Carbon dioxide treatment of concrete upstream from product mold

Information

  • Patent Grant
  • 10654191
  • Patent Number
    10,654,191
  • Date Filed
    Monday, October 3, 2016
    7 years ago
  • Date Issued
    Tuesday, May 19, 2020
    4 years ago
Abstract
Fresh concrete is treated with carbon dioxide prior to delivery to a product mold for forming concrete products. Carbon dioxide gas is directed through a manifold, which may be coupled to a feedbox or a hopper, upstream from the product mold. Treating the fresh concrete with the carbon dioxide gas while it is in a loose state prior to placement in the product mold may generally promote uniform and enhanced carbon dioxide uptake.
Description
TECHNICAL FIELD

The present disclosure relates to methods of and apparatuses for making concrete products, for reducing the greenhouse gas emissions associated with making concrete products, and for sequestering carbon dioxide.


BACKGROUND

The following paragraphs are not an admission that anything discussed in them is prior art or part of the knowledge of persons skilled in the art.


U.S. Pat. No. 4,117,060 (Murray) describes a method and apparatus for the manufacture of products of concrete or like construction, in which a mixture of calcareous cementitious binder substance, such as cement, an aggregate, a vinyl acetate-dibutyl maleate copolymer, and an amount of water sufficient to make a relatively dry mix is compressed into the desired configuration in a mold, and with the mixture being exposed to carbon dioxide gas in the mold, prior to the compression taking place, such that the carbon dioxide gas reacts with the ingredients to provide a hardened product in an accelerated state of cure having excellent physical properties.


U.S. Pat. No. 4,362,679 (Malinowski) describes a method of casting different types of concrete products without the need of using a curing chamber or an autoclave subsequent to mixing. The concrete is casted and externally and/or internally subjected to a vacuum treatment to have it de-watered and compacted. Then carbon-dioxide gas is supplied to the mass while maintaining a sub- or under-pressure in a manner such that the gas diffuses into the capillaries formed in the concrete mass, to quickly harden the mass.


U.S. Pat. No. 5,935,317 (Soroushian et al.) describes a CO2 pre-curing period used prior to accelerated (steam or high-pressure steam) curing of cement and concrete products in order to: prepare the products to withstand the high temperature and vapor pressure in the accelerated curing environment without microcracking and damage; and incorporate the advantages of carbonation reactions in terms of dimensional stability, chemical stability, increased strength and hardness, and improved abrasion resistance into cement and concrete products without substantially modifying the conventional procedures of accelerated curing.


U.S. Pat. No. 7,390,444 (Ramme et al.) describes a process for sequestering carbon dioxide from the flue gas emitted from a combustion chamber. In the process, a foam including a foaming agent and the flue gas is formed, and the foam is added to a mixture including a cementitious material (e.g., fly ash) and water to form a foamed mixture. Thereafter, the foamed mixture is allowed to set, preferably to a controlled low-strength material having a compressive strength of 1200 psi or less. The carbon dioxide in the flue gas and waste heat reacts with hydration products in the controlled low-strength material to increase strength. In this process, the carbon dioxide is sequestered. The CLSM can be crushed or pelletized to form a lightweight aggregate with properties similar to the naturally occurring mineral, pumice.


U.S. Pat. No. 8,114,367 (Riman et al.) describes a method of sequestering a greenhouse gas, which comprises: (i) providing a solution carrying a first reagent that is capable of reacting with a greenhouse gas; (ii) contacting the solution with a greenhouse gas under conditions that promote a reaction between the at least first reagent and the greenhouse gas to produce at least a first reactant; (iii) providing a porous matrix having interstitial spaces and comprising at least a second reactant; (iv) allowing a solution carrying the at least first reactant to infiltrate at least a substantial portion of the interstitial spaces of the porous matrix under conditions that promote a reaction between the at least first reactant and the at least second reactant to provide at least a first product; and (v) allowing the at least first product to form and fill at least a portion of the interior spaces of the porous matrix, thereby sequestering a greenhouse gas.


International Publication No. WO/2012/079173 (Niven et al.) describes carbon dioxide sequestration in concrete articles. Concrete articles, including blocks, substantially planar products (such as pavers) and hollow products (such as hollow pipes), are formed in a mold while carbon dioxide is injected into the concrete in the mold, through perforations.


INTRODUCTION

The following paragraphs are intended to introduce the reader to the more detailed description that follows and not to define or limit the claimed subject matter.


According to an aspect of the present disclosure, a method of forming concrete products may include: supplying fresh concrete; treating the fresh concrete with carbon dioxide gas to form treated concrete; and subsequent to the step of treating, delivering the treated concrete to a product mold adapted to form the concrete products.


According to an aspect of the present disclosure, an apparatus for forming concrete products may include: a product mold adapted to form the concrete products; a component upstream of the product mold, and adapted to treat fresh concrete with carbon dioxide gas to form treated concrete, and deliver the treated concrete directly or indirectly to the product mold; and a gas delivery system connected to the component and adapted to control distribution of the carbon dioxide gas through the component.


According to an aspect of the present disclosure, a process of accelerating the curing of concrete and sequestering carbon dioxide in the concrete may include: supplying fresh concrete; directing a plurality of flows of carbon dioxide-containing gas under pressure into the fresh concrete at a respective plurality of locations, to form treated concrete; and subsequent to the step of directing, delivering the treated concrete to a product mold.


Other aspects and features of the teachings disclosed herein will become apparent, to those ordinarily skilled in the art, upon review of the following description of the specific examples of the present disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings included herewith are for illustrating various examples of apparatuses and methods of the present disclosure and are not intended to limit the scope of what is taught in any way. In the drawings:



FIG. 1 is a flow chart of a method of manufacturing concrete products;



FIGS. 2A to 2E are schematic views of an apparatus including a hopper, a modified feedbox, and a product mold;



FIGS. 3A and 3B are schematic views of an apparatus including a modified hopper, a feedbox, and a product mold;



FIGS. 4A and 4B are cutaway detail views of gas manifolds;



FIGS. 5A and 5B are cross section views of portions of the gas manifolds of FIGS. 4A and 4B, respectively;



FIGS. 5C to 5E are cross section views of portions of other gas manifolds;



FIG. 6 is a schematic diagram of a gas delivery system; and



FIG. 7 is a flow chart of a method of manufacturing concrete products with carbon dioxide treatment.





DETAILED DESCRIPTION

Various apparatuses or methods are described below to provide an example of an embodiment of each claimed invention. No example described below limits any claimed invention and any claimed invention may cover apparatuses and methods that differ from those described below. The claimed inventions are not limited to apparatuses and methods having all of the features of any one apparatus or method described below or to features common to multiple or all of the apparatuses or methods described below. It is possible that an apparatus or method described below is not an embodiment of any claimed invention. Any invention disclosed in an apparatus or method described below that is not claimed in this document may be the subject matter of another protective instrument, and the applicant(s), inventor(s) and/or owner(s) do not intend to abandon, disclaim or dedicate to the public any such invention by its disclosure in this document.


Referring to FIG. 1, concrete products or concrete articles may be made commercially by forming them in a molding machine and then curing the formed products. In a typical plant, various ingredients are conveyed to a mixer to make fresh concrete. The ingredients may be, for example, fine aggregate, coarse aggregate, fly ash, cement, chemical admixtures, and water. The mixed, fresh concrete is transferred to a hopper located above a product mold.


In each production cycle, an appropriate quantity of concrete is passed from the hopper and into the product mold. The concrete may then be formed and compacted (shaken and compressed) in the product mold into a plurality of products, typically four or more. The products may leave the molding machine on a tray, which is conveyed to a curing area. The products may be cured slowly (7 to 30 days) by exposure to the atmosphere. However, in some commercial operations, the products may be cured rapidly by steam or heat curing. For example, products may be placed in a steam-curing chamber for 8 to 24 hours. The cured products are removed from the curing area, and sent to further processing stations for packaging and transport to the end user.


Some production sequences make use of a feedbox. In each production cycle, an appropriate quantity of concrete is passed from the hopper to the feedbox, which is positioned above the product mold. The material in the feedbox is passed into the product mold as part of a regular cycle. Once the product mold is filled and the product is formed, the cycle will begin anew with new material being placed into the feed box. An agitator grid may be positioned in the feedbox to agitate the concrete as it is dropped from the feedbox into the molding machine. The concrete is then formed and compacted in the product mold, as described previously.


In some cases, the feedbox may be filled with dry cast concrete when the feedbox is in a retracted position. The feedbox may then move from the retracted position to an extended position, in which it is arranged over an open top of the product mold. The dry cast concrete may then be deposited from the feedbox into the product mold, by force of gravity. After depositing the dry cast concrete into the product mold, the feedbox is moved from the extended position to the retracted position. The agitator grid may be positioned to impinge upon the concrete in the feedbox, and assist the concrete in passing uniformly from the feedbox into the product mold.


These processes may be adapted for use with a range of concrete products that are molded in batches, at an industrial scale, for example but not limited to, blocks, pavers, other decorative or structural masonry units, tiles or pipes, etc.


In a process of forming concrete blocks, for example, a pallet may be moved by a conveyor system onto a pallet table or tray that, in turn, may be moved upwardly until the pallet contacts the product mold and forms a bottom for each of the one or more cavities of the product mold. Again, the feedbox, filled with dry cast concrete, may then be moved between the retracted and extended positions causing a feed drawer door of the feedbox to open above a frame of the product mold. With help from the agitator grid, the concrete is dropped into the product mold, where it fills the one or more cavities of the product mold via the open top. The product mold is filled optionally while being vibrated. The block molding machine may include a cutoff bar or blades, which may be fixed-mounted to the feedbox, to scrape or wipe away excess dry cast concrete from the top of the one or more cavities as the feedbox is driven back to the retracted position. The block molding machine may further a stripper assembly having a compaction arm and at least one head shoe, which may be moved into the one or more cavities of the product mold via their open tops to compress the dry cast concrete to a desired psi (pound-force per square inch) rating, while simultaneously vibrating the head shoe, product mold, pallet, and/or pallet table. The form may be raised while the stripper assembly is still in its lowered position leaving the shaped concrete blocks on the table. The compaction arm may then be raised, allowing the formed blocks to be ejected from the molding machine on the table. The cycle is then repeated while the table of formed blocks travels on a conveyor to the steam chamber.


Generally, a production cycle for concrete blocks involves several steps performed in a very short period of time with the molding machine. Each production cycle may make only a small number of blocks, for example 1 to 16 or more, but lasts for only a very short period of time, for example about 5 to 12 seconds. In this way, many blocks may be made in a working shift and transferred to an accelerated curing chamber.


Accelerated curing is used to make the blocks stable relatively quickly, and thereby reduce the total production time until the blocks may be shipped as finished products. Accelerated curing typically involves placing the formed blocks in an enclosure or chamber, and controlling the relative humidity and heat in the chamber for several hours. In cold climates, steam may be used. When the ambient temperature is adequate, moisture may be added without additional heat. The blocks may sit in the curing chamber for 8-48 hours before they are cured sufficiently for packaging.


The block manufacturing process described above may be energy intensive. For example, energy required for the steam curing may exceed 300 MJ per tonne of blocks. Depending on the source of this energy, the greenhouse gas emissions associated with steam curing may be significant, up to about 10 kg of CO2 per tonne of block. Also, while most blocks may be well formed, in a typical production shift several blocks may be damaged as they are stripped from the form and have to be discarded.


In general, the concepts described herein pertain to methods of and apparatuses for forming concrete products, in which fresh concrete is treated with carbon dioxide gas to form treated concrete. The treated concrete is subsequently delivered to a product mold to form the concrete products.


Treating the concrete to carbon dioxide gas while it is in a loose state prior to placement in the product mold may generally promote uniform and enhanced carbon dioxide uptake. Despite a short relatively exposure time, the inventors have recognized that the carbon dioxide uptake may be a significant portion of the theoretical maximum uptake, which for conventional cement may be approximately half of the mass of the cement in the mixture. Furthermore, the resulting calcium carbonate may be well distributed through the concrete, which may thereby improve the material properties of the formed concrete product.


As described in further detail herein, the carbon dioxide gas may be delivered at least in part while the concrete is being portioned for placement into the product mold. The carbon dioxide gas may be directed at the concrete for a period of time of about 60 seconds or less. The carbon dioxide gas may be delivered at an applied pressure of about 875 kPa above atmospheric pressure, or less. The gas may be delivered at a rate of about 80 litres per minute per litre of the concrete, or less. The delivered gas may be carbon dioxide-rich, e.g., at least about 90% carbon dioxide, and may be derived from a pressurized gas source. The gas may be heated. The gas may include a flue gas, which may be derived from a steam or heat curing process for products formed by the molding machine.


The addition of carbon dioxide may promote an alternate set of chemical reactions in the concrete resulting in different reaction products. In particular, thermodynamically stable calcium carbonate (limestone) solids may be formed preferentially to calcium hydroxide (portlandite) products. The carbon dioxide may be solvated, hydrated and ionized in water in the concrete to produce carbonate ions. These ions may combine with calcium ions from the cement to precipitate calcium carbonate in addition to amorphous calcium silicates. In this way, carbon dioxide may be sequestered in the concrete blocks as a solid mineral. Excess gas, if any, may be vented away from the treated concrete mass. Otherwise, the production cycle of a given concrete product may remain generally unchanged.


The carbonated mineral reaction products may increase the early strength of the concrete. This may allow accelerated curing to be eliminated, or a reduction in time or temperature, or both. The energy consumption or total time, or both, of the concrete product making process may thereby be reduced. If steam curing would otherwise be used, then, depending on how the energy for steam curing is generated, there may be a further reduction in the greenhouse gas emissions associated with making the concrete products. The carbonated products may also exhibit one or more of decreased permeability or water absorption, higher durability, improved early strength, reduced efflorescence, and reduced in service shrinkage. The number of products that are damaged when they are stripped from the mold, conveyed or otherwise processed prior to packaging may also be reduced.


The present teachings may be adapted for use with a range of concrete products that are molded in batches, at an industrial scale, for example but not limited to, blocks, pavers, other decorative or structural masonry units, tiles or pipes, etc.


Referring now to FIG. 2A, an apparatus 10 for forming concrete products is illustrated to include a conveyor 12, a hopper 14, a modified feedbox 16 and a product mold 18. The conveyor 12 supplies fresh concrete 20 to an inlet 22 of the hopper 14, either continuously or intermittently. An outlet 24 of the hopper 14 in a closed position maintains the concrete 20 residing in the hopper 14. Referring to FIG. 2B, the outlet 24 of the hopper 14 is moved to an opened position to supply the concrete 20 to the feedbox 16. The feedbox 16 is shown in a retracted position, and includes an agitator grid 30.


In the example illustrated, the feedbox 16 includes a first gas manifold 26. The first gas manifold 26 is positioned to direct a carbon dioxide gas flow 28 at the concrete 20 residing within the feedbox 16. The first gas manifold 26 is shown mounted to an inner surface of a peripheral wall of the feedbox 16. In other examples, the gas manifold may be formed as part of the agitator grid 30. Also, as shown, the carbon dioxide gas flow 28 may be directed by the first gas manifold 26 towards the concrete 20 to impinge an upper surface of the concrete 20. Alternatively, or additionally, the first gas manifold 26 may be positioned so that the carbon dioxide gas flow 28 is injected by the first gas manifold 26 directly into the volume of the concrete 20.


Delivery of carbon dioxide by the first gas manifold 26 may be generally synchronized with the inlet 22 of the hopper 14. For example, the pressurized flow 28 may be provided either once the inlet 22 is opened and the concrete 20 is accumulating in the feedbox 16, or, optionally, the flow 28 may begin immediately prior to opening the inlet 22.


Referring to FIG. 2C, the outlet 24 of the hopper 14 is moved to the closed position to maintain the concrete 20 in the hopper 14. The feedbox 16 is moving towards an extended position, from overtop a base plate 32 to above the product mold 18. A second gas manifold 34 is positioned to direct a carbon dioxide gas flow 36 at a stream of the concrete moving between the feedbox 16 and the product mold 18. Referring to FIG. 2D, the feedbox 16 continues to move towards an extended position, as treated concrete 20a is being delivered to the product mold 18. Finally, referring to FIG. 2E, the feedbox 16 is shown in the extended position, and all of the treated concrete 20a is shown delivered into the product mold 18.


Delivery of carbon dioxide by the second gas manifold 34 may be generally synchronized with movement of the feedbox 16 between the retracted and extended positions. For example, the pressurized flow 36 may be provided either once the feedbox 16 has begun to move over the product mold 18 and the concrete 20 is accumulating in the product mold 18, or, optionally, the flow 36 may begin immediately prior to this while the feedbox 16 remains positioned above the base plate 32.


In the example illustrated in FIGS. 2A to 2E, it should be appreciated that the gas manifolds 26, 34 may be installed as a retrofit to an existing feedbox and product mold configuration.


Referring now to FIG. 3A, an apparatus 10a for forming concrete products is illustrated to include the conveyor 12, a modified hopper 14a, a feedbox 16a and the product mold 18. The conveyor 12 supplies fresh concrete 20 to an inlet 22a of the hopper 14a, either continuously or intermittently. An outlet 24a of the hopper 14a is shown in an open position to supply the concrete 20 to the feedbox 16a. In the example illustrated, the hopper 14a includes at least one third gas manifold 38. The third gas manifold 38 is shown mounted to an inner surface of a peripheral wall of the hopper 14a, and is positioned to direct at least one flow of carbon dioxide gas at the concrete 20 residing within the hopper 14a.


Referring now to FIG. 3B, an apparatus 10b for forming concrete products is illustrated to include the conveyor 12, a modified hopper 14b, a feedbox 16b and the product mold 18. The conveyor 12 supplies fresh concrete 20 to an inlet 22b of the hopper 14b. An outlet 24b of the hopper 14b is shown in an open position to supply the concrete 20 to the feedbox 16b. In the example illustrated, the hopper 14b includes at least one fourth gas manifold 40. The fourth gas manifold 40 is shown mounted to an outer surface of the peripheral wall of the hopper 14a, and is positioned to direct at least one flow of carbon dioxide gas at a stream of the concrete 20 moving out of the outlet 24b of the hopper 14b, and into the feedbox 16a.


In the examples illustrated in FIGS. 3A and 3B, the gas manifolds 38, 40 may be shaped to correspond to the shape of the respective peripheral wall of the hopper 14a, 14b. For example, the gas manifolds 38, 40 may generally square or ring shaped, so as to extend circumferentially about the concrete 20. Furthermore, it should be appreciated that the gas manifolds 38, 40 may be installed as a retrofit to an existing hopper, and may be designed to operate in synchronization with the opening and closing of the respective outlet 24a, 24b.


Referring to FIG. 4A, the first gas manifold 26 is shown to include finger elements 42 and a supporting spine 44. In the example illustrated, each of the finger elements 42 is positioned generally perpendicular relative to the spine 44, and each includes an inward end adjacent to the spine 44, and an outward end spaced apart from the spine 44. The finger elements 42 may be spaced apart at regular intervals across the spine 44, or may be positioned strategically depending on a desired gas flow profile across the spine 44. In some examples, the spine 44 may be generally elongate, and have a length and shape that is appropriate for the mounting location. However, in other examples, the spine may be arc-shaped. The finger elements 42 may have different lengths and different diameters depending on the desired gas flow requirements. The spine 44 is shown affixed to a mounting structure 46 that allows the first gas manifold 26 to be securely mounted.


In the example illustrated, the finger elements 42 and the spine 44 are hollow. Internal gas passages 48 in the finger elements 42 may run through the entirety of the finger elements 42 and terminate in a perforation or aperture 50. The apertures 50 are distributed across the spine 44 for delivering flows of carbon dioxide gas. The configuration of the finger element 42, the spine 44 and the aperture 50 is also shown in FIG. 5A.


With continued reference to FIG. 4A, the apertures 50 may be located at the outward ends of the finger elements 42. The number and size of finger elements 42, and/or the number and size of the apertures 50, may be selected to generally balance a desire to direct carbon dioxide gas across the entirety of the concrete at the location of the gas manifold 26, and a desire to provide some back pressure to gas flow to help equalize the gas flow rate through the apertures 50 in different locations. Furthermore, the size of the apertures 50 may vary, e.g., having a diameter of between 1 mm and 10 mm. The size and number of the aperture 50 may be kept small enough so that a gas flow rate through each of the aperture 50 may be sufficient to push carbon dioxide gas into the concrete mass, if in contact with the concrete, so as to prevent or at least deter liquids or suspensions in the concrete from infiltrating the aperture 50.


A gas passage 52 in the spine 44 may run axially from one end to the opposite end, in fluid communication with each of the gas passages 48 and extending beyond the outermost finger elements 42. At one end of the spine 44, there is an gas inlet fitting 54 for connection to a gas feed conduit (not shown), and which is in fluid communication with the gas passage 52. The size of the gas passage 48 along the length of the spine 44 may vary depending on the relative distance from the gas inlet fitting 54 in order to promote equal gas flow rates into each of the finger elements 42.


Connections between the finger elements 42 and the spine 44 may be welded or threaded. A threaded connection may allow the finger elements 42 to be changed depending on the application. The connection may also be a quick connect setup, allowing the finger elements 42 to take the form of a tube, such as rigid or flexible plastic tubing.


Referring now to FIG. 4B, according to another example, the first gas manifold 26a is shown to include a supporting spine 44a, and without finger elements. Apertures 50a are distributed across the spine 44a for delivering flows of carbon dioxide gas. A gas passage 52a in the spine 44a may run axially from one end to the opposite end, in fluid communication with each of the apertures 50a. The configuration of the spine 44a and the apertures 50a is also shown in FIG. 5B.



FIGS. 5C, 5D and 5E show additional exemplary configurations. In FIG. 5C, the aperture 50b is shown to be generally aligned with an axis of the finger element 42b, and has a different, smaller cross sectional area. Furthermore, apertures may additionally or alternatively be positioned not just on the outward end of the finger element, but on the sides of the finger elements, on sections that may be expected to be in contact with concrete. For example, in FIG. 5D, the aperture 50c is shown to be generally perpendicular to an axis of the finger element 42c. FIG. 5E shows apertures 50d that are arranged at an angle relative to an axis of the finger element 42d.


It should be appreciated that the configurations of the gas manifolds 26, 26a shown in FIGS. 4A and 4B, respectively, may also be implemented as the gas manifolds 34, 38, 40 described herein. In any case, the gas manifold is arranged so that the apertures are either in contact with the concrete to be treated, or otherwise in relatively close proximity.


Referring now to FIG. 6, a gas delivery system 56 is adapted to control distribution of carbon dioxide gas through at least one component of a molding machine, upstream of the product mold. In some examples, the gas delivery system 56 may be implemented as a retrofit to an existing molding machine, so that no parts of the molding machine may need to be changed or significantly modified. In these examples, the gas delivery system 56 may be provided as additional components to the molding machine, which once installed do not interfere with the motion of any moving parts of the molding machine.


The gas delivery system 56 is shown to include at least one of the gas manifolds 26, to provide carbon dioxide gas to the feedbox 16 (FIG. 2B). Additionally, or alternatively, the gas delivery system 56 may include at least one of the gas manifolds 34, 38, 40 to provide carbon dioxide gas to the feedbox 16 or the hopper 14 (FIGS. 2C, 3A and 3B).


The gas inlet fitting 54 of the gas manifold 26 is connected by a gas feed line or conduit 58 to at least one gas supply valve 60. The conduit 58 may be sufficiently flexible to allow for movement of the gas manifold 26 and normal agitation during the production cycle. On the other hand, the conduit 58 may be sufficiently rigid, or tied-off, or both, to ensure that it does not interfere with any moving part of the molding machine (identified by reference numeral 66). The gas supply valve 60 governs flow of pressurized gas between a pressurized gas supply 62 and the gas manifold 26. In some examples, the gas supply valve 60 may include several gate valves that permit the incorporation of calibration equipment, e.g., one or more mass flow meters.


When the gas supply valve 60 is open, pressurized carbon dioxide-rich gas flows from the gas supply 62 to the gas inlet fitting 54, through the gas passages 52, 48 and out through the apertures 50. The gas supply 62 may include, for example, a pressurized tank (not shown) filled with carbon dioxide-rich gas, and a pressure regulator (not shown). The tank may be re-filled when near empty, or kept filled by a compressor (not shown). The regulator may reduce the pressure in the tank to a maximum feed pressure. The maximum feed pressure may be above atmospheric, but below supercritical gas flow pressure. The feed pressure may be, for example, in a range from 120 to 875 kPa. A pressure relief valve (not shown) may be added to protect the carbon dioxide gas supply system components. The carbon dioxide gas supplied by the gas supply 62 may be at about room temperature. However, if not, a heater (not shown) may be added to bring the uncompressed gas up to roughly room temperature before flowing to the gas manifold 26.


The gas supply valve 60 may be controlled by a controller 64. The controller 64 may be, for example, an electronic circuit or a programmable logic controller. In general, the controller 64 manages gas flow through the gas supply valve 60. The controller 64 may be connected to the molding machine 66 such that the controller 64 may sense when the molding machine 66 has begun or stopped a stage of operation, and thereby synchronize delivery of the carbon dioxide gas with the production cycle of the molding machine 66. For example, the controller 64 may be wired into an electrical controller or circuit of the molding machine 66 such that during one or more stages of operation a voltage, current or another signal is provided to the controller 64. Alternatively or additionally, one or more sensors may be added to the molding machine 66, adapted to advise the controller 64 of conditions of the molding machine 66. When not retrofitted to an existing molding machine, functions of the controller 64 may be integrated into a control system of the molding machine. Further alternatively, the controller 64 may consider a timer, a temperature sensor, a mass flow, flow rate or pressure meter in the conduit 58, or other devices, in determining when to stop and start gas flow (e.g., a solenoid). In general, the controller 64 is adapted to open the gas supply valve 60 at a time beginning between when the concrete passes in the vicinity of the apertures 50, and close the gas supply valve 60 after a desired amount of carbon dioxide gas has been delivered over a desired period of time.


Mass of carbon dioxide gas sent to the gas manifold 26 may be controlled using a mass flow controller 68 that is arranged between the gas supply 62 and the gas supply valve 60. The mass flow controller 68 may communicate with the controller 64, once the gas supply 62 has delivered a suitable amount of gas to the gas manifold 26. The controller 64 may then close the gas supply valve 60, and thereby cease supply of the carbon dioxide gas through the gas manifold 26.


In some examples, the controller 64 may connect to a plurality of the gas manifolds 26, arranged to distribute the gas to various specific locations of the molding machine, including different portions of the feedbox and/or the hopper, as described herein. In such examples, the controller 64 may generally synchronize gas delivery at the various locations with the relevant steps of the given production cycle. The concrete may pass through the molding machine in a way in which some locations will be in contact with concrete sooner, or in greater quantities than other locations. Accordingly, the controller 64 may control distribution of the gas to the various locations at different times and different quantities.


The gas for treating the concrete may have a high concentration of carbon dioxide, and minimal concentrations of any gases or particulates that would be detrimental to the concrete curing process or to the properties of the cured concrete. The gas may be a commercially supplied high purity carbon dioxide. In this case, the commercial gas may be sourced from a supplier that processes spent flue gasses or other waste carbon dioxide so that sequestering the carbon dioxide in the gas sequesters carbon dioxide that would otherwise be a greenhouse gas emission.


Other gases that are not detrimental to the curing process or concrete product may be included in a treatment gas mixture. However, if the gas includes other gases besides carbon dioxide, then the required flow rate and pressure may be determined based on the carbon dioxide portion of the gas alone. The total flow rate and pressure may need to remain below a level that prevents the formation of bubbles or sprays concrete materials out of the feedbox, which may limit the allowable portion of non-carbon dioxide gases. In some cases, on site or nearby as-captured flue gas may be used to supply some or all of the gas containing carbon dioxide, although some particulate filtering or gas separation may be required or desirable.


In general, in accordance with the teachings of the present disclosure, carbon dioxide gas is delivered by a gas delivery system to a supply of concrete upstream from molding. Referring now to FIG. 7, a method 100 begins by inserting a tray into a molding machine in step 102. In step 104, a product mold is placed on the tray. In step 106, an outlet of a hopper is opened to deliver fresh concrete to a feedbox. In step 108, which may be concurrent with step 106, a gas supply valve of the gas delivery system is opened to start delivering carbon dioxide gas into the feedbox. In step 110, the feedbox has been filled with the appropriate amount of concrete. In step 112, the hopper stops providing concrete to the feedbox. In step 114, the concrete in the feedbox is delivered into the product mold. In step 116, the gas valve of the gas delivery system is closed to cease delivery of gas to the feedbox. In step 118, the treated concrete in the product mold is compacted and consolidated. In step 120, the product mold is stripped by raising the product mold and then the compaction arm. Thereafter the tray with at least one molded concrete product is removed for further processing, such as further curing, if any, packaging and distribution. The stripped products may continue to a steam or heat curing process; however, the time or temperature of the curing required to produce a desired strength may be reduced. For example, the concrete products may be cured at a temperature between 35 and 70° C. and relative humidity of about 75% or more. Optionally, flue gas from the steam or heat curing may be recaptured and injected into other blocks.


The exact order of the steps 104, 106, 108, 110, 112, 114, 116, 118 and 120 may be varied, but, in some examples, carbon dioxide may be directed at the concrete at least during step 114 while the concrete is in the feedbox (or hopper). The inventors believe that aligning the delivery of the carbon dioxide gas with the movement of the concrete as it passes through the feedbox (or hopper) may facilitate an even distribution and mixing of the carbon dioxide within the concrete. With a relatively rapid delivery, for example, delivering carbon dioxide gas for 10 seconds or less, the treatment method may only minimally slow the molding operation, if at all. This rapid delivery may serve to distribute the carbon dioxide throughout the concrete mix before the product formation to maximize the exposure of the concrete mix to carbon dioxide, and the calcium carbonate forming reactions may not inhibit the subsequent compaction and formation of the concrete products.


If the delivered gas contains essentially only carbon dioxide or other non-polluting gases or particulates not detrimental to health, then any excess gas not absorbed by the concrete may be allowed to enter the atmosphere. Provided that the total amount of carbon dioxide per cycle does not exceed the maximum possible carbon uptake, very little carbon dioxide will be emitted. However, particularly if un-separated flue gas is used to supply the carbon dioxide, other gasses may be emitted. Gases leaving the mold may be collected by a suction pressure ventilation system, such as a fume hood or chamber, for health and safety or pollution abatement considerations.


In accordance with the teachings of the present disclosure, concrete samples were produced in a lab and subjected to bench scale carbonation as part of their formation.


The standard concrete was analogous to a conventional concrete block mix design. It contained 1.494 kg of cement, the equivalent of 12.65 kg of saturated surface dry fine aggregate (Milford sand) and the equivalent of 5.90 kg of saturated surface dry fine aggregate (Folly Lake ⅜″ stone). 2.6 ml of a superplasticizer was used. Water was added to the mix to achieve a dry mix concrete with a water to cement ratio of about 0.74. The batch size of 20 kg was sufficient to create 5 standard concrete cylinders with dimensions of 100 mm diameter and 200 mm height.


The concrete was mixed for two minutes in a Hobart 30 quart mixer. The concrete was portioned into 3.75 kg charges. The charges of concrete were emptied into a cylinder mold subjected to vibration on a vibrating table. A pneumatic ram was used to finish the production by pushing the material into the mold with a force of 800 lbs. The compaction occurred in conjunction with the vibration, as per dry cast production of a concrete block.


Samples were demolded at 24 hours and submerged in a room temperature bath of water saturated with hydrated lime until the time of compression testing.


Carbonated samples were produced with a slightly wetter concrete mix with a water to cement ratio of about 0.77. It was observed that the carbonation treatment may promote a slight reduction in the effective water content of a sample. As compensation, slightly more water was added to the mix for carbonated concrete.


The carbon dioxide gas was introduced through a ring secured to the top of the mold. When the concrete charge was emptied into the mold the concrete would pass through the ring. The ring had hollow walls with a row of apertures regularly spaced on the inner surface. A gas connection allow for a gas stream to be injected into the ring and flow through the apertures to the interior space of the ring. The concrete would pass through the carbon dioxide stream immediately prior to coming to rest in the mold. The gas delivery was manually controlled to be aligned with the emptying of the concrete charge into the mold. The typical time of carbon dioxide delivery was 6 to 8 seconds. The gas was a conventional, unblended, substantially pure carbon dioxide, readily available from an industrial gas supplier in compressed cylinders.


Table 1 shows the results of 7 day compressive strength testing on control specimens. The set of 15 specimens consisted of 3 batches of 5 specimens. The column labeled “Sample” gives an arbitrary number to each of the 15 specimens. The first batch is samples 1 to 5, the second batch is samples 6 to 10 and the third batch is samples 11 to 15. The concretes were oven dried to check the moisture. A fresh sample of each batch was immediately placed into an oven at 120° C. and held until the mass constant. The difference in the initial sample mass and final sample mass was adjusted to compensate for the absorption of the aggregates and expressed as a percentage of the dry mass. The three control batches had water contents of 4.99%, 6.38% and 5.37%. The collected data has a mean of 9.44 MPa and a standard deviation of 1.23 MPa.









TABLE 1







7 day strength of dry mix control concrete produced in a lab.










Sample
Compressive Strength (MPa)














1
11.75



2
10.65



3
10.34



4
9.56



5
11.75



6
8.68



7
9.38



8
8.04



9
9.76



10
8.19



11
8.51



12
8.08



13
9.12



14
9.49



15
8.33










Table 2 shows the results of 7 day compressive strength testing on carbonated specimens. The carbonated samples were subject to a 2.9 LPM flow of carbon dioxide gas as the material was placed into the mold. The set of 15 specimens consisted of 3 batches of 5 specimens. The column labeled “Sample” gives an arbitrary number to each of the 15 specimens. The first batch is samples 1 to 5, the second batch is samples 6 to 10 and the third batch is samples 11 to 15. The concretes were oven dried to check the moisture. A fresh sample of each batch was immediately placed into an oven at 120° C. and held until the mass constant. The difference in the initial sample mass and final sample mass was adjusted to compensate for the absorption of the aggregates and expressed as a percentage of the dry mass. The three control batches had water contents of 6.25%, 6.23% and 6.17%. The collected data has a mean of 10.95 MPa and a standard deviation of 1.35 MPa.









TABLE 2







7 day strength of carbonated dry mix concrete produced in a lab.










Sample
Compressive Strength (MPa)














1
10.47



2
9.64



3
10.90



4
10.22



5
8.55



6
10.98



7
10.07



8
11.37



9
10.64



10
13.00



11
14.04



12
11.27



13
11.04



14
9.93



15
12.07










Strength was not found to be a function of water content in the range of water contents observed and in regards to the mix design and production technique used. Thus, the results suggest that the carbonation treatment improved the strength of the concrete. Statistical analysis of an independent two-sample t-test, using equal sample sizes, and assuming equal underlying variance suggests that the carbonated concrete is conclusively stronger than the control concrete with a 95% confidence (according to a calculated test statistic of 3.187 compared to the critical minimum test statistic at 95% confidence and 28 degrees of freedom of 2.00).


While the above description provides examples of one or more apparatuses or methods, it will be appreciated that other apparatuses or methods may be within the scope of the accompanying claims.

Claims
  • 1. A method of forming a concrete product comprising (i) supplying fresh concrete in a holder;(ii) treating the fresh concrete with carbon dioxide gas to form treated concrete; and(iii) subsequent to the step of treating, delivering the treated concrete to a product mold adapted to form concrete products, wherein the mold is open to the atmosphere, such that carbon dioxide can freely equilibrate with the atmosphere.
  • 2. The method of claim 1 wherein the concrete is treated with the carbon dioxide gas by directing carbon dioxide at a stream of the concrete that is moving from the holder to the mold.
  • 3. The method of claim 2 wherein the stream is open to the atmosphere.
  • 4. The method of claim 1 wherein the carbon dioxide is directed to a surface of the concrete moving from the holder to the mold.
  • 5. The method of claim 1 wherein the carbon dioxide is directed at the concrete before it reaches the mold for a period of 6 to 60 seconds or less.
  • 6. The method of claim 1 wherein the holder and the mixer are the same.
  • 7. The method of claim 1 wherein the carbon dioxide is directed at the concrete in an amount that causes the carbonated concrete to exhibit one or more of decreased permeability or water absorption, higher durability, improved early strength, reduced efflorescence, or reduced in service shrinkage, as compared to uncarbonated concrete.
  • 8. The method of claim 1 further comprising sensing when the stream of concrete has started and starting and stopping the flow of carbon dioxide to coincide with when the stream is moving from the holder to the mold.
  • 9. The method of claim 1 wherein the treatment of the concrete with the carbon dioxide produces uniform carbon dioxide uptake by the concrete, wherein calcium carbonate produced due to the carbonation is well distributed through the carbonated concrete.
  • 10. The method of claim 1 wherein the carbon dioxide is directed at the concrete in an amount that reduces the total time of the process of making a concrete product with the carbonated concrete, as compared to the time with uncarbonated concrete.
  • 11. The method of claim 1 wherein the carbon dioxide is at a pressure of 120-875 kPa when it contacts the concrete.
  • 12. The method of claim 1 wherein the carbon dioxide is directed at the concrete in an amount that causes the carbonated concrete to exhibit improved early strength, wherein the improved early strength is an increase in compressive strength in the carbonated concrete compared to the same concrete if uncarbonated.
US Referenced Citations (268)
Number Name Date Kind
128980 Rowland Jul 1872 A
170594 Richardson Nov 1875 A
461888 Richardson Oct 1891 A
1932150 Tada Oct 1933 A
2254016 Melton et al. Aug 1941 A
2259830 Osborne Oct 1941 A
2329940 Ponzer Sep 1943 A
2496895 Staley Feb 1950 A
2498513 Cuypers Feb 1950 A
2603352 Tromp Jul 1952 A
3002248 Willson Oct 1961 A
3184037 Greaves et al. May 1965 A
3356779 Schulze Dec 1967 A
3358342 Spence Dec 1967 A
3442498 Noah May 1969 A
3468993 Knud Sep 1969 A
3492385 Branko Jan 1970 A
3667242 Kilburn Jun 1972 A
3752314 Brown et al. Aug 1973 A
3757631 McManus et al. Sep 1973 A
3917236 Hanson Nov 1975 A
3957203 Bullard May 1976 A
3976445 Douglas et al. Aug 1976 A
4068755 Parkes et al. Jan 1978 A
4069063 Ball Jan 1978 A
4076782 Yazawa et al. Feb 1978 A
4093690 Murray Jun 1978 A
4117060 Murray Sep 1978 A
4257710 Delcoigne et al. Mar 1981 A
4266921 Murray May 1981 A
4275836 Egger Jun 1981 A
4350567 Moorehead et al. Sep 1982 A
4362679 Malinowski Dec 1982 A
4420868 McEwen et al. Dec 1983 A
4427610 Murray Jan 1984 A
4436498 Murray Mar 1984 A
4526534 Wollmann Jul 1985 A
4588299 Brown et al. May 1986 A
4613472 Svanholm Sep 1986 A
4746481 Schmidt May 1988 A
4772439 Trevino-Gonzalez Sep 1988 A
4789244 Dunton et al. Dec 1988 A
4846580 Oury Jul 1989 A
4881347 Mario et al. Nov 1989 A
4917587 Alpar et al. Apr 1990 A
4944595 Hodson Jul 1990 A
5051217 Alpar et al. Sep 1991 A
5158996 Valenti Oct 1992 A
5162402 Ogawa et al. Nov 1992 A
5203919 Bobrowski et al. Apr 1993 A
5220732 Lee Jun 1993 A
5232496 Jennings et al. Aug 1993 A
5244498 Steinke Sep 1993 A
5257464 Trevino-Gonzales Nov 1993 A
5298475 Shibata et al. Mar 1994 A
5352035 MacAulay et al. Oct 1994 A
5356579 Jennings et al. Oct 1994 A
5358566 Tanaka et al. Oct 1994 A
5360660 Nohlgren Nov 1994 A
5393343 Darwin et al. Feb 1995 A
5427617 Bobrowski et al. Jun 1995 A
5451104 Kleen et al. Sep 1995 A
5453123 Burge et al. Sep 1995 A
5458470 Mannhart et al. Oct 1995 A
5494516 Drs et al. Feb 1996 A
5505987 Jennings et al. Apr 1996 A
5518540 Jones, Jr. May 1996 A
5583183 Darwin et al. Dec 1996 A
5609681 Drs et al. Mar 1997 A
5612396 Valenti et al. Mar 1997 A
5624493 Wagh et al. Apr 1997 A
5633298 Arfaei et al. May 1997 A
5643978 Darwin et al. Jul 1997 A
5650562 Jones, Jr. Jul 1997 A
5660626 Ohta et al. Aug 1997 A
5661206 Tanaka et al. Aug 1997 A
5665158 Darwin et al. Sep 1997 A
5667298 Musil et al. Sep 1997 A
5668195 Leikauf Sep 1997 A
5669968 Kobori et al. Sep 1997 A
5674929 Melbye Oct 1997 A
5676905 Andersen et al. Oct 1997 A
5690729 Jones, Jr. Nov 1997 A
5703174 Arfaei et al. Dec 1997 A
5725657 Darwin et al. Mar 1998 A
5728207 Arfaei et al. Mar 1998 A
5744078 Soroushian et al. Apr 1998 A
5752768 Assh May 1998 A
5753744 Darwin et al. May 1998 A
5798425 Albrecht et al. Aug 1998 A
5800752 Charlebois Sep 1998 A
5804175 Ronin et al. Sep 1998 A
5840114 Jeknavorian et al. Nov 1998 A
5873653 Paetzold Feb 1999 A
5882190 Doumet Mar 1999 A
5885478 Montgomery et al. Mar 1999 A
5912284 Hirata et al. Jun 1999 A
5935317 Soroushian et al. Aug 1999 A
5947600 Maeda et al. Sep 1999 A
5965201 Jones, Jr. Oct 1999 A
6008275 Moreau et al. Dec 1999 A
6042258 Hines et al. Mar 2000 A
6042259 Hines et al. Mar 2000 A
6063184 Leikauf et al. May 2000 A
6066262 Montgomery et al. May 2000 A
6113684 Kunbargi Sep 2000 A
6136950 Vickers, Jr. et al. Oct 2000 A
6187841 Tanaka et al. Feb 2001 B1
6264736 Knopf et al. Jul 2001 B1
6267814 Bury et al. Jul 2001 B1
6284867 Vickers, Jr. Sep 2001 B1
6290770 Moreau et al. Sep 2001 B1
6310143 Vickers, Jr. Oct 2001 B1
6318193 Brock et al. Nov 2001 B1
6334895 Bland Jan 2002 B1
6372157 Krill, Jr. et al. Apr 2002 B1
6387174 Knopf et al. May 2002 B2
6451105 Turpin, Jr. Sep 2002 B1
6463958 Schwing Oct 2002 B1
6517631 Bland Feb 2003 B1
6648551 Taylor Nov 2003 B1
6682655 Beckham et al. Jan 2004 B2
6871667 Schwing et al. Mar 2005 B2
6890497 Rau et al. May 2005 B2
6936098 Ronin Aug 2005 B2
6960311 Mirsky et al. Nov 2005 B1
6997045 Wallevik et al. Feb 2006 B2
7003965 Auer et al. Feb 2006 B2
7201018 Gershtein et al. Apr 2007 B2
7390444 Ramme et al. Jun 2008 B2
7399378 Edwards et al. Jul 2008 B2
7419051 Damkjaer et al. Sep 2008 B2
7549493 Jones Jun 2009 B1
7588661 Edwards et al. Sep 2009 B2
7635434 Mickelson et al. Dec 2009 B2
7704349 Edwards et al. Apr 2010 B2
7735274 Constantz et al. Jun 2010 B2
7736430 Barron et al. Jun 2010 B2
7771684 Constantz et al. Aug 2010 B2
7815880 Constantz et al. Oct 2010 B2
7879146 Raki et al. Feb 2011 B2
7906086 Comrie Mar 2011 B2
7914685 Constantz et al. Mar 2011 B2
7922809 Constantz et al. Apr 2011 B1
7950841 Klein et al. May 2011 B2
8006446 Constantz et al. Aug 2011 B2
8043426 Mohamed et al. Oct 2011 B2
8105558 Comrie Jan 2012 B2
8114214 Constantz et al. Feb 2012 B2
8114367 Riman et al. Feb 2012 B2
8118473 Cooley et al. Feb 2012 B2
8137455 Constantz et al. Mar 2012 B1
8157009 Patil et al. Apr 2012 B2
8177909 Constantz et al. May 2012 B2
8192542 Virtanen Jun 2012 B2
8235576 Klein et al. Aug 2012 B2
8272205 Estes et al. Sep 2012 B2
8287173 Khouri Oct 2012 B2
8311678 Koehler et al. Nov 2012 B2
8313802 Riman et al. Nov 2012 B2
8333944 Constantz et al. Dec 2012 B2
8470275 Constantz et al. Jun 2013 B2
8491858 Seeker et al. Jul 2013 B2
8518176 Silva et al. Aug 2013 B2
8584864 Lee et al. Nov 2013 B2
8708547 Bilger Apr 2014 B2
8709960 Riman et al. Apr 2014 B2
8721784 Riman et al. May 2014 B2
8746954 Cooley et al. Jun 2014 B2
8845940 Niven et al. Sep 2014 B2
8989905 Sostaric et al. Mar 2015 B2
9061940 Chen et al. Jun 2015 B2
9108803 Till Aug 2015 B2
9108883 Forgeron et al. Aug 2015 B2
9376345 Forgeron et al. Jun 2016 B2
9388072 Niven et al. Jul 2016 B2
9448094 Downie et al. Sep 2016 B2
9463580 Forgeron et al. Oct 2016 B2
9492945 Niven et al. Nov 2016 B2
9738562 Monkman et al. Aug 2017 B2
9758437 Forgeron et al. Sep 2017 B2
9790131 Lee et al. Oct 2017 B2
10246379 Niven et al. Apr 2019 B2
10350787 Forgeron et al. Jul 2019 B2
10392305 Wang et al. Aug 2019 B2
20020019459 Albrecht et al. Feb 2002 A1
20020047225 Bruning et al. Apr 2002 A1
20020179119 Harmon Dec 2002 A1
20030122273 Fifield Jul 2003 A1
20050131600 Quigley et al. Jun 2005 A1
20050219939 Christenson et al. Oct 2005 A1
20070170119 Mickelson et al. Jul 2007 A1
20070171764 Klein et al. Jul 2007 A1
20070185636 Cooley et al. Aug 2007 A1
20070215353 Barron et al. Sep 2007 A1
20080092957 Rosaen Apr 2008 A1
20080174041 Firedman et al. Jul 2008 A1
20080202389 Hojaji et al. Aug 2008 A1
20080245274 Ramme Oct 2008 A1
20080308133 Grubb et al. Dec 2008 A1
20080316856 Cooley et al. Dec 2008 A1
20090093328 Dickinger et al. Apr 2009 A1
20090103392 Bilger Apr 2009 A1
20090143211 Riman et al. Jun 2009 A1
20090292572 Alden et al. Nov 2009 A1
20090294079 Edwards et al. Dec 2009 A1
20100132556 Constantz et al. Jun 2010 A1
20100239487 Constantz et al. Sep 2010 A1
20100246312 Welker et al. Sep 2010 A1
20110023659 Nguyen et al. Feb 2011 A1
20110067600 Constantz et al. Mar 2011 A1
20110165400 Quaghebeur et al. Jul 2011 A1
20110198369 Klein et al. Aug 2011 A1
20110249527 Seiler et al. Oct 2011 A1
20110262328 Wijmans et al. Oct 2011 A1
20110289901 Estes et al. Dec 2011 A1
20110320040 Koehler et al. Dec 2011 A1
20120238006 Gartner et al. Sep 2012 A1
20120312194 Riman et al. Dec 2012 A1
20130025317 Terrien et al. Jan 2013 A1
20130036945 Constantz et al. Feb 2013 A1
20130122267 Riman et al. May 2013 A1
20130125791 Fried et al. May 2013 A1
20130139727 Constantz et al. Jun 2013 A1
20130167756 Chen et al. Jul 2013 A1
20130284073 Gartner Oct 2013 A1
20130305963 Fridman Nov 2013 A1
20140034452 Lee et al. Feb 2014 A1
20140050611 Warren et al. Feb 2014 A1
20140069302 Saastamoinen et al. Mar 2014 A1
20140083514 Ding Mar 2014 A1
20140090415 Reddy et al. Apr 2014 A1
20140096704 Rademan et al. Apr 2014 A1
20140104972 Roberts et al. Apr 2014 A1
20140107844 Koehler et al. Apr 2014 A1
20140116295 Niven et al. May 2014 A1
20140127450 Riman et al. May 2014 A1
20140197563 Niven et al. Jul 2014 A1
20140208782 Joensson et al. Jul 2014 A1
20140216303 Lee et al. Aug 2014 A1
20140327168 Niven et al. Nov 2014 A1
20140373755 Forgeron et al. Dec 2014 A1
20150023127 Chon et al. Jan 2015 A1
20150069656 Bowers et al. Mar 2015 A1
20150197447 Forgeron et al. Jul 2015 A1
20150202579 Richardson et al. Jul 2015 A1
20150232381 Niven et al. Aug 2015 A1
20150247212 Sakaguchi et al. Sep 2015 A1
20150298351 Beaupré Oct 2015 A1
20150355049 Ait et al. Dec 2015 A1
20160001462 Forgeron et al. Jan 2016 A1
20160107939 Monkman et al. Apr 2016 A1
20160185662 Niven et al. Jun 2016 A9
20160272542 Monkman et al. Sep 2016 A1
20160280610 Forgeron et al. Sep 2016 A1
20160340253 Forgeron et al. Nov 2016 A1
20160355441 Tregger et al. Dec 2016 A1
20160355442 Niven et al. Dec 2016 A1
20170015598 Monkman et al. Jan 2017 A1
20170028586 Jordan et al. Feb 2017 A1
20170036372 Sandberg et al. Feb 2017 A1
20170043499 Forgeron et al. Feb 2017 A1
20170158549 Yamada et al. Jun 2017 A1
20170158569 Lee et al. Jun 2017 A1
20170165870 Niven et al. Jun 2017 A1
20170217047 Leon et al. Aug 2017 A1
20180118622 Monkman et al. May 2018 A1
20180258000 Lee et al. Sep 2018 A1
Foreign Referenced Citations (188)
Number Date Country
2397377 Oct 1978 AU
504446 Oct 1979 AU
970935 Jul 1975 CA
1045073 Dec 1978 CA
1185078 Apr 1985 CA
2027216 Apr 1991 CA
2343021 Mar 2000 CA
2362631 Aug 2000 CA
2598583 Sep 2006 CA
2646462 Sep 2007 CA
2630226 Oct 2008 CA
2659447 Dec 2008 CA
2703343 Apr 2009 CA
2705857 May 2009 CA
2670049 Nov 2009 CA
2668249 Dec 2009 CA
2778508 Jun 2011 CA
2785143 Jul 2011 CA
2501329 Jun 2012 CA
2829320 Sep 2012 CA
2837832 Dec 2012 CA
2055815 Apr 1990 CN
1114007 Dec 1995 CN
1267632 Sep 2000 CN
2445047 Aug 2001 CN
1357506 Jul 2002 CN
2575406 Sep 2003 CN
2700294 May 2005 CN
2702958 Jun 2005 CN
2748574 Dec 2005 CN
1735468 Feb 2006 CN
1916332 Feb 2007 CN
2893360 Apr 2007 CN
2913278 Jun 2007 CN
200961340 Oct 2007 CN
101099596 Jan 2008 CN
101319512 Dec 2008 CN
101538813 Sep 2009 CN
101551001 Oct 2009 CN
201325866 Oct 2009 CN
1817001 Nov 1970 DE
3139107 Apr 1983 DE
19506411 Aug 1996 DE
20305552 Oct 2003 DE
0047675 Mar 1982 EP
0218189 Apr 1987 EP
0151164 May 1988 EP
0218189 May 1988 EP
0629597 Dec 1994 EP
0573524 May 1996 EP
0701503 Aug 2000 EP
1429096 Jun 2004 EP
1785245 May 2007 EP
2012149 Jan 2009 EP
2012150 Jan 2009 EP
2039589 Mar 2009 EP
2040135 Mar 2009 EP
2042326 Apr 2009 EP
2043169 Apr 2009 EP
2048525 Apr 2009 EP
2096498 Sep 2009 EP
2098362 Sep 2009 EP
2116841 Nov 2009 EP
2123700 Nov 2009 EP
2123942 Apr 2011 EP
2123465 Jul 2011 EP
2042317 Aug 2011 EP
2162639 Sep 2011 EP
2162640 Sep 2011 EP
2042535 Oct 2011 EP
2042324 Jun 2012 EP
2039393 Aug 2012 EP
1749629 May 2013 EP
2123441 Jul 2013 EP
2107000 Sep 2013 EP
2031010 Apr 2014 EP
2123808 May 2014 EP
2036952 Apr 2016 EP
3013544 May 2016 EP
2387551 Jul 2016 EP
1985754 Aug 2016 EP
2140302 Feb 2000 ES
1259819 Apr 1961 FR
2121975 Aug 1972 FR
2281815 Mar 1976 FR
2503135 Oct 1982 FR
2513932 Apr 1983 FR
2735804 Dec 1996 FR
217791 Jun 1924 GB
574724 Jan 1946 GB
644615 Oct 1950 GB
851222 Oct 1960 GB
1167927 Oct 1969 GB
1199069 Jul 1970 GB
1337014 Nov 1973 GB
1460284 Dec 1976 GB
1549633 Aug 1979 GB
2106886 Apr 1983 GB
2192392 Jan 1988 GB
2300631 Nov 1996 GB
2302090 Jan 1997 GB
2392502 Mar 2004 GB
2467005 Jul 2010 GB
S56115423 Sep 1981 JP
S5850197 Mar 1983 JP
S60187354 Sep 1985 JP
S6150654 Mar 1986 JP
S62122710 Jun 1987 JP
S6426403 Jan 1989 JP
H0218368 Jan 1990 JP
H0254504 Apr 1990 JP
H05116135 May 1993 JP
H05117012 May 1993 JP
H0624329 Feb 1994 JP
H06144944 May 1994 JP
H06263562 Sep 1994 JP
H0748186 Feb 1995 JP
H10194798 Jul 1995 JP
H07275899 Oct 1995 JP
H0835281 Feb 1996 JP
H0960103 Mar 1997 JP
H09124099 May 1997 JP
H11303398 Nov 1999 JP
H11324324 Nov 1999 JP
2000203964 Jul 2000 JP
2000247711 Sep 2000 JP
2000281467 Oct 2000 JP
2002012480 Jan 2002 JP
2002127122 May 2002 JP
2003326232 Nov 2003 JP
2005023692 Jan 2005 JP
2005273720 Oct 2005 JP
2007326881 Dec 2007 JP
2008096409 Apr 2008 JP
2009115209 May 2009 JP
4313352 Aug 2009 JP
20020006222 Jan 2002 KR
20020042569 Jun 2002 KR
20020090354 Dec 2002 KR
20030004243 Jan 2003 KR
20060064557 Jun 2006 KR
100766364 Oct 2007 KR
183790 Sep 1980 NZ
2168412 Jun 2001 RU
2212125 Sep 2003 RU
2351469 Apr 2009 RU
8002613 Mar 1982 SE
451067 Aug 1987 SE
1031728 Jul 1983 SU
I257330 Jul 2006 TW
WO-7900473 Jul 1979 WO
WO-8500587 Feb 1985 WO
WO-9105644 May 1991 WO
WO-9215753 Sep 1992 WO
WO-9319347 Sep 1993 WO
WO-9427797 Dec 1994 WO
WO-2001064348 Sep 2001 WO
WO-0190020 Nov 2001 WO
WO-2004033793 Apr 2004 WO
WO-2004074733 Sep 2004 WO
WO-2005025768 Mar 2005 WO
WO-2006040503 Apr 2006 WO
WO-2006100550 Sep 2006 WO
WO-2006100693 Sep 2006 WO
WO-2008149389 Dec 2008 WO
WO-2008149390 Dec 2008 WO
WO-2009078430 Jun 2009 WO
WO-2009089906 Jul 2009 WO
WO-2009132692 Nov 2009 WO
WO-2010074811 Jul 2010 WO
WO-2012079173 Jun 2012 WO
WO-2012081486 Jun 2012 WO
WO-2013011092 Jan 2013 WO
WO-2014021884 Feb 2014 WO
WO-2014026794 Feb 2014 WO
WO-2014063242 May 2014 WO
WO-2014121198 Aug 2014 WO
WO-2014205577 Dec 2014 WO
WO-2015123769 Aug 2015 WO
WO-2015154174 Oct 2015 WO
WO-2015154162 Oct 2015 WO
WO-2016041054 Mar 2016 WO
WO-2016082030 Jun 2016 WO
WO-2016082030 Jun 2016 WO
WO-2017000075 Jan 2017 WO
WO-2017041176 Mar 2017 WO
WO-2017177324 Oct 2017 WO
WO-2018232507 Dec 2018 WO
Non-Patent Literature Citations (195)
Entry
Co-pending U.S. Appl. No. 15/650,524, filed Jul. 14, 2017.
Co-pending U.S. Appl. No. 15/659,334, filed Jul. 25, 2017.
European search report with written opinion dated Feb. 2, 2017 for EP2951122.
European search report with written opinion dated Jan. 20, 2017 for EP14818442.
International search report with written opinion dated Jun. 15, 2017 for PCT/CA2017/050445.
International search report with written opinion dated Jul. 3, 2016 for PCT/CA2015/050195.
Notice of allowance dated Apr. 14, 2017 for U.S. Appl. No. 15/157,205.
Notice of allowance dated Apr. 24, 2017 for U.S. Appl. No. 15/161,927.
Notice of allowance dated Jun. 15, 2017 for U.S. Appl. No. 15/157,205.
Notice of allowance dated Jun. 22, 2017 for U.S. Appl. No. 15/161,927.
Notice of allowance dated Jun. 30, 2017 for U.S. Appl. No. 15/434,429.
Notice of allowance dated Jul. 28, 2017 for U.S. Appl. No. 15/434,429.
Notice of allowance dated Aug. 2, 2017 for U.S. Appl. No. 15/161,927.
Office action dated Feb. 27, 2017 for U.S. Appl. No. 14/171,350.
Office action dated Mar. 7, 2017 for U.S. Appl. No. 15/434,429.
Office action dated Mar. 14, 2017 for U.S. Appl. No. 15/228,964.
Office action dated May 10, 2017 for U.S. Appl. No. 13/994,681.
Office action dated Jul. 3, 2017 for U.S. Appl. No. 14/171,350.
Yelton, R. Treating Process Water. The Concrete Producer. pp. 441-443. Jun. 1, 1997.
Abanades, et al. Conversion limits in the reaction of CO2 with lime. Energy and Fuels. 2003; 17(2):308-315.
Author Unknown, “Splicing Solution,” Quarry Management, Oct. 2002, 3 pages.
Bhatia, et al. Effect of the Product Layer on the kinetics of the CO2-lime reaction. AlChE Journal. 1983; 29(1):79-86.
Chang, et al. The experimental investigation of concrete carbonation depth. Cement and Concrete Research. 2006; 36(9):1760-1767.
Chen, et al. On the kinetics of Portland cement hydration in the presence of selected chemical admixtures. Advances in Cement Research. 1993; 5(17):9-13.
“Clear Edge Filtration—Screen and Filter, Process Belts, and Screen Print,” Mining-Techology.com, no date, [retrieved on May 25, 2010]. Retrieved from: http/www.mining-technology.com/contractors/filtering/clear-edge/, 2 pages.
Weber, et al. Find carbon dioxide gas under pressure an efficient curing agent for cast stone. Concrete. Jul. 1941; 33-34.
Young, et al. Accelerated Curing of Compacted Calcium Silicate Mortars on Exposure to CO2. Journal of the American Ceramic Society . . . 1974; 57(9):394-397.
Co-pending U.S. Appl. No. 15/240,954, filed Aug. 18, 2016.
U.S. Appl. No. 62/096,018, filed Dec. 23, 2014.
U.S. Appl. No. 61/839,312, filed Jun. 25, 2013.
U.S. Appl. No. 61/847,254, filed Jul. 17, 2013.
U.S. Appl. No. 61/879,049, filed Sep. 17, 2013.
U.S. Appl. No. 61/925,100, filed Jan. 8, 2014.
U.S. Appl. No. 61/938,063, filed Feb. 10, 2014.
U.S. Appl. No. 61/941,222, filed Feb. 18, 2014.
U.S. Appl. No. 61/992,089, filed May 12, 2014.
Dewaele, et al. Permeability and porosity changes associated with cement grout carbonation. Cement and Concrete Research. 1991; 21(4):441-454.
Dorbian “Nova Scotia-based CarbonCure garners $3.5 min in Series B funds,” Reuters PE HUB, Dec. 11, 2013, 6 pages, found at http://www.pehub.com/2013/12/nova-scotia-based-carboncure-garners-3-5-min-in-series-b-funds/.
Estes-Haselbach. The greenest concrete mixer—carbon sequestration in freshly mixed concrete. Sep. 25, 2012.
European search report and search opinion dated Jan. 14, 2015 for EP 11849437.6.
Fernandez-Bertos, et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of Hazardous Materials B112. 2004; 193-205.
Fluid Hole and Size. Newton: Ask a Scientist. Jan. 24, 2005. Retrieved from http://www.newton.dep.anl.gov/askasci/eng99/eng99365.htm on Jul. 13, 2013.
Freedman, S. Carbonation Treatment of Concrete Masonry Units. Modern Concrete. 1969; 33(5):33-6.
Gager, “Trumbull Corp.: CHARLEROI Lock & Dam,” Construction Today, 2010, [retrieved on May 25, 2010]. Retrieved from http://www.construction-today.com/cms1/content/view/1909/104/, 2 pages.
“GLENIUM® 3400 NV: High-Range Water-Reducing Admixture,” BASF, Product Data, Jun. 2010, 2 pages.
Goodbrake, et al. Reaction of Hydraulic Calcium Silicates with Carbon Dioxide and Water. Journal of the American Ceramic Society. 1979; 62(9-10):488-491.
Goto, et al. Calcium Silicate Carbonation Products. Journal of the American Ceramic Society. 1995; 78(11):2867-2872.
Goto. Some mineralo-chemical problems concerning calcite and aragonite, with special reference to the genesis of aragonite. Contribution from the department of geology and mineralogy. Faculty of Science. Hokkaido University. 1961. http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/35923/1/10(4)_571-640.pdf.
Hesson, et al. Flow of two-phase carbon dioxide through orifices. AlChE Journal 4.2 (1958): 207-210.
Huijgen, et al. Mineral CO2 sequestration by steel slag carbonation. Environmental Science and Technology. 2005; 39(24):9676-9682.
Huntzinger, et al. Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environ Sci Technol. Mar. 15, 2009;43(6):1986-92.
Hurst. Canadian cement plant becomes first to capture CO2 in algae. Earth and Industry. Pond Biofuels press release. Mar. 19, 2010.
Iizuka, et al. Development of a new CO2 sequestration process utilizing the carbonation of waste cement. Industrial & Engineering Chemistry Research. 2004; (43)24:7880-7887.
International search report and written opinion dated Jan. 25, 2016 for PCT Application No. PCT/CA2015/051220.
International search report and written opinion dated Mar. 6, 2012 for PCT Application No. PCT/CA2011/050774.
International search report and written opinion dated May 4, 2015 for PCT/CA2015/050118.
International search report and written opinion dated Jul. 16, 2015 for PCT Application No. PCT/CA2015/000158.
International search report and written opinion dated Jul. 16, 2015 for PCT Application No. PCT/CA2015/050318.
International search report and written opinion dated Jul. 18, 2013 for PCT Application No. CA2013/050190.
International Search Report and Written Opinion dated Aug. 30, 2016 for International application No. PCT/CA2016/050773.
International search report and written opinion dated Sep. 18, 2014 for PCT/CA2014/050611.
International Search Report and Written Opinion dated Oct. 19, 2016 for International Application No. PCT/CA2016/051062.
International search report dated May 16, 2014 for PCT Application No. PCT/US14/14447.
Kashef-Haghighi, et al. Accelerated Concrete Carbonation, a CO2 Sequestration Technology. 8th World Congress of Chemical Engineering WCCE8. Aug. 24, 2009.
Kashef-Haghighi, et al. CO2 sequestration in concrete through accelerated carbonation curing in a flow-through reactor. Ind. Eng. Chem. Res. 2010; 49:1143-1149.
Kawashima, et al. Dispersion of CaCO3 Nanoparticles by Sonication and Surfactant Treatment for Application in Fly Ash-Cement Systems. Materials and Structures. May 28, 2013. DOI 10.1617/S11527-013-0110-9.
Kim, et al. Properties of cement-based mortars substituted by carbonated fly ash and carbonated under supercritical conditions. IJAER. 9(24), 25525-25534 (2014).
Lange, et al. Preliminary investigation into the effects of carbonation on cement-solidified hazardous wastes. Environmental Science and Technology. 1996; 30(1):25-30.
Logan, C. Carbon dioxide absorption and durability of carbonation cured cement and concrete compacts. Thesis. Department of Civil Engineering, McGill University. Montreal, QC, Canada. 2006.
Lomboy, et al. Atom Probe Tomography for Nanomodified Portland Cement. Nanotechnology in Construction. Springer International Publishing, 2015. 79-86.
Mehta. “Concrete Carbonation”. Materials World Magazine. Oct. 1, 2008 [Retrieved on Jul. 13, 2013] Retrieved from http://www.iom3.org/news/concrete-carbonation.
Monkman, et al. Assessing the Carbonation Behavior of Cementitious Materials. J. Mater. Civ. Eng. 2006; 18(6), 768-776.
Monkman, et al. Carbonated Ladle Slag Fines for Carbon Uptake and Sand Substitute. Journal of Materials in Civil Engineering. Nov. 2009;657-665.
Monkman, et al. Carbonation Curing of Slag-Cement Concrete for Binding CO2 and Improving Performance. Journal of Materials in Civil Engineering. Apr. 2010; 296-304.
Monkman, et al. Integration of carbon sequestration into curing process of precast concrete. Can. J. Civ. Eng. 2010; 37:302-310.
Monkman, G. S. Investigating Carbon Dioxide Sequestration in Fresh Ready Mixed Concrete. International Symposium on Environmentally Friendly Concrete—ECO-Crete 13.-15. Aug. 2014, Reykjavik, Iceland.
Monkman, S. Maximizing carbon uptake and performance gain in slag-containing concretes through early carbonation. Thesis. Department of Civil Engineering and Applied Mechanics, McGill University. Montreal, QC, Canada. 2008.
Niven, et al. Carbon Dioxide Uptake Rate and Extent during Accelerated Curing of Concrete. International Congress on the Chemistry of Cement 2007. ICCC 2007.
Niven. Industrial pilot study examining the application of precast concrete carbonation curing. Cardon Sense Solutions Inc. Halifax, Canada. ACEME 2008.
Niven. Physiochemical investigation of CO2 accelerated concrete curing as a greenhosue gas mitigation technology. These from the Department of Civil Engineering and Applied Mechanics. McGill University, Montreal, Canada. Oct. 2006.
Notice of allowance dated Feb. 26, 2016 for U.S. Appl. No. 14/642,536.
Notice of allowance dated Mar. 29, 2016 for U.S. Appl. No. 14/701,456.
Notice of allowance dated Apr. 22, 2014 for U.S. Appl. No. 13/660,447.
Notice of allowance dated Apr. 24, 2015 for U.S. Appl. No. 14/249,308.
Notice of allowance dated Apr. 25, 2016 for U.S. Appl. No. 14/642,536.
Notice of allowance dated May 6, 2016 for U.S. Appl. No. 14/796,751.
Notice of allowance dated May 11, 2016 for U.S. Appl. No. 14/701,456.
Notice of allowance dated Jun. 24, 2015 for U.S. Appl. No. 14/249,308.
Notice of allowance dated Jul. 5, 2016 for U.S. Appl. No. 14/282,965.
Notice of allowance dated Aug. 5, 2016 for U.S. Appl. No. 14/796,751.
Notice of allowance dated Aug. 16, 2016 for U.S. Appl. No. 14/796,751.
Notice of allowance dated Sep. 14, 2016 for U.S. Appl. No. 14/796,751.
Notice of Allowance dated Dec. 21, 2016 for U.S. Appl. No. 15/161,927.
Notices of allowance dated Mar. 3, 2016 and Mar. 17, 2016 for U.S. Appl. No. 14/701,456.
Office action dated Jan. 25, 2016 for U.S. Appl. No. 14/701,456.
Office action dated Mar. 7, 2016 for U.S. Appl. No. 14/796,751.
Office action dated Mar. 10, 2015 for U.S. Appl. No. 14/249,308.
Office action dated Mar. 28, 2013 for U.S. Appl. No. 13/660,447.
Office action dated Apr. 26, 2016 for U.S. Appl. No. 14/950,288.
Office Action dated Jun. 16, 2016 for U.S. Appl. No. 13/994,681.
Office action dated Jul. 15, 2013 for U.S. Appl. No. 13/660,447.
Office action dated Jul. 30, 2015 for U.S. Appl. No. 14/282,965.
Office action dated Aug. 12, 2016 for U.S. Appl. No. 14/950,288.
Office action dated Aug. 14, 2015 for U.S. Appl. No. 14/701,456.
Office action dated Aug. 18, 2015 for U.S. Appl. No. 14/642,536.
Office action dated Aug. 22, 2016 for U.S. Appl. No. 15/161,927.
Office action dated Sep. 2, 2016 for U.S. Appl. No. 15/228,964.
Office action dated Sep. 28, 2016 for U.S. Appl. No. 15/157,205.
Office action dated Oct. 5, 2015 for U.S. Appl. No. 14/701,456.
Office Action dated Nov. 3, 2016 for U.S. Appl. No. 15/161,927.
Office action dated Dec. 2, 2015 for U.S. Appl. No. 14/282,965.
Office action dated Dec. 7, 2015 for U.S. Appl. No. 14/796,751.
Office Action dated Dec. 29, 2016 for U.S. Appl. No. 15/157,205.
Office Action dated Dec. 30, 2016 for U.S. Appl. No. 13/994,681.
Papadakis, et al. A reaction engineering approach to the problem of concrete carbonation. AlChE Journal. 1989; 35(10):1639-1650.
Papadakis, et al. Fundamental Modeling and Experimental Investigation of Concrete Carbonation. ACI Materials Journal. 1991; 88(4):363-373.
Phipps and MacDonald. Sustainability Leads to Durability in the New I-35W Bridge. Concrete International. Feb. 2009; vol. 31 Issue 2, p. 27-32.
“POZZOLITH® 200N: Water-Reducing Admixture,” BASF, Product Data, Sep. 2010, 2 pages, found at http://www.basf-admixtures.com/en/products/waterreducingretarding/pozzolith200n/Pages/default.aspx.
“POZZOLITH® 322 N: Water-Reducing Admixture,” BASF, Product Data, Mar. 2007, 2 pages.
Preliminary Amendment dated Nov. 1, 2013 for U.S. Appl. No. 13/994,681.
Reardon, et al. High pressure carbonation of cementitious grout. Cement and Concrete Research. 1989; 19(3):385-399.
Sato, et al. Effect of Nano-CaCO3 on Hydration of Cement Containing Supplementary Cementitious Materials. Institute for Research in Construction, National Research Council Canada. Oct. 2010.
Sato, et al. Seeding effect of nano-CaCO3 on the hidration of tricalcium silicate, Transportation Research Record. 2010; 2141:61-67.
Shao, et al. A new CO2 sequestration process via concrete products production. Department of civil engineering. McGill University, Montreal, Canada. 2007.
Shao, et al. CO2 sequestration using calcium-silicate concrete. Canadian Journal of Civil Engineering. 2006;(33)6:776-784.
Shao, et al. Market analysis of CO2 sequestration in concrete building products. Second International Conference on Sustainable Construction Materials and Technologies. Jun. 28-30, 2010.
Shao, et al. Recycling carbon dioxide into concrete: a feasibility study. Concrete Sustainability Conference. 2010.
Shi, et al. Studies on some factors affecting CO2 curing of lightweight concrete products. Resources, Conservation and Recycling. 2008; (52)8-9:1087-1092.
Shideler, J. Investigation of the moisture-volume stability of concrete masonry units. Portland Cement Association. 1955. (D3).
Shih, et al. Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature. Industrial and Engineering Chemistry Research. 1999; 38(4):1316-1322.
Sorochkin, et al. Study of the possibility of using carbon dioxide for accelerating the hardening of products made from Portland Cement. J. Appl. Chem. USSR. 1975; 48:1271-1274.
Steinour, H. Some effects of carbon dioxide on mortars and concrete-discussion. Journal of the American Concrete Institute. 1959; 30:905-907.
Technology Roadmap: Cement. International Energy Agency. Dec. 2009 [Retrieved on Jul. 13, 2013]. Retrieved from http://www.iea.org/publications/freepublications/publication/name,3861,en.html.
Teir, et al. Carbonation of Finnish magnesium silicates for CO2 sequestration . Fifth Annual Conference on Carbon Capture and Sequestration. May 8-11, 2006. National Energy Technology Laboratory, Department of Energy, USA.
Toennies, et al. Artificial carbonation of concrete masonry units. American Concrete Institute Journal. 1960; 31(8):737-755.
Van Balen, K. Carbonation reaction of lime, kinetics at ambient temperature. Cement and Concrete Research. 2005; 35(4):647-657.
Venhuis, et al. Vacuum method for carbonation of cementitious wasteforms. Environ Sci Technol. Oct. 15, 2001;35(20):4120-5.
Cheung et al. Impact of admixtures on the hydration kinetics of Portland cement. Cement and Concrete Research 41:1289-1309 (2011).
Co-pending U.S. Appl. No. 16/249,012, filed Jan. 16, 2019.
Lobo et al. Recycled Water in Ready Mixed Concrete Operations. Concrete in Focus, Spring 2003 (2003). 10 pages.
U.S. Appl. No. 15/304,208 Office Action dated Jan. 24, 2019.
U.S. Appl. No. 15/170,018 Notice of Allowance dated Dec. 19, 2018.
U.S. Appl. No. 15/184,219 Office Action dated Feb. 4, 2019.
U.S. Appl. No. 15/240,954 Ex Parte Quayle Office action dated Feb. 5, 2019.
Co-pending U.S. Appl. No. 15/911,573, filed Mar. 5, 2018.
Co-pending U.S. Appl. No. 15/284,186, filed Oct. 3, 2016.
Co-pending U.S. Appl. No. 15/649,339, filed Jul. 13, 2017.
Co-pending U.S. Appl. No. 62/083,784, filed Nov. 24, 2014.
Co-pending U.S. Appl. No. 62/086,024, filed Dec. 1, 2014.
Co-pending U.S. Appl. No. 62/146,103, filed Apr. 10, 2015.
Co-pending U.S. Appl. No. 62/160,350, filed May 12, 2015.
Co-pending U.S. Appl. No. 62/165,670, filed May 22, 2015.
Co-pending U.S. Appl. No. 62/215,481, filed Sep. 8, 2015.
Co-pending U.S. Appl. No. 62/240,843, filed Oct. 13, 2015.
Co-pending U.S. Appl. No. 62/321,013, filed Apr. 11, 2016.
Co-pending U.S. Appl. No. 62/522,510, filed Jun. 20, 2017.
Co-pending U.S. Appl. No. 62/554,830, filed Sep. 6, 2017.
Co-pending U.S. Appl. No. 62/558,173, filed Sep. 13, 2017.
Co-pending U.S. Appl. No. 62/559,771, filed Sep. 18, 2017.
Co-pending U.S. Appl. No. 62/560,311, filed Sep. 19, 2017.
Co-pending U.S. Appl. No. 62/570,452, filed Oct. 10, 2017.
Co-pending U.S. Appl. No. 62/573,109, filed Oct. 16, 2017.
Co-pending U.S. Appl. No. 62/652,385, filed Apr. 4, 2018.
Co-pending U.S. Appl. No. 62/675,615, filed May 23, 2018.
Co-pending U.S. Appl. No. 61/423,354, filed Sep. 15, 2010.
Co-pending U.S. Appl. No. 61/760,319, filed Feb. 4, 2013.
Co-pending U.S. Appl. No. 61/976,360, filed Apr. 7, 2014.
Co-pending U.S. Appl. No. 61/980,505, filed Apr. 16, 2014.
EP15862209.2 Partial Supplementary European Search Report dated Jun. 20, 2018.
European search report dated Nov. 7, 2017 for EP Application No. 15776706.
European search report with written opinion dated Nov. 14, 2017 for EP Application No. 15777459.
European search report with written opinion dated Nov. 29, 2017 for EP15780122.
Le et al. Hardened properties of high-performance printing concrete. Cement and Concrete Research, vol. 42, No. 3, Mar. 31, 2012, pp. 558-566.
Mass. Premixed Cement Paste. Concrete International 11(11):82-85 (Nov. 1, 1989).
Office action dated Oct. 19, 2017 for U.S. Appl. No. 15/228,964.
PCT Application No. PCT/CA2014/050611 as filed Jun. 25, 2014.
Younsi, et al. Performance-based design and carbonation of concrete with high fly ash content. Cement and Concrete Composites, Elsevier Applied Science, Barking, GB, vol. 33, No. 1, Jul. 14, 2011. pp. 993-1000.
Co-pending U.S. Appl. No. 16/155,013, filed Oct. 9, 2018.
PCT/CA2018/050750 International Search Report and Written Opinion dated Sep. 6, 2018.
EP15862209.2 Extended European Search Report dated Oct. 8, 2018.
U.S. Appl. No. 15/170,018 Office Action dated Oct. 16, 2018.
U.S. Appl. No. 15/184,219 Office Action dated Oct. 16, 2018.
U.S. Appl. No. 15/240,954 Office Action dated Oct. 23, 2018.
EP14746909.2 Summons to Attend Oral Proceedings dated Jun. 19, 2019.
U.S. Appl. No. 15/184,219 Notice of Allowance dated Aug. 19, 2019.
U.S. Appl. No. 15/240,954 Notice of Allowance dated Mar. 5, 2019.
U.S. Appl. No. 15/304,208 Office Action dated Oct. 25, 2019.
U.S. Appl. No. 15/650,524 Office Action dated Sep. 17, 2019.
U.S. Appl. No. 15/828,240 Office Action dated Jul. 22, 2019.
“MB-AETM 90: Air-Entraining Admixture” BASF, Product Data (Apr. 2011), 2 pages, found at http://www.basf-admixtures.com/en/products/airentraining/mbae_90/Pages/default.aspx.
Cornerstone Custom Concrete, LLC. “How Much Does Concrete Weigh?” Retrieved Jul. 15, 2019.<web.archive.org/web/ 20130124160823/http://www.minneapolis-concrete.com/how-much-does-concrete-weigh.html>. One page. (Year: 2013).
Google Patents Translation of EP1785245. pp. 1-2. Retrieved Jul. 17, 2019. (Year: 2007).
Tri-Cast literature, Dry cast machine. Besser Company. Sioux, Iowa, USA. (Jun. 2009).
U.S. Appl. No. 15/184,219 Notice of Allowance dated Oct. 10, 2019.
U.S. Appl. No. 15/184,219 Notice of Allowance dated Sep. 18, 2019.
Related Publications (1)
Number Date Country
20170165870 A1 Jun 2017 US
Continuations (2)
Number Date Country
Parent 14282965 May 2014 US
Child 15284186 US
Parent 13660447 Oct 2012 US
Child 14282965 US