PSG1


ENST00000020673


PSG1
PSG2
PSG3
PSG4
PSG5


ENST00000312439


PSG6
PSG8
PSG9
PSIP1
PSIP1






ENST00000380733


PSKH1
PSKH2
PSMA1
PSMA2
PSMA3


PSMA4
PSMA5
PSMA6
PSMA7
PSMA8


PSMB1
PSMB10
PSMB2
PSMB3
PSMB4


PSMB5
PSMB6
PSMB7
PSMB8
PSMB9


PSMC1
PSMC2
PSMC3
PSMC3IP
PSMC4


PSMC5
PSMC6
PSMD1
PSMD10
PSMD11


PSMD12
PSMD13
PSMD13
PSMD2
PSMD3




ENST00000431206


PSMD4
PSMD5
PSMD6
PSMD7
PSMD8


PSMD9
PSME1
PSME2
PSME3
PSME4


PSMF1
PSMG1
PSMG2
PSMG3
PSORS1C1


PSORS1C2
PSPC1
PSPH
PSPN
PSRC1


PSTK
PSTPIP2
PTAFR
PTAR1
PTBP1


PTBP2
PTCD1
PTCD2
PTCD3
PTCH1


PTCH1
PTCH2
PTCHD1
PTCHD2
PTCHD3


ENST00000331920


PTCRA
PTDSS1
PTDSS2
PTEN
PTER


PTF1A
PTGDR
PTGDS
PTGER1
PTGER2


PTGER3
PTGER4
PTGES
PTGES2
PTGES3


PTGFR
PTGFRN
PTGFR
PTGIR
PTGIS




ENST00000370758


PTGR1
PTGS1
PTGS2
PTH
PTH1R


PTH2
PTH2R
PTHLH
PTK2
PTK2B


PTK2B
PTK6
PTK7
PTMA
PTMS


ENST00000397497


PTN
PTOV1
PTP4A1
PTP4A2
PTP4A3


PTPDC1
PTPLA
PTPLAD1
PTPLAD2
PTPLB


PTPMT1
PTPN1
PTPN11
PTPN12
PTPN13


PTPN14
PTPN18
PTPN2
PTPN20A
PTPN20B


PTPN21
PTPN22
PTPN23
PTPN3
PTPN4


PTPN5
PTPN6
PTPN7
PTPN9
PTPRA


PTPRB
PTPRB
PTPRC
PTPRCAP
PTPRD



ENST00000334414


PTPRE
PTPRF
PTPRG
PTPRH
PTPRJ


PTPRK
PTPRM
PTPRN
PTPRN2
PTPRO


PTPRR
PTPRS
PTPRT
PTPRU
PTPRZ1


PTRF
PTRH1
PTRH2
PTS
PTTG1


PTTG1IP
PTX3
PUM1
PUM2
PURA


PURB
PURG
PURG
PUS1
PUS10




ENST00000475541


PUS3
PUS7
PUS7L
PUSL1
PVALB


PVR
PVRIG
PVRL1
PVRL2
PVRL3


PVRL4
PWP1
PWP2
PWWP2A
PWWP2B


PXDN
PXDNL
PXK
PXMP2
PXMP4


PXN
PXT1
PYCARD
PYCR1
PYCR2


PYCRL
PYDC1
PYGB
PYGL
PYGM


PYGO1
PYGO2
PYHIN1
PYROXD1
PYROXD2


PYY
PYY3
PZP
ProSAPiP1
Q0VFX0_HUMAN


Q13034_HUMAN
Q13209_HUMAN
Q15202_HUMAN
Q16370_HUMAN
Q1A5X8_HUMAN


Q2M2F3_HUMAN
Q2QD04_HUMAN
Q2VIK4_HUMAN
Q2VIK8_HUMAN
Q2VIL1_HUMAN


Q3SX88_HUMAN
Q3ZCN4_HUMAN
Q49A61_HUMAN
Q49AQ9_HUMAN
Q4G0P5_HUMAN


Q4GOS1_HUMAN
Q4G129_HUMAN
Q4G197_HUMAN
Q4TT42_HUMAN
Q4VXG5_HUMAN


Q4VXZ3_HUMAN
Q5I0X0_HUMAN
Q5JSM7_HUMAN
Q5JUV9_HUMAN
Q5JV89_HUMAN


Q5JX50_HUMAN
Q5JXA8_HUMAN
Q5JY96_HUMAN
Q5JYU7_HUMAN
Q5SWJ0_HUMAN


Q5T344_HUMAN
Q5T669_HUMAN
Q5T6S7_HUMAN
Q5T740_HUMAN
Q5T7C0_HUMAN


Q5T909_HUMAN
Q5TBE2_HUMAN
Q5TFB2_HUMAN
Q5VVH2_HUMAN
Q5VZ27_HUMAN


Q5VZ43_HUMAN
Q5W1B9_HUMAN
Q69YG7_HUMAN
Q69YJ1_HUMAN
Q6AI01_HUMAN


Q6AI40_HUMAN
Q6GMT2_HUMAN
Q6I955_HUMAN
Q6IPT3_HUMAN
Q6NSH2_HUMAN


Q6NUR6_HUMAN
Q6NZ63_HUMAN
Q6P094_HUMAN
Q6P462_HUMAN
Q6PEB8_HUMAN


Q6RGF6_HUMAN
Q6TXQ4_HUMAN
Q6UXU0_HUMAN
Q6VEP2_HUMAN
Q6YL47_HUMAN


Q6ZMS4_HUMAN
Q6ZNB5_HUMAN
Q6ZNL0_HUMAN
Q6ZNV0_HUMAN
Q6ZQP8_HUMAN


Q6ZQU9_HUMAN
Q6ZRG5_HUMAN
Q6ZRP8_HUMAN
Q6ZRU5_HUMAN
Q6ZSP4_HUMAN


Q6ZSU1_HUMAN
Q6ZSY1_HUMAN
Q6ZTY5_HUMAN
Q6ZU04_HUMAN
Q6ZU24_HUMAN


Q6ZUD9_HUMAN
Q6ZUG5_HUMAN
Q6ZUQ5_HUMAN
Q6ZUR4_HUMAN
Q6ZUS2_HUMAN


Q6ZV46_HUMAN
Q6ZV65_HUMAN
Q6ZV72_HUMAN
Q6ZVE3_HUMAN
Q6ZVS6_HUMAN


Q6ZW54_HUMAN
Q6ZWB7_HUMAN
Q6ZWC0_HUMAN
Q71RG6_HUMAN
Q75L30_HUMAN


Q75MH1_HUMAN
Q75MM1_HUMAN
Q76B61_HUMAN
Q7M4M3_HUMAN
Q7Z2M6_HUMAN


Q7Z2Q7_HUMAN
Q7Z2S2_HUMAN
Q7Z3M5_HUMAN
Q7Z4Q0_HUMAN
Q7Z4S1_HUMAN


Q7Z5Z2_HUMAN
Q7Z7K7_HUMAN
Q86TT0_HUMAN
Q86TU9_HUMAN
Q86U10_HUMAN


Q86U47_HUMAN
Q86U89_HUMAN
Q86V52_HUMAN
Q86V94_HUMAN
Q86VG7_HUMAN


Q86X61_HUMAN
Q86XG0_HUMAN
Q86Y87
Q86YR2_HUMAN
Q86YX8_HUMAN


Q8IVE0_HUMAN
Q8IVF9_HUMAN
Q8IVN4_HUMAN
Q8IVR1_HUMAN
Q8IXE5_HUMAN


Q8IXE7_HUMAN
Q8IXV1_HUMAN
Q8MH63_HUMAN
Q8N0U1_HUMAN
Q8N0W1_HUMAN


Q8N164_HUMAN
Q8N1B8_HUMAN
Q8N1G8_HUMAN
Q8N1I6_HUMAN
Q8N1L4_HUMAN


Q8N1R6_HUMAN
Q8N1T0_HUMAN
Q8N1X6_HUMAN
Q8N214_HUMAN
Q8N266_HUMAN


Q8N2D2_HUMAN
Q8N2E2_HUMAN
Q8N2W8_HUMAN
Q8N3U1_HUMAN
Q8N4W5_HUMAN


Q8N5Q1_HUMAN
Q8N642_HUMAN
Q8N646_HUMAN
Q8N6L5_HUMAN
Q8N6V7_HUMAN


Q8N6X1_HUMAN
Q8N6X9_HUMAN
Q8N799_HUMAN
Q8N7D3_HUMAN
Q8N7N0_HUMAN


Q8N7N2_HUMAN
Q8N7P5_HUMAN
Q8N7Q6_HUMAN
Q8N7Z9_HUMAN
Q8N800_HUMAN


Q8N811_HUMAN
Q8N822_HUMAN
Q8N843_HUMAN
Q8N849_HUMAN
Q8N867_HUMAN


Q8N8C5_HUMAN
Q8N8C9_HUMAN
Q8N8F0_HUMAN
Q8N8H9_HUMAN
Q8N8K0_HUMAN


Q8N8P5_HUMAN
Q8N8S3_HUMAN
Q8N8S4_HUMAN
Q8N950_HUMAN
Q8N997_HUMAN


Q8N9F6_HUMAN
Q8N9G5_HUMAN
Q8N9G9_HUMAN
Q8N9H1_HUMAN
Q8N9I1_HUMAN


Q8N9J4_HUMAN
Q8N9K3_HUMAN
Q8N9Z1_HUMAN
Q8N9Z5_HUMAN
Q8NA17_HUMAN


Q8NA34_HUMAN
Q8NAG9_HUMAN
Q8NAP4_HUMAN
Q8NAP5_HUMAN
Q8NAQ8_HUMAN


Q8NAT4_HUMAN
Q8NAV9_HUMAN
Q8NAZ9_HUMAN
Q8NB20_HUMAN
Q8NB83_HUMAN


Q8NBE0_HUMAN
Q8NCA1_HUMAN
Q8NCK2_HUMAN
Q8NEQ2_HUMAN
Q8NFX8_HUMAN


Q8NGC8_HUMAN
Q8NGD7_HUMAN
Q8NGE6_HUMAN
Q8NGF2_HUMAN
Q8NGG1_HUMAN


Q8NGK8_HUMAN
Q8NGM0_HUMAN
Q8NGM4_HUMAN
Q8NGM6_HUMAN
Q8NGP1_HUMAN


Q8NGP5_HUMAN
Q8NGP7_HUMAN
Q8NGQ7_HUMAN
Q8NGY4_HUMAN
Q8NH06_HUMAN


Q8NH08_HUMAN
Q8NH11_HUMAN
Q8NH32_HUMAN
Q8NH33_HUMAN
Q8NH46_HUMAN


Q8NH47_HUMAN
Q8NH58_HUMAN
Q8NH68_HUMAN
Q8NH71_HUMAN
Q8NH75_HUMAN


Q8NH77_HUMAN
Q8NH80_HUMAN
Q8NH82_HUMAN
Q8NH88_HUMAN
Q8NH95_HUMAN


Q8NH98_HUMAN
Q8NHA6_HUMAN
Q8NHB0_HUMAN
Q8NHB3_HUMAN
Q8NHB5_HUMAN


Q8NHC0_HUMAN
Q8NHC1_HUMAN
Q8NHC2_HUMAN
Q8TAF5_HUMAN
Q8TBR1_HUMAN


Q8TCI8_HUMAN
Q8TDK1_HUMAN
Q8TDP9_HUMAN
Q8TE05_HUMAN
Q8WM95_HUMAN


Q8WTY6_HUMAN
Q8WYW5_HUMAN
Q8WYX1_HUMAN
Q8WZ27_HUMAN
Q8WZ91


Q96AM0_HUMAN
Q96CK5_HUMAN
Q96DR3_HUMAN
Q96HF5_HUMAN
Q96HZ0_HUMAN


Q96IP2_HUMAN
Q96K91_HUMAN
Q96M56_HUMAN
Q96M66_HUMAN
Q96M92_HUMAN


Q96MC4_HUMAN
Q96MT0_HUMAN
Q96MZ3_HUMAN
Q96NE0_HUMAN
Q96NP5_HUMAN


Q96PS2_HUMAN
Q96PS6_HUMAN
Q96QE0_HUMAN
Q96RF1_HUMAN
Q96RI3_HUMAN


Q96RW6_HUMAN
Q96RY6_HUMAN
Q96RY9_HUMAN
Q99543-2
Q9BRP9_HUMAN


Q9BSD4_HUMAN
Q9BSM8_HUMAN
Q9BSY8_HUMAN
Q9BVW6_HUMAN
Q9BVX4_HUMAN


Q9BZU6_HUMAN
Q9C0K3_HUMAN
Q9GZQ9_HUMAN
Q9H2C7_HUMAN
Q9H354_HUMAN


Q9H4I0_HUMAN
Q9H521_HUMAN
Q9H5Q3_HUMAN
Q9H614_HUMAN
Q9H693_HUMAN


Q9H6A9_HUMAN
Q9H6K5_HUMAN
Q9H6S2_HUMAN
Q9H6Z8_HUMAN
Q9H8C5_HUMAN


Q9H8D1_HUMAN
Q9H960_HUMAN
Q9HAB5_HUMAN
Q9HAC4_HUMAN
Q9HAD2_HUMAN


Q9HAJ0_HUMAN
Q9HAZ8_HUMAN
Q9HBS9_HUMAN
Q9NQ39_HUMAN
Q9NRE4_HUMAN


Q9NRE7_HUMAN
Q9NSI3_HUMAN
Q9NSQ0_HUMAN
Q9NT31_HUMAN
Q9NU36_HUMAN


Q9NW32_HUMAN
Q9NWP0_HUMAN
Q9NYD3_HUMAN
Q9NYS9_HUMAN
Q9NZ01-2


Q9P0C7_HUMAN
Q9P143_HUMAN
Q9P147_HUMAN
Q9P156_HUMAN
Q9P184_HUMAN


Q9P1D0_HUMAN
Q9P1G6_HUMAN
Q9P1L5_HUMAN
Q9P1M5_HUMAN
Q9P2A3_HUMAN


Q9UHU1_HUMAN
Q9UHU9_HUMAN
Q9UI72_HUMAN
Q9UJN8_HUMAN
Q9UK71_HUMAN


Q9Y6V0-3
QARS
QDPR
QKI
QPCT


QPCTL
QPRT
QRFP
QRFPR
QRICH1


QRICH2
QRSL1
QSER1
QSOX1
QSOX2


QTRT1
QTRTD1
R3HCC1
R3HDM1
R3HDM2


R3HDML
RAB10
RAB11A
RAB11B
RAB11FIP1


RAB11FIP2
RAB11FIP3
RAB11FIP4
RAB11FIP5
RAB12


RAB13
RAB14
RAB15
RAB17
RAB18


RAB19
RAB19B
RAB1A
RAB1B
RAB20


RAB21
RAB22A
RAB23
RAB24
RAB25


RAB26
RAB27A
RAB27B
RAB28
RAB2A


RAB2B
RAB30
RAB31
RAB32
RAB33A


RAB33B
RAB34
RAB35
RAB36
RAB37


RAB38
RAB39
RAB39B
RAB3A
RAB3B


RAB3C
RAB3D
RAB3GAP1
RAB3GAP2
RAB3IL1


RAB3IP
RAB40A
RAB40AL
RAB40B
RAB40C


RAB41
RAB42
RAB43
RAB44
RAB4A


RAB4B
RAB5A
RAB5B
RAB5C
RAB6A


RAB6B
RAB6C
RAB7A
RAB7L1
RAB8A


RAB8B
RAB9A
RAB9B
RABAC1
RABEP1


RABEP2
RABEPK
RABGAP1
RABGAP1L
RABGEF1


RABGGTB
RABIF
RABL2A
RABL2B
RABL3


RABL4
RABL5
RAC1
RAC1P4
RAC2


RAC3
RACGAP1
RAD1
RAD17
RAD18


RAD21
RAD23A
RAD23B
RAD50
RAD51


RAD51AP1
RAD51AP2
RAD51C
RAD51L1
RAD51L3


RAD52
RAD54B
RAD54L
RAD54L2
RAD9A


RAD9B
RADIL
RAE1
RAET1E
RAET1G


RAET1L
RAF1
RAG1
RAG1AP1
RAG2


RAGE
RAI1
RAI14
RAI16
RAI2


RALA
RALB
RALBP1
RALGAPA1
RALGAPB


RALGDS
RALGPS1
RALGPS2
RALY
RAMP1


RAMP2
RAMP3
RAN
RANBP1
RANBP10


RANBP17
RANBP2
RANBP3
RANBP3L
RANBP6


RANBP9
RANGAP1
RANGRF
RAP1A
RAP1B


RAP1GAP
RAP1GAP
RAP1GDS1
RAP2A
RAP2B



ENST00000374761


RAP2C
RAPGEF1
RAPGEF2
RAPGEF3
RAPGEF4


RAPGEF5
RAPGEF5
RAPGEF6
RAPGEFL1
RAPH1



ENST00000344041


RAPSN
RARA
RARB
RARG
RARRES1


RARRES2
RARRES3
RARS
RARS2
RASA1


RASA2
RASA3
RASA4
RASAL1
RASAL2


RASD1
RASD2
RASEF
RASGEF1A
RASGEF1B


RASGEF1C
RASGRF1
RASGRF2
RASGRP1
RASGRP2


RASGRP3
RASGRP4
RASIP1
RASL10A
RASL10B


RASL11A
RASL11B
RASL12
RASL2_HUMAN
RASSF1


RASSF2
RASSF3
RASSF4
RASSF5
RASSF5






ENST00000304534


RASSF6
RASSF7
RASSF8
RAVER1
RAVER2


RAX
RAX2
RB1
RB1CC1
RBAK


RBBP4
RBBP5
RBBP6
RBBP7
RBBP8


RBBP9
RBCK1
RBKS
RBL1
RBL2


RBM10
RBM12
RBM12B
RBM14
RBM15


RBM15B
RBM16
RBM17
RBM18
RBM19


RBM22
RBM23
RBM24
RBM25
RBM26


RBM27
RBM28
RBM3
RBM34
RBM34






ENST00000408888


RBM39
RBM4
RBM41
RBM42
RBM43


RBM45
RBM46
RBM47
RBM4B
RBM5


RBM6
RBM7
RBM8A
RBM9
RBMS1


RBMS2
RBMS3
RBMX
RBMX2
RBMXL2


RBMY1A1
RBMY1B
RBMY1D
RBMY1E
RBMY1F


RBMY1J
RBP1
RBP2
RBP3
RBP4


RBP5
RBP7
RBPJ
RBPJL
RBPMS


RBPMS2
RBX1
RC3H1
RC3H2
RCAN1


RCAN2
RCAN3
RCBTB1
RCBTB2
RCC1


RCC2
RCCD1
RCE1
RCHY1
RCL1


RCN1
RCN2
RCN3
RCOR1
RCOR2


RCOR3
RCSD1
RCVRN
RD3
RDBP


RDH10
RDH11
RDH12
RDH13
RDH14


RDH16
RDH5
RDH8
RDM1
RDX


REC8
RECK
RECQL
RECQL4
RECQL5


REEP1
REEP2
REEP4
REEP5
REEP6


REEP6
REG1A
REG1B
REG3A
REG3G


ENST00000395484


REG4
REL
RELA
RELB
RELL1


RELL2
RELN
RELT
REM1
REM2


REN
RENBP
RENBP
REP15
REPIN1




ENST00000393700


REPS1
REPS2
RER1
RERE
RERG


RERGL
RESP18
REST
RET
RETN


RETNLB
RETSAT
REV1
REV3L
REXO1


REXO2
REXO4
RFC1
RFC2
RFC3


RFC4
RFC5
RFESD
RFFL
RFK


RFNG
RFPL1
RFPL2
RFPL3
RFPL4A


RFPL4B
RFT1
RFTN1
RFTN2
RFWD2


RFWD3
RFX1
RFX2
RFX3
RFX4


RFX5
RFX6
RFX7
RFXANK
RFXAP


RG9MTD1
RG9MTD2
RG9MTD3
RGAG1
RGAG4


RGL1
RGL2
RGL3
RGL3
RGL4





ENST00000380456


RGMA
RGN
RGPD2
RGPD5
RGPD6


RGPD7
RGR
RGS1
RGS10
RGS11


RGS12
RGS13
RGS14
RGS16
RGS17


RGS18
RGS19
RGS2
RGS20
RGS21


RGS22
RGS3
RGS4
RGS5
RGS6


RGS7
RGS7BP
RGS8
RGS9
RGS9BP


RGSL1
RGSL2
RHAG
RHBDD1
RHBDD2


RHBDD3
RHBDF1
RHBDF2
RHBDL1
RHBDL2


RHBDL3
RHBG
RHCE
RHCG
RHD


RHEB
RHEBL1
RHO
RHOA
RHOB


RHOBTB1
RHOBTB2
RHOBTB3
RHOC
RHOD


RHOF
RHOG
RHOH
RHOJ
RHOQ


RHOT1
RHOT2
RHOU
RHOV
RHOXF1


RHOXF2
RHOXF2B
RHPN1
RHPN2
RIBC1


RIBC2
RIC3
RIC8A
RIC8B
RICTOR


RIF1
RILP
RILPL2
RIMBP2
RIMKLA


RIMS1
RIMS2
RIMS2
RIMS3
RIMS4




ENST00000436393


RIN1
RIN2
RIN3
RING1
RINL


RINT1
RIOK1
RIOK2
RIOK3
RIPK1


RIPK2
RIPK3
RIPK4
RIPPLY1
RIPPLY2


RIT1
RIT2
RL17_HUMAN
RL41_HUMAN
RLBP1


RLBP1L1
RLF
RLIM
RLN1
RLN2


RLN3
RLTPR
RLTPR
RMI1
RMND1




ENST00000334583


RMND5A
RMND5B
RNASE1
RNASE10
RNASE11


RNASE12
RNASE13
RNASE2
RNASE3
RNASE4


RNASE6
RNASE7
RNASE8
RNASE9
RNASEH1


RNASEH2A
RNASEH2B
RNASEH2C
RNASEK
RNASEL


RNASEN
RNASET2
RND1
RND2
RND3


RNF10
RNF103
RNF11
RNF111
RNF112


RNF113A
RNF113B
RNF114
RNF115
RNF121


RNF122
RNF123
RNF125
RNF126
RNF128


RNF13
RNF130
RNF133
RNF134
RNF135


RNF138
RNF139
RNF14
RNF141
RNF144A


RNF144B
RNF145
RNF146
RNF148
RNF149


RNF150
RNF151
RNF152
RNF157
RNF160


RNF165
RNF166
RNF167
RNF168
RNF169


RNF17
RNF170
RNF180
RNF181
RNF182


RNF183
RNF185
RNF186
RNF187
RNF19A


RNF19B
RNF2
RNF20
RNF207
RNF208


RNF212
RNF213
RNF214
RNF215
RNF216


RNF217
RNF219
RNF220
RNF222
RNF24


RNF25
RNF26
RNF31
RNF32
RNF34


RNF38
RNF39
RNF4
RNF40
RNF41


RNF43
RNF44
RNF5
RNF6
RNF7


RNF8
RNFT1
RNGTT
RNH1
RNLS


RNMT
RNMTL1
RNPEP
RNPEPL1
RNPS1


ROBLD3
ROBO1
ROBO1
ROBO2
ROBO3




ENST00000305299


ROBO4
ROCK1
ROCK2
ROD1
ROGDI


ROM1
ROMO1
ROPN1
ROPN1B
ROPN1L


ROR1
ROR2
RORA
RORB
RORC


ROS1
RP1
RP1-19N1_1
RP1-21O18_1
RP1-21O18_1_NEW


RP1-241P17_4
RP1-32110.10
RP11-274K13_2
RP11-45B20_2
RP11-529I10_4


RP11-551L14.1
RP11-9816_3
RP13-218H24_1
RP13-36C9_1
RP1L1


RP2
RP3-364I1_1
RP3-402G11_5
RP3-527F8_2
RP4-545K15_3


RP4-765F13_3
RP5-113911_4
RP6-149D17_1
RP9
RPA1


RPA2
RPA2
RPA3
RPA4
RPAIN



ENST00000313433


RPAP1
RPAP2
RPAP3
RPE
RPE65


RPF1
RPF2
RPGR
RPGRIP1
RPGRIP1L


RPH3A
RPH3AL
RPIA
RPL10
RPL10A


RPL10AP3
RPL10L
RPL11
RPL12
RPL13


RPL13A
RPL13AP25
RPL14
RPL14P5
RPL15


RPL17P39
RPL18
RPL18A
RPL19
RPL21


RPL21P128
RPL21P20
RPL21P44
RPL22
RPL23


RPL23A
RPL23AP82
RPL24
RPL26
RPL26L1


RPL27
RPL27A
RPL27AP6
RPL28
RPL29


RPL29P12
RPL3
RPL30
RPL31
RPL32


RPL32P3
RPL32P36
RPL34
RPL35
RPL35A


RPL35P1
RPL36
RPL36A
RPL36AL
RPL36P14


RPL37
RPL37A
RPL38
RPL39
RPL39L


RPL3L
RPL4
RPL41
RPL5
RPL6


RPL7
RPL7A
RPL7L1
RPL8
RPL9


RPL9P7
RPLP0
RPLP1
RPLP1P3
RPLP2


RPN1
RPN2
RPP14
RPP21
RPP25


RPP30
RPP38
RPP40
RPRD1A
RPRD1B


RPRM
RPRML
RPS10
RPS11
RPS12


RPS13
RPS14
RPS15
RPS15A
RPS15P4


RPS16
RPS17
RPS18
RPS19
RPS19BP1


RPS2
RPS20
RPS20P14
RPS21
RPS23


RPS24
RPS25
RPS26
RPS26P11
RPS26P3


RPS27
RPS27A
RPS27AP17
RPS27L
RPS28


RPS29
RPS2P55
RPS3
RPS3A
RPS3AP6


RPS4X
RPS4Y1
RPS4Y2
RPS5
RPS6


RPS6KA1
RPS6KA2
RPS6KA3
RPS6KA4
RPS6KA5


RPS6KA6
RPS6KB1
RPS6KB2
RPS6KC1
RPS6KL1


RPS6P1
RPS7
RPS7P4
RPS8
RPS9


RPSA
RPTN
RPTOR
RPUSD1
RPUSD2


RPUSD3
RPUSD4
RQCD1
RRAD
RRAGA


RRAGB
RRAGC
RRAGD
RRAS
RRAS2


RRBP1
RREB1
RRH
RRM1
RRM2


RRM2B
RRN3
RRP1
RRP12
RRP15


RRP1B
RRP7A
RRP8
RRP9
RRS1


RS1
RSAD1
RSAD2
RSBN1
RSBN1L


RSC1A1
RSF1
RSL1D1
RSL24D1
RSPH1


RSPH10B
RSPH10B2
RSPH3
RSPH4A
RSPH6A


RSPH9
RSPO1
RSPO2
RSPO3
RSPO4


RSPRY1
RSRC1
RSRC2
RSU1
RTBDN


RTCD1
RTDR1
RTEL1
RTF1
RTKN


RTKN2
RTN1
RTN2
RTN3
RTN4


RTN4IP1
RTN4R
RTN4RL2
RTP1
RTP2


RTP3
RTP4
RTTN
RUFY1
RUFY2


RUFY3
RUNDC1
RUNDC2A
RUNDC2B
RUNDC3B


RUNX1
RUNX1T1
RUNX1T1
RUNX2
RUNX3




ENST00000265814


RUSC1
RUSC2
RUVBL1
RUVBL2
RWDD1


RWDD2A
RWDD2B
RWDD3
RWDD4A
RXFP1


RXFP2
RXFP3
RXFP4
RXRA
RXRB


RXRG
RYK
RYR1
RYR2
RYR3


S100A1
S100A10
S100A11
S100A12
S100A13


S100A14
S100A16
S100A2
S100A3
S100A4


S100A5
S100A6
S100A7
S100A7A
S100A7L2


S100A8
S100A9
S100B
S100G
S100P


S100PBP
S100Z
S1PR1
S1PR2
S1PR3


S1PR4
S1PR5
SAA1
SAA2
SAA3P


SAA4
SAAL1
SAC3D1
SACM1L
SACS


SAE1
SAFB
SAFB2
SAGE1
SALL1


SALL2
SALL3
SALL4
SAMD10
SAMD11


SAMD12
SAMD13
SAMD14
SAMD3
SAMD4A


SAMD4B
SAMD5
SAMD7
SAMD8
SAMD8






ENST00000372690


SAMD9
SAMD9L
SAMHD1
SAMM50
SAMSN1


SAP130
SAP18
SAP30
SAP30BP
SAP30L


SAPS1
SAPS2
SAPS3
SAR1A
SAR1B


SARDH
SARNP
SARS
SARS2
SART1


SART3
SASH1
SASH3
SASS6
SAT1


SAT2
SATB1
SATB2
SATL1
SAV1


SBDS
SBF1
SBF2
SBK1
SBK2


SBNO1
SBSN
SC4MOL
SC5DL
SC65


SCAF1
SCAI
SCAMP2
SCAMP3
SCAMP4


SCAND1
SCAND3
SCAP
SCAPER
SCARA3


SCARA5
SCARB1
SCARB2
SCARF1
SCARF2


SCCPDH
SCD
SCD5
SCEL
SCFD1


SCFD2
SCG2
SCG3
SCGB1A1
SCGB1C1


SCGB1D1
SCGB1D2
SCGB1D4
SCGB2A1
SCGB2A2


SCGB3A1
SCGB3A2
SCGBL
SCGN
SCHIP1


SCLT1
SCLY
SCMH1
SCML1
SCML2


SCML4
SCN10A
SCN11A
SCN1A
SCN1B


SCN2A
SCN2B
SCN3A
SCN3B
SCN4A


SCN4B
SCN5A
SCN7A
SCN9A
SCNM1


SCNN1A
SCNN1B
SCNN1D
SCNN1G
SCO1


SCO2
SCOC
SCP2
SCPEP1
SCRG1


SCRIB
SCRN1
SCRN2
SCRN3
SCRT1


SCRT2
SCTR
SCUBE1
SCUBE2
SCUBE3


SCXB
SCYL1
SCYL2
SCYL3
SDAD1


SDC1
SDC2
SDC3
SDC4
SDCBP


SDCBP2
SDCCAG1
SDCCAG3
SDCCAG3L
SDCCAG8


SDF2
SDF2L1
SDF4
SDHA
SDHAF1


SDHAF2
SDHB
SDHC
SDHD
SDK1


SDPR
SDR16C5
SDR42E1
SDR9C7
SDS


SDSL
SEC11B
SEC11C
SEC13
SEC14L1


SEC14L2
SEC14L3
SEC14L4
SEC16B
SEC22A


SEC22C
SEC23A
SEC23B
SEC23IP
SEC24A


SEC24B
SEC24C
SEC24D
SEC31A
SEC31B


SEC61A1
SEC61A2
SEC61B
SEC61G
SEC62


SEC63
SECISBP2
SECISBP2L
SECTM1
SEH1L


SEL1L
SEL1L2
SELE
SELENBP1
SELI


SELL
SELM
SELP
SELPLG
SELV


SEMA3A
SEMA3B
SEMA3C
SEMA3D
SEMA3E


SEMA3F
SEMA3G
SEMA4A
SEMA4B
SEMA4C


SEMA4D
SEMA4F
SEMA4G
SEMA5A
SEMA5B


SEMA6A
SEMA6B
SEMA6C
SEMA6D
SEMA7A


SEMG1
SEMG2
SENP1
SENP2
SENP3


SENP5
SENP6
SENP7
SENP8
15-Sep


SEPHS1
SEPHS2
SEPN1
SEPP1
SEPSECS


01-Sep
10-Sep
11-Sep
12-Sep
02-Sep


03-Sep
04-Sep
05-Sep
06-Sep
08-Sep


09-Sep
SEPX1
SERAC1
SERBP1
SERF1A


SERF1B
SERF2
SERGEF
SERHL
SERHL2


SERINC1
SERINC2
SERINC3
SERINC4
SERP1


SERP1
SERP2
SERPINA1
SERPINA10
SERPINA11


ENST00000491660


SERPINA12
SERPINA13
SERPINA2
SERPINA3
SERPINA4


SERPINA5
SERPINA6
SERPINA7
SERPINA9
SERPINA9






ENST00000337425


SERPINB1
SERPINB10
SERPINB11
SERPINB12
SERPINB13


SERPINB2
SERPINB3
SERPINB4
SERPINB5
SERPINB6


SERPINB7
SERPINB8
SERPINB9
SERPINC1
SERPIND1


SERPINE1
SERPINE2
SERPINF1
SERPINF2
SERPING1


SERPINH1
SERPINI1
SERPINI2
SERTAD1
SERTAD2


SERTAD3
SERTAD4
SESN1
SESN2
SESN3


SESTD1
SET
SETBP1
SETD1A
SETD1B


SETD2
SETD2
SETD3
SETD4
SETD5



ENST00000409792


SETD6
SETD7
SETD8
SETDB1
SETDB2


SETMAR
SETX
SEZ6
SEZ6L
SEZ6L2


SF1
SF3A1
SF3A2
SF3A3
SF3B1


SF3B14
SF3B2
SF3B3
SF3B4
SF3B5


SF4
SFI1
SFMBT1
SFMBT2
SFN


SFPQ
SFRP1
SFRP2
SFRP4
SFRP5


SFRS1
SFRS11
SFRS12
SFRS12IP1
SFRS13B


SFRS14
SFRS15
SFRS16
SFRS17A
SFRS18


SFRS2
SFRS2IP
SFRS3
SFRS4
SFRS5


SFRS6
SFRS7
SFRS8
SFRS9
SFT2D1


SFT2D2
SFT2D3
SFTA2
SFTPA1B
SFTPA2


SFTPA2B
SFTPB
SFTPC
SFTPD
SFXN1


SFXN2
SFXN3
SFXN4
SFXN5
SG223_HUMAN


SG269_HUMAN
SGCA
SGCB
SGCE
SGCG


SGCZ
SGEF
SGIP1
SGK1
SGK2


SGK3
SGMS1
SGMS2
SGOL1
SGOL2


SGPL1
SGPP1
SGPP2
SGSH
SGSM1


SGSM2
SGSM3
SGTA
SGTB
SH2B1


SH2B3
SH2D1A
SH2D1B
SH2D2A
SH2D3A


SH2D3C
SH2D4A
SH2D4B
SH2D5
SH2D6


SH3BGR
SH3BGRL
SH3BGRL2
SH3BGRL3
SH3BP1


SH3BP2
SH3BP4
SH3BP5
SH3BP5L
SH3D19


SH3D20
SH3GL1
SH3GL2
SH3GL3
SH3GLB1


SH3GLB2
SH3KBP1
SH3PXD2A
SH3PXD2B
SH3RF1


SH3RF2
SH3TC1
SH3TC2
SH3YL1
SHANK1


SHANK2
SHANK3
SHARPIN
SHB
SHBG


SHC1
SHC1
SHC2
SHC3
SHC4



ENST00000448116


SHCBP1
SHD
SHE
SHF
SHFM1


SHH
SHISA2
SHISA3
SHISA4
SHISA5


SHKBP1
SHMT1
SHMT2
SHOC2
SHOX


SHOX2
SHPK
SHPRH
SHQ1
SHROOM1


SHROOM2
SHROOM3
SHROOM4
SI
SIAE


SIAH1
SIAH1L
SIAH2
SIAH3
SIDT1


SIDT2
SIGIRR
SIGLEC1
SIGLEC10
SIGLEC11


SIGLEC12
SIGLEC12
SIGLEC14
SIGLEC15
SIGLEC5



ENST00000439889


SIGLEC6
SIGLEC7
SIGLEC8
SIGLEC9
SIGMAR1


SIK1
SIK2
SIK3
SIKE1
SIL1


SILV
SIM1
SIM2
SIN3A
SIN3B


SIP1
SIPA1
SIPA1L1
SIPA1L2
SIPA1L3


SIRPA
SIRPB1
SIRPB2
SIRPD
SIRPG


SIRT1
SIRT2
SIRT3
SIRT4
SIRT5


SIRT6
SIRT7
SIT1
SIVA1
SIX1


SIX2
SIX3
SIX4
SIX5
SIX6


SK681
SKA1
SKA3
SKAP1
SKAP2


SKI
SKIL
SKIP
SKIV2L
SKIV2L2


SKP1
SKP2
SLA
SLA2
SLAIN1


SLAMF1
SLAMF6
SLAMF7
SLAMF8
SLAMF9


SLBP
SLC10A1
SLC10A2
SLC10A3
SLC10A4


SLC10A5
SLC10A6
SLC10A7
SLC11A1
SLC11A2


SLC12A1
SLC12A2
SLC12A3
SLC12A4
SLC12A5


SLC12A6
SLC12A7
SLC12A8
SLC12A9
SLC13A1


SLC13A2
SLC13A3
SLC13A4
SLC13A5
SLC14A1


SLC14A2
SLC15A1
SLC15A2
SLC15A3
SLC15A4


SLC16A1
SLC16A10
SLC16A11
SLC16A12
SLC16A13


SLC16A14
SLC16A2
SLC16A3
SLC16A4
SLC16A5


SLC16A6
SLC16A7
SLC16A8
SLC16A9
SLC17A1


SLC17A2
SLC17A3
SLC17A4
SLC17A5
SLC17A6


SLC17A7
SLC17A8
SLC17A9
SLC18A1
SLC18A2


SLC18A3
SLC19A1
SLC19A2
SLC19A3
SLC1A1


SLC1A2
SLC1A3
SLC1A4
SLC1A5
SLC1A6


SLC1A7
SLC20A1
SLC20A2
SLC22A1
SLC22A10


SLC22A11
SLC22A12
SLC22A13
SLC22A14
SLC22A15


SLC22A16
SLC22A17
SLC22A18
SLC22A2
SLC22A20


SLC22A23
SLC22A25
SLC22A3
SLC22A4
SLC22A5


SLC22A6
SLC22A7
SLC22A8
SLC22A9
SLC23A1


SLC23A2
SLC23A3
SLC24A2
SLC24A3
SLC24A4


SLC24A5
SLC24A6
SLC25A1
SLC25A10
SLC25A11


SLC25A12
SLC25A13
SLC25A14
SLC25A15
SLC25A16


SLC25A17
SLC25A18
SLC25A19
SLC25A2
SLC25A20


SLC25A21
SLC25A22
SLC25A23
SLC25A24
SLC25A25


SLC25A27
SLC25A28
SLC25A29
SLC25A3
SLC25A30


SLC25A31
SLC25A32
SLC25A33
SLC25A34
SLC25A35


SLC25A36
SLC25A37
SLC25A38
SLC25A39
SLC25A4


SLC25A40
SLC25A42
SLC25A43
SLC25A44
SLC25A45


SLC25A46
SLC25A5
SLC25A6
SLC26A1
SLC26A10


SLC26A11
SLC26A2
SLC26A3
SLC26A4
SLC26A5


SLC26A6
SLC26A7
SLC26A8
SLC26A9
SLC27A1


SLC27A2
SLC27A3
SLC27A4
SLC27A5
SLC27A6


SLC28A1
SLC28A2
SLC28A3
SLC29A1
SLC29A2


SLC29A3
SLC29A4
SLC2A1
SLC2A10
SLC2A11


SLC2A12
SLC2A13
SLC2A14
SLC2A2
SLC2A3


SLC2A4
SLC2A4RG
SLC2A5
SLC2A6
SLC2A7


SLC2A8
SLC2A9
SLC30A1
SLC30A10
SLC30A2


SLC30A3
SLC30A4
SLC30A5
SLC30A6
SLC30A7


SLC30A8
SLC30A9
SLC31A1
SLC31A2
SLC32A1


SLC33A1
SLC34A1
SLC34A2
SLC34A3
SLC35A1


SLC35A2
SLC35A3
SLC35A4
SLC35A5
SLC35B1


SLC35B2
SLC35B3
SLC35B4
SLC35C1
SLC35C2


SLC35D1
SLC35D2
SLC35D3
SLC35E1
SLC35E2


SLC35E3
SLC35E4
SLC35F1
SLC35F2
SLC35F3


SLC35F5
SLC36A1
SLC36A2
SLC36A3
SLC36A4


SLC37A1
SLC37A2
SLC37A3
SLC37A4
SLC38A1


SLC38A10
SLC38A11
SLC38A2
SLC38A3
SLC38A4


SLC38A5
SLC38A6
SLC38A7
SLC38A8
SLC38A9


SLC39A1
SLC39A10
SLC39A11
SLC39A12
SLC39A13


SLC39A14
SLC39A2
SLC39A3
SLC39A4
SLC39A5


SLC39A6
SLC39A7
SLC39A8
SLC39A9
SLC3A1


SLC3A2
SLC40A1
SLC41A1
SLC41A2
SLC41A3


SLC43A1
SLC43A2
SLC43A3
SLC44A1
SLC44A2


SLC44A3
SLC44A4
SLC44A5
SLC45A1
SLC45A2


SLC45A3
SLC45A4
SLC46A2
SLC46A3
SLC47A1


SLC47A2
SLC48A1
SLC4A1
SLC4A10
SLC4A11


SLC4A1AP
SLC4A2
SLC4A3
SLC4A4
SLC4A5


SLC4A7
SLC4A8
SLC4A9
SLC4A9
SLC5A1





ENST00000506757


SLC5A10
SLC5A11
SLC5A12
SLC5A2
SLC5A3


SLC5A4
SLC5A5
SLC5A6
SLC5A7
SLC5A8


SLC5A9
SLC6A1
SLC6A11
SLC6A12
SLC6A13


SLC6A14
SLC6A15
SLC6A16
SLC6A17
SLC6A18


SLC6A19
SLC6A2
SLC6A20
SLC6A3
SLC6A4


SLC6A5
SLC6A6
SLC6A7
SLC6A8
SLC6A9


SLC7A1
SLC7A10
SLC7A11
SLC7A13
SLC7A14


SLC7A2
SLC7A3
SLC7A4
SLC7A5
SLC7A6


SLC7A6OS
SLC7A7
SLC7A8
SLC7A9
SLC8A1


SLC8A2
SLC8A3
SLC9A1
SLC9A10
SLC9A11


SLC9A2
SLC9A3
SLC9A3R1
SLC9A3R2
SLC9A4


SLC9A5
SLC9A6
SLC9A7
SLC9A8
SLC9A9


SLCO1A2
SLCO1B1
SLCO1B3
SLCO1C1
SLCO2A1


SLCO2B1
SLCO3A1
SLCO4A1
SLCO4C1
SLCO5A1


SLCO6A1
SLFN11
SLFN12
SLFN13
SLFN14


SLFN5
SLFNL1
SLIT1
SLIT2
SLITS


SLITRK1
SLITRK2
SLITRK3
SLITRK4
SLITRK5


SLITRK6
SLK
SLMAP
SLMO1
SLMO2


SLN
SLPI
SLTM
SLU7
SLURP1


SMAD1
SMAD2
SMAD3
SMAD4
SMAD5


SMAD5OS
SMAD6
SMAD7
SMAD9
SMAP1


SMAP2
SMARCA1
SMARCA2
SMARCA4
SMARCA5


SMARCAD1
SMARCAL1
SMARCB1
SMARCC1
SMARCC2


SMARCD1
SMARCD2
SMARCD3
SMARCE1
SMC1A


SMC1B
SMC2
SMC2L1
SMC3
SMC4


SMC5
SMC6
SMCHD1
SMCP
SMCR7


SMCR7L
SMCR8
SMEK1
SMEK1
SMEK2





ENST00000417249


SMG1
SMG5
SMG6
SMG7
SMN1


SMN2
SMNDC1
SMO
SMOC1
SMOC2


SMOX
SMPD1
SMPD2
SMPD3
SMPD4


SMPDL3A
SMPDL3B
SMPX
SMR3A
SMR3B


SMS
SMTN
SMTNL2
SMU1
SMUG1


SMURF1
SMURF2
SMYD1
SMYD2
SMYD3


SMYD4
SMYD5
SNAI1
SNAI2
SNAI3


SNAP23
SNAP25
SNAP29
SNAP47
SNAPC1


SNAPC2
SNAPC3
SNAPC4
SNAPC5
SNAPIN


SNCA
SNCAIP
SNCB
SNCG
SND1


SNED1
SNF8
SNIP1
SNN
SNPH


SNRK
SNRNP200
SNRNP25
SNRNP27
SNRNP35


SNRNP48
SNRNP70
SNRPA
SNRPA1
SNRPB


SNRPB2
SNRPC
SNRPD1
SNRPD2
SNRPD3


SNRPE
SNRPEL1
SNRPF
SNRPG
SNRPN


SNTA1
SNTB1
SNTB2
SNTG1
SNTG2


SNTN
SNUPN
SNURF
SNW1
SNX1


SNX10
SNX11
SNX12
SNX13
SNX14


SNX15
SNX16
SNX17
SNX18
SNX19


SNX2
SNX20
SNX21
SNX22
SNX24


SNX25
SNX27
SNX3
SNX30
SNX31


SNX32
SNX33
SNX4
SNX5
SNX6


SNX7
SNX8
SNX9
SOAT1
SOAT2


SOBP
SOCS1
SOCS2
SOCS3
SOCS4


SOCS5
SOCS6
SOCS7
SOD1
SOD2


SODS
SOHLH1
SOHLH2
SOLH
SON


SORBS1
SORBS2
SORBS3
SORCS1
SORCS2


SORCS3
SORD
SORL1
SORT1
SOS1


SOS2
SOST
SOSTDC1
SOX1
SOX10


SOX11
SOX12
SOX13
SOX14
SOX15


SOX17
SOX18
SOX2
SOX21
SOX3


SOX30
SOX4
SOX5
SOX6
SOX7


SOX8
SOX9
SP1
SP100
SP110


SP140
SP140L
SP2
SP3
SP4


SP5
SP6
SP8
SPA17
SPACA1


SPACA3
SPACA4
SPACA5
SPACA5B
SPAG1


SPAG11A
SPAG11B
SPAG16
SPAG17
SPAG4


SPAG5
SPAG6
SPAG7
SPAG8
SPAG9


SPAM1
SPANX-N1
SPANXA1
SPANXA2
SPANXB1


SPANXC
SPANXD
SPANXN1
SPANXN2
SPANXN3


SPANXN4
SPANXN5
SPARC
SPARCL1
SPAST


SPATA1
SPATA12
SPATA13
SPATA16
SPATA17


SPATA18
SPATA19
SPATA2
SPATA20
SPATA21


SPATA22
SPATA2L
SPATA4
SPATA5
SPATA5L1


SPATA6
SPATA7
SPATA8
SPATA9
SPATC1


SPATS1
SPATS2
SPC25
SPCS1
SPCS2


SPDEF
SPDYA
SPDYC
SPDYE1
SPDYE2


SPEF1
SPEF2
SPEF2
SPEG
SPEM1




ENST00000356031


SPEM1
SPEN
SPERT
SPESP1
SPFH1


ENST00000323383


SPG11
SPG20
SPG21
SPG7
SPHAR


SPHK1
SPHK2
SPHKAP
SPI1
SPIB


SPIC
SPIN1
SPIN2A
SPIN2B
SPIN3


SPIN4
SPINK1
SPINK2
SPINK4
SPINK5


SPINK5L2
SPINK5L3
SPINK6
SPINK7
SPINK9


SPINLW1
SPINLW1
SPINT1
SPINT2
SPINT4



ENST00000336443


SPIRE1
SPIRE2
SPN
SPNS1
SPNS2


SPNS3
SPO11
SPOCD1
SPOCK1
SPOCK2


SPOCK3
SPON2
SPOP
SPOPL
SPP1


SPP2
SPPL2A
SPR
SPRED1
SPRED2


SPRED3
SPRN
SPRR1A
SPRR1B
SPRR2A


SPRR2B
SPRR2D
SPRR2E
SPRR2F
SPRR2G


SPRR3
SPRR4
SPRY1
SPRY2
SPRY3


SPRY4
SPRYD3
SPRYD4
SPRYD5
SPRYD5






ENST00000327733


SPSB1
SPSB2
SPSB3
SPSB4
SPTA1


SPTAN1
SPTB
SPTBN1
SPTBN2
SPTBN4


SPTBN5
SPTLC1
SPTLC2
SPTLC3
SPTY2D1


SPZ1
SQLE
SQRDL
SQSTM1
SR140_HUMAN


SRA1
SRBD1
SRC
SRCAP
SRCRB4D


SRD5A1
SRD5A3
SREBF1
SREBF2
SRF


SRFBP1
SRGAP1
SRGAP2P1
SRGAP3
SRGN


SRI
SRL
SRM
SRMS
SRP14


SRP19
SRP54
SRP68
SRP72
SRP9


SRP9L1
SRPK1
SRPK2
SRPK3
SRPK3






ENST00000489426


SRPR
SRPRB
SRPX
SRPX2
SRR


SRRD
SRRM1
SRRM2
SRRT
SRXN1


SRY
SS18
SS18L1
SS18L2
SSB


SSBP1
SSBP2
SSBP3
SSBP4
SSFA2


SSH1
SSH2
SSH3
SSNA1
SSPN


SSR1
SSR2
SSR3
SSR4
SSRP1


SSSCA1
SST
SSTR1
SSTR2
SSTR3


SSTR4
SSTR5
SSU72
SSX1
SSX2


SSX2IP
SSX3
SSX4
SSX4B
SSX5


SSX6
SSX7
SSX9
ST13
ST14


ST18
ST20
ST3GAL1
ST3GAL2
ST3GAL3


ST3GAL4
ST3GAL5
ST3GAL6
ST5
ST6GAL1


ST6GAL2
ST6GALNAC1
ST6GALNAC2
ST6GALNAC3
ST6GALNAC4


ST6GALNAC5
ST6GALNAC6
ST7
ST7L
ST8SIA1


ST8SIA2
ST8SIA3
ST8SIA4
ST8SIA5
ST8SIA6


STAB1
STAB2
STAC
STAC2
STAC3


STAG1
STAG2
STAG3
STAG3L1
STAG3L3


STAG3L4
STAM
STAM2
STAMBP
STAMBPL1


STAP1
STAP2
STAR
STARD10
STARD13


STARD3
STARD3NL
STARD4
STARD5
STARD6


STARD7
STARD8
STARD8
STARD9
STAT1




ENST00000252336


STAT2
STAT3
STAT4
STAT5A
STAT5B


STAT6
STATH
STAU1
STAU2
STBD1


STC1
STC2
STEAP1
STEAP2
STEAP3


STEAP4
STIL
STIM1
STIM2
STIP1


STK10
STK11
STK11IP
STK16
STK17A


STK17B
STK19
STK24
STK25
STK3


STK31
STK32A
STK32B
STK32C
STK33


STK35
STK36
STK38
STK38L
STK39


STK4
STK40
STMN1
STMN2
STMN3


STMN4
STOM
STOML1
STOML2
STOML3


STON1
STON1-GTF2A1L
STON2
STOX1
STOX2


STRA13
STRA6
STRA8
STRADA
STRADB


STRAP
STRBP
STRC
STRN
STRN3


STRN4
STS
STT3A
STT3B
STUB1


STX10
STX11
STX12
STX16
STX17


STX18
STX19
STX1A
STX1B
STX2


STX3
STX4
STX5
STX6
STX7


STX8
STXBP1
STXBP2
STXBP3
STXBP4


STXBP5
STXBP5L
STXBP6
STYK1
STYX


STYXL1
SUB1
SUCLA2
SUCLG1
SUCLG2


SUCNR1
SUDS3
SUFU
SUGT1
SULF1


SULF2
SULT1A1
SULT1A2
SULT1A3
SULT1A4


SULT1B1
SULT1C2
SULT1C3
SULT1C4
SULT1E1


SULT2A1
SULT2B1
SULT4A1
SULT6B1
SUMF1


SUMF2
SUMO1
SUMO1P1
SUMO2
SUMO3


SUMO4
SUN1
SUN2
SUN3
SUN5


SUOX
SUPT16H
SUPT3H
SUPT4H1
SUPT5H


SUPT6H
SUPT7L
SUPV3L1
SURF1
SURF2


SURF4
SURF5
SURF6
SUSD1
SUSD2


SUSD3
SUSD4
SUSD5
SUV39H1
SUV39H2


SUV420H1
SUV420H2
SUZ12
SUZ12P
SV2A


SV2B
SV2C
SVEP1
SVIL
SVIP


SVOPL
SWAP70
SYAP1
SYCE1
SYCE2


SYCN
SYCP1
SYCP2
SYCP2L
SYCP3


SYDE1
SYDE2
SYF2
SYK
SYMPK


SYN1
SYN2
SYN3
SYNC
SYNCRIP


SYNE1
SYNE1
SYNE2
SYNGAP1
SYNGAP1



ENST00000265368


ENST00000293748


SYNGR1
SYNGR2
SYNGR3
SYNGR4
SYNJ1


SYNJ2
SYNJ2BP
SYNM
SYNPO
SYNPO2


SYNPO2L
SYNRG
SYP
SYPL1
SYPL2


SYP
SYS1
SYT1
SYT10
SYT11


ENST00000263233


SYT12
SYT13
SYT14
SYT14L
SYT15


SYT15
SYT16
SYT17
SYT2
SYT3


ENST00000374328


SYT4
SYT5
SYT6
SYT7
SYT8


SYT9
SYTL1
SYTL2
SYTL3
SYTL4


SYTL5
SYVN1
SgK069
SgK085
SgK110


SgK223
SgK269
SgK424
SgK493
SgK494


SgK495
T
T183B_HUMAN
TAAR1
TAAR2


TAAR5
TAAR6
TAAR8
TAB1
TAB2


TAB3
TAC1
TAC3
TAC4
TACC1


TACC2
TACC3
TACO1
TACR1
TACR2


TACR3
TACSTD2
TADA1
TADA2A
TADA2B


TADA3L
TAF1
TAF10
TAF11
TAP12


TAP13
TAF15
TAF1A
TAF1B
TAF1C


TAF1D
TAF1L
TAF2
TAF3
TAF4


TAF4B
TAF5
TAF5L
TAF6
TAF6L


TAF7
TAF7L
TAF8
TAF9
TAF9B


TAGAP
TAGLN
TAGLN2
TAGLN3
TAL1


TAL2
TALDO1
TANC1
TANK
TAOK1


TAOK2
TAOK3
TAP1
TAP2
TAP2






ENST00000458336


TAPBP
TAPBPL
TAPT1
TARBP1
TARBP2


TARDBP
TARS
TARS2
TARSL2
TAS1R1


TAS1R2
TAS1R3
TAS2R1
TAS2R10
TAS2R13


TAS2R14
TAS2R16
TAS2R19
TAS2R20
TAS2R3


TAS2R38
TAS2R4
TAS2R41
TAS2R42
TAS2R5


TAS2R50
TAS2R60
TAS2R7
TAS2R8
TAS2R9


TASP1
TAT
TATDN1
TATDN2
TATDN3


TAX1BP1
TAX1BP3
TAZ
TBC1D1
TBC1D10A


TBC1D10C
TBC1D12
TBC1D13
TBC1D14
TBC1D15


TBC1D16
TBC1D17
TBC1D19
TBC1D2
TBC1D20


TBC1D21
TBC1D22A
TBC1D22B
TBC1D23
TBC1D24


TBC1D25
TBC1D26
TBC1D28
TBC1D29
TBC1D2B


TBC1D3
TBC1D30
TBC1D3B
TBC1D3C
TBC1D3E


TBC1D3F
TBC1D3G
TBC1D3H
TBC1D3P2
TBC1D4


TBC1D5
TBC1D7
TBC1D8B
TBC1D9B
TBCA


TBCB
TBCC
TBCCD1
TBCD
TBCE


TBCEL
TBCK
TBK1
TBKBP1
TBL1X


TBL1XR1
TBL1Y
TBL2
TBL3
TBP


TBPL1
TBPL2
TBR1
TBRG1
TBRG4


TBX1
TBX10
TBX15
TBX18
TBX19


TBX2
TBX20
TBX21
TBX22
TBX3


TBX4
TBX5
TBX6
TBXA2R
TEXAS1


TC2N
TCAP
TCEA1
TCEA2
TCEAL1


TCEAL2
TCEAL3
TCEAL4
TCEAL5
TCEAL6


TCEAL7
TCEAL8
TCEANC
TCEB1
TCEB2


TCEB3
TCEB3B
TCEB3C
TCERG1
TCERG1L


TCF12
TCF15
TCF19
TCF20
TCF21


TCF23
TCF25
TCF3
TCF4
TCF7


TCF7L1
TCF7L2
TCFL5
TCHH
TCHHL1


TCHP
TCIRG1
TCL1A
TCL1B
TCL6


TCN1
TCN2
TCOF1
TCP1
TCP10


TCP10L
TCP11
TCP11L1
TCP11L2
TCTA


TCTE1
TCTE3
TCTEX1D1
TCTEX1D2
TCTEX1D4


TCTN1
TCTN2
TCTN3
TDG
TDGF1


TDH
TDO2
TDP1
TDRD1
TDRD10


TDRD3
TDRD5
TDRD6
TDRD7
TDRD9


TDRKH
TEAD1
TEAD2
TEAD4
TEC


TECPR1
TECPR2
TECR
TECRL
TECTA


TECTB
TEDDM1
TEF
TEK
TEKT1


TEKT2
TEKT3
TEKT4
TEKT5
TELO2


TENC1
TEP1
TEPP
TERF1
TERF2


TERF2IP
TERT
TES
TESC
TESK1


TESK2
TET1
TET2
TEX10
TEX101


TEX11
TEX12
TEX13A
TEX13B
TEX14


TEX15
TEX19
TEX2
TEX261
TEX264


TEX28
TEX9
TF
TFAM
TFAP2A


TFAP2B
TFAP2C
TFAP2D
TFAP2E
TFAP4


TFB1M
TFB2M
TFCP2
TFCP2L1
TFDP1


TFDP2
TFDP3
TFE3
TFEB
TFEC


TFF1
TFF2
TFF3
TFG
TFIP11


TFPI
TFPI2
TFPT
TFR2
TFRC


TFSM1_HUMAN
TG
TGDS
TGFA
TGFB1


TGFB1I1
TGFB2
TGFB3
TGFBI
TGFBR1


TGFBR2
TGFBR3
TGFBRAP1
TGIF1
TGIF2


TGIF2LX
TGIF2LY
TGM1
TGM2
TGM3


TGM4
TGM5
TGM6
TGM7
TGOLN2


TGS1
TH
TH1L
THADA
THAP1


THAP10
THAP11
THAP2
THAP3
THAP4


THAP5
THAP6
THAP7
THAP8
THAP9


THBD
THBS1
THBS2
THBS3
THBS4


THEG
THEM4
THEM5
THEMIS
THG1L


THNSL1
THNSL2
THOC1
THOC2
THOC3


THOC4
THOC5
THOC6
THOC7
THOP1


THPO
THRA
THRAP3
THRB
THRSP


THSD1
THSD4
THSD7A
THSD7B
THTPA


THUMPD1
THUMPD2
THUMPD3
THY1
THYN1


TIA1
TIAF1
TIAL1
TIAM1
TIAM2


TICAM1
TICAM2
TIE1
TIF1
TIFA


TIFAB
TIGD1
TIGD2
TIGD3
TIGD4


TIGD5
TIGD6
TIGD7
TIGIT
TIMD4


TIMELESS
TIMM10
TIMM13
TIMM17A
TIMM17B


TIMM22
TIMM23
TIMM44
TIMM50
TIMM8A


TIMM8B
TIMM9
TIMP1
TIMP2
TIMP3


TIMP4
TINAG
TINAGL1
TINF2
TIPARP


TIPIN
TIPRL
TIRAP
TJAP1
TJP1


TJP2
TJP3
TK1
TK2
TKT


TKTL1
TKTL2
TLCD1
TLCD2
TLE1


TLE3
TLE4
TLE6
TLK1
TLK2


TLL1
TLL2
TLN1
TLN2
TLR1


TLR10
TLR2
TLR3
TLR4
TLR5


TLR6
TLR7
TLR8
TLR9
TLX1


TLX2
TLX3
TM2D1
TM2D2
TM2D3


TM4SF1
TM4SF18
TM4SF19
TM4SF2
TM4SF20


TM4SF5
TM6SF1
TM6SF2
TM7SF2
TM7SF3


TM7SF4
TM9SF1
TM9SF2
TM9SF3
TM9SF4


TMBIM1
TMBIM4
TMBIM6
TMC1
TMC2


TMC3
TMC4
TMC5
TMC6
TMC7


TMC8
TMCC1
TMCC2
TMCC3
TMCO1


TMCO2
TMCO3
TMCO4
TMCO5A
TMCO6


TMCO7
TMED1
TMED10
TMED2
TMED3


TMED4
TMED5
TMED6
TMED7
TMED8


TMED9
TMEFF1
TMEFF2
TMEM100
TMEM101


TMEM102
TMEM104
TMEM105
TMEM106A
TMEM106B


TMEM106C
TMEM107
TMEM108
TMEM109
TMEM11


TMEM110
TMEM111
TMEM115
TMEM116
TMEM117


TMEM119
TMEM120B
TMEM121
TMEM123
TMEM125


TMEM126A
TMEM126B
TMEM127
TMEM128
TMEM129


TMEM130
TMEM131
TMEM132A
TMEM132B
TMEM132C


TMEM132D
TMEM132E
TMEM133
TMEM134
TMEM135


TMEM136
TMEM138
TMEM139
TMEM140
TMEM141


TMEM143
TMEM144
TMEM145
TMEM146
TMEM147


TMEM149
TMEM14A
TMEM14B
TMEM14C
TMEM150A


TMEM150B
TMEM151A
TMEM154
TMEM155
TMEM156


TMEM159
TMEM160
TMEM161A
TMEM161B
TMEM163


TMEM164
TMEM165
TMEM167A
TMEM167B
TMEM168


TMEM169
TMEM17
TMEM170A
TMEM170B
TMEM171


TMEM173
TMEM174
TMEM175
TMEM176A
TMEM176B


TMEM177
TMEM178
TMEM179
TMEM179B
TMEM18


TMEM180
TMEM181
TMEM182
TMEM183A
TMEM184A


TMEM184B
TMEM184C
TMEM185A
TMEM185B
TMEM186


TMEM187
TMEM189
TMEM189-UBE2V1
TMEM19
TMEM190


TMEM192
TMEM194A
TMEM195
TMEM196
TMEM198


TMEM199
TMEM2
TMEM20
TMEM200A
TMEM200B


TMEM201
TMEM202
TMEM203
TMEM204
TMEM205


TMEM206
TMEM207
TMEM209
TMEM211
TMEM214


TMEM215
TMEM217
TMEM218
TMEM219
TMEM22


TMEM220
TMEM222
TMEM225
TMEM229B
TMEM25


TMEM26
TMEM27
TMEM30A
TMEM30B
TMEM31


TMEM33
TMEM35
TMEM37
TMEM38A
TMEM38B


TMEM39A
TMEM39B
TMEM40
TMEM41A
TMEM41B


TMEM42
TMEM43
TMEM44
TMEM45A
TMEM45B


TMEM47
TMEM48
TMEM49
TMEM5
TMEM50A


TMEM50B
TMEM51
TMEM52
TMEM53
TMEM54


TMEM55A
TMEM55B
TMEM56
TMEM57
TMEM59


TMEM59L
TMEM60
TMEM61
TMEM62
TMEM63A


TMEM63B
TMEM64
TMEM65
TMEM66
TMEM67


TMEM68
TMEM69
TMEM70
TMEM71
TMEM72


TMEM74
TMEM78
TMEM79
TMEM80
TMEM81


TMEM82
TMEM85
TMEM86A
TMEM86B
TMEM87A


TMEM87B
TMEM88
TMEM89
TMEM8A
TMEM8B


TMEM8C
TMEM9
TMEM90A
TMEM90B
TMEM91


TMEM92
TMEM93
TMEM95
TMEM97
TMEM98


TMEM99
TMEM9B
TMF1
TMIE
TMIGD1


TMIGD2
TMLHE
TMOD1
TMOD2
TMOD3


TMOD4
TMPO
TMPO
TMPPE
TMPRSS11A




ENST00000266732


TMPRSS11B
TMPRSS11D
TMPRSS11E
TMPRSS11E2
TMPRSS11F


TMPRSS13
TMPRSS2
TMPRSS2
TMPRSS3
TMPRSS4




ENST00000332149


TMPRSS6
TMPRSS7
TMPRSS9
TMSB10
TMSB15A


TMSB15B
TMSB4X
TMSB4Y
TMSL2
TMSL3


TMTC1
TMTC2
TMTC3
TMTC4
TMUB1


TMUB2
TMX1
TMX2
TMX3
TMX4


TNAP
TNC
TNF
TNFAIP1
TNFAIP2


TNFAIP3
TNFAIP6
TNFAIP8L1
TNFAIP8L2
TNFAIP8L3


TNFRSF10A
TNFRSF10B
TNFRSF10C
TNFRSF10D
TNFRSF11A


TNFRSF11B
TNFRSF12A
TNFRSF13B
TNFRSF13C
TNFRSF14


TNFRSF17
TNFRSF18
TNFRSF19
TNFRSF1A
TNFRSF1B


TNFRSF21
TNFRSF25
TNFRSF4
TNFRSF6B
TNFRSF8


TNFRSF9
TNFSF10
TNFSF11
TNFSF12
TNFSF12-TNFSF13


TNFSF13
TNFSF13B
TNFSF14
TNFSF15
TNFSF18


TNFSF4
TNFSF8
TNFSF9
TNIK
TNIP1


TNIP2
TNIP3
TNK1
TNK2
TNK2






ENST00000381916


TNKS
TNKS1BP1
TNKS2
TNMD
TNN


TNNC1
TNNC2
TNNI1
TNNI2
TNNI3


TNNI3K
TNNT1
TNNT2
TNNT3
TNP1


TNPO1
TNPO2
TNPO3
TNR
TNRC18


TNRC6A
TNRC6B
TNS1
TNS3
TNS4


TNXB
TNXB
TOB1
TOB2
TOB2P1



ENST00000375247


TOE1
TOLLIP
TOM1
TOM1L1
TOM1L2


TOMM20
TOMM20L
TOMM22
TOMM34
TOMM40


TOMM40L
TOMM5
TOMM7
TOMM70A
TOP1


TOP1MT
TOP2A
TOP2B
TOP3A
TOP3B


TOP3B
TOPBP1
TOPORS
TOR1A
TOR1AIP1


ENST00000357179


TOR1AIP2
TOR1B
TOR2A
TOR3A
TOX


TOX2
TOX3
TOX4
TP53
TP53AIP1


TP53BP1
TP53BP2
TP53I11
TP53I13
TP53I3


TP53INP1
TP53INP2
TP53RK
TP53TG1
TP53TG5


TP63
TP73
TPBG
TPCN1
TPCN2


TPD52
TPD52L1
TPD52L2
TPD52L3
TPH1


TPH2
TPI1
TPK1
TPM1
TPM2


TPM3
TPM4
TPM4
TPMT
TPO




ENST00000344824


TPP1
TPP2
TPPP
TPPP2
TPPP3


TPR
TPRA1
TPRG1
TPRG1L
TPRKB


TPRX1
TPRXL
TPSAB1
TPSD1
TPSG1


TPST1
TPST2
TPT1
TPTE
TPTE2


TPX2
TRA2A
TRA2B
TRABD
TRAD


TRADD
TRAF1
TRAF2
TRAF3
TRAF3IP1


TRAF3IP2
TRAF3IP3
TRAF4
TRAF5
TRAF6


TRAF7
TRAFD1
TRAIP
TRAK1
TRAK2


TRAM1
TRAM1L1
TRAM2
TRANK1
TRAP1


TRAPPC1
TRAPPC10
TRAPPC2
TRAPPC2L
TRAPPC3


TRAPPC4
TRAPPC5
TRAPPC6A
TRAPPC6B
TRAPPC9


TRAT1
TRDMT1
TRDN
TREM1
TREM2


TREML1
TREML2
TREML4
TRERF1
TREX1


TREX2
TRH
TRHDE
TRHR
TRIAP1


TRIB1
TRIB2
TRIB3
TRIM10
TRIM11


TRIM13
TRIM14
TRIM15
TRIM16
TRIM16L


TRIM17
TRIM2
TRIM21
TRIM22
TRIM23


TRIM24
TRIM25
TRIM26
TRIM27
TRIM28


TRIM29
TRIM3
TRIM31
TRIM32
TRIM33


TRIM34
TRIM35
TRIM36
TRIM37
TRIM38


TRIM39
TRIM4
TRIM40
TRIM41
TRIM42


TRIM43
TRIM44
TRIM45
TRIM46
TRIM47


TRIM48
TRIM49
TRIM5
TRIM50
TRIM52


TRIM54
TRIM55
TRIM56
TRIM58
TRIM59


TRIM6
TRIM6-TRIM34
TRIM60
TRIM61
TRIM62


TRIM63
TRIM64C
TRIM65
TRIM66
TRIM67


TRIM68
TRIM69
TRIM7
TRIM71
TRIM72


TRIM73
TRIM74
TRIM8
TRIM9
TRIML1


TRIML2
TRIO
TRIOBP
TRIOBP
TRIP10





ENST00000344404


TRIP11
TRIP12
TRIP13
TRIP4
TRIP6


TRIT1
TRMT1
TRMT11
TRMT112
TRMT12


TRMT2A
TRMT2B
TRMT5
TRMT6
TRMT61A


TRMT61B
TRMU
TRNAU1AP
TRNP1
TRNT1


TRO
TROAP
TROVE2
TRPA1
TRPC1


TRPC3
TRPC4
TRPC4AP
TRPC5
TRPC6


TRPM1
TRPM2
TRPM3
TRPM4
TRPM5


TRPM6
TRPM7
TRPM8
TRPS1
TRPT1


TRPV2
TRPV3
TRPV4
TRPV5
TRPV6


TRRAP
TRUB1
TRUB2
TRYX3
TSC1


TSC2
TSC22D1
TSC22D2
TSC22D3
TSC22D4


TSC2
TSEN15
TSEN2
TSEN34
TSEN54


ENST00000219476


TSFM
TSG101
TSGA10
TSGA10IP
TSGA13


TSGA14
TSHB
TSHR
TSHZ1
TSHZ2


TSHZ3
TSKS
TSKU
TSLP
TSN


TSNARE1
TSNAX
TSNAXIP1
TSPAN1
TSPAN11


TSPAN12
TSPAN13
TSPAN14
TSPAN15
TSPAN16


TSPAN17
TSPAN18
TSPAN2
TSPAN3
TSPAN31


TSPAN32
TSPAN33
TSPAN4
TSPAN5
TSPAN6


TSPAN7
TSPAN8
TSPAN9
TSPO
TSPO2


TSPY2
TSPY3
TSPYL1
TSPYL2
TSPYL5


TSPYL6
TSR1
TSR2
TSSC1
TSSC4


TSSK1B
TSSK2
TSSK3
TSSK4
TSSK6


TST
TSTA3
TSTD2
TTBK1
TTBK2


TTC1
TTC12
TTC13
TTC14
TTC15


TTC16
TTC17
TTC18
TTC19
TTC21A


TTC21B
TTC22
TTC23
TTC26
TTC27


TTC29
TTC3
TTC30A
TTC31
TTC32


TTC33
TTC35
TTC36
TTC37
TTC38


TTC39A
TTC39B
TTC39C
TTC3L
TTC4


TTC5
TTC6
TTC7A
TTC7B
TTC8


TTC9B
TTC9C
TTF1
TTF2
TTK


TTL
TTLL1
TTLL10
TTLL11
TTLL12


TTLL13
TTLL2
TTLL3
TTLL4
TTLL5


TTLL6
TTLL6
TTLL7
TTLL9
TTN



ENST00000393382


TTN
TTN
TTPA
TTPAL
TTR


ENST00000356127
ENST00000360870


TTRAP
TTYH1
TTYH2
TTYH3
TUB


TUBA1A
TUBA1B
TUBA1C
TUBA3C
TUBA3D


TUBA3E
TUBA4A
TUBA4A
TUBA8
TUBAL3




ENST00000392088


TUBB
TUBB1
TUBB2A
TUBB2B
TUBB2C


TUBB3
TUBB4
TUBB4Q
TUBB6
TUBB8


TUBD1
TUBE1
TUBG1
TUBG2
TUBGCP2


TUBGCP3
TUBGCP4
TUBGCP5
TUBGCP6
TUFM


TUFT1
TULP1
TULP2
TULP3
TULP4


TUSC1
TUSC2
TUSC3
TUSC4
TUSC5


TUT1
TWF1
TWF2
TWIST1
TWISTNB


TWSG1
TXK
TXLNA
TXLNB
TXN


TXN2
TXNDC11
TXNDC12
TXNDC15
TXNDC16


TXNDC17
TXNDC2
TXNDC3
TXNDC5
TXNDC6


TXNDC8
TXNDC9
TXNIP
TXNL1
TXNL2


TXNL4A
TXNL4B
TXNRD1
TXNRD2
TXNRD3IT1


TYK2
TYMP
TYMS
TYR
TYRO3


TYROBP
TYRP1
TYSND1
TYW1
TYW3


U258_HUMAN
U2AF1
U2AF1L4
U2AF2
U2D3L_HUMAN


U464_HUMAN
U66061_1
U66061_1
UACA
UAP1




ENST00000390396


UAP1L1
UBA1
UBA2
UBA3
UBA5


UBA52
UBA6
UBA7
UBAC1
UBAC2


UBAP1
UBAP2
UBAP2L
UBASH3A
UBASH3B


UBB
UBC
UBD
UBE2A
UBE2B


UBE2C
UBE2CBP
UBE2D1
UBE2D2
UBE2D3


UBE2D4
UBE2E1
UBE2E2
UBE2E3
UBE2F


UBE2G1
UBE2G2
UBE2H
UBE2I
UBE2J1


UBE2J2
UBE2K
UBE2L3
UBE2L6
UBE2M


UBE2N
UBE2NL
UBE2O
UBE2Q1
UBE2Q2


UBE2R2
UBE2S
UBE2T
UBE2U
UBE2V1


UBE2V2
UBE3A
UBE3B
UBE3C
UBE4A


UBE4B
UBFD1
UBIAD1
UBL3
UBL4A


UBL4B
UBL5
UBL7
UBLCP1
UBN1


UBN2
UBOX5
UBP1
UBQLN1
UBQLN2


UBQLN3
UBQLN4
UBQLNL
UBR1
UBR2


UBR3
UBR3
UBR4
UBR5
UBR7



ENST00000272793


UBTD1
UBTD2
UBTF
UBXN1
UBXN10


UBXN11
UBXN2A
UBXN2B
UBXN4
UBXN6


UBXN7
UBXN8
UCHL1
UCHL3
UCHL5


UCK1
UCK2
UCKL1
UCMA
UCN


UCN2
UCN3
UCP1
UCP2
UCP3


UEVLD
UFC1
UFD1L
UFM1
UFSP1


UFSP2
UGCG
UGDH
UGGT1
UGGT2


UGP2
UGT1A1
UGT1A10
UGT1A3
UGT1A4


UGT1A5
UGT1A6
UGT1A7
UGT1A8
UGT1A9


UGT2A1
UGT2A3
UGT2B11
UGT2B15
UGT2B17


UGT2B28
UGT2B4
UGT2B7
UGT3A1
UGT3A2


UGT8
UHMK1
UHRF1
UHRF1BP1
UHRF1BP1L


UHRF2
UIMC1
ULBP1
ULBP2
ULBP3


ULK1
ULK2
ULK3
ULK4
UMOD


UMODL1
UMPS
UNC119
UNC119B
UNC13B


UNC13D
UNC45A
UNC45B
UNC50
UNC5A


UNC5B
UNC5C
UNC5CL
UNC5D
UNC80


UNC93A
UNC93B6
UNCX
UNG
UNG






ENST00000242576


UNK
UNKL
UNQ1887
UNQ3045
UNQ9391


UPB1
UPF1
UPF2
UPF3A
UPF3B


UPK1A
UPK1B
UPK2
UPK3A
UPK3B


UPP1
UPP2
UPRT
UQCC
UQCR11


UQCRB
UQCRC1
UQCRC2
UQCRFS1
UQCRH


UQCRQ
URB2
URGCP
URM1
UROC1


UROD
UROS
URP2
USF1
USF2


USH1C
USH1G
USH2A
USHBP1
USMG5


USMG5P1
USO1
USP1
USP10
USP11


USP12
USP13
USP14
USP15
USP16


USP17L2
USP18
USP19
USP2
USP20


USP21
USP22
USP24
USP25
USP26


USP27X
USP28
USP29
USP3
USP30


USP31
USP32
USP33
USP34
USP35


USP35
USP36
USP37
USP38
USP39


ENST00000263311


USP4
USP41
USP42
USP43
USP44


USP45
USP46
USP47
USP48
USP49


USP5
USP50
USP51
USP53
USP54


USP54
USP6
USP6NL
USP7
USP8


ENST00000408019


USP9X
USP9Y
USPL1
UST
UTF1


UTP11L
UTP14A
UTP14C
UTP15
UTP18


UTP20
UTP23
UTP3
UTP6
UTRN


UTS2
UTS2D
UTS2R
UTY
UVRAG


UXT
VAC14
VAMP1
VAMP2
VAMP3


VAMP4
VAMP5
VAMP7
VAMP8
VANGL1


VANGL2
VAPA
VAPB
VARS
VARS2


VASH1
VASH2
VASN
VASP
VAT1


VAT1L
VAV1
VAV2
VAV3
VAX1


VAX2
VBP1
VCAM1
VCAN
VCL


VCP
VCPIP1
VCX
VCX2
VCX3A


VCY
VCY1B
VDAC1
VDAC2
VDAC3


VDAC4
VDR
VEGFA
VEGFB
VEGFC


VENTX
VEPH1
VEZF1
VGF
VGLL1


VGLL2
VGLL3
VGLL4
VHL
VHLL


VIL1
VILL
VIM
VIP
VIPAR


VIPR1
VIPR2
VIT
VKORC1
VKORC1L1


VLDLR
VMA21
VMAC
VMO1
VN1R1


VN1R2
VN1R4
VN2R1P
VNN1
VNN2


VNN3
VPRBP
VPREB1
VPREB3
VPS11


VPS13A
VPS13B
VPS13C
VPS13D
VPS16


VPS18
VPS24
VPS25
VPS26A
VPS26B


VPS28
VPS29
VPS33A
VPS33B
VPS35


VPS36
VPS37A
VPS37B
VPS37C
VPS37D


VPS39
VPS41
VPS45
VPS4B
VPS52


VPS53
VPS54
VPS72
VPS8
VRK1


VRK2
VRK3
VSIG1
VSIG2
VSIG4


VSIG7
VSIG8
VSNL1
VSTM1
VSTM2B


VSTM2L
VSX1
VSX2
VTA1
VTCN1


VTI1A
VTI1B
VTN
VWA1
VWA2


VWA3A
VWA3B
VWA5A
VWC2
VWCE


VWDE
VWF
WAG
WAPAL
WARS


WARS2
WAS
WASF1
WASF2
WASF3


WASF4
WASL
WBP1
WBP11
WBP2


WBP2NL
WBP4
WBP5
WBSCR16
WBSCR17


WBSCR22
WBSCR27
WBSCR28
WDFY1
WDFY2


WDFY3
WDFY4
WDHD1
WDR11
WDR12


WDR13
WDR16
WDR17
WDR18
WDR19


WDR20
WDR23
WDR24
WDR25
WDR26


WDR27
WDR27
WDR3
WDR31
WDR33



ENST00000333572


WDR34
WDR35
WDR36
WDR37
WDR38


WDR4
WDR41
WDR43
WDR44
WDR44






ENST00000435384


WDR45
WDR45L
WDR46
WDR47
WDR48


WDR49
WDR5
WDR51A
WDR51B
WDR52


WDR52
WDR53
WDR54
WDR55
WDR57


ENST00000393845


WDR59
WDR5B
WDR6
WDR60
WDR61


WDR62
WDR63
WDR64
WDR65
WDR66


WDR67
WDR69
WDR7
WDR70
WDR72


WDR73
WDR75
WDR76
WDR77
WDR78


WDR8
WDR81
WDR82
WDR82
WDR83





ENST00000296490


WDR85
WDR88
WDR89
WDR90
WDR91


WDR92
WDR93
WDSUB1
WDTC1
WDYHV1


WEE1
WEE2
WFDC1
WFDC10A
WFDC10B


WFDC11
WFDC12
WFDC13
WFDC2
WFDC3


WFDC5
WFDC6
WFDC8
WFDC9
WFIKKN1


WFIKKN2
WFS1
WHAMM
WHSC1
WHSC1L1




ENST00000234505


WHSC2
WIF1
WIPF1
WIPF2
WIPF3


WIPI1
WIPI2
WISP1
WISP2
WISP3


WIT1
WIZ
WLS
WNK1
WNK2


WNK3
WNK4
WNT1
WNT10A
WNT10B


WNT11
WNT16
WNT2
WNT2B
WNT3


WNT3A
WNT4
WNT5A
WNT5B
WNT6


WNT7A
WNT7B
WNT8A
WNT8B
WNT9A


WNT9B
WRAP53
WRB
WRN
WRNIP1


WSB1
WSB2
WSCD1
WSCD2
WT1


WTAP
WTIP
WWC1
WWC2
WWC3


WWOX
WWP1
WWP2
WWTR1
XAB1


XAB2
XAF1
XAGE1C
XAGE1D
XAGE2


XAGE3
XAGE5
XBP1
XCL1
XCL2


XCR1
XDH
XG
XIAP
XIRP1


XIRP2
XIRP2
XK
XKR3
XKR4



ENST00000409728


XKR5
XKR6
XKR7
XKR8
XKR9


XKRX
XPA
XPC
XPNPEP1
XPNPEP2


XPNPEP3
XPO1
XPO4
XPO5
XPO6


XPO7
XPOT
XPR1
XRCC1
XRCC2


XRCC3
XRCC4
XRCC5
XRCC6
XRCC6BP1


XRN1
XRN2
XRRA1
XXyac-YX155B6_1
XYLB


XYLT1
XYLT2
YAF2
YAP1
YARS


YARS2
YBX1
YBX2
YDJC
YEATS2


YEATS4
YES1
YIF1A
YIF1B
YIPF1


YIPF2
YIPF3
YIPF4
YIPF5
YIPF6


YJEFN3
YKT6
YLPM1
YME1L1
YOD1


YPEL1
YPEL2
YPEL3
YPEL4
YPEL5


YRDC
YSK4
YSK4
YTHDC1
YTHDC2




ENST00000375845


YTHDF1
YTHDF2
YV009_HUMAN
YWHAB
YWHAE


YWHAG
YWHAH
YWHAQ
YWHAZ
YY1


YY1AP1
YY2
ZACN
ZADH1
ZADH2


ZAK
ZAN
ZAP70
ZAR1
ZAR1L


ZBBX
ZBBX
ZBED1
ZBED2
ZBED3



ENST00000455345


ZBED4
ZBP1
ZBTB1
ZBTB10
ZBTB11


ZBTB12
ZBTB16
ZBTB17
ZBTB2
ZBTB20


ZBTB22
ZBTB24
ZBTB25
ZBTB26
ZBTB3


ZBTB32
ZBTB33
ZBTB34
ZBTB37
ZBTB38


ZBTB39
ZBTB4
ZBTB40
ZBTB41
ZBTB43


ZBTB44
ZBTB45
ZBTB46
ZBTB48
ZBTB49


ZBTB5
ZBTB6
ZBTB7A
ZBTB7B
ZBTB7C


ZBTB8A
ZBTB8B
ZBTB8OS
ZBTB9
ZC3H10



ENST00000291374


ZC3H11A
ZC3H12A
ZC3H12B
ZC3H12B
ZC3H12C





ENST00000338957


ZC3H13
ZC3H14
ZC3H15
ZC3H18
ZC3H3


ZC3H4
ZC3H6
ZC3H7A
ZC3H7B
ZC3H8


ZC3HAV1
ZC3HAV1L
ZC3HC1
ZC4H2
ZCCHC10


ZCCHC11
ZCCHC12
ZCCHC13
ZCCHC14
ZCCHC16


ZCCHC17
ZCCHC24
ZCCHC3
ZCCHC4
ZCCHC5


ZCCHC6
ZCCHC7
ZCCHC8
ZCCHC9
ZCRB1


ZCWPW1
ZCWPW2
ZDHHC1
ZDHHC11
ZDHHC11






ENST00000424784


ZDHHC12
ZDHHC13
ZDHHC14
ZDHHC15
ZDHHC16


ZDHHC18
ZDHHC19
ZDHHC21
ZDHHC23
ZDHHC24


ZDHHC3
ZDHHC4
ZDHHC5
ZDHHC6
ZDHHC7


ZDHHC8
ZDHHC9
ZEB1
ZEB2
ZER1


ZFAND1
ZFAND2A
ZFAND2B
ZFAND3
ZFAND5


ZFAND6
ZFAT
ZFC3H1
ZFHX3
ZFHX4


ZFP1
ZFP106
ZFP112
ZFP14
ZFP161


ZFP2
ZFP28
ZFP3
ZFP30
ZFP36


ZFP36L1
ZFP36L2
ZFP37
ZFP41
ZFP42


ZFP57
ZFP64
ZFP64
ZFP82
ZFP90




ENST00000361387


ZFP91
ZFP91-CNTF
ZFP92
ZFPL1
ZFPM1


ZFPM2
ZFR
ZFR2
ZFX
ZFY


ZFYVE1
ZFYVE16
ZFYVE19
ZFYVE20
ZFYVE21


ZFYVE26
ZFYVE27
ZFYVE28
ZFYVE9
ZG16B


ZGPAT
ZHX1
ZHX2
ZHX3
ZIC1


ZIC2
ZIC3
ZIC4
ZIC5
ZIK1


ZIM2
ZIM3
ZKSCAN1
ZKSCAN2
ZKSCAN3


ZKSCAN4
ZKSCAN5
ZMAT1
ZMAT2
ZMAT3


ZMAT4
ZMAT5
ZMIZ1
ZMIZ2
ZMPSTE24


ZMYM1
ZMYM2
ZMYM3
ZMYM4
ZMYM5


ZMYM6
ZMYND10
ZMYND11
ZMYND12
ZMYND15


ZMYND17
ZMYND19
ZMYND8
ZNF10
ZNF100


ZNF101
ZNF107
ZNF10
ZNF114
ZNF117




ENST00000228289


ZNF12
ZNF121
ZNF123
ZNF124
ZNF131


ZNF132
ZNF133
ZNF134
ZNF135
ZNF136


ZNF138
ZNF14
ZNF140
ZNF141
ZNF142


ZNF143
ZNF146
ZNF148
ZNF154
ZNF155


ZNF157
ZNF16
ZNF160
ZNF165
ZNF167


ZNF169
ZNF17
ZNF174
ZNF175
ZNF177


ZNF18
ZNF180
ZNF181
ZNF182
ZNF184


ZNF185
ZNF189
ZNF19
ZNF192
ZNF193


ZNF195
ZNF197
ZNF198
ZNF2
ZNF20


ZNF200
ZNF202
ZNF205
ZNF207
ZNF211


ZNF212
ZNF213
ZNF214
ZNF215
ZNF217


ZNF219
ZNF22
ZNF221
ZNF222
ZNF223


ZNF224
ZNF227
ZNF229
ZNF23
ZNF230


ZNF232
ZNF233
ZNF235
ZNF236
ZNF238


ZNF239
ZNF24
ZNF248
ZNF25
ZNF251


ZNF253
ZNF254
ZNF256
ZNF257
ZNF257






ENST00000435820


ZNF259
ZNF26
ZNF260
ZNF263
ZNF264


ZNF266
ZNF267
ZNF271
ZNF273
ZNF274


ZNF275
ZNF276
ZNF277
ZNF278
ZNF28


ZNF280A
ZNF280B
ZNF280C
ZNF280D
ZNF281


ZNF282
ZNF283
ZNF285A
ZNF286A
ZNF287


ZNF292
ZNF295
ZNF296
ZNF3
ZNF30


ZNF300
ZNF304
ZNF311
ZNF317
ZNF318


ZNF319
ZNF32
ZNF320
ZNF321
ZNF322A


ZNF322B
ZNF323
ZNF324
ZNF324B
ZNF326


ZNF329
ZNF330
ZNF331
ZNF333
ZNF334


ZNF335
ZNF337
ZNF33A
ZNF33B
ZNF34


ZNF341
ZNF343
ZNF345
ZNF346
ZNF347


ZNF35
ZNF350
ZNF354A
ZNF354B
ZNF354C


ZNF358
ZNF362
ZNF365
ZNF366
ZNF367


ZNF37A
ZNF382
ZNF383
ZNF384
ZNF385


ZNF385A
ZNF385B
ZNF385C
ZNF385D
ZNF391


ZNF394
ZNF395
ZNF396
ZNF397
ZNF397OS


ZNF398
ZNF407
ZNF408
ZNF41
ZNF410


ZNF414
ZNF414
ZNF415
ZNF416
ZNF417



ENST00000393927


ZNF418
ZNF419
ZNF420
ZNF423
ZNF425


ZNF426
ZNF428
ZNF429
ZNF43
ZNF430


ZNF431
ZNF432
ZNF432
ZNF434
ZNF436




ENST00000354939


ZNF438
ZNF439
ZNF440
ZNF441
ZNF442


ZNF443
ZNF444
ZNF445
ZNF446
ZNF449


ZNF45
ZNF451
ZNF454
ZNF460
ZNF462


ZNF467
ZNF468
ZNF470
ZNF471
ZNF473


ZNF474
ZNF479
ZNF48
ZNF480
ZNF483


ZNF484
ZNF485
ZNF486
ZNF488
ZNF490


ZNF491
ZNF492
ZNF492
ZNF493
ZNF496




ENST00000456783


ZNF497
ZNF498
ZNF500
ZNF501
ZNF502


ZNF503
ZNF506
ZNF507
ZNF510
ZNF511


ZNF512
ZNF512B
ZNF513
ZNF514
ZNF516


ZNF517
ZNF518B
ZNF519
ZNF521
ZNF524


ZNF526
ZNF527
ZNF528
ZNF529
ZNF530


ZNF532
ZNF534
ZNF536
ZNF540
ZNF541


ZNF543
ZNF544
ZNF546
ZNF547
ZNF548


ZNF549
ZNF550
ZNF551
ZNF552
ZNF554


ZNF555
ZNF556
ZNF557
ZNF558
ZNF559


ZNF560
ZNF561
ZNF562
ZNF563
ZNF564


ZNF565
ZNF566
ZNF567
ZNF568
ZNF569


ZNF57
ZNF570
ZNF571
ZNF572
ZNF573


ZNF574
ZNF575
ZNF576
ZNF577
ZNF579


ZNF580
ZNF581
ZNF582
ZNF583
ZNF584


ZNF585A
ZNF585B
ZNF586
ZNF587
ZNF589


ZNF592
ZNF593
ZNF594
ZNF596
ZNF597


ZNF599
ZNF600
ZNF605
ZNF606
ZNF607


ZNF608
ZNF609
ZNF610
ZNF611
ZNF613


ZNF614
ZNF615
ZNF616
ZNF618
ZNF619


ZNF620
ZNF621
ZNF622
ZNF623
ZNF624


ZNF625
ZNF626
ZNF627
ZNF628
ZNF628






ENST00000391718


ZNF630
ZNF638
ZNF639
ZNF641
ZNF642


ZNF643
ZNF644
ZNF645
ZNF646
ZNF648


ZNF649
ZNF652
ZNF653
ZNF654
ZNF655


ZNF658
ZNF658B
ZNF660
ZNF662
ZNF664


ZNF665
ZNF667
ZNF668
ZNF669
ZNF67


ZNF670
ZNF671
ZNF672
ZNF673
ZNF674


ZNF675
ZNF676
ZNF677
ZNF678
ZNF680


ZNF682
ZNF684
ZNF687
ZNF688
ZNF689


ZNF69
ZNF691
ZNF692
ZNF696
ZNF697






ENST00000271263


ZNF699
ZNF7
ZNF70
ZNF700
ZNF701


ZNF703
ZNF704
ZNF705A
ZNF705D
ZNF706


ZNF707
ZNF708
ZNF709
ZNF71
ZNF710


ZNF711
ZNF713
ZNF714
ZNF738
ZNF74


ZNF746
ZNF747
ZNF750
ZNF75A
ZNF75D


ZNF76
ZNF761
ZNF763
ZNF764
ZNF765


ZNF765
ZNF767
ZNF768
ZNF77
ZNF770


ENST00000396408


ZNF772
ZNF773
ZNF774
ZNF775
ZNF776


ZNF777
ZNF780A
ZNF781
ZNF782
ZNF784


ZNF785
ZNF786
ZNF787
ZNF788
ZNF789


ZNF79
ZNF790
ZNF791
ZNF793
ZNF799


ZNF8
ZNF80
ZNF800
ZNF804A
ZNF804B


ZNF81
ZNF816A
ZNF821
ZNF826
ZNF827


ZNF828
ZNF829
ZNF83
ZNF830
ZNF831


ZNF833
ZNF834
ZNF835
ZNF836
ZNF837


ZNF839
ZNF84
ZNF841
ZNF843
ZNF846




ENST00000359973


ZNF85
ZNF862
ZNF879
ZNF90
ZNF90






ENST00000418063


ZNF91
ZNF91
ZNF92
ZNF93
ZNFX1



ENST00000300619


ZNHIT1
ZNHIT2
ZNHIT3
ZNHIT6
ZNRD1


ZNRF1
ZNRF2
ZNRF3
ZNRF4
ZP1


ZP2
ZP3
ZP4
ZPBP
ZPBP2


ZPLD1
ZRANB1
ZRANB2
ZRANB3
ZRSR2


ZSCAN1
ZSCAN10
ZSCAN16
ZSCAN18
ZSCAN2


ZSCAN20
ZSCAN21
ZSCAN22
ZSCAN23
ZSCAN29


ZSCAN4
ZSCAN5A
ZSWIM1
ZSWIM2
ZSWIM3


ZSWIM4
ZSWIM5
ZSWIM7
ZUFSP
ZW10


ZWILCH
ZWINT
ZXDA
ZXDB
ZXDC


ZYG11B
ZYX
ZZEF1
ZZZ3
dJ341D10_1


hCG_1642425
hCG_1644301
hCG_17324
hCG_1757335
hCG_1793639


hCG_2000329
hCG_2015269
hCG_2023776
hCG_2026038
hCG_38941


mir-223
mir-424
















TABLE 4







Exemplary transposable elements in GBM microvesicles









GenBank


Name
Accession No.





Homo sapiens transposon-derived Buster1
[NM_021211]


transposase-like protein gene (LOC58486)



Human endogenous retrovirus H
[U88896]


protease/integrase-derived ORF1, ORF2, and



putative envelope protein mRNA, complete cds



Human endogenous retrovirus type C oncovirus
[M74509]


sequence



Human endogenous retroviral H
[U88898]


protease/integrase-derived ORF1 mRNA,



complete cds, and putative envelope protein



mRNA, partial cds.



Homo sapiens Cas-Br-M (murine) ecotropic
[NM_005188]


retroviral transforming sequence (CBL)



Homo sapiens endogenous retroviral sequence K,
[NM_001007236]


6 (ERVK6)



Homo sapiens endogenous retroviral family W,
[NM_014590]


env(C7), member 1 (syncytin) (ERVWE1)



Homo sapiens Cas-Br-M (murine) ecotropic
[NM_170662]


retroviral transforming sequence b (CBLB)



Homo sapiens mRNA containing human
[AF026246]


endogenous retrovirus H and human endogenous



retrovirus E sequences



Homo sapiens cDNA FLJ11804 fis, clone
[AK021866]


HEMBA1006272, moderately similar to



RETROVIRUS-RELATED PROTEASE (EC



3.4.23.-).



Human DNA/endogenous retroviral long terminal
[M32220]


repeat (LTR) junction mRNA, clone lambda-



LTR22



ALU8_HUMAN (P39195) Alu subfamily SX
[THC2390306]


sequence contamination warning entry, partial



(7%)



AA436686 zv59a12.s1 Soares_testis_NHT Homo
[AA436686]


sapiens cDNA clone IMAGE:757918 3′ similar to



contains Alu repetitive element



ALU6_HUMAN (P39193) Alu subfamily SP
[THC2314369]


sequence contamination warning entry, partial



(19%)



ALU1_HUMAN (P39188) Alu subfamily J
[THC2320431]


sequence contamination warning entry, partial



(8%)



BF476310 naa21a07.x1 NCI_CGAP_Pr28 Homo
[BF476310]


sapiens cDNA clone IMAGE:3255444 3′ similar



to contains Alu repetitive element;contains



element MIR MIR repetitive element



ALU4_HUMAN (P39191) Alu subfamily SB2
[THC2284657]


sequence contamination warning entry, partial



(4%)



LIN1_NYCCO (P08548) LINE-1 reverse
[THC2379144]


transcriptase homolog, partial (5%)



od56h08.s1 NCI_CGAP_GCB1 Homo sapiens
[AA827885]


cDNA clone IMAGE:1371999 3′ similar to



gb:M19503 LINE-1 REVERSE



TRANSCRIPTASE HOMOLOG (HUMAN)



B28096 line-1 protein ORF2 - human (Homo
[THC2281068]


sapiens), partial (4%)



Homo sapiens LINE-1 type transposase domain
[NM_019079]


containing 1 (L1TD1)



Q6D545 (Q6D545) Transposase transposon
[THC2407148]


tn1721 (Fragment), partial (12%)



Human clone 279131 defective mariner
[U92025]


transposon Hsmar2 mRNA sequence



Homo sapiens retrotransposon gag domain
[NM_001024455]


containing 4 (RGAG4)



Homo sapiens transposon-derived Buster3
[NM_022090]


transposase-like (LOC63920)



Homo sapiens retrotransposon gag domain
[NM_020769]


containing 1 (RGAG1)



Human EST clone 251800 mariner transposon
[U80770]


Hsmar1 sequence



Homo sapiens SET domain and mariner
[NM_006515]


transposase fusion gene (SETMAR)



Homo sapiens tigger transposable element derived
[NM_032862]


5 (TIGD5)



Homo sapiens tigger transposable element derived
[NM_145702]


1 (TIGD1)



Homo sapiens pogo transposable element with
[NM_017542]


KRAB domain (POGK)



Homo sapiens pogo transposable element with
[NM_015100]


ZNF domain (POGZ), transcript variant 1



Homo sapiens tigger transposable element derived
[NM_030953]


6 (TIGD6)



Homo sapiens piggyBac transposable element
[NM_152595]


derived 4 (PGBD4)
















TABLE 5







Human transposable elements.


The list is adapted from Repbase-GIRI.


http://www.girinst.org/, accessed


Jan. 31, 2011.










Type of Transposon
ID







CR1
CR1_HS



CR1
L3



DNA transposon
LOOPER



DNA transposon
MER105



DNA transposon
MER116



DNA transposon
MER28



DNA transposon
MER45B



DNA transposon
MER45R



DNA transposon
MER53



DNA transposon
MER63A



DNA transposon
MER63B



DNA transposon
MER69C



DNA transposon
MER75



DNA transposon
MER75B



DNA transposon
MER85



DNA transposon
MER91A



DNA transposon
MER91C



DNA transposon
MER99



DNA transposon
ZAPHOD



Endogenous Retrovirus
HERV1_LTR



Endogenous Retrovirus
HERV151



Endogenous Retrovirus
HERV18



Endogenous Retrovirus
HERV23



Endogenous Retrovirus
HERV30I



Endogenous Retrovirus
HERV38I



Endogenous Retrovirus
HERV39



Endogenous Retrovirus
HERV4_LTR



Endogenous Retrovirus
HERV46I



Endogenous Retrovirus
HERV52I



Endogenous Retrovirus
HERV57I



Endogenous Retrovirus
HERVFH19I



Endogenous Retrovirus
HERVG25



Endogenous Retrovirus
HERVH48I



Endogenous Retrovirus
HERVL_40



Endogenous Retrovirus
HERVP71A_I



Endogenous Retrovirus
HUERS-P2



Endogenous Retrovirus
HUERS-P3B



Endogenous Retrovirus
MER31



Endogenous Retrovirus
MER31_I



Endogenous Retrovirus
MER34B_I



Endogenous Retrovirus
MER41F



Endogenous Retrovirus
MER41I



Endogenous Retrovirus
MER4BI



Endogenous Retrovirus
MER57A_I



Endogenous Retrovirus
MER57I



Endogenous Retrovirus
MER61A



Endogenous Retrovirus
MER84I



Endogenous Retrovirus
PRIMA4_I



Endogenous Retrovirus
PRIMA41



Endogenous Retrovirus
PRIMAX_I



ERV1
HARLEQUIN



ERV1
HERV17



ERV1
HERV19I



ERV1
HERV3



ERV1
HERV35I



ERV1
HERV4_I



ERV1
HERV49I



ERV1
HERV9



ERV1
HERVE



ERV1
HERVI



ERV1
HERVIP10F



ERV1
HERVIP10FH



ERV1
LOR1I



ERV1
LTR06



ERV1
LTR1



ERV1
LTR10B



ERV1
LTR10B2



ERV1
LTR10C



ERV1
LTR10D



ERV1
LTR10F



ERV1
LTR12B



ERV1
LTR12C



ERV1
LTR12D



ERV1
LTR12E



ERV1
LTR15



ERV1
LTR17



ERV1
LTR1B



ERV1
LTR1B1



ERV1
LTR1C



ERV1
LTR1C2



ERV1
LTR1D



ERV1
LTR1E



ERV1
LTR1F



ERV1
LTR2



ERV1
LTR21A



ERV1
LTR21B



ERV1
LTR21C



ERV1
LTR23



ERV1
LTR24



ERV1
LTR24B



ERV1
LTR24C



ERV1
LTR25



ERV1
LTR26



ERV1
LTR26E



ERV1
LTR27



ERV1
LTR2752



ERV1
LTR27B



ERV1
LTR27C



ERV1
LTR27D



ERV1
LTR27E



ERV1
LTR28



ERV1
LTR28B



ERV1
LTR28C



ERV1
LTR29



ERV1
LTR2B



ERV1
LTR2C



ERV1
LTR30



ERV1
LTR31



ERV1
LTR34



ERV1
LTR35



ERV1
LTR35B



ERV1
LTR36



ERV1
LTR37A



ERV1
LTR37B



ERV1
LTR38



ERV1
LTR38A1



ERV1
LTR38B



ERV1
LTR38C



ERV1
LTR39



ERV1
LTR4



ERV1
LTR43



ERV1
LTR43B



ERV1
LTR44



ERV1
LTR45



ERV1
LTR45B



ERV1
LTR45C



ERV1
LTR46



ERV1
LTR48



ERV1
LTR48B



ERV1
LTR49



ERV1
LTR51



ERV1
LTR56



ERV1
LTR58



ERV1
LTR59



ERV1
LTR60



ERV1
LTR60B



ERV1
LTR61



ERV1
LTR64



ERV1
LTR65



ERV1
LTR6A



ERV1
LTR6B



ERV1
LTR70



ERV1
LTR71A



ERV1
LTR71B



ERV1
LTR72



ERV1
LTR72B



ERV1
LTR73



ERV1
LTR76



ERV1
LTR77



ERV1
LTR78B



ERV1
LTR8



ERV1
LTR81AB



ERV1
LTR8A



ERV1
LTR8B



ERV1
LTR9



ERV1
LTR9A1



ERV1
LTR9B



ERV1
LTR9C



ERV1
LTR9D



ERV1
MER101



ERV1
MER101B



ERV1
MER110



ERV1
MER110A



ERV1
MER110I



ERV1
MER21I



ERV1
MER31B



ERV1
MER34



ERV1
MER34B



ERV1
MER34C



ERV1
MER34C2



ERV1
MER39



ERV1
MER39B



ERV1
MER41A



ERV1
MER41B



ERV1
MER41C



ERV1
MER41D



ERV1
MER41G



ERV1
MER48



ERV1
MER49



ERV1
MER4A



ERV1
MER4A1



ERV1
MER4B



ERV1
MER4C



ERV1
MER4CL34



ERV1
MER4D



ERV1
MER4D1



ERV1
MER4E



ERV1
MER4E1



ERV1
MER50



ERV1
MER50B



ERV1
MER50I



ERV1
MER51A



ERV1
MER51B



ERV1
MER51C



ERV1
MER51D



ERV1
MER51E



ERV1
MER52A



ERV1
MER52AI



ERV1
MER52C



ERV1
MER52D



ERV1
MER57A1



ERV1
MER57B2



ERV1
MER57F



ERV1
MER61B



ERV1
MER61C



ERV1
MER65B



ERV1
MER65C



ERV1
MER65D



ERV1
MER66_I



ERV1
MER66A



ERV1
MER66B



ERV1
MER66C



ERV1
MER66D



ERV1
MER67A



ERV1
MER67B



ERV1
MER67C



ERV1
MER67D



ERV1
MER72



ERV1
MER72B



ERV1
MER83



ERV1
MER83AI



ERV1
MER83B



ERV1
MER83BI



ERV1
MER83C



ERV1
MER84



ERV1
MER87



ERV1
MER87B



ERV1
MER89



ERV1
MER89I



ERV1
MER90



ERV1
MER92A



ERV1
MER92B



ERV1
PABL_A



ERV1
PABL_AI



ERV1
PABL_B



ERV1
PABL_BI



ERV1
PRIMA4_LTR



ERV1
PrimLTR79



ERV2
HERVK11DI



ERV2
HERVK11I



ERV2
HERVK13I



ERV2
HERVK3I



ERV2
HERVK9I



ERV2
LTR13



ERV2
LTR13A



ERV2
LTR14



ERV2
LTR14A



ERV2
LTR14B



ERV2
LTR14C



ERV2
LTR22A



ERV2
LTR22B



ERV2
LTR22B1



ERV2
LTR22B2



ERV2
LTR22C2



ERV2
LTR22E



ERV2
LTR3



ERV2
LTR3B



ERV2
LTR5



ERV2
LTR5B



ERV2
MER11A



ERV2
MER11C



ERV2
MER11D



ERV2
MER9



ERV2
MER9B



ERV2
RLTR10B



ERV2
RLTR10C



ERV3
ERV3-16A3_1



ERV3
ERV3-16A3_LTR



ERV3
ERVL



ERV3
HERV16



ERV3
HERVL



ERV3
HERVL74



ERV3
LTR16



ERV3
LTR16A1



ERV3
LTR16A2



ERV3
LTR16C



ERV3
LTR16D



ERV3
LTR16E



ERV3
LTR18A



ERV3
LTR18B



ERV3
LTR18C



ERV3
LTR19A



ERV3
LTR19B



ERV3
LTR19C



ERV3
LTR32



ERV3
LTR40A



ERV3
LTR40B



ERV3
LTR40C



ERV3
LTR41



ERV3
LTR41B



ERV3
LTR41C



ERV3
LTR42



ERV3
LTR47A



ERV3
LTR47A2



ERV3
LTR47B



ERV3
LTR47B2



ERV3
LTR50



ERV3
LTR52



ERV3
LTR53



ERV3
LTR53B



ERV3
LTR55



ERV3
LTR57



ERV3
LTR62



ERV3
LTR66



ERV3
LTR69



ERV3
LTR75



ERV3
LTR75B



ERV3
LTR77B



ERV3
LTR7A



ERV3
LTR7B



ERV3
LTR7C



ERV3
MER21



ERV3
MER21A



ERV3
MER54_EC



ERV3
MER54A



ERV3
MER54B



ERV3
MER68B



ERV3
MER68C



ERV3
MER70A



ERV3
MER70B



ERV3
MER70C



ERV3
MER73



ERV3
MER74B



ERV3
MER74C



ERV3
MER76



ERV3
MER77



ERV3
MER88



ERV3
MLT1G



ERV3
MLT1G1



ERV3
MLT1G2



ERV3
MLT1G3



ERV3
MLT1H



ERV3
MLT1H1



ERV3
MLT1H2



ERV3
MLT1I



ERV3
MLT1K



ERV3
MLT1L



ERV3
MLT1N2



ERV3
MLT2A1



ERV3
MLT2A2



ERV3
MLT2C2



ERV3
MLT2D



ERV3
MSTB



ERV3
MSTD



ERV3
RMER10B



ERV3
THE1A



ERV3
THE1C



ERV3
THE1D



hAT
CHARLIE10



hAT
CHARLIE2A



hAT
CHARLIE2B



hAT
CHARLIE3



hAT
CHARLIE5



hAT
CHARLIE6



hAT
CHARLIE7



hAT
CHARLIE8



hAT
CHARLIE9



hAT
CHESHIRE



hAT
CHESHIRE_A



hAT
CHESHIRE_B



hAT
FORDPREFECT



hAT
FORDPREFECT_A



hAT
MER103B



hAT
MER103C



hAT
MER106



hAT
MER106B



hAT
MER107



hAT
MER112



hAT
MER113



hAT
MER113B



hAT
MER117



hAT
MER119



hAT
MER1A



hAT
MER1B



hAT
MER20



hAT
MER20B



hAT
MER30B



hAT
MER33



hAT
MER45



hAT
MER45C



hAT
MER5B



hAT
MER63D



hAT
MER80B



hAT
MER81



hAT
MER94



hAT
MER94B



hAT
MER96



hAT
MER96B



hAT
MER97A



hAT
MER97B



hAT
MER97C



L1
HAL1B



L1
IN25



L1
L1



L1
L1HS



L1
L1M1B_5



L1
L1M2_5



L1
L1M2A_5



L1
L1M2A1_5



L1
L1M2B_5



L1
L1M2C_5



L1
L1M3B_5



L1
L1M3C_5



L1
L1M4B



L1
L1M6B_5end



L1
L1MA1



L1
L1MA2



L1
L1MA3



L1
L1MA4



L1
L1MA4A



L1
L1MA5



L1
L1MA5A



L1
L1MA6



L1
L1MA7



L1
L1MA8



L1
L1MA9



L1
L1MB1



L1
L1MB2



L1
L1MB3



L1
L1MB3_5



L1
L1MB4



L1
L1MB5



L1
L1MB8



L1
L1MC1



L1
L1MC2



L1
L1MC4



L1
L1MCA_5



L1
L1MCB_5



L1
L1MCC_5



L1
L1MD1



L1
L1MD2



L1
L1MD3



L1
L1MDB_5



L1
L1ME_ORF2



L1
L1ME1



L1
L1ME2



L1
L1ME3



L1
L1ME3A



L1
L1ME4A



L1
L1MEA_5



L1
L1MEB_5



L1
L1MED_5



L1
L1MEE_5



L1
L1PA10



L1
L1PA11



L1
L1PA12



L1
L1PA12_5



L1
L1PA13



L1
L1PA13_5



L1
L1PA14



L1
L1PA14_5



L1
L1PA15



L1
L1PA16



L1
L1PA16_5



L1
L1PA17_5



L1
L1PA2



L1
L1PA3



L1
L1PA4



L1
L1PA5



L1
L1PA6



L1
L1PA7



L1
L1PA7_5



L1
L1PA8



L1
L1PB1



L1
L1PB2



L1
L1PB2c



L1
L1PB3



L1
L1PB4



L1
L1PBA_5



L1
L1PBA1_5



L1
L1PBB_5



L1
L1PREC1



L1
L1PREC2



LTR Retrotransposon
HARLEQUINLTR



LTR Retrotransposon
HERV-K14CI



LTR Retrotransposon
HERV-K14I



LTR Retrotransposon
HUERS-P3



LTR Retrotransposon
LORI



LTR Retrotransposon
LTR11



LTR Retrotransposon
MER4I



LTR Retrotransposon
MER511



LTR Retrotransposon
MER52B



LTR Retrotransposon
MER61D



LTR Retrotransposon
MER61E



LTR Retrotransposon
MER61F



LTR Retrotransposon
MER61I



LTR Retrotransposon
MER95



LTR Retrotransposon
PTR5



LTR Retrotransposon
THE1_I



Mariner/Tc1
GOLEM_A



Mariner/Tc1
GOLEM_C



Mariner/Tc1
HSMAR1



Mariner/Tc1
HSMAR2



Mariner/Tc1
HSTC2



Mariner/Tc1
KANGA2_A



Mariner/Tc1
MADE1



Mariner/Tc1
MARINER1_EC



Mariner/Tc1
MARNA



Mariner/Tc1
MER44A



Mariner/Tc1
MER44B



Mariner/Tc1
MER44C



Mariner/Tc1
MER6B



Mariner/Tc1
MER8



Mariner/Tc1
TIGGER1



Mariner/Tc1
TIGGER2



Mariner/Tc1
TIGGER5



Mariner/Tc1
TIGGER6B



Mariner/Tc1
TIGGER7



Mariner/Tc1
TIGGER8



Mariner/Tc1
TIGGER9



Mariner/Tc1
ZOMBI_A



Merlin
Merlin1_HS



SINE
SVA



SINE1/7SL
AluYa5



SINE1/7SL
AluYb8



SINE1/7SL
AluYb9



SINE1/7SL
AluYk13



SINE3/5S
AninSINE1_HS



Transposable Element
MER54



Transposable Element
TARE

















TABLE 6







Satellite correlated genes. Adapted from


Ting et al.(Tinget al., 2011)











Gene Names







A2ML1




ABCA9




ACADSB




ACBD7




ADAMTSL3




ALG11




ANGEL2




ANKRD20A1




AP1S3




APOL4




APOL6




ATP10B




BNC1




C11ORF72




C11ORF74




C12ORF5




C13ORF29




C15ORF2




C15ORF28




C17ORF77




C1ORF130




C1ORF69




C1ORF84




C21ORF82




C3ORF20




C6ORF170




C7ORF44




C7ORF46




C8ORF12




C9ORF68




CAGE1




CCBP2




CCDC122




CCDC52




CD3EAP




CDON




CENPM




CES3




CES7




CHRM5




CLCC1




COX18




CPM




CPSF2




CYP46A1




DBF4B




DCHS2




DDO




DHRS4L2




DKFZP434L187




DKFZP779L1853




DNAH5




DNAH8




DSG3




DUSP19




DZIP3




EEF2K




F2RL3




FAM111B




FAM122C




FAM22G




FAM75A2




FAM83D




FAT3




FBXO15




FBXW10




FCF1




FER




FGF5




FLJ11292




FLJ41649




FLJ43763




FUT1




GALNT13




GBP4




GK5




GLIPR1L2




GPR110




GPR157




GTPBP10




GTSE1




GUSBP1




HERC4




HESRG




HIF3A




HMGA2




HRH4




HUNK




HYDIN




IL12RB1




IPO9




KCTD18




KIAA1245




KIAA1257




KIAA1328




KIR3DX1




LEPREI




LOC147804




LOC349196




LOC440313




LOC441242




LOC441426




LOC642980




LOC643406




LOC649305




LOC91948




LRRC2




LTV1




LYRM2




LYRM7




MCFD2




MED18




MORC4




MSH5




MTBP




MX2




MYH1




MYO3B




MYOM3




NBPF1




NEB




NHEDC1




NIPSNAP3B




NME7




NMNAT1




NUP43




ODF2L




OR11II1




OR11H12




OR4F16




OR4K15




OR7D2




OR7E156P




ORC6L




PCBD2




PDDC1




PGPEP1




PHACTR4




PHTF1




PLA2G2D




PLEKIIA5




PRKRIR




PRND




PXMP4




QTRTD1




RASGRP3




REXO1L1




RGR




RNF125




SIGLEC10




SIGLEC8




SIRPB1




SLC13A2




SLC14A2




SLCI6A12




SLCI9A3




SLC1A6




SLC27A1




SLC31A1




SMU1




SP100




STRC




STX17




TAOK1




TCL6




TEX9




TGFB2




TIGD1




TNFRSF19




TRIM43




TRPM3




TTN




ULBP1




USPL1




UTP14C




WDR17




WDR31




XKR9




XRCC2




ZFYVE20




ZMYM1




ZMYND17




ZNF100




ZNF192




ZNF208




ZNF273




ZNF320




ZNF331




ZNF37A




ZNF383




ZNF431




ZNF445




ZNF471




ZNF480




ZNF490




ZNF492




ZNF493




ZNF528




ZNF562




ZNF621




ZNF623




ZNF667




ZNF670




ZNF7




ZNF720




ZNF804B




BC029464




BC082237




BC050580




BC039319




AK096834




BC042893




BC043508




HBET1




NR_003246




LOC643079




BC040190




AK095450




BC036442




DKFZP761G18121




AK092337




KIAA0379




FLJ44076




AX748237




AX747345




AX747165




CR627148




UNQ2963




DKFZP667M2411




AK125319




AK125996




AK026805




AK129982




CR592614




AK095077




BC035989




CR623134




AK026100




RP1-140A9.6




AX747405




NR_002828




NR_003130




BIRC4BP




AK054836




AX747417




AY314745




NR_001318




AX747586




AK125128




AK055694




BC035084




WUGSC:H_DJ0855D2




1.2




CR596262




AX746734




AK024378




BC037952




BC041998




BC008050




NR_003133




AX748369




BC043541




AK131347




FLJ00140




CR620525




AX748243




AX747639




AX746484




CR605783




AK097143




BC052952




AK124179




FLJ16008




BC073807




BC015784




CR592225




BC031280




DKFZP686F19123




AX747440




AK096469




AK124893




AX747721




AK123584




NR_003263




DKFZP762C213




BC094791




CR627394




AK124673




NR_002910




FRABIN




BC069727




BC037884




BX648696




CR627383




BC034569




AX747308




AK123585




BC011779




DKFZP686II1615




BC070093




BX537874




AX748226




CR598144




BC040189




AL832479




NR_002939




AL833449




BC047600




KIAA1031




AK095766




AL832786




BC035181




NR_002220




DQ596646




NM_001001704




AL832797




AK129672




AK123838




AX746771




C20ORF38




AX746989




LOC285382




MGC102966




AK124194




FLJ45337




AK126334




AK057596




NR_003128




AK096077




DERP7




AK098126




BC033330




BC029555




LOC129881




AK097527




BX648961




AK096499




AK097777




AK091028




FLJ37953




PTPN1L




AK096196




AK056351




AX746750




LOC440053




BC068605




UNQ9369




PFDN6L




AK125042




AK125489




BC013681




AK056866




AX747590




AX746620




FLJ00310




NM_001042703




AK094618




AX748002




BC041646




AJ617629




AL833139




AK097428




AK056105




MGC13098




AK127557




KIAA1456




BC069809




LOC441108




NM_001039909




AK096291




BX537710




BC041449




NR_002836




CR598129




BC035112




CR613732




DQ597733




AX747172




AK128266




TCAM-1




BC050344




BC047380




AL832439




BC042121




BC041426




C15ORF20




AK125310




DKFZP434P055




KIAA0010




COX18HS




BC038578




AY314748




AK023134




AK131313




BC041865




AX746851




LOC606495




AK127238




LOC441282




BOZF1




AK026825




AK128305




AL713649




DQ573949




AK091996




CR606964




HSKRP1




AX747556




NR_003266




CR749689




BC049371




AX747988




FLJ35848




WHDC1L1




AK126491




AK024841




AX746688




FLJ37357




FLJ44955




BC040631




CR627135




DKFZP451M2119




CR627206




AK127460




BC019672




IIERV-IIIIIILA1_




FUSION




AK057632




FLJ00264




NY-REN-7




AK125288




AF086203




LOC94431




BC043415




AK098333




BC042588




AX747864




AY314747




AK128216




BC044257




AX747062




BX649144




AL137270




PP8961




AK056558




AK094845




AX747742




AK095981




CTRP6




NR_002821




AX746880




AK125817




AK056417




AK026469




AK090984




AK131520




AL833246




AK125832




BC041455




AF380582




AX747658




AX721193




BC047626




FLJ44060




KIAA0982




AK093513




BC038431




BX161428




DKFZP686O248




AK096335




BX640887




BC009626




AY338954




BC036412




NM_001001681




AK056892




DQ573361




BC041466




NR_002210




FLJ33706




KIAA1767




MBL1P1




BC071776




AK127888




NR_002943




AX747340




LOC401252




AX746585




AK091594




AK096412




FLJ34047




AX747756




BC090058




CR611653




AL137733




BX537706




NR_001565




MGC4836




MGC29891




AK098240




AX748249




C1ORF140




AK055868




BC122562




BC041363




BC047625




BC021741




AK056524




BX647358




AK023515




AK125311




AK123891




LOC339809




AK128523




AK094859




PJCG6




AX748371




UNQ3037




AK054880




AK094224




AL833510




KENAE1




BC012110




BC052779




AK097893




BC105727




AK091527




WBSCR23




BC043378




AK056246




LOC401898




AK023856




UNQ1849




BC048997




FLJ36492




KIAA2023




AK054869




CR749689




BC029555




AK024378




NR_002821




DKFZP686F19123
















TABLE 7







Categories of repeated DNA.









Class
Size of repeat
Major chromosomal location(s)





‘Megasatellite’ DNA (blocks of
several
Various locations on selected


hundreds of kb in some cases)
kb
chromosomes










RS447
4.7
kb
~50-70 copies on 4p15 plus





several copies on distal 8p


untitled
2.5
kb
~400 copies on 4q31 and 19q13


untitled
3.0
kb
~50 copies on the X chromosome


Satellite DNA (blocks often from
5-171
bp
Especially at centromeres


100 kb to several Mb in length)





α (alphoid DNA)
171
bp
Centromeric heterochromatin of all





chromosomes


β (Sau3 A family)
68
bp
Centromeric heterochromatin of 1, 9, 13,





14, 15, 21, 22 and Y


Satellite 1 (AT-rich)
25-48
bp
Centromeric heterochromatin of most





chromosomes and other heterochromatic





regions


Satellites 2 and 3
5
bp
Most, possibly all, chromosomes


Minisatellite DNA (blocks often
6-64
bp
At or close to telomeres of all


within the 0.1-20 kb range)


chromosomes


telomeric family
6
bp
All telomeres


hypervariable family
9-64
bp
All chromosomes, often near telomeres


Microsatellite DNA (blocks often
1-4
bp
Dispersed throughout all chromosomes


less than 150 bp)



















TABLE 8







Repeated DNA elements.


The list is adapted from Repbase-GIRI.


http://www.girinst.org/, 


accessed January 31, 2011.









Name of Repeat












(AC)n






(AG)n






(AT)n






(C)n






(CAA)n






(CAAA)n






(CAAAA)n






(CAAAAA)n






(CCA)n






(CCCCA)n






(CCCCAA)n






(CCCCCA)n






(CCCGAA)n






(CCCTAA)n






(CCCTCA)n






(CCTA)n






(CG)n






(CGAA)n






(CGGA)n






(CTA)n






(CTCCA)n






(GAA)n






(GAAA)n






(GAAAA)n






(GAAAAA)n






(GACA)n






(GAGACA)n






(GCA)n






(GCC)n






(GCCA)n






(GCCC)n






(GCCCA)n






(GCCCC)n






(GCCCCA)n






(GCCCCC)n






(GCGCA)n






(GCTCA)n






(GGA)n






(GGAA)n






(GGAGA)n






(GGAGAA)n






(GGCA)n






(GGCCC)n






(GGGA)n






(GGGAGA)n






(GGGGA)n






(GGGGGA)n






(TAA)n






(TAAA)n






(TAAAA)n






(TAAAAA)n






(TACA)n






(TACAA)n






(TAGA)n






(TAGAA)n






(TATACA)n






(TCA)n






(TCAA)n






(TCACCA)n






(TCCA)n






(TCCCA)n






(TCTAA)n






(TGAA)n






(TGGAA)n






(TGGCCC)n






(TTAA)n






(TTAAA)n






ACRO1






ALR






ALR_






ALR1






ALR2






ALRa






ALRa_






ALRb






BSR






BSRa






>BSRb






>BSRd






>BSRf






>CER






>D20S16






>GGAAT






>GSAT






>GSATII






>GSATX






>HSAT4






>HSAT5






>HSAT6






>HSATI






>HSATII






>LSAU






>MSR1






>REP522






>SAR






>SATR1






>SATR2






>SN5






>SUBTEL_sat






>SUBTEL2_sat






>SVA2






>TAR1
















TABLE 9







Examples of non-coding RNAs in nature.










Non-coding RNA
Abbreviation
Example of function
Reference





Transfer RNA
tRNA
Translation
(Aitken et al.,





2010)


Ribosomal RNA
rRNA
Translation
(Aitken et al.,





2010)


Signal recognition
7SL RNA or
Translocation of proteins across the
(Gribaldo and


particle RNA
SRP RNA
Endoplasmatic Reticulum
Brochier-





Armanet, 2006)


Small nuclear RNA
snRNA
Splicing
(Valadkhan,





2010)


Small nucleolar RNA
snoRNA
Guides chemical modifications of
(Kiss, 2002)




other RNAs (like methylation and





pseudouridylation).



Short Interspersed
SINE
The most common SINE is the Alu
(Mariner et al.,


repetitive elements

element (~10% of the genome). Alu
2008)




is upregulated in response to stress





and binds RNA polymerase II to





suppress transcription.



microRNA
miRNA
Post-transcriptional gene silencing
(Bartel, 2009)


Small interfering RNA
siRNA
Post-transcriptional gene silencing
(Elbashir et al.,





2001)


Piwi-interacting RNA
piRNA
Transciptional gene silencing,
(Taft et al., 2010)




defense against retrotransposons



Ribonuclease P
RNase P
Ribozyme involved in tRNA
(Guerrier-Takada




maturation
et al., 1983)


Ribonuclease MRP
RNase MRP
Ribozyme involved in rRNA
(Li et al., 2002)




maturation as well as mitochondrial





DNA replication



Y RNA
Y RNA
RNA processing, DNA replication
(Lerner et al.,





1981)


Telomerase RNA

Telomere synthesis
(Feng et al.,





1995)


Antisense RNA
aRNA
Transcriptional attenuation/mRNA
(Katayama et al.,




degradation/mRNA stabilisation/
2005)




translation block



Long ncRNA, large
Long ncRNA,
regulation of gene transcription,
(Kapranov et al.,


intervening ncRNA
lincRNA
post-transcriptional regulation,
2007)


(>200 nt)

epigenetic regulation









REFERENCES



  • Aitken, C. E., A. Petrov, and J. D. Puglisi. 2010. Single ribosome dynamics and the mechanism of translation. Annu Rev Biophys. 39:491-513.

  • Alessi, D. R., L. R. Pearce, and J. M. Garcia-Martinez. 2009. New insights into mTOR signaling: mTORC2 and beyond. Sci Signal. 2:pe27.

  • Asch, H. L., E. Eliacin, T. G. Fanning, J. L. Connolly, G. Bratthauer, and B. B. Asch. 1996. Comparative expression of the LINE-1 p40 protein in human breast carcinomas and normal breast tissues. Oncol Res. 8:239-47.

  • Bartel, D. P. 2009. MicroRNAs: target recognition and regulatory functions. Cell. 136:215-33.

  • Bergsmedh, A., A. Szeles, M. Henriksson, A. Bratt, M. J. Folkman, A. L. Spetz, and L.

  • Holmgren. 2001. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Nati Acad Sci USA. 98:6407-11.

  • Cheng, G. Z., S. Park, S. Shu, L. He, W. Kong, W. Zhang, Z. Yuan, L. H. Wang, and J. Q. Cheng. 2008. Advances of AKT pathway in human oncogenesis and as a target for anti-cancer drug discovery. Curr Cancer Drug Targets. 8:2-6.

  • Cotton, R. G., N. R. Rodrigues, and R. D. Campbell. 1988. Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc Natl Acad Sci USA. 85:4397-401.

  • Cowell, J. K., and K. C. Lo. 2009. Application of oligonucleotides arrays for coincident comparative genomic hybridization, ploidy status and loss of heterozygosity studies in human cancers. Methods Mol Biol. 556:47-65.

  • Cristofanilli, M., and J. Mendelsohn. 2006. Circulating tumor cells in breast cancer: Advanced tools for “tailored” therapy? Proc Natl Acad Sci USA. 103:17073-4.

  • Day, J. R., M. Jost, M. A. Reynolds, J. Groskopf, and H. Rittenhouse. 2011. PCA3: from basic molecular science to the clinical lab. Cancer Lett. 301:1-6.

  • Dinger, M. E., K. C. Pang, T. R. Mercer, and J. S. Mattick. 2008. Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLoS Comput Biol. 4:e1000176.

  • Dowling, R. J., I. Topisirovic, T. Alain, M. Bidinosti, B. D. Fonseca, E. Petroulakis, X. Wang, O. Larsson, A. Selvaraj, Y. Liu, S. C. Kozma, G. Thomas, and N. Sonenberg. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science. 328:1172-6.

  • Elbashir, S. M., W. Lendeckel, and T. Tuschl. 2001. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15:188-200.

  • Ender, C., A. Krek, M. R. Friedlander, M. Beitzinger, L. Weinmann, W. Chen, S. Pfeffer, N. Rajewsky, and G. Meister. 2008. A human snoRNA with microRNA-like functions. Mol Cell. 32:519-28.

  • Feng, J., W. D. Funk, S. S. Wang, S. L. Weinrich, A. A. Avilion, C. P. Chiu, R. R. Adams, E. Chang, R. C. Allsopp, J. Yu, and et al. 1995. The RNA component of human telomerase. Science. 269:1236-41.

  • Golan, M., A. Hizi, J. H. Resau, N. Yaal-Hahoshen, H. Reichman, I. Keydar, and I. Tsarfaty. 2008. Human endogenous retrovirus (HERV-K) reverse transcriptase as a breast cancer prognostic marker. Neoplasia. 10:521-33.

  • Goodier, J. L., and H. H. Kazazian, Jr. 2008. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell. 135:23-35.

  • Gribaldo, S., and C. Brochier-Armanet. 2006. The origin and evolution of Archaea: a state of the art. Philos Trans R Soc Lond B Biol Sci. 361:1007-22.

  • Guatelli, J. C., K. M. Whitfield, D. Y. Kwoh, K. J. Barringer, D. D. Richman, and T. R. Gingeras. 1990. Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci USA. 87:1874-8.

  • Guerrier-Takada, C., K. Gardiner, T. Marsh, N. Pace, and S. Altman. 1983. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 35:849-57.

  • Gupta, R. A., N. Shah, K. C. Wang, J. Kim, H. M. Horlings, D. J. Wong, M. C. Tsai, T. Hung, P. Argani, J. L. Rinn, Y. Wang, P. Brzoska, B. Kong, R. Li, R. B. West, M. J. van de Vijver, S. Sukumar, and H. Y. Chang. 2010. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 464:1071-6.

  • Hahn, P. J. 1993. Molecular biology of double-minute chromosomes. Bioessays. 15:477-84.

  • Halicka, H. D., E. Bedner, and Z. Darzynkiewicz. 2000. Segregation of RNA and separate packaging of DNA and RNA in apoptotic bodies during apoptosis. Exp Cell Res. 260:248-56.

  • Hanahan, D., and R. A. Weinberg. 2000. The hallmarks of cancer. Cell. 100:57-70.

  • Hildebrandt, M. A., H. Yang, M. C. Hung, J. G. Izzo, M. Huang, J. Lin, J. A. Ajani, and X. Wu. 2009. Genetic variations in the PI3K/PTEN/AKT/mTOR pathway are associated with clinical outcomes in esophageal cancer patients treated with chemoradiotherapy. J Clin Oncol. 27:857-71.

  • Jarrous, N., and R. Reiner. 2007. Human RNase P: a tRNA-processing enzyme and transcription factor. Nucleic Acids Res. 35:3519-24.

  • Jemal, A., R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, and M. J. Thun. 2008. Cancer statistics, 2008. CA Cancer J Clin. 58:71-96.

  • Ji, P., S. Diederichs, W. Wang, S. Boing, R. Metzger, P. M. Schneider, N. Tidow, B. Brandt, H. Buerger, E. Bulk, M. Thomas, W. E. Berdel, H. Serve, and C. Muller-Tidow. 2003. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 22:8031-41.

  • Kapranov, P., J. Cheng, S. Dike, D. A. Nix, R. Duttagupta, A. T. Willingham, P. F. Stadler, J. Hertel, J. Hackermuller, I. L. Hofacker, I. Bell, E. Cheung, J. Drenkow, E. Dumais, S. Patel, G. Helt, M. Ganesh, S. Ghosh, A. Piccolboni, V. Sementchenko, H. Tammana, and T. R. Gingeras. 2007. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 316:1484-8.

  • Katayama, S., Y. Tomaru, T. Kasukawa, K. Waki, M. Nakanishi, M. Nakamura, H. Nishida, C. C. Yap, M. Suzuki, J. Kawai, H. Suzuki, P. Carninci, Y. Hayashizaki, C. Wells, M. Frith, T. Ravasi, K. C. Pang, J. Hallinan, J. Mattick, D. A. Hume, L. Lipovich, S. Batalov, P. G. Engstrom, Y. Mizuno, M. A. Faghihi, A. Sandelin, A. M. Chalk, S. Mottagui-Tabar, Z. Liang, B. Lenhard, and C. Wahlestedt. 2005. Antisense transcription in the mammalian transcriptome. Science. 309:1564-6.

  • Kiss, T. 2002. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell. 109:145-8.

  • Klemke, R. L., S. Cai, A. L. Giannini, P. J. Gallagher, P. de Lanerolle, and D. A. Cheresh. 1997. Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol. 137:481-92.

  • Kwoh, D. Y., G. R. Davis, K. M. Whitfield, H. L. Chappelle, L. J. DiMichele, and T. R.

  • Gingeras. 1989. Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format. Proc Natl Acad Sci USA. 86:1173-7.

  • Lakkaraju, A., and E. Rodriguez-Boulan. 2008. Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol. 18:199-209.

  • Lerner, M. R., J. A. Boyle, J. A. Hardin, and J. A. Steitz. 1981. Two novel classes of small ribonucleoproteins detected by antibodies associated with lupus erythematosus. Science. 211:400-2.

  • Li, J., L. Wang, H. Mamon, M. H. Kulke, R. Berbeco, and G. M. Makrigiorgos. 2008. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat Med. 14:579-84.

  • Li, X., D. N. Frank, N. Pace, J. M. Zengel, and L. Lindahl. 2002. Phylogenetic analysis of the structure of RNase MRP RNA in yeasts. RNA. 8:740-51.

  • Lipson, D., T. Raz, A. Kieu, D. R. Jones, E. Giladi, E. Thayer, J. F. Thompson, S. Letovsky, P. Milos, and M. Causey. 2009. Quantification of the yeast transcriptome by single-molecule sequencing. Nat Biotechnol. 27:652-8.

  • Lower, R., J. Lower, and R. Kurth. 1996. The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc Natl Acad Sci USA. 93:5177-84.

  • Mariner, P. D., R. D. Walters, C. A. Espinoza, L. F. Drullinger, S. D. Wagner, J. F. Kugel, and J. A. Goodrich. 2008. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell. 29:499-509.

  • Mattick, J. S. 2004. RNA regulation: a new genetics? Nat Rev Genel. 5:316-23.

  • Maxam, A. M., and W. Gilbert. 1977. A new method for sequencing DNA. Proc Natl Acad Sci USA. 74:560-4.

  • Miele, E. A., D. R. Mills, and F. R. Kramer. 1983. Autocatalytic replication of a recombinant RNA. J Mol Biol. 171:281-95.

  • Miranda, K. C., D. T. Bond, M. McKee, J. Skog, T. G. Paunescu, N. Da Silva, D. Brown, and L. M. Russo. 2010. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int. 78:191-9.

  • Myers, R. M., Z. Larin, and T. Maniatis. 1985. Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science. 230:1242-6.

  • Ng, K., D. Pullirsch, M. Leeb, and A. Wutz. 2007. Xist and the order of silencing. EMBO Rep. 8:34-9.

  • Nilsson, J., J. Skog, A. Nordstrand, V. Baranov, L. Mincheva-Nilsson, X. O. Breakefield, and A. Widmark. 2009. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer. 100:1603-7.

  • Orita, M., H. lwahana, H. Kanazawa, K. Hayashi, and T. Sekiya. 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA. 86:2766-70.

  • Orozco, A. F., and D. E. Lewis. 2010. Flow cytometric analysis of circulating microparticles in plasma. Cytometry A. 77:502-14.

  • Pelloski, C. E., K. V. Ballman, A. F. Furth, L. Zhang, E. Lin, E. P. Sulman, K. Bhat, J. M. McDonald, W. K. Yung, H. Colman, S. Y. Woo, A. B. Heimberger, D. Suki, M. D. Prados, S. M. Chang, F. G. Barker, 2nd, J. C. Buckner, C. D. James, and K. Aldape. 2007. Epidermal growth factor receptor variant 111 status defines clinically distinct subtypes of glioblastoma. J Clin Oncol. 25:2288-94.

  • Rinn, J. L., M. Kertesz, J. K. Wang, S. L. Squazzo, X. Xu, S. A. Brugmann, L. H. Goodnough, J. A. Helms, P. J. Farnham, E. Segal, and H. Y. Chang. 2007. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 129:1311-23.

  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 74:5463-7.

  • Sarbassov, D. D., S. M. Ali, S. Sengupta, J. H. Sheen, P. P. Hsu, A. F. Bagley, A. L. Markhard, and D. M. Sabatini. 2006. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 22:159-68.

  • Simons, M., and G. Raposo. 2009. Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol. 21:575-81.

  • Sliva, K., and B. S. Schnierle. Selective gene silencing by viral delivery of short hairpin RNA. Virol J. 7:248.

  • Srikantan, V., Z. Zou, G. Petrovics, L. Xu, M. Augustus, L. Davis, J. R. Livezey, T. Connell, I. A. Sesterhenn, K. Yoshino, G. S. Buzard, F. K. Mostofi, D. G. McLeod, J. W. Moul, and S. Srivastava. 2000. PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc Natl Acad Sci USA. 97:12216-21.

  • Steemers, F. J., W. Chang, G. Lee, D. L. Barker, R. Shen, and K. L. Gunderson. 2006. Whole-genome genotyping with the single-base extension assay. Nat Methods. 3:31-3.

  • Storey, J. D., and R. Tibshirani. 2003. Statistical methods for identifying differentially expressed genes in DNA microarrays. Methods Mol Biol. 224:149-57.

  • Taft, R. J., K. C. Pang, T. R. Mercer, M. Dinger, and J. S. Mattick. 2010. Non-coding RNAs: regulators of disease. J Pathol. 220:126-39.

  • Tez, S., A. Koktener, G. Guler, and P. Ozisik. 2008. Atypical teratoid/rhabdoid tumors: imaging findings of two cases and review of the literature. Turk Neurosurg. 18:30-4.

  • Ting, D. T., D. Lipson, S. Paul, B. W. Brannigan, S. Akhavanfard, E. J. Coffman, G. Contino, V. Deshpande, A. J. Iafrate, S. Letovsky, M. N. Rivera, N. Bardeesy, S. Maheswaran, and D. A. Haber. 2011. Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science. 331:593-6.

  • Valadkhan, S. 2010. Role of the snRNAs in spliceosomal active site. RNA Biol. 7:345-53.

  • Velculescu, V. E., L. Zhang, B. Vogelstein, and K. W. Kinzler. 1995. Serial analysis of gene expression. Science. 270:484-7.

  • Voisset, C., R. A. Weiss, and D. J. Griffiths. 2008. Human RNA “rumor” viruses: the search for novel human retroviruses in chronic disease. Microbiol Mol Biol Rev. 72:157-96, table of contents.


Claims
  • 1. A method for identifying the presence of a retrotransposon element in a microvesicle from a subject comprising the steps of: a. isolating microvesicles derived from a tumor cell from the subject;b. treating the isolated microvesicles with a combination of DNAse and Exonuclease III;c. extracting at least one nucleic acid from the treated microvesicles; andd. detecting the presence of the retrotransposon element in the extracted nucleic acid.
  • 2. The method of claim 1, wherein the retrotransposon element is LINE, SINE or HERV, or a fragment thereof.
  • 3. The method of claim 2, wherein the retrotransposon element is Line1 (L1), ALU, HERV-H, HERV-K, HERV-K6, HERV-W or HERV-C, or a fragment thereof.
  • 4. A method for determining the expression level of a retrotransposon element in a microvesicle from a subject comprising the steps of: a. isolating microvesicles derived from a tumor cell from the subject;b. treating the isolated microvesicles with a combination of DNAse and Exonuclease III;c. extracting at least one nucleic acid from the treated microvesicles; andd. determining the expression level of the retrotransposon element biomarker in the extracted nucleic acid.
  • 5. The method of claim 4, wherein the retrotransposon element is LINE, SINE or HERV, or a fragment thereof.
  • 6. The method of claim 5, wherein the retrotransposon element is Line1 (L1), ALU, HERV-H, HERV-K, HERV-K6, HERV-W or HERV-C, or a fragment thereof.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Continuation Application of U.S. application Ser. No. 13/819,539 filed Oct. 17, 2013 which is a 35 U.S.C. § 371 National Phase Entry Application of International Application No. PCT/US2011/050041 filed Aug. 31, 2011, which designates the U.S., and which claims the benefit of 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 61/378,860 filed Aug. 31, 2010; 61/421,421 filed Dec. 9, 2010; 61/437,547 filed Jan. 28, 2011; 61/438,199 filed Jan. 31, 2011; and 61/493,261 filed Jun. 3, 2011, the contents of each of which are incorporated herein by reference in their entirety. The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jan. 29, 2016, is named Sequence_Listing_030258-069537-C and is 5,407 bytes in size.

GOVERNMENT SUPPORT

This invention was made with Government support under grants CA86355, CA69246, CA141226, and CA141150 awarded by National Cancer Institute. The Government has certain rights in the invention.

US Referenced Citations (65)
Number Name Date Kind
5219727 Wang Jun 1993 A
5538871 Nuovo et al. Jul 1996 A
5547859 Goodman et al. Aug 1996 A
5556773 Yourno Sep 1996 A
5582981 Toole et al. Dec 1996 A
5639611 Wallace et al. Jun 1997 A
5639606 Willey Jul 1997 A
5811250 Solum Sep 1998 A
5840867 Toole et al. Nov 1998 A
6004755 Wang Dec 1999 A
6329179 Kopreski Dec 2001 B1
6525154 Shea et al. Feb 2003 B1
6607898 Kopreski et al. Aug 2003 B1
6759217 Kopreski Jul 2004 B2
6794135 Kopreski et al. Sep 2004 B1
6812023 Lamparski Nov 2004 B1
6893837 Slamon et al. May 2005 B2
6899863 Dhellin et al. May 2005 B1
6913879 Schena Jul 2005 B1
6916634 Kopreski Jul 2005 B2
6939671 Kopreski Sep 2005 B2
6994960 Foote et al. Feb 2006 B1
7074563 Koster Jul 2006 B2
7186512 Martienssen et al. Mar 2007 B2
7198893 Koster et al. Apr 2007 B1
7198923 Abrignani et al. Apr 2007 B1
7332533 Kim et al. Feb 2008 B2
7332552 Benicewicz et al. Feb 2008 B2
7332553 Sellergren et al. Feb 2008 B2
7364848 Van Beuningen et al. Apr 2008 B2
7378245 Liu May 2008 B2
7384589 Hart et al. Jun 2008 B2
7671010 Arap et al. Mar 2010 B2
7691383 Chakrabarty et al. Apr 2010 B2
7776523 Garcia et al. Aug 2010 B2
7807183 Hong et al. Oct 2010 B2
7897356 Klass Mar 2011 B2
10174361 Skog et al. Jan 2019 B2
20020106684 Kopreski Aug 2002 A1
20030077808 Rosen et al. Apr 2003 A1
20050003426 Ranum et al. Jan 2005 A1
20050250100 Hayashizaki Nov 2005 A1
20060081516 Hendrickson et al. Apr 2006 A1
20060116321 Robbins et al. Jun 2006 A1
20060160087 McGrath Jul 2006 A1
20060223072 Boyes et al. Oct 2006 A1
20070104738 Tatischeff et al. May 2007 A1
20070105105 Clelland May 2007 A1
20070254351 Abrignani et al. Nov 2007 A1
20070298118 Lotvall et al. Dec 2007 A1
20080268429 Pietrzkowski et al. Oct 2008 A1
20080287669 Braman et al. Nov 2008 A1
20090169636 O'Hagan et al. Jul 2009 A1
20090220944 Fais et al. Sep 2009 A1
20090227533 Bader et al. Sep 2009 A1
20100008978 Drummond et al. Jan 2010 A1
20100075315 Pietrzkowski Mar 2010 A1
20100184046 Klass et al. Jul 2010 A1
20100196426 Skog et al. Aug 2010 A1
20100209355 Chakrabarty et al. Aug 2010 A1
20100255514 Rak et al. Oct 2010 A1
20110081651 Hillan Apr 2011 A1
20120142001 Skog et al. Jun 2012 A1
20120238467 Taylor Sep 2012 A1
20130040833 Noerholm et al. Feb 2013 A1
Foreign Referenced Citations (60)
Number Date Country
2453198 Jul 2005 CA
2676113 Jan 2009 CA
2699646 Mar 2009 CA
101085349 Dec 2007 CN
HO8-509806 Oct 1996 JP
2002521071 Jul 2002 JP
2002535665 Oct 2002 JP
2003514523 Apr 2003 JP
2003531864 Oct 2003 JP
2008501336 Jan 2008 JP
2008035779 Feb 2008 JP
2008509806 Apr 2008 JP
2008541699 May 2008 JP
2010534480 Nov 2010 JP
2011510663 Apr 2011 JP
1994011018 May 1994 WO
1994022018 Sep 1994 WO
0004194 Jan 2000 WO
2001036601 May 2001 WO
2001082958 Nov 2001 WO
2002099064 Dec 2002 WO
03023065 Mar 2003 WO
2003050290 Jun 2003 WO
20030076603 Sep 2003 WO
200500098 Jan 2005 WO
2005000098 Jan 2005 WO
2005081867 Sep 2005 WO
2005121359 Dec 2005 WO
2005121369 Dec 2005 WO
2006020707 Feb 2006 WO
2006048291 May 2006 WO
2006048291 May 2006 WO
2006113590 Oct 2006 WO
2007015174 Feb 2007 WO
2007103572 Sep 2007 WO
2007103572 Sep 2007 WO
20070126386 Nov 2007 WO
2007127848 Nov 2007 WO
2008084331 Jul 2008 WO
2008104543 Sep 2008 WO
2009015357 Jan 2009 WO
2009021322 Feb 2009 WO
2009036236 Mar 2009 WO
2009030029 Mar 2009 WO
2009092386 Jul 2009 WO
2009100029 Aug 2009 WO
2009100029 Aug 2009 WO
2009155505 Dec 2009 WO
2010028099 Mar 2010 WO
2010056337 May 2010 WO
2010065968 Jun 2010 WO
2010099184 Sep 2010 WO
2010141955 Dec 2010 WO
2011009104 Jan 2011 WO
2011031877 Mar 2011 WO
2011031892 Mar 2011 WO
2011031877 Mar 2011 WO
2011088226 Jul 2011 WO
2011127219 Oct 2011 WO
2012031008 Mar 2012 WO
Non-Patent Literature Citations (202)
Entry
Ruprecht, K. et al., Human Endogenous Retrovirus Family HERV-K(HML-2) RNA Transcripts Are Selectively Packaged into Retroviral Particles Produced by the Human Germ Cell Tumor Line Tera-1 and Originate Mainly from a Provirus on Chromosome 22q11.21, J. Virol., vol. 82, pp. 10008-10016 (Year: 2008).
Abravaya et al., “Detection of point mutations with a modified ligase chain reaction (Gap-LCR)”, Nucleic Acids Research, 23(4):675-682 (1995).
Allawi et al., “Quantitation of microRNAs using a modified Invader assay”, RNA, 10:1153-1161 (2004).
Al-Nedawi et al., “Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells”, Nature Cell Biology, 10(5):619-624 (2008).
Ason et al., “Differences in vertebrate microRNA expression”, PNAS, 103(39):14385-14389 (2006).
Balzar et al., “The biology of the 17-1A antigen (Ep-CAM)”, J Mol Med, 77:699-712 (1999).
Benner et al., “Evolution, language and analogy in functional genomics”, Trends in Genetics, 17:414-418 (2001).
Booth et al., “Exosomes and HIV GAG BUD From Endosome-Like Domains of the T Cell Plasma Membrane”, J Cell Biol., 172(6):923-935 (2006).
Bossi et al., “Molecularly Imprinted Polymers for the Recognition of Proteins: The State of the Art”, Biosensors Bioelectronics, 22:1131-1137 (2007).
Carr et al., “Circulating membrane vesicles in leukemic blood”, Cancer Res., 45:5944-5951 (1985).
Cermelli et al., “Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease”, PLoS ONE, 6(8):e23937 (2011).
Chaput et al., “The Potential of Exosomes in Immunotherapy”, Expert Opin Biol Ther., 5(6):737-747 (2005).
Chen et al., “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases”, Cell Research, 18:997-1006 (2008).
Chen et al., “Microfluidic isolation and transcriptome analysis of serum microvesicles”, Lab Chip, 10:505-511 (2010).
Chen et al., “Real-time quantification of microRNAs by stem-loop RT-PCR”, Nucleic Acid Research, 33(20):e179 (2005).
Cheruvanky et al., “Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator”, Am J Physiol Renal Physiol, 292:F1657-F1661 (2007).
Cheung et al., “Natural variation in human gene expression assessed in lymphoblastoid cells”, Nature Genetics, 33:422-425 (2003).
Ciafre et al., “Extensive modulation of a set of microRNAs in primary glioblastoma”, Biochemical and Biophysical Research Communications, 334:1351-1358 (2005).
Clayton et al., “Human Tumor-Derived Exosomes Selectively Impair Lymphocyte Responses to Interleukin-2”, Cancer Res., 67(15):7458-7466 (2007).
Cocucci et al., “Shedding microvesicles: artefacts no more”, Trends Cell Biol, 19:43-51 (2009).
Corsten et al., “Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease”, Circulation Cardiovascular Genetics, 2:499-506 (2010).
Cotton et al., “Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations”, Proc. Natl. Acad. Sci. USA, 85:4397-4401 (1988).
Diehl et al., “BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions”, Nature Methods, 3 (7):551-559 with supplemental material (2006).
Dressman et al., “Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations”, PNAS 100(15):8817-8822 (2003).
El-Hefnawy Talal et al., “Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics”, Clinical Chemistry, 50(3):564-573 (2004).
Fabbri et al., “MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B”, PNAS, 104(40)15805-15810 (2007).
Florentino et al., “The minisequencing method: an alternative strategy for preimplantation genetic diagnosis of single gene disorders”, Molecular Human Reproduction, 9(7):399-410 (2003).
Fischer et al., “Length-Independent Separation of DNA Restriction Fragments in Two-Dimensional Gel lectrophoresis”, Cell, 16:191-200 (1979).
Affymetrix, Apr. 20, 2001, Apr. 20, 2001, retrieved from the Internet on May 21, 2003. “Gene chip human genome U133 set.” URL: http://www.affymetrix.com/products/arrays/specitic/hgu133.asp.
Duijvesz et al., European Urology, 59(5):823-831 (2011). “Exosomes as biomarker treasure chests for prostate cancer.”
Geneannot: Weizmann Institute of Science, Apr. 20, 2001, retrieved from the Internet on Apr. 20, 2012. “Probes for MYC available on affymetrix arrays HG-U95, HG-U133, and HG-U133 Plus 2.0).” URL: http://genecards.weizmann.ac.il/cgi-bin/geneannot/GA_search.pl.
Voisset et al., Microbiol. Mol. Biol. Rev., 72(1):157-196 (2008). “Human RNA ‘Rumor’ Viruses: the Search for Novel Human Retroviruses in Chronic Disease.”
Wang-Johanning et al., Cancer Res, 68(14):5869-5877 (2008). “Human Endogenous Retrovirus K Triggers an Antigen-Specific Immune Response in Breast Cancer Patients.”
Wieckowski et al., Immunologic Research, 36/1-3:247-254 (2006). “Human Tumor-Derived vs Dendritic Cell-Derived Exosomes Have Distinct Biologic Roles and Molecular Profiles.”
Yuan et al., PLoS One, 4(3):e4772 (2009). “Transfer of MicroRNAs by Embryonic Stem Cell Microvesicles.”
Alessi et al., Sci. Signal., 2(67):pe27 (2009). “New Insights into mTOR Signaling: mTORC2 and Beyond.”
Baj-Krzyworzeka et al., Cancer Immunol Immunother, 55:808-818 (2006). “Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes.”
Bamford et al., British Journal of Cancer, 9(12):355-358 (2004). “The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website.”
Bergsmedh et al., PNAS, 98(11):6407-6411 (2001). “Horizontal transfer of oncogenes by uptake of apoptotic bodies”.
Bratthauer et al., Cancer, 73(9):2333-2336 (1994). “Expression of LINE-1 Retrotransposons in Human Breast Cancer.”
Burghoff et al., Cardiovascular Research, 77:534-543 (2008). “Horizontal gene transfer from human endothelial cells to rat cardiomyocytes after intracoronary transplantation.”
Cadieux et al., Cancer Res, 66:8469-8476 (2006). “Genome-wide Hypomethylation in Human Glioblastomas Associated with Specific Copy Number Alteration Methylenetetrahydrofolate Reductase Allele Status, and Increased Proliferation.”
The Cancer Genome Atlas Research Network, Nature, 455:1061-1068 with Corrigendum (2008). “Comprehensive genomic characterization defines human glioblastoma genes and core pathways.”
Cheng et al., Current Cancer Drug Targets, 8:2-6 (2008). “Advances of AKT Pathway in Human Oncogenesis and as a Target for Anti-Cancer Drug Discovery.”
Cho et al., J Pathol, 211:269-277 (2007). “Hypermethylation fo CpG island loci and hypomethylation of LINE-I and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features.”
Contreras-Galindo et al., Journal of Virology, 82(19):9329-9336 (2008). “Human Endogenous Retrovirus K (HML-2) Elements in the Plasma of People with Lymphoma and Breast Cancer.”
Cortez et al., Expert Opin. Biol. Ther., 9(6):703-711 (2009). “MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases.”
Cowell et al., Microarray Analysis of the Physical Genome: Methods and Protocols, 556:47-65 (2009). “Application of Oligonucleotides Arrays for Coincident Comparative Genomic Hybridization, Ploidy Status and Loss of Heterozygosity Studies in Human Cancers.”
Daskalos et al., Int. J. Cancer, 124:81-87 (2009). “Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer.”
Day et al., Cancer Letters, 301:1-6 (2011). “PCA3: From basic molecular science to the clinical lab.”
Deregibus et al., Blood, 110(7):2440-2448 (2007). “Endothelial progenitor cell-derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA.”
Diehl et al., Nature Medicine, 14(9):985-990 (2008). “Circulating mutant DNA to assess tumor dynamics.”
Dowling et al., Science, 328:1172-1176 (2010). “mTORC1-Mediated Cell Proliferation, But Not Cell Growth, Controlled by the 4E-BPs.”
Estecio et al, PLoS One, 5:e399 (2007). “LINE-1 Hypomethylation in Cancer is Highly Variable and Inversely Correlated with Microsatellite Instability.”
Forbes et al., Current Protocols in Human Genetics, Supplement 57:10.11.1-10.11.26 (2008). “The Catalogue of Somatic Mutations in Cancer (COSMIC).”
Forbes et al., Nucleic Acids Research, 38(Database issue):D652-657 (2010). “COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer.”
Forbes et al., Nucleic Acids Research, 39(Database Issue):D945-D950 (2011). “COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer.”
Golan et al., Neoplasia, 10(6):521-533 (2008). “Human Endogenous Retrovirus (HERV-K) Reverse Transcriptase as a Breast Cancer Prognostic Marker.”
Goodier et al., Cell, 135:23-35 (2008). “Retrotransposons Revisited: The Restraint and Rehabilitation of Parasites.”
Guescini et al., J Neural Transm, 117:1-4 (2010). “Astrocytes and Glioblastoma cells release exosomes carrying mtDNA.”
Hanahan et al., Cell, 100:57-70 (2000). “The Hallmarks of Cancer.”
Hildebrandt et al., Journal of Clinical Oncology, 27(6):857-871 (2009). “Genetic Variations in the P13K/PTEN/AKT/mTOR Pathway Are Associated With Clinical Outcomes in Esophageal Cancer Patients Treated with Chemoradiotherapy.”
Iero et al., Cell Death and Differentiation, 15:80-88 (2008). “Tumour-released exosomes and their implications in cancer immunity.”
Itadani et al., Current Genomics, 9:349-360 (2008). “Can Systems Biology Understand Pathway Activation? Gene Expression Signatures as Surrogate Markers for Understanding the Complexity of Pathway Activation.”
Ji et al., Oncogene, 22:8031-8041 (2003). “MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer.”
Kleiman et al., Int J Cancer, 110:459-461 (2004). “HERV-K(HML-2) GAG/ENV Antibodies as Indicator for Therapy Effect in Patients with Germ Cell Tumors.”
Klemke et al., The Journal of Cell Biology, 137(2):481-492 (1997). “Regulation of Cell Motility by Mitogen-activated Protein Kinase.”
Kristensen et al., Clinical Chemistry, 55(8):1471-1483 (2009). “PCR-Based Methods for Detecting Single-Locus DNA Methylation Biomarkers in Cancer Diagnostics, Prognostics, and Response to Treatment.”
Lower et al., Proc. Natl. Acad. Sci., 93:5177-5184 (1996). “The viruses in all of us: Characteristics and biological significance of human endogenous retrovirus sequences.”
Novakova et al., Biochemical and Biophysical Research Communications, 386:1-5 (2009). “Biochemical and Biophysical Research Communications.”
Ostrowski et al., Nature Cell Biology, 12(1):19-30 with Supplemental Information (2010). “Rab27a and Rab27b control different steps of the exosome secretion pathway.”
Parsons et al., Science, 321:1807-1812 (2008). “An Integrated Genomic Analysis of Human Glioblastoma Multiforme.”
Pelloski et al., Journal of Clinical Oncology, 25(16):2288-2294 (2007). “Epidermal Growth Factor Receptor Variant III Status Defines Clinically Distinct Subtypes of Glioblastoma.”
Pleasance et al., Nature, 463:191-197 (2010). “A comprehensive catalogue of somatic mutations from a human cancer genome.”
Ratajczak et al., Leukemia, 20:1487-1495 (2006). “Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication.”
Roman-Gomez et al., Leukemia Research, 32:487-490 (2008). “Repetitive DNA hypomethylation in the advanced phase of chronic myeloid leukemia.”
Ruprecht et al., Cell. Mol. Life Sci., 65:3366-3382 (2008). “Endogenous retroviruses and cancer.”
Sarbassov et al., Molecular Cell, 22:159-168 (2006). “Prolonged Rapamycin Treatment Inhibits mTORC2 Assembly and Akt/PKB.”
Myers et al., “Detection of Single Base Substitutions by Ribonuclease Cleavage at Mismatches in RNA: DNA Duplexes”, Science, 230:1242-6 (1985).
Nagrath et al., “Isolation of Rare Circulating Tumour Cells in Cancer Patients by Microchip Technology”, Nature, 450(20/27):1235-1239 (2007).
Nakanishi et al., “PCA3 Molecular Urine Assay Correlates with Prostate Cancer Tumor Volume: Implication in Selecting Candidates for Active Surveillance”, The Journal of Urology, 179:1804-1810 (2008).
Nakazawa et al., “UV and skin cancer: Specific p53 gene mutation in normal skin as biologically relevant exposure measurement”, Proc. Natl. Acad. Sci. USA 91:360-364 (1994).
Ng et al., “MRNA of Placental Origin Is Readily Detectable in Maternal Plasma”, Proc Natl Acad Sci U S A., 100(8):4748-4753 (2003).
Ng et al., “The Concentration of Circulating Corticotropin-Releasing Hormone MRNA in Maternal Plasma Is Increased in Preeclampsia”, Clin Chem. 49(5):727-731 (2003).
Nilsson et al., “Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer.”, British Journal of Cancer 100(10):1603-1607 (2009).
Noerholm et al., “RNA Expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls”, BMC Cancer, Biomed Central, 12(1): 22 (2012).
Oliveira et al., “Distinct patterns of KRAS mutations in colorectal carcinomas according to germline mismatch repair lefects and hMLH1 methylation status”, Human Molecular Genetics, 13(19): 2303-2311 (2004).
Orita et al., “Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms”, Proc. Natl. Acad. Sci. USA, 86:2766-2770 (1989).
Pisitkun et al., “Discovery of Urinary Biomarkers”, Molecular & Cellular Proteomics, 5:1760-1771 (2006).
Rak et al., “Genetic determinants of cancer coagulopathy, angiogenesis and disease progression”, Vnitr Lek. 52(Suppl 1):135-8 (2006).
Raposo et al., “B Lymphocytes Secrete Antigen-presenting Vesicles”, J. Exp. Med, 183:1161-1172 (1996).
Ryan et al., “A prospective study of circulating mutant KRAS2 in the serum of patients with colorectal neoplasia: strong prognostic indicator in postoperative follow up”, Gut, 52:101-108 (2003).
Saal et al., “MicroRNAS and the kidney: coming of age”, Current Opinion in Nephrology and Hypertension 18:317-323 (2009).
Schetter et al., “Microrna Expression Profiles Associated With Prognosis and Therapeutic Outcome in Colon Adenocarcinoma”, JAMA, 299(4):425-436 (2008).
Shinojima et al., “Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme”, Cancer Research 63(20) 6962-70 (2003).
Steemers et al., “Whole-genome genotyping with the single-base extension assay”, Nature Methods, 3(1):31-3 (2006).
Stoorvogel et al., “The Biogenesis and Functions of Exosomes”, Traffic, 3:321-330 (2002).
Tam, “The Emergent Role of MicroRNAs in Molecular Diagnostics of Cancer”, Journal of Molecular Diagnostics, 10 (5):411-414 (2008).
Taylor et al., “Tumour-derived exosomes and their role in cancer-associated T-cell signaling defects”, British Journal of Cancer, 92:305-311 (2005).
Taylor et al., “MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer”, Gynecologic Oncology, 110:13-21 (2008).
Tewes et al., “Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast aancer: an option for monitoring response to breast cancer related therapies”, Breast Cancer Res Treat, 115:581-590 (2009).
Thery, C., et al., “Isolation and Characterization of Exosomes From Cell Culture Supernatants and Biological Fluids”, Curr Protoc Cell Biol. Chapter 3:Unit 3 22.1-32229, (2006).
Van Dijk et al., “Human cell growth requires a functional cytoplasmic exosome, which is involved in various mRNA decay pathways”, RNA, 13:1027-1035 (2007).
Velculescu et al., “Serial Analysis of Gene Expression”, Science, 270:484-7 (1995).
Went et al., “Frequent EPCAM Protein Expression in Human Carcinomas”, Hum Pathol., 35:122-128 (2004).
Wong et al., “Circulating Placental RNA in Maternal Plasma Is Associated with a Preponderance of 5′ mRNA Fragments: Implications for Noninvasive Prenatal Diagnosis and Monitoring”, Clin Chem, 51(10): 1786-1795 (2005).
Wood et al., “The Genomic Landscapes of Human Breast and Colorectal Cancers”, Science, 318:1108-1113 (2007).
Wright et al., “Newer potential biomarkers in prostate cancer”, Reviews in Urology, 9(4): 207-13 (2007).
Yan et al., “IDH1 and IDH2 mutations in gliomas.”, N. Engl. J. Med., 360(8):765-773 (2009).
Yu et al., “Oncogenic events regulating tissue factor expression”, Haematological Reports, 1(9):18-20 (2005).
Simons et al., Current Opinion in Cell Biology, 21:575-581 (2009). “Exosomes—vesicular carriers for intercellular communication.”
Skog et al., Nature Cell Biology, 10(12):1470-1476 with Supplemental Information, (2008). “Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers.”
Sliva et al., Virology Journal, 7:248 (2010). Selective gene silencing by viral delivery of short hairpin RNA.
Srikantan et al., PNAS, 97(22):12216-12221 (2000). “PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer.”
Thery et al., Nature Reviews Immunology, 2:569-579 (2002). “Exosomes: Composition, Biogenesis and Function.”
Ting et al., Science, 331:593-596 (2011). “Aberrant Overexpression of Satellite Repeats in Pancreatic and Other Epithelial Cancers.”
Valadi et al., Nature Cell Biology, 9(6):654-659 with Supplemental Information (2007). “Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.”
Revenfeld et al., “Diagnostic and prognostic potential of extracellular vesicles in peripheral blood”, Clin. Ther., 36 (6): 830-846 (2014).
Katoh et al., Frontiers in Oncology, 3, Article 234: 1-8 (2013).
Bess et al., “Microvesicles are a source of contaminating cellular proteins found in purified HIV-1 preparations.” Virology 230(1):134-144 (1997).
Biernat et al., “Predominant expression of mutant EGFR (EGFRvIII) is rare in primary glioblastomas”, Brain Pathol 14(2) 131-136 (2004).
Chabert et al., “Cell culture of tumors alters endogenous poly(ADPR)polymerase expression and activity”, Int J Cancer 53(5) 837-842 (1993).
Cho et al., “Hypermethylation of CpG island loci and hypomethylation of LINE-1 and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features”, J Pathol 211(3) 269-277 (2007).
Choi et al., “Proteomic analysis of microvesicles derived from human colorectal cancer ascites.”, Proteomic 11(13) 2745-2751 (2011).
Cooperberg et al., “The changing face of low-risk prostate cancer: trends in clinical presentation and primary management”, J Clin Oncol 22(11) 2141-9 (2004).
Dermer “Another anniversary for the war on cancer.” Nature Biotechnology 12(3):320 (1994).
Diehl et al., “Detection and quantification of mutations in the plasma of pateitns with colorectal tumors.” PNAS 102 (45) 16268-16373 (2005).
Eastham et al., “Relationship between clonogenic cell survival, DNA damage and chromosomal radiosensitivity in nine human cervix carcinoma cell lines” Int. Journal Radiat. Biol 77(3) 295-302 (2001).
GenBank (Accession NM_005896) submitted Jan. 31, 2003.
Grant et al., “The proteins of normal urine.” Journal of Clinical Pathology 10(4):360-367 (1957).
Keller et al., “Exosomes: from biogenesis and secretion to biological function”, Immunol Lett 107(2) 102-8 (2006).
May “How Many Species Are there on Earth?”, Science 241(1) 1441-1449 (1998).
Mellinghoff et al., “Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors”, N Engl J Med 353(19) 2012-2024 (2005).
Mitchell et al., “Can urinary exosomes act as treatment response markers in prostate cancer?”, J Transl Med 7:4 (2009).
Moderk et al., “Genome-wide detection of alternatives splicing in expressed sequences of human genes”, Nucleic Acids Research 29(13) 2850-2859 (2001).
Moscatello et al., “Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors”, Cancer Res 55(23) 5536-5539 (1995).
Nishikawa et al., Immunohistochemical analysis of the mutant epidermal growth factor, deltaEGFR, in glioblastoma, Brain Tumor Pathol 21(2) 53-56 (2004).
Saito-Hisaminto et al., “Genome-Wide Profiling of Gene Expression in 29 Normal Human Tissues with cDNA Microarray”, DNA Research 9 35-45 (2002).
Schmidt et al., “Quantitative multi-gene expression profiling of primary prostate cancer”, Prostate 66(14) 1521-34 (2006).
Singh et al., “Gene Expression correlates of clinical prostate cancer behavior”, Cancer Cell 1(2) 203-209 (2002).
The International SNP Map Working Group., “A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms” NATURE 409 928-933 (2001).
Thery et al. “Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids” Curr Protoc Cell Biol Chapter 3 Unit 3.22 1-29 (2006).
Tomlins et al., “Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer”, Science 310 (5748) 644-648 (2005).
Tullis et al., “Calcium protects DNase I from proteinase K: a new method for the removal of contaminating RNase from DNase I.” Analytical Biochemistry 107(1):260-264 (1980).
Yoshimoto et al., “Development of a real-time RT-PCR assay for detecting EGFRvIII in glioblastoma samples”, Clin Cancer Res 14(2) 488-493 (2008).
Yu et al., “Shedding of tissue factor (TF)-containing microparticles rather than alternatively spliced TF is the main source of TF activity released from human cancer cells”, J Throm Haemost 2(11) 2065-2067 (2004).
Huang et al. “Optimization of DNase I Removal of Contaminating DNA from RNA for Use in Quantitative RNA-PCR.” Biotechniques 20(6): 1012-1020 (1996).
Johnstone. “Exosomes biological significance: A concise review.” Blood Cells, Molecules, and Diseases 36(2): 315-321 (2006).
Lotvall at al. “Cell to Cell Signalling via Exosomes Through esRNA.” Cell Adhesion & Migration 1(3): 156-158 (2007).
Perkel. “Finding Points to Possible Blood Test for Brain Tumors.” HealthDay News [retrieved Apr. 18, 2019] https://www.medicinenet.com/script/main/art.asp?articlekey=94287 1-3 (2008).
Halatsch et al. “Epidermal growth factor receptor inhibition for the treatment of the glioblastoma multiforme and other malignant brain tumors.” Cancer Treatment Reviews, 32: 74-89, (2006).
Schalken “Validation of molecular targets in prostate cancer.” BJU International, 96: 23-29 (2005).
Fischer et al., Methods in Enzymology, 68:183-91 (1979). “Two-Dimensional Electrophoretic Separation of Restriction Enzyme Fragments of DNA.”
Furnari et al., “Malignant Astrocytic Glioma: Genetics, Biology, and Paths to Treatment”, Genes Dev., 21:2683-2710 (2007).
Gambim et al., Critical Care, 11(5):R107 (p. 1-12) (2007). “Platelet-derived exosomes induce endothelial cell apoptosis through peroxynitrite generation: experimental evidence for a novel mechanism of septic vascular dysfunction.”
Geiss et al., Nature Biotechnology 26(3):317-325 (2008). “Direct multiplexed measurement of gene expression with color-coded probe pairs.”
Ginestra et al., “The Amount and Proteolytic Content of Vesicles Shed by Human Cancer Cell Lines Correlates With Their in Vitro Invasiveness”, Anticancer Research, 18:3433-3438 (1998).
Gonzales et al., Nephrol Dial Transplant 23:1799-1801 (2008). “Urinary exosomes: is there a future?”
Gormally, E., et al., “Circulating Free DNA in Plasma or Serum As Biomarker of Carcinogenesis: Practical Aspects and Biological Significance”, Mutat Res., 635:105-117 (2007).
Greco, V., et al., “Argosomes: A Potential Vehicle for the Spread of Morphogens Through Epithelia”, Cell., 106:633-645 (2001).
Green et al., Blood, 116(15):2779-2782 with supplemental material (2010). “The prognostic significance of IDH1 mutations in younger adult patients with acute myeloid leukemia is dependent on FLT3/ITD status.”
Groskopf, J., et al., “Aptima PCA3 Molecular Urine Test: Development of a Method to Aid in the Diagnosis of Prostate Cancer”, Clin Chem., 52(6):1089-1095 (2006).
Guatelli et al, Proc. Natl. Acad. Sci. USA, 87:1874-1878 (1990). “Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication.”
Hahn, Bioessays, 15(7):477-484 (1993). “Molecular Biology of Double-Minute Chromosomes.”
Hartmann et al., Acta Neuropathol, 120:707-718 (2010). “Patients with IDHI wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas.”
Heimberger et al., J Transl Med. Oct. 19, 2005;3:38. “The natural history of EGFR and EGFRvIII in glioblastoma patients.”
Hessels et al., “DD3 PCA3-based Molecular Urine Analysis for the Diagnosis of Prostate Cancer”, European Urology, 44:8-16 (2003).
Hessels et al., “Detection of TMPRSS2-ERG Fusion Transcripts and Prostate Cancer Antigen 3 in Urinary Sediments May Improve Diagnosis of Prostate Cancer”, Clin Cancer Research, 13:5103-5108 (2007).
Holdhoff (Journal of the National Cancer Institute Sep. 16, 2009 vol. 101 Issue 18).
Hunter et al., PLoS ONE, 3(11) e3694 (2008). “Detection of microRNA Expression in Human Peripheral Blood Microvesicles.”
Iorio et al., Cancer Research, 67(18):8699-8707 (2007). “microRNA signatures in human ovarian cancer.”
Janowska-Wieczorek, A., et al., “Microvesicles Derived From Activated Platelets Induce Metastasis and Angiogenesis in Lung Cancer”, Int J Cancer., 113:752-760 (2005).
Johnson, S., et al., “Surface-Immobilized Peptide Aptamers As Probe Molecules for Protein Detection”, Anal Chem., 80:978-983 (2008).
Jones, S., et al., “Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses”, Science, 321(5897)1801-1806 (2008).
Kan et al, Proc. Natl. Acad. Sci. USA, 75(11):5631-5635 (1978). “Polymorphism of DNA sequence adjacent to human β-globin structural gene: Relationship to sickle mutation.”
Kan et al., The Lancet, 2:910-2 (1978). “Antenatal Diagnosis of Sickle-Cell Anaemia by D.N.A. Analysis of Amniotic-Fluid Cells.”
Kang et al., “Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers”, Int. J. Cancer, 125, pp. 353-355, 2009.
Kato et al., “A monoclonal antibody Imab-1 specifically recognizes IDH1R132H, the most common glioma-derived mutation”, Biocheinical and Biophysical Research Communications, 390, pp. 547-557, 2009.
Keller et al., Kidney International, 72:1095-1102 (2007). “CD24 is a marker of exosomes secreted into urine and amniotic fluid.”
Kislauskis, E.H., et al., “Sequences Responsible for Intracellular Localization of Beta-Actin Messenger RNA Also Affect Cell Phenotype”, J Cell Biol., 127:441-451 (1994).
Klein et al., Nature Biotechnology, 20:387-392 (2002). “Combined transcriptome and genome analysis of single microstatic cells.”
Koga et al., Anticancer Research, 25:3703-3707 (2005). “Purification, Characterization and Biological Significance of Tumor-derived Exosomes.”
Kosaka et al., “Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis.”, Cancer Sci., 10(101):2087-2092 (2010).
Krupp, G. “Stringent RNA quality control using the Agilent 2100 bioanalyzer” Application note, Agilent Technologies, Feb. 1, 2005.
Kwoh et al., Proc. Natl. Acad. Sci. USA 86:1173-1177 (1989). “Transcription-based amplification system and detection of amplified human immunodeficiency virus typel with a bead-based sandwich hybridization format.”
Landegren et al., Science, 241:1077-1080 (1988). “A Ligase-Mediated Gene Detection Technique.”
Laxman et al., Cancer Research, 68:645-649 (2008). “A first-generation multiplex biomarker analysis of urine for the early detection of prostate cancer.”
Lee et al., PLoS One, 6(6):e21300 (2011). “microRNA expression and clinical outcome of small cell lung cancer.”
Li et al., Nature Medicine, 14(5) 579-584 (2008). “Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing.”
Liu et al., Cell, 127:1223-1237 (2006). “Reconstitution, Activities and Structure of the Eukaryotic RNA Exosome.”
Liu, C., et al., “Murine Mammary Carcinoma Exosomes Promote Tumor Growth by Suppression of NK Cell Function”, J Immunol., 176:1375-1385 (2006).
Lo et al., Cytometry Part A, 73A:321-322 (2008). “Automated Gating of Flow Cytometry Data via Robust Model-Based Clustering.”
Lo et al., Nature Reviews Genetics, 8:71-77 (2007). “Prenatal Diagnosis: progress through plasma nucleic acids.”
Lo, Y.M., et al., “Plasma Placental RNA Allelic Ratio Permits Noninvasive Prenatal Chromosomal Aneuploidy Detection”, Nat Med., 13(2):218-223 (2007).
Mack et al., “Transfer of the Chemokine Receptor CCR5 Between Cells by Membrane-Derived Microparticles: A Mechanism for Cellular Human Immunodeficiency Virus 1 Infection”, Nature Medicine, 6(7):769-775 (2000).
Maheswaran et al., The New England Journal of Medicine, 359(4)366-377 (2008). “Detection of Mutations in EGFR in Circulating Lung-Cancer Cells.”
Mallardo, M., et al., “Isolation and Characterization of Staufen-Containing Ribonucleoprotein Particles From Rat Brain”, Proc Natl Acad Sci U S A, 100(4):2100-2105 (2003).
Maron, J.L., et al., “Gene Expression Analysis in Pregnant Women and Their Infants Identifies Unique Fetal Biomarkers That Circulate in Maternal Blood”, J Clin Invest., 117:3007-3019 (2007).
McLendon, R., et al., “Comprehensive Genomic Characterization Defines Human Glioblastoma Genes and Core Pathways”, Nature, 455(23):1061-1068 (2008).
Miele et al., J. Mol. Biol. 171:281-295 (1983). “Autocatalytic Replication of Recombinant RNA.”
Millimaggi, D., et al., “Tumor Vesicle-Associated CD147 Modulates the Angiogenic Capability of Endothelial Cells”, Neoplasia, 9(4):349-357 (2007).
Miranda et al., Kidney International, 78:191-199 (2010). “Nucleic acids within urinary exosomes/microvesides are potential biomarkers for renal disease.”
Related Publications (1)
Number Date Country
20160153053 A1 Jun 2016 US
Provisional Applications (5)
Number Date Country
61493261 Jun 2011 US
61438199 Jan 2011 US
61437547 Jan 2011 US
61421421 Dec 2010 US
61378860 Aug 2010 US
Continuations (1)
Number Date Country
Parent 13819539 US
Child 15012111 US