Capillary tube assembly with replaceable capillary tube

Information

  • Patent Grant
  • 6667474
  • Patent Number
    6,667,474
  • Date Filed
    Friday, October 27, 2000
    23 years ago
  • Date Issued
    Tuesday, December 23, 2003
    20 years ago
Abstract
The present invention relates to a heated capillary assembly which connects an atmospheric pressure ionization source to a lower pressure mass analyzing system which comprises a capillary tube removably secured to, and extending through the bore of a capillary support assembly.
Description




BRIEF DESCRIPTION OF THE INVENTION




This invention relates generally to a capillary tube assembly which connects an atmospheric pressure ionization chamber to a lower pressure mass analyzer assembly, and more particularly to a capillary assembly having a removable capillary tube.




BACKGROUND OF THE INVENTION




When an atmospheric pressure ionization (API) source such as an electrospray (ES) or atmospheric pressure ionization (APCI) source is installed on a mass spectrometer system, the gas flow from the atmospheric pressure ionization chamber into the vacuum system of the mass spectrometer must be set to match the pumping capacity of the vacuum pumps used. Small diameter orifices and capillary tubes are the two methods most often used to limit the gas flow from the atmospheric pressure spray chamber into the vacuum system of the mass spectrometer. These capillary tubes are often heated to provide thermal energy to the solvated ions passing through them, thus desolvating these ions.




Non-volatile material from the samples being analyzed by the mass spectrometer system can accumulate at the entrance or on the inner bore of these capillary tubes. These non-volatile materials can be salts from the liquid mobile phase being sprayed into the atmospheric pressure ionization source. They can also be proteins, lipids or salts, remaining in the sample solution after extraction from biological fluids such as plasma or urine. The accumulation of non-volatile material on these capillary tubes can lead to a reduced transfer of ions and reduction of signal. This requires the user to clean the capillary tube or replace it with a new one. Capillary tube maintenance or replacement typically occurs every several months for complex samples, and yearly for clean samples. Whatever the frequency of maintenance, the fact remains that the system is vented. The time for maintenance and bringing the mass spectrometer system back online takes approximately one day. This means a low sample throughput which translates into loss of revenue for a laboratory.




OBJECTS AND SUMMARY OF THE INVENTION




It is an object of the present invention to provide a heated capillary assembly in which the capillary tube can be easily and quickly removed from its heater for inspection, cleaning and replacement.




It is another object of the present invention to provide a heated capillary tube assembly with a replaceable capillary tube in which venting of the mass analyzer system is restricted during capillary tube removal and replacement.




These and other objects of the invention are achieved by a system in which an atmospheric pressure ionization chamber is connected to a lower pressure region of a mass analyzer via a capillary tube assembly having a removable capillary tube and to a system which inhibits venting of the lower pressure region during removal and replacement of the capillary tube.











BRIEF DESCRIPTION OF THE DRAWINGS




The foregoing and other objects of the invention will be more clearly understood from the following detailed description when read in conjunction with the accompanying drawings in which:





FIG. 1

shows an API probe coupled to a mass spectrometer via a capillary tube assembly in accordance with the prior art.





FIG. 2

shows a capillary assembly in accordance with one embodiment of the present invention.





FIG. 3

is an enlarged view of the region


3





3


of FIG.


2


.





FIG. 4

is an enlarged view of the end portion of a capillary tube assembly including a flap for inhibiting venting of the mass analyzer system.





FIG. 5

is a partial view of the input end of a capillary assembly in accordance with another embodiment of the invention.





FIG. 6

is an enlarged view of the capillary assembly in accordance with still another embodiment of the invention.





FIG. 7

is an enlarged view of a capillary assembly in accordance with a further embodiment of the present invention.











DESCRIPTION OF PREFERRED EMBODIMENT(S)




Referring to

FIG. 1

, a prior art mass spectrometer with an ionization source having probe


11


is illustrated coupled to a mass analyzer


12


by an ion transmission assembly. It is apparent to one skilled in the art that the ion source can be operated at pressures ranging from below atmospheric pressure to above atmospheric pressure. Although a quadrupole mass analyzer


12


is illustrated, it will be apparent to those skilled in the art that the mass analyzer may include, and is not limited to, time of flight (TOF), quadrupole, Fourier transform (FTMS), ion trap, magnetic sector or hybrid mass analyzers. By way of example, the ion source may be an atmospheric pressure ion source (API). More particularly, the ion source may comprise an electrospray ion source (ES) or atmospheric pressure chemical ionization source (APCI). In any event, the source includes an ion probe


11


which forms an ion spray


13


. The ionization mechanism involves the desorption at atmospheric pressure of ions from the fine electrically-charged particles formed by the ES or APCI probe.




The sample liquid may be delivered to the probe


11


by, but is not limited to, liquid chromatography pumps, syringe pumps, gravity-feed vessels, pressurized vessels and/or aspiration-feed vessels. Samples may also be introduced using auto injectors, separation systems such as liquid chromatography or capillary electrophoresis, capillary electrophoresis chromatography and/or manual injection valves connected to the API probe.




The ion transmission assembly includes successive chambers


16


,


17


and


18


, maintained at successively lower pressures with the mass analyzer


12


in the lowest pressure chamber. The first chamber


16


communicates with the atmospheric pressure ionization chamber


21


via a capillary tube


22


. Due to the potential at the end of the capillary tube, ions are caused to travel to the capillary tube where the difference in pressure between the chambers


16


and


21


cause ions and gases to enter the orifice


23


of the capillary tube and flow through the capillary passage into the chamber


16


. The other end of the capillary is opposite a skimmer


31


which separates the chamber


16


from the chamber


17


which houses an ion guiding octopole lens assembly


32


. A tube lens


36


, as described in U.S. Pat. No. 5,157,266 cooperates with the end of the capillary to force ions into the center of the expanding ion flow which leaves the capillary and travels toward the skimmer


31


. The octopole lens assembly


32


is followed by ion optics which may comprise a second skimmer


34


and lens


35


which direct ions into the analyzing chamber


18


and into a suitable mass analyzer


12


. The combination of capillary tube


22


, skimmer


31


, lens


32


, skimmer


34


and lens


35


form the ion transmission assembly. Although a particular ion transmission system is described, ions from the capillary can be guided into a mass analyzer by other ion guiding systems.




As discussed above, non-volatile materials from the sample can accumulate at the entrance or the inner bore of the capillary tube. These non-volatile materials can be salts from the liquid mobile phase being sprayed into the atmospheric pressure chamber


21


. They can also be proteins, lipids or salts remaining in the sample solution after extraction from biological fluids such as plasma or urine. The accumulation of these non-volatile materials on or in the capillary tube can lead to reduced signal, which requires the user to clean the capillary tube or replace it with a new one.




In accordance with the present invention, there is provided a capillary tube assembly, for example a heated capillary tube assembly, which connects the source chamber


21


to the lower pressure region of a mass spectrometer such as the region


16


, FIG.


1


. The capillary tube assembly is constructed such that the capillary tube may be easily removed from its mount for inspection, cleaning or replacing, and then reinserted in an aligned position into the assembly. This can be accomplished with minimum venting of the lower pressure regions thereby considerably reducing the down time of the mass spectrometer system, and increasing the daily throughput.




Referring to

FIGS. 2 and 3

, a heated capillary tube assembly


22


is illustrated. The capillary tube assembly includes a cylindrical heater


41


which is electrically heated via the heater wire


42


. A capillary tube


43


extends axially through the heater. The end of the heater includes a threaded bore portion


44


which receives the cooperating threads of the nut


46


. More particularly, the nut includes a head which has wrench flats


47


to allow a tool to loosen or tighten the nut. A shoulder


48


which abuts against the mating face of the capillary heater precisely determines the distance between the nut and heater, and thus the amount of compression of the sealing o-ring


49


. A compressible fitting


51


is compressed by the nut and urged against a capillary tube and heater to form a seal. Thus, the capillary can be easily removed by unthreading the nut and sliding the capillary along the axial bore of the heater assembly for removal and inspection or replacement. The capillary tube may, for example, be a steel capillary tube which slides into the mating bore of the heater body. The heater body is preferably made of a different metal such as an aluminum or bronze alloy to prevent the capillary tube and heater body from galling or seizing. The threads on the nut may be plated with a different metal such as silver or nickel to prevent galling of the threads to the heater body. Although a steel capillary tube has been described, the tube may be titanium, nickel, coated or lined e.g. glass lined, glass or other type of capillary tube known in the art. Although a heater body has been described for heating the capillary, the capillary tube may be directly resistively heated by applying a current along the tube which is mounted in a cylindrical body.




Referring to

FIG. 4

, the end of the heater assembly may be provided with a flap or seal


52


secured to the heater assembly by, for example, a screw


53


, the flap being made of a resilient material so that when the capillary tube is withdrawn the flap closes the opening at the end of the heater assembly, thereby minimizing venting of high pressure gases into the low pressure adjacent chamber.




Referring to

FIG. 5

, another embodiment of the invention is illustrated. The body


41


is supported by the wall


54


between the atmospheric pressure chamber and the lower pressure chamber by a sleeve


56


. The end of the body is provided with an external thread


57


which is adapted to receive a nut


58


. The capillary tube


43


is inserted axially into the body


41


. A compression fitting or ferrule


61


slides over the capillary, and the inclined surfaces of the ferrule and nut cooperate to compress the ferrule against the capillary tube to seal the tube to provide a seal for the capillary tube. The capillary tube is removed and replaced by unthreading the nut


58


, sliding the capillary out of the body, and then re-inserting the cleaned capillary tube or a replacement capillary tube and tightening the nut.





FIG. 6

shows an alternate sealing assembly in which the interior bore of the heater body


41


is inclined


62


to receive the compressible sealing ring or ferrule


63


which is compressed against the capillary by tightening the nut


64


.





FIG. 7

shows another embodiment of the invention in which a wall


71


and shield


72


support a heated capillary assembly. The heater body


73


has one end


74


supported by the shield


72


and its central portion supported by the wall


71


. A temperature sensor


76


is held against the heater body by spring


77


. The heater body receives a capillary tube


78


. The capillary tube is pressed against the heater body by a spring assembly


79


. The end of the capillary tube is secured to a nut or fitting


81


having external threads which are received by the internal threads at the end of the heater


71


. Thus, the capillary tube with its integral fitting


81


is screwed into the heater body and compresses an o-ring


82


to provide a seal. The heater assembly includes a sealing ball


83


which is retained in a well


84


formed in the heater assembly by a spring-loaded fitting


86


secured to the heater by screws


87


. Thus, as the capillary tube is removed, the ball


83


seals the bore of the heater preventing venting of the lower pressure chamber.




Although several arrangements for securing the capillary to the end of a support assembly or a heated assembly have been described, it is apparent that other attachments such as bayonet-type fittings or snap-on fittings may be used.




There has been provided a capillary tube assembly in which the capillary tube can be easily removed for cleaning or replacement.




The foregoing descriptions of specific embodiments of the present invention are presented for the purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed; obviously many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.



Claims
  • 1. A mass spectrometer system comprising an ionization chamber and a lower pressure mass spectrometer system and a capillary tube assembly coupling said ionization chamber to said lower pressure mass spectrometer system to allow ions and gas to flow from the ionization chamber into the mass spectrometer system, characterized in that said capillary tube assembly includes:a support assembly having an axial bore, a capillary tube extending through said axial bore and removable from the support assembly, and a securing assembly for sealably engaging and securing one end of said capillary tube to one end of the support assembly.
  • 2. A mass spectrometer system as in claim 1 in which the support assembly is a heated support assembly.
  • 3. A mass spectrometer system as in claim 1 in which the capillary tube is directly heated by passage of electrical current therealong.
  • 4. A mass spectrometer system as in claim 1, 2 or 3 including means for inhibiting venting of said lower pressure mass spectrometer system when the capillary is removed from the support assembly bore.
  • 5. A heated capillary tube assembly for connecting an ionization chamber to a lower pressure chamber in a mass analyzing system comprising:a heated support assembly having an axial bore, a capillary tube extending through said axial bore and removable from the heated assembly, and a securing assembly for sealably engaging and securing one end of the capillary tube to one end of the heated support assembly.
  • 6. A heated capillary tube assembly as in claim 5 including means for restricting the flow of gases through the bore of the heated support assembly from the ionization chamber to the lower pressure chamber when the capillary tube is removed.
  • 7. A heated capillary tube assembly as in claim 6 in which said restricting means comprises a flap mounted on the other end of the heated support assembly.
  • 8. A heated capillary tube assembly as in claim 6 in which said restricting means comprises a ball which falls into said heated support assembly bore when the capillary tube is removed.
  • 9. A heated capillary tube assembly as in claim 5 in which said securing assembly comprises a nut threadably received by the one end of the heated support assembly.
  • 10. A heated capillary tube assembly as in claim 9 including a sealing member between said nut and said heater assembly which is compressed against the capillary tube and heated support assembly when the nut is tightened.
  • 11. A heated capillary tube assembly as in claim 10 in which said sealing member is a ferrule.
  • 12. A heated capillary tube assembly as in claim 9 including an o-ring disposed between the nut and the one end of the heater assembly which is compressed against the heated support assembly and capillary tube when said nut is tightened to form a seal.
  • 13. A mass spectrometer system as in claim 1 in which the support assembly and the capillary tube are electrically connected.
  • 14. A heated capillary tube assembly as in claim 5 in which the support assembly and the capillary tube are electrically connected.
  • 15. A mass spectrometer system as in claim 1, further comprising a spring assembly which presses the capillary tube against the support assembly.
  • 16. A heated capillary tube assembly as in claim 5, further comprising a spring assembly which presses the capillary tube against the support assembly.
US Referenced Citations (9)
Number Name Date Kind
3867631 Briggs et al. Feb 1975 A
4977320 Chowdhury et al. Dec 1990 A
5289003 Musser Feb 1994 A
5304798 Tomany et al. Apr 1994 A
5416322 Chace et al. May 1995 A
5690828 Clay et al. Nov 1997 A
5736741 Bertsch et al. Apr 1998 A
5756995 Maswadeh et al. May 1998 A
5965883 Lee et al. Oct 1999 A
Foreign Referenced Citations (2)
Number Date Country
1146242 Jun 1989 JP
WO8502490 Jun 1985 WO