The present disclosure relates to methods of and apparatuses for making concrete products, for reducing the greenhouse gas emissions associated with making concrete products, and for sequestering carbon dioxide.
The following paragraphs are not an admission that anything discussed in them is prior art or part of the knowledge of persons skilled in the art.
U.S. Pat. No. 4,117,060 (Murray) describes a method and apparatus for the manufacture of products of concrete or like construction, in which a mixture of calcareous cementitious binder substance, such as cement, an aggregate, a vinyl acetate-dibutyl maleate copolymer, and an amount of water sufficient to make a relatively dry mix is compressed into the desired configuration in a mold, and with the mixture being exposed to carbon dioxide gas in the mold, prior to the compression taking place, such that the carbon dioxide gas reacts with the ingredients to provide a hardened product in an accelerated state of cure having excellent physical properties.
U.S. Pat. No. 4,362,679 (Malinowski) describes a method of casting different types of concrete products without the need of using a curing chamber or an autoclave subsequent to mixing. The concrete is casted and externally and/or internally subjected to a vacuum treatment to have it de-watered and compacted. Then carbon-dioxide gas is supplied to the mass while maintaining a sub- or under-pressure in a manner such that the gas diffuses into the capillaries formed in the concrete mass, to quickly harden the mass.
U.S. Pat. No. 5,935,317 (Soroushian et al.) describes a CO2 pre-curing period used prior to accelerated (steam or high-pressure steam) curing of cement and concrete products in order to: prepare the products to withstand the high temperature and vapor pressure in the accelerated curing environment without microcracking and damage; and incorporate the advantages of carbonation reactions in terms of dimensional stability, chemical stability, increased strength and hardness, and improved abrasion resistance into cement and concrete products without substantially modifying the conventional procedures of accelerated curing.
U.S. Pat. No. 7,390,444 (Ramme et al.) describes a process for sequestering carbon dioxide from the flue gas emitted from a combustion chamber. In the process, a foam including a foaming agent and the flue gas is formed, and the foam is added to a mixture including a cementitious material (e.g., fly ash) and water to form a foamed mixture. Thereafter, the foamed mixture is allowed to set, preferably to a controlled low-strength material having a compressive strength of 1200 psi or less. The carbon dioxide in the flue gas and waste heat reacts with hydration products in the controlled low-strength material to increase strength. In this process, the carbon dioxide is sequestered. The CLSM can be crushed or pelletized to form a lightweight aggregate with properties similar to the naturally occurring mineral, pumice.
U.S. Pat. No. 8,114,367 (Riman et al.) describes a method of sequestering a greenhouse gas, which comprises: (i) providing a solution carrying a first reagent that is capable of reacting with a greenhouse gas; (ii) contacting the solution with a greenhouse gas under conditions that promote a reaction between the at least first reagent and the greenhouse gas to produce at least a first reactant; (iii) providing a porous matrix having interstitial spaces and comprising at least a second reactant; (iv) allowing a solution carrying the at least first reactant to infiltrate at least a substantial portion of the interstitial spaces of the porous matrix under conditions that promote a reaction between the at least first reactant and the at least second reactant to provide at least a first product; and (v) allowing the at least first product to form and fill at least a portion of the interior spaces of the porous matrix, thereby sequestering a greenhouse gas.
International Publication No. WO/2012/079173 (Niven et al.) describes carbon dioxide sequestration in concrete articles. Concrete articles, including blocks, substantially planar products (such as pavers) and hollow products (such as hollow pipes), are formed in a mold while carbon dioxide is injected into the concrete in the mold, through perforations.
The following paragraphs are intended to introduce the reader to the more detailed description that follows and not to define or limit the claimed subject matter.
According to an aspect of the present disclosure, a method of forming concrete products may include: supplying fresh concrete; treating the fresh concrete with carbon dioxide gas to form treated concrete; and subsequent to the step of treating, delivering the treated concrete to a product mold adapted to form the concrete products.
According to an aspect of the present disclosure, an apparatus for forming concrete products may include: a product mold adapted to form the concrete products; a component upstream of the product mold, and adapted to treat fresh concrete with carbon dioxide gas to form treated concrete, and deliver the treated concrete directly or indirectly to the product mold; and a gas delivery system connected to the component and adapted to control distribution of the carbon dioxide gas through the component.
According to an aspect of the present disclosure, a process of accelerating the curing of concrete and sequestering carbon dioxide in the concrete may include: supplying fresh concrete; directing a plurality of flows of carbon dioxide-containing gas under pressure into the fresh concrete at a respective plurality of locations, to form treated concrete; and subsequent to the step of directing, delivering the treated concrete to a product mold.
Other aspects and features of the teachings disclosed herein will become apparent, to those ordinarily skilled in the art, upon review of the following description of the specific examples of the present disclosure.
The drawings included herewith are for illustrating various examples of apparatuses and methods of the present disclosure and are not intended to limit the scope of what is taught in any way. In the drawings:
Various apparatuses or methods are described below to provide an example of an embodiment of each claimed invention. No example described below limits any claimed invention and any claimed invention may cover apparatuses and methods that differ from those described below. The claimed inventions are not limited to apparatuses and methods having all of the features of any one apparatus or method described below or to features common to multiple or all of the apparatuses or methods described below. It is possible that an apparatus or method described below is not an embodiment of any claimed invention. Any invention disclosed in an apparatus or method described below that is not claimed in this document may be the subject matter of another protective instrument, and the applicant(s), inventor(s) and/or owner(s) do not intend to abandon, disclaim or dedicate to the public any such invention by its disclosure in this document.
Referring to
In each production cycle, an appropriate quantity of concrete is passed from the hopper and into the product mold. The concrete may then be formed and compacted (shaken and compressed) in the product mold into a plurality of products, typically four or more. The products may leave the molding machine on a tray, which is conveyed to a curing area. The products may be cured slowly (7 to 30 days) by exposure to the atmosphere. However, in some commercial operations, the products may be cured rapidly by steam or heat curing. For example, products may be placed in a steam-curing chamber for 8 to 24 hours. The cured products are removed from the curing area, and sent to further processing stations for packaging and transport to the end user.
Some production sequences make use of a feedbox. In each production cycle, an appropriate quantity of concrete is passed from the hopper to the feedbox, which is positioned above the product mold. The material in the feedbox is passed into the product mold as part of a regular cycle. Once the product mold is filled and the product is formed, the cycle will begin anew with new material being placed into the feed box. An agitator grid may be positioned in the feedbox to agitate the concrete as it is dropped from the feedbox into the molding machine. The concrete is then formed and compacted in the product mold, as described previously.
In some cases, the feedbox may be filled with dry cast concrete when the feedbox is in a retracted position. The feedbox may then move from the retracted position to an extended position, in which it is arranged over an open top of the product mold. The dry cast concrete may then be deposited from the feedbox into the product mold, by force of gravity. After depositing the dry cast concrete into the product mold, the feedbox is moved from the extended position to the retracted position. The agitator grid may be positioned to impinge upon the concrete in the feedbox, and assist the concrete in passing uniformly from the feedbox into the product mold.
These processes may be adapted for use with a range of concrete products that are molded in batches, at an industrial scale, for example but not limited to, blocks, pavers, other decorative or structural masonry units, tiles or pipes, etc.
In a process of forming concrete blocks, for example, a pallet may be moved by a conveyor system onto a pallet table or tray that, in turn, may be moved upwardly until the pallet contacts the product mold and forms a bottom for each of the one or more cavities of the product mold. Again, the feedbox, filled with dry cast concrete, may then be moved between the retracted and extended positions causing a feed drawer door of the feedbox to open above a frame of the product mold. With help from the agitator grid, the concrete is dropped into the product mold, where it fills the one or more cavities of the product mold via the open top. The product mold is filled optionally while being vibrated. The block molding machine may include a cutoff bar or blades, which may be fixed-mounted to the feedbox, to scrape or wipe away excess dry cast concrete from the top of the one or more cavities as the feedbox is driven back to the retracted position. The block molding machine may further a stripper assembly having a compaction arm and at least one head shoe, which may be moved into the one or more cavities of the product mold via their open tops to compress the dry cast concrete to a desired psi (pound-force per square inch) rating, while simultaneously vibrating the head shoe, product mold, pallet, and/or pallet table. The form may be raised while the stripper assembly is still in its lowered position leaving the shaped concrete blocks on the table. The compaction arm may then be raised, allowing the formed blocks to be ejected from the molding machine on the table. The cycle is then repeated while the table of formed blocks travels on a conveyor to the steam chamber.
Generally, a production cycle for concrete blocks involves several steps performed in a very short period of time with the molding machine. Each production cycle may make only a small number of blocks, for example 1 to 16 or more, but lasts for only a very short period of time, for example about 5 to 12 seconds. In this way, many blocks may be made in a working shift and transferred to an accelerated curing chamber.
Accelerated curing is used to make the blocks stable relatively quickly, and thereby reduce the total production time until the blocks may be shipped as finished products. Accelerated curing typically involves placing the formed blocks in an enclosure or chamber, and controlling the relative humidity and heat in the chamber for several hours. In cold climates, steam may be used. When the ambient temperature is adequate, moisture may be added without additional heat. The blocks may sit in the curing chamber for 8-48 hours before they are cured sufficiently for packaging.
The block manufacturing process described above may be energy intensive. For example, energy required for the steam curing may exceed 300 MJ per tonne of blocks. Depending on the source of this energy, the greenhouse gas emissions associated with steam curing may be significant, up to about 10 kg of CO2 per tonne of block. Also, while most blocks may be well formed, in a typical production shift several blocks may be damaged as they are stripped from the form and have to be discarded.
In general, the concepts described herein pertain to methods of and apparatuses for forming concrete products, in which fresh concrete is treated with carbon dioxide gas to form treated concrete. The treated concrete is subsequently delivered to a product mold to form the concrete products.
Treating the concrete to carbon dioxide gas while it is in a loose state prior to placement in the product mold may generally promote uniform and enhanced carbon dioxide uptake. Despite a short relatively exposure time, the inventors have recognized that the carbon dioxide uptake may be a significant portion of the theoretical maximum uptake, which for conventional cement may be approximately half of the mass of the cement in the mixture. Furthermore, the resulting calcium carbonate may be well distributed through the concrete, which may thereby improve the material properties of the formed concrete product.
As described in further detail herein, the carbon dioxide gas may be delivered at least in part while the concrete is being portioned for placement into the product mold. The carbon dioxide gas may be directed at the concrete for a period of time of about 60 seconds or less. The carbon dioxide gas may be delivered at an applied pressure of about 875 kPa above atmospheric pressure, or less. The gas may be delivered at a rate of about 80 liters per minute per liter of the concrete, or less. The delivered gas may be carbon dioxide-rich, e.g., at least about 90% carbon dioxide, and may be derived from a pressurized gas source. The gas may be heated. The gas may include a flue gas, which may be derived from a steam or heat curing process for products formed by the molding machine.
The addition of carbon dioxide may promote an alternate set of chemical reactions in the concrete resulting in different reaction products. In particular, thermodynamically stable calcium carbonate (limestone) solids may be formed preferentially to calcium hydroxide (portlandite) products. The carbon dioxide may be solvated, hydrated and ionized in water in the concrete to produce carbonate ions. These ions may combine with calcium ions from the cement to precipitate calcium carbonate in addition to amorphous calcium silicates. In this way, carbon dioxide may be sequestered in the concrete blocks as a solid mineral. Excess gas, if any, may be vented away from the treated concrete mass. Otherwise, the production cycle of a given concrete product may remain generally unchanged.
The carbonated mineral reaction products may increase the early strength of the concrete. This may allow accelerated curing to be eliminated, or a reduction in time or temperature, or both. The energy consumption or total time, or both, of the concrete product making process may thereby be reduced. If steam curing would otherwise be used, then, depending on how the energy for steam curing is generated, there may be a further reduction in the greenhouse gas emissions associated with making the concrete products. The carbonated products may also exhibit one or more of decreased permeability or water absorption, higher durability, improved early strength, reduced efflorescence, and reduced in service shrinkage. The number of products that are damaged when they are stripped from the mold, conveyed or otherwise processed prior to packaging may also be reduced.
The present teachings may be adapted for use with a range of concrete products that are molded in batches, at an industrial scale, for example but not limited to, blocks, pavers, other decorative or structural masonry units, tiles or pipes, etc.
Referring now to
In the example illustrated, the feedbox 16 includes a first gas manifold 26. The first gas manifold 26 is positioned to direct a carbon dioxide gas flow 28 at the concrete 20 residing within the feedbox 16. The first gas manifold 26 is shown mounted to an inner surface of a peripheral wall of the feedbox 16. In other examples, the gas manifold may be formed as part of the agitator grid 30. Also, as shown, the carbon dioxide gas flow 28 may be directed by the first gas manifold 26 towards the concrete 20 to impinge an upper surface of the concrete 20. Alternatively, or additionally, the first gas manifold 26 may be positioned so that the carbon dioxide gas flow 28 is injected by the first gas manifold 26 directly into the volume of the concrete 20.
Delivery of carbon dioxide by the first gas manifold 26 may be generally synchronized with the inlet 22 of the hopper 14. For example, the pressurized flow 28 may be provided either once the inlet 22 is opened and the concrete 20 is accumulating in the feedbox 16, or, optionally, the flow 28 may begin immediately prior to opening the inlet 22.
Referring to
Delivery of carbon dioxide by the second gas manifold 34 may be generally synchronized with movement of the feedbox 16 between the retracted and extended positions. For example, the pressurized flow 36 may be provided either once the feedbox 16 has begun to move over the product mold 18 and the concrete 20 is accumulating in the product mold 18, or, optionally, the flow 36 may begin immediately prior to this while the feedbox 16 remains positioned above the base plate 32.
In the example illustrated in
Referring now to
Referring now to
In the examples illustrated in
Referring to
In the example illustrated, the finger elements 42 and the spine 44 are hollow. Internal gas passages 48 in the finger elements 42 may run through the entirety of the finger elements 42 and terminate in a perforation or aperture 50. The apertures 50 are distributed across the spine 44 for delivering flows of carbon dioxide gas. The configuration of the finger element 42, the spine 44 and the aperture 50 is also shown in
With continued reference to
A gas passage 52 in the spine 44 may run axially from one end to the opposite end, in fluid communication with each of the gas passages 48 and extending beyond the outermost finger elements 42. At one end of the spine 44, there is an gas inlet fitting 54 for connection to a gas feed conduit (not shown), and which is in fluid communication with the gas passage 52. The size of the gas passage 48 along the length of the spine 44 may vary depending on the relative distance from the gas inlet fitting 54 in order to promote equal gas flow rates into each of the finger elements 42.
Connections between the finger elements 42 and the spine 44 may be welded or threaded. A threaded connection may allow the finger elements 42 to be changed depending on the application. The connection may also be a quick connect setup, allowing the finger elements 42 to take the form of a tube, such as rigid or flexible plastic tubing.
Referring now to
It should be appreciated that the configurations of the gas manifolds 26, 26a shown in
Referring now to
The gas delivery system 56 is shown to include at least one of the gas manifolds 26, to provide carbon dioxide gas to the feedbox 16 (
The gas inlet fitting 54 of the gas manifold 26 is connected by a gas feed line or conduit 58 to at least one gas supply valve 60. The conduit 58 may be sufficiently flexible to allow for movement of the gas manifold 26 and normal agitation during the production cycle. On the other hand, the conduit 58 may be sufficiently rigid, or tied-off, or both, to ensure that it does not interfere with any moving part of the molding machine (identified by reference numeral 66). The gas supply valve 60 governs flow of pressurized gas between a pressurized gas supply 62 and the gas manifold 26. In some examples, the gas supply valve 60 may include several gate valves that permit the incorporation of calibration equipment, e.g., one or more mass flow meters.
When the gas supply valve 60 is open, pressurized carbon dioxide-rich gas flows from the gas supply 62 to the gas inlet fitting 54, through the gas passages 52, 48 and out through the apertures 50. The gas supply 62 may include, for example, a pressurized tank (not shown) filled with carbon dioxide-rich gas, and a pressure regulator (not shown). The tank may be re-filled when near empty, or kept filled by a compressor (not shown). The regulator may reduce the pressure in the tank to a maximum feed pressure. The maximum feed pressure may be above atmospheric, but below supercritical gas flow pressure. The feed pressure may be, for example, in a range from 120 to 875 kPa. A pressure relief valve (not shown) may be added to protect the carbon dioxide gas supply system components. The carbon dioxide gas supplied by the gas supply 62 may be at about room temperature. However, if not, a heater (not shown) may be added to bring the uncompressed gas up to roughly room temperature before flowing to the gas manifold 26.
The gas supply valve 60 may be controlled by a controller 64. The controller 64 may be, for example, an electronic circuit or a programmable logic controller. In general, the controller 64 manages gas flow through the gas supply valve 60. The controller 64 may be connected to the molding machine 66 such that the controller 64 may sense when the molding machine 66 has begun or stopped a stage of operation, and thereby synchronize delivery of the carbon dioxide gas with the production cycle of the molding machine 66. For example, the controller 64 may be wired into an electrical controller or circuit of the molding machine 66 such that during one or more stages of operation a voltage, current or another signal is provided to the controller 64. Alternatively or additionally, one or more sensors may be added to the molding machine 66, adapted to advise the controller 64 of conditions of the molding machine 66. When not retrofitted to an existing molding machine, functions of the controller 64 may be integrated into a control system of the molding machine. Further alternatively, the controller 64 may consider a timer, a temperature sensor, a mass flow, flow rate or pressure meter in the conduit 58, or other devices, in determining when to stop and start gas flow (e.g., a solenoid). In general, the controller 64 is adapted to open the gas supply valve 60 at a time beginning between when the concrete passes in the vicinity of the apertures 50, and close the gas supply valve 60 after a desired amount of carbon dioxide gas has been delivered over a desired period of time.
Mass of carbon dioxide gas sent to the gas manifold 26 may be controlled using a mass flow controller 68 that is arranged between the gas supply 62 and the gas supply valve 60. The mass flow controller 68 may communicate with the controller 64, once the gas supply 62 has delivered a suitable amount of gas to the gas manifold 26. The controller 64 may then close the gas supply valve 60, and thereby cease supply of the carbon dioxide gas through the gas manifold 26.
In some examples, the controller 64 may connect to a plurality of the gas manifolds 26, arranged to distribute the gas to various specific locations of the molding machine, including different portions of the feedbox and/or the hopper, as described herein. In such examples, the controller 64 may generally synchronize gas delivery at the various locations with the relevant steps of the given production cycle. The concrete may pass through the molding machine in a way in which some locations will be in contact with concrete sooner, or in greater quantities than other locations. Accordingly, the controller 64 may control distribution of the gas to the various locations at different times and different quantities.
The gas for treating the concrete may have a high concentration of carbon dioxide, and minimal concentrations of any gases or particulates that would be detrimental to the concrete curing process or to the properties of the cured concrete. The gas may be a commercially supplied high purity carbon dioxide. In this case, the commercial gas may be sourced from a supplier that processes spent flue gasses or other waste carbon dioxide so that sequestering the carbon dioxide in the gas sequesters carbon dioxide that would otherwise be a greenhouse gas emission.
Other gases that are not detrimental to the curing process or concrete product may be included in a treatment gas mixture. However, if the gas includes other gases besides carbon dioxide, then the required flow rate and pressure may be determined based on the carbon dioxide portion of the gas alone. The total flow rate and pressure may need to remain below a level that prevents the formation of bubbles or sprays concrete materials out of the feedbox, which may limit the allowable portion of non-carbon dioxide gases. In some cases, on site or nearby as-captured flue gas may be used to supply some or all of the gas containing carbon dioxide, although some particulate filtering or gas separation may be required or desirable.
In general, in accordance with the teachings of the present disclosure, carbon dioxide gas is delivered by a gas delivery system to a supply of concrete upstream from molding. Referring now to
The exact order of the steps 104, 106, 108, 110, 112, 114, 116, 118 and 120 may be varied, but, in some examples, carbon dioxide may be directed at the concrete at least during step 114 while the concrete is in the feedbox (or hopper). The inventors believe that aligning the delivery of the carbon dioxide gas with the movement of the concrete as it passes through the feedbox (or hopper) may facilitate an even distribution and mixing of the carbon dioxide within the concrete. With a relatively rapid delivery, for example, delivering carbon dioxide gas for 10 seconds or less, the treatment method may only minimally slow the molding operation, if at all. This rapid delivery may serve to distribute the carbon dioxide throughout the concrete mix before the product formation to maximize the exposure of the concrete mix to carbon dioxide, and the calcium carbonate forming reactions may not inhibit the subsequent compaction and formation of the concrete products.
If the delivered gas contains essentially only carbon dioxide or other non-polluting gases or particulates not detrimental to health, then any excess gas not absorbed by the concrete may be allowed to enter the atmosphere. Provided that the total amount of carbon dioxide per cycle does not exceed the maximum possible carbon uptake, very little carbon dioxide will be emitted. However, particularly if un-separated flue gas is used to supply the carbon dioxide, other gasses may be emitted. Gases leaving the mold may be collected by a suction pressure ventilation system, such as a fume hood or chamber, for health and safety or pollution abatement considerations.
In accordance with the teachings of the present disclosure, concrete samples were produced in a lab and subjected to bench scale carbonation as part of their formation.
The standard concrete was analogous to a conventional concrete block mix design. It contained 1.494 kg of cement, the equivalent of 12.65 kg of saturated surface dry fine aggregate (Milford sand) and the equivalent of 5.90 kg of saturated surface dry fine aggregate (Folly Lake ⅜″ stone). 2.6 ml of a superplasticizer was used. Water was added to the mix to achieve a dry mix concrete with a water to cement ratio of about 0.74. The batch size of 20 kg was sufficient to create 5 standard concrete cylinders with dimensions of 100 mm diameter and 200 mm height.
The concrete was mixed for two minutes in a Hobart 30 quart mixer. The concrete was portioned into 3.75 kg charges. The charges of concrete were emptied into a cylinder mold subjected to vibration on a vibrating table. A pneumatic ram was used to finish the production by pushing the material into the mold with a force of 800 lbs. The compaction occurred in conjunction with the vibration, as per dry cast production of a concrete block.
Samples were demolded at 24 hours and submerged in a room temperature bath of water saturated with hydrated lime until the time of compression testing.
Carbonated samples were produced with a slightly wetter concrete mix with a water to cement ratio of about 0.77. It was observed that the carbonation treatment may promote a slight reduction in the effective water content of a sample. As compensation, slightly more water was added to the mix for carbonated concrete.
The carbon dioxide gas was introduced through a ring secured to the top of the mold. When the concrete charge was emptied into the mold the concrete would pass through the ring. The ring had hollow walls with a row of apertures regularly spaced on the inner surface. A gas connection allow for a gas stream to be injected into the ring and flow through the apertures to the interior space of the ring. The concrete would pass through the carbon dioxide stream immediately prior to coming to rest in the mold. The gas delivery was manually controlled to be aligned with the emptying of the concrete charge into the mold. The typical time of carbon dioxide delivery was 6 to 8 seconds. The gas was a conventional, unblended, substantially pure carbon dioxide, readily available from an industrial gas supplier in compressed cylinders.
Table 1 shows the results of 7 day compressive strength testing on control specimens. The set of 15 specimens consisted of 3 batches of 5 specimens. The column labeled “Sample” gives an arbitrary number to each of the 15 specimens. The first batch is samples 1 to 5, the second batch is samples 6 to 10 and the third batch is samples 11 to 15. The concretes were oven dried to check the moisture. A fresh sample of each batch was immediately placed into an oven at 120° C. and held until the mass constant. The difference in the initial sample mass and final sample mass was adjusted to compensate for the absorption of the aggregates and expressed as a percentage of the dry mass. The three control batches had water contents of 4.99%, 6.38% and 5.37%. The collected data has a mean of 9.44 MPa and a standard deviation of 1.23 MPa.
Table 2 shows the results of 7 day compressive strength testing on carbonated specimens. The carbonated samples were subject to a 2.9 LPM flow of carbon dioxide gas as the material was placed into the mold. The set of 15 specimens consisted of 3 batches of 5 specimens. The column labeled “Sample” gives an arbitrary number to each of the 15 specimens. The first batch is samples 1 to 5, the second batch is samples 6 to 10 and the third batch is samples 11 to 15. The concretes were oven dried to check the moisture. A fresh sample of each batch was immediately placed into an oven at 120° C. and held until the mass constant. The difference in the initial sample mass and final sample mass was adjusted to compensate for the absorption of the aggregates and expressed as a percentage of the dry mass. The three control batches had water contents of 6.25%, 6.23% and 6.17%. The collected data has a mean of 10.95 MPa and a standard deviation of 1.35 MPa.
Strength was not found to be a function of water content in the range of water contents observed and in regards to the mix design and production technique used. Thus, the results suggest that the carbonation treatment improved the strength of the concrete. Statistical analysis of an independent two-sample t-test, using equal sample sizes, and assuming equal underlying variance suggests that the carbonated concrete is conclusively stronger than the control concrete with a 95% confidence (according to a calculated test statistic of 3.187 compared to the critical minimum test statistic at 95% confidence and 28 degrees of freedom of 2.00).
While the above description provides examples of one or more apparatuses or methods, it will be appreciated that other apparatuses or methods may be within the scope of the accompanying claims.
Number | Name | Date | Kind |
---|---|---|---|
1932150 | Tada | Oct 1933 | A |
2329940 | Ponzer | Sep 1943 | A |
2496895 | Staley | Feb 1950 | A |
3356779 | Schulze | Dec 1967 | A |
3358342 | Spence | Dec 1967 | A |
3468993 | Bierlich | Sep 1969 | A |
3492385 | Simunic | Jan 1970 | A |
3957203 | Bullard | May 1976 | A |
4069063 | Ball | Jan 1978 | A |
4093690 | Murray | Jun 1978 | A |
4117060 | Murray | Sep 1978 | A |
4257710 | Delcoigne et al. | Mar 1981 | A |
4266921 | Murray | May 1981 | A |
4350567 | Moorehead et al. | Sep 1982 | A |
4362679 | Malinowski | Dec 1982 | A |
4427610 | Murray | Jan 1984 | A |
4436498 | Murray | Mar 1984 | A |
4526534 | Wollmann | Jul 1985 | A |
4588299 | Brown et al. | May 1986 | A |
4746481 | Schmidt | May 1988 | A |
4772439 | Trevino-Gonzalez | Sep 1988 | A |
4789244 | Dunton et al. | Dec 1988 | A |
4917587 | Alpar et al. | Apr 1990 | A |
4944595 | Hodson | Jul 1990 | A |
5051217 | Alpár et al. | Sep 1991 | A |
5158996 | Valenti | Oct 1992 | A |
5162402 | Ogawa et al. | Nov 1992 | A |
5203919 | Bobrowski et al. | Apr 1993 | A |
5220732 | Lee | Jun 1993 | A |
5232496 | Jennings et al. | Aug 1993 | A |
5257464 | Trevino-Gonzales | Nov 1993 | A |
5298475 | Shibata et al. | Mar 1994 | A |
5358566 | Tanaka et al. | Oct 1994 | A |
5393343 | Darwin et al. | Feb 1995 | A |
5427617 | Bobrowski et al. | Jun 1995 | A |
5458470 | Mannhart et al. | Oct 1995 | A |
5494516 | Drs et al. | Feb 1996 | A |
5505987 | Jennings et al. | Apr 1996 | A |
5518540 | Jones, Jr. | May 1996 | A |
5583183 | Darwin et al. | Dec 1996 | A |
5609681 | Drs et al. | Mar 1997 | A |
5612396 | Valenti et al. | Mar 1997 | A |
5633298 | Arfaei et al. | May 1997 | A |
5643978 | Darwin et al. | Jul 1997 | A |
5650562 | Jones, Jr. | Jul 1997 | A |
5660626 | Ohta et al. | Aug 1997 | A |
5661206 | Tanaka et al. | Aug 1997 | A |
5665158 | Darwin et al. | Sep 1997 | A |
5668195 | Leikauf | Sep 1997 | A |
5669968 | Kobori et al. | Sep 1997 | A |
5674929 | Melbye | Oct 1997 | A |
5676905 | Andersen et al. | Oct 1997 | A |
5690729 | Jones, Jr. | Nov 1997 | A |
5703174 | Arfaei et al. | Dec 1997 | A |
5725657 | Darwin et al. | Mar 1998 | A |
5728207 | Arfaei et al. | Mar 1998 | A |
5744078 | Soroushian et al. | Apr 1998 | A |
5752768 | Assh | May 1998 | A |
5753744 | Darwin et al. | May 1998 | A |
5798425 | Albrecht et al. | Aug 1998 | A |
5800752 | Charlebois | Sep 1998 | A |
5804175 | Ronin et al. | Sep 1998 | A |
5840114 | Jeknavorian et al. | Nov 1998 | A |
5882190 | Doumet | Mar 1999 | A |
5912284 | Hirata et al. | Jun 1999 | A |
5935317 | Soroushian et al. | Aug 1999 | A |
5947600 | Maeda et al. | Sep 1999 | A |
5965201 | Jones, Jr. | Oct 1999 | A |
6008275 | Moreau et al. | Dec 1999 | A |
6042258 | Hines et al. | Mar 2000 | A |
6042259 | Hines et al. | Mar 2000 | A |
6063184 | Leikauf et al. | May 2000 | A |
6136950 | Vickers, Jr. et al. | Oct 2000 | A |
6187841 | Tanaka et al. | Feb 2001 | B1 |
6264736 | Knopf et al. | Jul 2001 | B1 |
6267814 | Bury et al. | Jul 2001 | B1 |
6284867 | Vickers, Jr. et al. | Sep 2001 | B1 |
6290770 | Moreau et al. | Sep 2001 | B1 |
6310143 | Vickers, Jr. et al. | Oct 2001 | B1 |
6334895 | Bland | Jan 2002 | B1 |
6387174 | Knopf et al. | May 2002 | B2 |
6451105 | Turpin, Jr. | Sep 2002 | B1 |
6517631 | Bland | Feb 2003 | B1 |
6648551 | Taylor | Nov 2003 | B1 |
6890497 | Rau et al. | May 2005 | B2 |
6997045 | Wallevik et al. | Feb 2006 | B2 |
7003965 | Auer et al. | Feb 2006 | B2 |
7390444 | Ramme et al. | Jun 2008 | B2 |
7735274 | Constantz et al. | Jun 2010 | B2 |
7736430 | Barron et al. | Jun 2010 | B2 |
7771684 | Constantz et al. | Aug 2010 | B2 |
7815880 | Constantz et al. | Oct 2010 | B2 |
7879146 | Raki et al. | Feb 2011 | B2 |
7906086 | Comrie | Mar 2011 | B2 |
7914685 | Constantz et al. | Mar 2011 | B2 |
7922809 | Constantz et al. | Apr 2011 | B1 |
7950841 | Klein et al. | May 2011 | B2 |
8006446 | Constantz et al. | Aug 2011 | B2 |
8043426 | Mohamed et al. | Oct 2011 | B2 |
8105558 | Comrie | Jan 2012 | B2 |
8114214 | Constantz et al. | Feb 2012 | B2 |
8114367 | Riman et al. | Feb 2012 | B2 |
8118473 | Cooley et al. | Feb 2012 | B2 |
8137455 | Constantz et al. | Mar 2012 | B1 |
8177909 | Constantz et al. | May 2012 | B2 |
8192542 | Virtanen | Jun 2012 | B2 |
8235576 | Klein et al. | Aug 2012 | B2 |
8272205 | Estes et al. | Sep 2012 | B2 |
8311678 | Koehler et al. | Nov 2012 | B2 |
8313802 | Riman et al. | Nov 2012 | B2 |
8333944 | Constantz et al. | Dec 2012 | B2 |
8470275 | Constantz et al. | Jun 2013 | B2 |
8491858 | Seeker et al. | Jul 2013 | B2 |
8518176 | Silva et al. | Aug 2013 | B2 |
8708547 | Bilger | Apr 2014 | B2 |
8709960 | Riman et al. | Apr 2014 | B2 |
8721784 | Riman et al. | May 2014 | B2 |
8746954 | Cooley et al. | Jun 2014 | B2 |
8845940 | Niven et al. | Sep 2014 | B2 |
8989905 | Sostaric et al. | Mar 2015 | B2 |
9108883 | Forgeron et al. | Aug 2015 | B2 |
9376345 | Forgeron et al. | Jun 2016 | B2 |
9388072 | Niven et al. | Jul 2016 | B2 |
20020019459 | Albrecht et al. | Feb 2002 | A1 |
20070171764 | Klein et al. | Jul 2007 | A1 |
20070185636 | Cooley et al. | Aug 2007 | A1 |
20080092957 | Rosaen | Apr 2008 | A1 |
20080202389 | Hojaji et al. | Aug 2008 | A1 |
20080245274 | Ramme | Oct 2008 | A1 |
20080316856 | Cooley et al. | Dec 2008 | A1 |
20090103392 | Bilger | Apr 2009 | A1 |
20090143211 | Riman et al. | Jun 2009 | A1 |
20090292572 | Alden et al. | Nov 2009 | A1 |
20100132556 | Constantz et al. | Jun 2010 | A1 |
20100239487 | Constantz et al. | Sep 2010 | A1 |
20100246312 | Welker et al. | Sep 2010 | A1 |
20110165400 | Quaghebeur et al. | Jul 2011 | A1 |
20110289901 | Estes et al. | Dec 2011 | A1 |
20110320040 | Koehler et al. | Dec 2011 | A1 |
20120238006 | Gartner et al. | Sep 2012 | A1 |
20120312194 | Riman et al. | Dec 2012 | A1 |
20130036945 | Constantz et al. | Feb 2013 | A1 |
20130122267 | Riman et al. | May 2013 | A1 |
20130125791 | Fried et al. | May 2013 | A1 |
20130284073 | Gartner | Oct 2013 | A1 |
20140069302 | Saastamoinen et al. | Mar 2014 | A1 |
20140096704 | Rademan et al. | Apr 2014 | A1 |
20140104972 | Roberts et al. | Apr 2014 | A1 |
20140107844 | Koehler et al. | Apr 2014 | A1 |
20140116295 | Niven et al. | May 2014 | A1 |
20140127450 | Riman et al. | May 2014 | A1 |
20140197563 | Niven et al. | Jul 2014 | A1 |
20140216303 | Lee et al. | Aug 2014 | A1 |
20140373755 | Forgeron et al. | Dec 2014 | A1 |
20150023127 | Chon et al. | Jan 2015 | A1 |
20150069656 | Bowers et al. | Mar 2015 | A1 |
20150197447 | Forgeron et al. | Jul 2015 | A1 |
20150232381 | Niven et al. | Aug 2015 | A1 |
20160001462 | Forgeron et al. | Jan 2016 | A1 |
20160107939 | Monkman et al. | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
0970935 | Jul 1975 | CA |
1185078 | Jul 1985 | CA |
2343021 | Mar 2000 | CA |
2362631 | Aug 2000 | CA |
2598583 | Sep 2006 | CA |
2646462 | Sep 2007 | CA |
2659447 | Dec 2008 | CA |
2703343 | Apr 2009 | CA |
2705857 | May 2009 | CA |
2670049 | Nov 2009 | CA |
2778508 | Jun 2011 | CA |
2785143 | Jul 2011 | CA |
2829320 | Sep 2012 | CA |
2837832 | Dec 2012 | CA |
3139107 | Apr 1983 | DE |
19506411 | Sep 1996 | DE |
0047675 | Mar 1982 | EP |
0218189 | Apr 1987 | EP |
0151164 | May 1988 | EP |
0218189 | May 1988 | EP |
0629597 | Dec 1994 | EP |
0701503 | Aug 2000 | EP |
1749629 | May 2013 | EP |
1259819 | Apr 1961 | FR |
2121975 | Aug 1972 | FR |
2503135 | Oct 1982 | FR |
2513932 | Apr 1983 | FR |
2735804 | Dec 1996 | FR |
217791 | Jun 1924 | GB |
574724 | Jan 1946 | GB |
644615 | Oct 1950 | GB |
851222 | Oct 1960 | GB |
1167927 | Oct 1969 | GB |
1199069 | Jul 1970 | GB |
1337014 | Nov 1973 | GB |
1460284 | Dec 1976 | GB |
2106886 | Apr 1983 | GB |
2192392 | Jan 1988 | GB |
2300631 | Nov 1996 | GB |
2302090 | Jan 1997 | GB |
02018368 | Jan 1990 | JP |
06144944 | May 1994 | JP |
6263562 | Sep 1994 | JP |
07048186 | Feb 1995 | JP |
10194798 | Jul 1998 | JP |
11303398 | Nov 1999 | JP |
2000203964 | Jul 2000 | JP |
2000247711 | Sep 2000 | JP |
2000-281467 | Oct 2000 | JP |
2002012480 | Jan 2002 | JP |
2002127122 | May 2002 | JP |
2007326881 | Jun 2009 | JP |
4313352 | Aug 2009 | JP |
8002613 | Mar 1982 | SE |
451067 | Aug 1987 | SE |
1031728 | Jul 1983 | SU |
WO 7900473 | Jul 1979 | WO |
WO 8500587 | Feb 1985 | WO |
WO 9105644 | May 1991 | WO |
WO 9427797 | Dec 1994 | WO |
WO 0190020 | Nov 2001 | WO |
WO 2004074733 | Sep 2004 | WO |
WO 2006040503 | Apr 2006 | WO |
WO 2006100550 | Sep 2006 | WO |
WO 2006100693 | Sep 2006 | WO |
WO 2009078430 | Jun 2009 | WO |
WO-2009089906 | Jul 2009 | WO |
WO 2009132692 | Nov 2009 | WO |
WO 2012079173 | Jun 2012 | WO |
WO-2012081486 | Jun 2012 | WO |
WO 2014026794 | Feb 2014 | WO |
WO 2014121198 | Aug 2014 | WO |
Entry |
---|
International search report and written opinion dated Sep. 18, 2014 for PCT/CA2014/050611. |
Notice of allowance dated Apr. 22, 2014 for U.S. Appl. No. 13/660,447. |
Office action dated Mar. 28, 2013 for U.S. Appl. No. 13/660,447. |
Office action dated Jul. 15, 2013 for U.S. Appl. No. 13/660,447. |
European search report and search opinion dated Jan. 14, 2015 for EP 11849437.6. |
Office action dated Mar. 10, 2015 for U.S. Appl. No. 14/249,308. |
U.S. Appl. No. 14/642,536, filed Mar. 9, 2015, Forgeron, et al. |
U.S. Appl. No. 14/701,456, filed Apr. 30, 2015, Forgeron, et al. |
Notice of allowance dated Apr. 24, 2015 for U.S. Appl. No. 14/249,308. |
U.S. Appl. No. 14/249,308, filed Apr. 9, 2014, Forgeron et al. |
U.S. Appl. No. 61/839,312, filed Jun. 25, 2013, Niven et al. |
U.S. Appl. No. 61/847,254, filed Jul. 17, 2013, Niven et al. |
U.S. Appl. No. 61/879,049, filed Sep. 17, 2013, Niven et al. |
U.S. Appl. No. 61/925,100, filed Jan. 8, 2014, Niven et al. |
U.S. Appl. No. 61/938,063, filed Feb. 10, 2014, Niven et al. |
U.S. Appl. No. 61/941,222, filed Feb. 18, 2014, Crossman et al. |
U.S. Appl. No. 61/976,360, filed Apr. 7, 2014, Monkman et al. |
U.S. Appl. No. 61/980,505, filed Apr. 16, 2014, Sandberg et al. |
Abanades, et al. Conversion limits in the reaction of CO2 with lime. Energy and Fuels. 2003; 17(2):308-315. |
Bertos, et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J Hazard Mater. Aug. 30, 2004;112(3):193-205. |
Bhatia, et al. Effect of the Product Layer on the kinetics of the CO2-lime reaction. AIChE Journal. 1983; 29(1):79-86. |
Chang, et al. The experimental investigation of concrete carbonation depth. Cement and Concrete Research. 2006; 36(9):1760-1767. |
Chen, et al. On the kinetics of Portland cement hydration in the presence of selected chemical admixtures. Advances in Cement Research. 1993; 5(17):9-13. |
Dewaele, et al. Permeability and porosity changes associated with cement grout carbonation. Cement and Concrete Research. 1991; 21(4):441-454. |
Fernandez-Bertos, et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of Hazardous Materials B112. 2004; 193-205. |
Fluid Hole and Size. Newton: Ask a Scientist. Jan. 24, 2005. Retrieved from http://www.newton.dep.anl.gov/askasci/eng99/eng99365.htm on Jul. 13, 2013. |
Freedman, S. Carbonation Treatment of Concrete Masonry Units. Modern Concrete. 1969; 33(5):33-6. |
Goodbrake, et al. Reaction of Hydraulic Calcium Silicates with Carbon Dioxide and Water. Journal of the American Ceramic Society. 1979; 62(9-10):488-491. |
Goto, et al. Calcium Silicate Carbonation Products. Journal of the American Ceramic Society. 1995; 78(11):2867-2872. |
Huijgen, et al. Mineral CO2 sequestration by steel slag carbonation. Environmental Science and Technology. 2005; 39(24):9676-9682. |
Huntzinger, et al. Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environ Sci Technol. Mar. 15, 2009;43(6):1986-92. |
Iizuka, et al. Development of a new CO2 sequestration process utilizing the carbonation of waste cement. Industrial & Engineering Chemistry Research. 2004; (43)24:7880-7887. |
International search report and written opinion dated Mar. 6, 2012 for PCT Application No. CA2011/050774. |
International search report and written opinion dated Jul. 18, 2013 for PCT Application No. CA2013/050190. |
Kashef-Haghighi, et al. Accelerated Concrete Carbonation, a CO2 Sequestration Technology. 8th World Congress of Chemical Engineering WCCE8. Aug. 24, 2009. |
Kashef-Haghighi, et al. CO2 sequestration in concrete through accelerated carbonation curing in a flow-through reactor. Ind. Eng. Chem. Res. 2010; 49:1143-1149. |
Lange, et al. Preliminary investigation into the effects of carbonation on cement-solidified hazardous wastes. Environmental Science and Technology. 1996; 30(1):25-30. |
Logan, C. Carbon dioxide absorption and durability of carbonation cured cement and concrete compacts. Thesis. Department of Civil Engineering, McGill University. Montreal, QC, Canada. 2006. |
Mehta. “Concrete Carbonation”. Materials World Magazine. Oct. 1, 2008 [Retrieved on Jul. 13, 2013] Retrieved from http://www.iom3.org/news/concrete-carbonation. |
Monkman, et al. Assessing the Carbonation Behavior of Cementitious Materials. J. Mater. Civ. Eng. 2006; 18(6), 768-776. |
Monkman, et al. Carbonated Ladle Slag Fines for Carbon Uptake and Sand Substitute. Journal of Materials in Civil Engineering. Nov. 2009;657-665. |
Monkman, et al. Carbonation Curing of Slag-Cement Concrete for Binding CO2 and Improving Performance. Journal of Materials in Civil Engineering. Apr. 2010; 296-304. |
Monkman, et al. Integration of carbon sequestration into curing process of precast concrete. Can. J. Civ. Eng. 2010; 37:302-310. |
Monkman, S. Maximizing carbon uptake and performance gain in slag-containing concretes through early carbonation. Thesis. Department of Civil Engineering and Applied Mechanics, McGill University. Montreal, QC, Canada. 2008. |
Niven, et al. Carbon Dioxide Uptake Rate and Extent during Accelerated Curing of Concrete. International Congress on the Chemistry of Cement 2007. ICCC 2007. |
Niven. Industrial pilot study examining the application of precast concrete carbonation curing. Cardon Sense Solutions Inc. Halifax, Canada. ACEME 2008. |
Niven. Physiochemical investigation of CO2 accelerated concrete curing as a greenhosue gas mitigation technology. These from the Department of Civil Engineering and Applied Mechanics. McGill University, Montreal, Canada. Oct. 2006. |
Papadakis, et al. A reaction engineering approach to the problem of concrete carbonation. AIChE Journal. 1989; 35(10):1639-1650. |
Papadakis, et al. Fundamental Modeling and Experimental Investigation of Concrete Carbonation. ACI Materials Journal. 1991; 88(4):363-373. |
Preliminary Amendment dated Nov. 1, 2013 for U.S. Appl. No. 13/994,681. |
Reardon, et al. High pressure carbonation of cementitious grout. Cement and Concrete Research. 1989; 19(3):385-399. |
Shao, et al. A new CO2 sequestration process via concrete products production. Department of civil engineering. McGill University, Montreal, Canada. 2007. |
Shao, et al. CO2 sequestration using calcium-silicate concrete. Canadian Journal of Civil Engineering. 2006;(33)6:776-784. |
Shao, et al. Market analysis of CO2 sequestration in concrete building products. Second International Conference on Sustainable Construction Materials and Technologies. Jun. 28-30, 2010. |
Shao, et al. Recycling carbon dioxide into concrete: a feasibility study. Concrete Sustainability Conference. 2010. |
Shi, et al. Studies on some factors affecting CO2 curing of lightweight concrete products. Resources, Conservation and Recycling. 2008; (52)8-9:1087-1092. |
Shideler, J. Investigation of the moisture-volume stability of concrete masonry units. Portland Cement Association. 1955. (D3). |
Shih, et al. Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature. Industrial and Engineering Chemistry Research. 1999; 38(4):1316-1322. |
Steinour, H. Some effects of carbon dioxide on mortars and concrete-discussion. Journal of the American Concrete Institute. 1959; 30:905-907. |
Technology Roadmap: Cement. International Energy Agency. Dec. 2009 [Retrieved on Jul. 13, 2013]. Retrieved from http://www.iea.org/publications/freepublications/publication/name,3861 ,en.html. |
Teir, et al. Carbonation of Finnish magnesium silicates for CO2 sequestration . Fifth Annual Conference on Carbon Capture and Sequestration. May 8-11, 2006. National Energy Technology Laboratory, Department of Energy, USA. |
Toennies, et al. Artificial carbonation of concrete masonry units. American Concrete Institute Journal. 1960; 31(8):737-755. |
Tri-Cast literature, Besser Company. Sioux, Iowa, USA. |
Van Balen, K. Carbonation reaction of lime, kinetics at ambient temperature. Cement and Concrete Research. 2005; 35(4):647-657. |
Venhuis, et al. Vacuum method for carbonation of cementitious wasteforms. Environ Sci Technol. Oct. 15, 2001;35(20):4120-5. |
Weber, et al. Find carbon dioxide gas under pressure an efficient curing agent for cast stone. Concrete. Jul. 1941; 33-34. |
Young, et al. Accelerated Curing of Compacted Calcium Silicate Mortars on Exposure to CO2. Journal of the American Ceramic Society.. 1974; 57(9):394-397. |
Estes-Haselbach. The greenest concrete mixer—carbon sequestration in freshly mixed concrete. Sep. 25, 2012. |
Goto. Some mineralo-chemical problems concerning calcite and aragonite, with special reference to the genesis of aragonite. Contribution from the department of geology and mineralogy. Faculty of Science. Hokkaido University. 1961. http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/35923/1/10(4)—571-640.pdf. |
Hurst. Canadian cement plant becomes first to capture CO2 in algae. Earth and Industry. Pond Biofuels press release. Mar. 19, 2010. |
Sato, et al. Seeding effect of nano-CaCO3 on the hidration of tricalcium silicate, Transportation Research Record. 2010; 2141:61-67. |
Sorochkin, et al. Study of the possibility of using carbon dioxide for accelerating the hardening of products made from Portland Cement. J. Appl. Chem. USSR. 1975; 48:1271-1274. |
International search report and written opinion dated Jul. 16, 2015 for PCT Application No. PCT/CA2015/000158. |
International search report and written opinion dated Jul. 16, 2015 for PCT Application No. PCT/CA2015/050318. |
Office action dated Aug. 14, 2015 for U.S. Appl. No. 14/701,456. |
Office action dated Aug. 18, 2015 for U.S. Appl. No. 14/642,536. |
Office action dated Oct. 5, 2015 for U.S. Appl. No. 14/701,456. |
Phipps and MacDonald. Sustainability Leads to Durability in the New I-35W Bridge. Concrete International. Feb. 2009; vol. 31 Issue 2, p. 27-32. |
U.S. Appl. No. 14/796,751, filed Jul. 10. 2015, Forgeron, et al. |
International search report and written opinion dated Jan. 25, 2016 for PCT Application No. PCT/CA2015/051220. |
Office action dated Jan. 25, 2016 for U.S. Appl. No. 14/701,456. |
Office action dated Dec. 7, 2015 for U.S. Appl. No. 14/796,751. |
Notice of allowance dated Feb. 26, 2016 for U.S. Appl. No. 14/642,536. |
Notices of allowance dated Mar. 3, 2016 and Mar. 17, 2016 for U.S. Appl. No. 14/701,456. |
Office action dated Mar. 7, 2016 for U.S. Appl. No. 14/796,751. |
Office action dated Apr. 26, 2016 for U.S. Appl. No. 14/950,288. |
Co-pending U.S. Appl. No. 15/157,205, filed May 17, 2016. |
Co-pending U.S. Appl. No. 15/161,927, filed May 23, 2016. |
Kawashima, et al. Dispersion of CaCO3 Nanoparticles by Sonication and Surfactant Treatment for Application in Fly Ash-Cement Systems. Materials and Structures. May 28, 2013. DOI 10.1617/S11527-013-0110-9. |
Lomboy, et al. Atom Probe Tomography for Nanomodified Portland Cement. Nanotechnology in Construction. Springer International Publishing, 2015. 79-86. |
Notice of allowance dated Mar. 29, 2016 for U.S. Appl. No. 14/701,456. |
Notice of allowance dated Apr. 25, 2016 for U.S. Appl. No. 14/642,536. |
Notice of allowance dated May 6, 2016 for U.S. Appl. No. 14/796,751. |
Notice of allowance dated May 11, 2016 for U.S. Appl. No. 14/701,456. |
Sato, et al. Effect of Nano-CaCO3 on Hydration of Cement Containing Supplementary Cementitious Materials. Institute for Research in Construction, National Research Council Canada. Oct. 2010. |
International search report and written opinion dated May 4, 2015 for PCT/CA2015/050118. |
Notice of allowance dated Jun. 24, 2015 for U.S. Appl. No. 14/249,308. |
Co-pending U.S. Appl. No. 15/228,964, filed on Aug. 4, 2016. |
Notice of allowance dated Aug. 5, 2016 for U.S. Appl. No. 14/796,751. |
Co-pending U.S. Appl. No. 15/170,018, filed on Jun. 1, 2016 |
Office Action dated Jun. 16, 2016 for U.S. Appl. No. 13/994,681. |
Number | Date | Country | |
---|---|---|---|
20140327168 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13660447 | Oct 2012 | US |
Child | 14282965 | US |