1. Technical Field
The present disclosure relates to imaging devices. More particularly, it relates to a circuit and method for measuring toner or ink levels in the imaging unit of an imaging device.
2. Description of the Related Art
Image forming devices such as copiers, laser printers, facsimile machines and the like typically use one or more toner containers to hold toner supply used for image forming processes. In some image forming devices, a large toner supply is provided in a reservoir in a toner cartridge that mates with a separate imaging unit. The imaging unit may include a developer unit having a sump that holds a smaller amount of toner, enough to ensure toner is adequately supplied by a toner adder roll and a developer roll, both of which are located in the developer unit, to a photoconductive drum. As toner within the imaging unit sump is depleted due to printing operations, additional toner is transferred from the toner cartridge to the imaging unit sump.
To ensure satisfactory operation of the imaging unit to transfer toner, the toner level within the imaging unit sump is maintained at a proper level. For example, if the imaging unit sump holds too much toner, toner may pack in the imaging unit sump, leak out of the ports and eventually break other components located inside and outside the imaging unit. If the toner level in the imaging unit sump gets too low, the toner adder roll may starve, causing a doctor blade of the imaging unit to film and damage the developer roll which may eventually impair the future performance of the imaging unit. As such, it is desirable to know the toner level in the imaging unit sump so as to effectively determine when to move toner from toner cartridge to the imaging unit sump.
Some methods for determining toner level in a container use estimates of toner use and accumulation based on print or time counts. However, these methods may not be accurate due to variability in factors such as the environment, developer roll age, toner patch sensing cycles, and toner transfer parameters.
Other known techniques for sensing or determining toner level include the use of electrical sensors that measure the motive force required to drive an agitator within a toner container, optical devices including mirrors and toner dust wipers in a container, and other opto-electromechanical devices such as a flag that moves with the toner level to actuate a sensor which triggers only when the toner volume reaches a predetermined level. Unfortunately, the addition of moving hardware increases component complexity and opportunities for errors. For instance, toner agitation may create unwanted toner dust in addition to the added complication of moving hardware.
Other techniques for sensing or determining toner level include use of a capacitive sensor disposed within a toner container, such as a waste toner container, and circuitry for sensing the capacitance of the capacitive sensor as toner levels in the container change. In one existing implementation, illustrated in
Output voltage Vout is modulated by a modulator circuit 105 to a square wave at the frequency of the AC signal generator 101 and synchronized thereto. The output of modulator circuit 105 is fed through a reference capacitor Cref back to the input of high pass amplifier 102. The modulator circuit 105 inverts the phase of the signal from the AC signal generator 101 so that the modulator circuit 105 and the AC signal generator 101 are 180 degrees out of phase with each other. The feedback loop controls output voltage Vout such that the input to high pass amplifier 102 is effectively a DC signal. In other words, the AC current through capacitor Cx is substantially balanced by the current through reference capacitor Cref. The transfer function for this circuit is
Vout=VAC*Cx/Cref,
where VAC is the voltage output of the AC signal generator 101. With Vout, VAC and Cref being known values, the capacitance of capacitor Cx can be determined which is indicative of the amount of toner existing in the toner container in which capacitor Cx is disposed. The circuit of
The absolute accuracy of the CTLS circuit is of importance in order to obtain accurate toner level measurements. If the CTLS circuit exceeds its error budget, the developer unit may either overfill or underfill. Overfill can cause the fill auger of the developer unit to break as it packs toner into the developer unit. Underfill can cause the developer unit to run dry which causes the doctor blade of the developer unit to undesirably strip a film off the developer roll. The error budget for the CTLS circuit of
It is difficult to maintain the desired accuracy of the CTLS circuit with the above set of error sources. What is needed is a CTLS circuit with well controlled errors so the desired accuracy may be maintained.
Example embodiments satisfy a need for a CTLS circuit that overcome the shortcomings of known circuits. According to an example embodiment, there is a system for determining the capacitance of a capacitor, such as a capacitive toner level sensor found in an imaging unit of an electrophotographic imaging device. The system may include at least one capacitor having a capacitance to be sensed, each at least one capacitor having a first terminal and a second terminal; a calibration capacitor having a first terminal and a second terminal; and first circuitry for sensing an input current at an input thereof and generating an output signal that is based upon a capacitance appearing at the input of the first circuitry. The system may further include multiplexer circuitry, coupled between the input of the first circuitry and the second terminal of each of the at least one capacitor and the calibration capacitor, for selectively coupling the second terminal of the at least one capacitor and the calibration capacitor, one at a time, to the input of the first circuitry while the second terminal not coupled to the input of the first circuitry is coupled to a ground reference; and controller circuitry for calculating a capacitance of the at least one capacitor based upon the output signal of the first circuitry when the at least one capacitor is coupled to the input thereof and upon the output signal of the first circuitry when the calibration capacitor is coupled to the input thereof. The multiplexer circuitry serves to improve the measurement accuracy by automatically calibrating with a known capacitance of the calibration capacitor. This allows for measuring very small capacitances without degrading the measurement accuracy. The multiplexer circuitry also reduces the cost of measuring multiple capacitances.
The above-mentioned and other features and advantages of the disclosed embodiments, and the manner of attaining them, will become more apparent and will be better understood by reference to the following description of the disclosed embodiments in conjunction with the accompanying drawings, wherein:
It is to be understood that the present disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The present disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless limited otherwise, the terms “connected,” “coupled,” and “mounted,” and variations thereof herein are used broadly and encompass direct and indirect connections, couplings, and mountings. In addition, the terms “connected” and “coupled” and variations thereof are not restricted to physical or mechanical connections or couplings.
Terms such as “first”, “second”, and the like, are used to describe various elements, regions, sections, etc. and are not intended to be limiting. Further, the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
Furthermore, and as described in subsequent paragraphs, the specific configurations illustrated in the drawings are intended to exemplify embodiments of the disclosure and that other alternative configurations are possible.
Reference will now be made in detail to the example embodiments, as illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts.
According to an example embodiment, CTLS circuit accuracy can be better controlled by adding one or more calibration capacitors and a multiplexer to the CTLS circuit. A block diagram of the CTLS circuit 200 is shown in
Assume, for the sake of argument, that the multiplexer circuit 201 is ideal such that there is substantially zero parasitic capacitance across an unselected channel. In this case, controller 202 and CTLS circuit 200 can determine the capacitance of capacitor Cx by measuring the capacitance of calibration capacitor Ccal, measuring the capacitance of capacitor Cx, and using the calibration capacitor Ccal and Cx measurements to compute the actual capacitance of capacitor Cx by controller 202. For capacitance values of capacitor Cx that are near the capacitance of calibration capacitor Ccal, the accuracy of the CTLS circuit is generally the same as the accuracy of Ccal. It is much simpler (and less expensive) to control the accuracy of a single passive component than it is to control the accuracy of all the active and passive error sources.
The capacitance value of calibration capacitor Ccal was chosen to be the same as the capacitance of a half-full developer unit, i.e., the developer unit at its toner fill point. In operation, the accuracy of CTLS circuit 200 may be viewed as being most important at the developer unit fill point. Of course, alternatively a second calibration capacitor could be added for a two-point calibration to compensate for a range of capacitance values for capacitor Cx, and more than two calibration capacitors may be used to further compensate for the range of capacitance values for capacitor Cx.
Unfortunately, real multiplexers are not ideal. There is parasitic capacitance that bridges open switches. Assume, for example, that the multiplexer circuit 201 is implemented as shown in
An improved multiplexer circuit 400 is shown in
Another improved multiplexer circuit 500 is shown in
In addition to reducing errors, multiplexing also allows a single measurement circuit to measure multiple unknown capacitances. An example multiplexer circuit 600 is shown in
It is understood that in an alternative embodiment, multiplexer circuit 600 may include a plurality of parallel-connected multiplexer circuits 500 instead of multiplexer circuits 400 illustrated in
The operation of multiplexer circuits 400, 500 and 600 will be described with reference to
It is understood that the above described acts of
The foregoing description of several methods and embodiments has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the disclosure to the precise acts and/or forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the claims appended hereto.
The present application is related to and claims priority from U.S. provisional application 61/618,317, filed Mar. 30, 2012, entitled, “Capacitive Measurement Multiplexing Circuit and Method,” the content of which is hereby incorporated by reference herein it is entirety. The present application is related to U.S. patent application Ser. No. 13/340,789, filed Dec. 30, 2011, entitled, “Capacitive Toner Level Sensor,” and U.S. patent application Ser. No. 13/432,693, filed Mar. 28, 2012, entitled, “Capacitive Supply Level Sensing Circuit and Method,” the contents of such applications are hereby incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4733171 | Milkovic | Mar 1988 | A |
5012247 | Dillman | Apr 1991 | A |
5659254 | Matsumoto | Aug 1997 | A |
5987269 | Allen et al. | Nov 1999 | A |
6452514 | Philipp | Sep 2002 | B1 |
6853241 | Fujimoto | Feb 2005 | B2 |
6924760 | McLeod | Aug 2005 | B1 |
6949937 | Knoedgen | Sep 2005 | B2 |
7078916 | Denison | Jul 2006 | B2 |
7555231 | Etter et al. | Jun 2009 | B2 |
8283934 | Nishizono | Oct 2012 | B2 |
8570052 | Mahartya | Oct 2013 | B1 |
8718496 | Barry et al. | May 2014 | B2 |
20020172521 | Oguma et al. | Nov 2002 | A1 |
20030123888 | Naito et al. | Jul 2003 | A1 |
20050099188 | Baxter | May 2005 | A1 |
20070247171 | O'Dowd et al. | Oct 2007 | A1 |
20080069576 | Etter et al. | Mar 2008 | A1 |
20110074446 | Chou | Mar 2011 | A1 |
20110163766 | Geaghan | Jul 2011 | A1 |
20110261005 | Joharapurkar et al. | Oct 2011 | A1 |
20130257455 | Ahne et al. | Oct 2013 | A1 |
20130278447 | Kremin | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
H01-144075 | Jun 1989 | JP |
Entry |
---|
L.K. Baxter, “Capacitive Sensors” Jun. 26, 2001, located at http://www.capsense.com/capsense-wp.pdf. |
Number | Date | Country | |
---|---|---|---|
20130257459 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
61618317 | Mar 2012 | US |