The present disclosure relates to a carbon fiber recycling device, in particular, to a carbon fiber recycling device which utilizes a microwave to recycle a carbon fiber from a carbon fiber polymer composite.
According to the current technology, the carbon fiber polymer composites (such as, Carbon Fiber Reinforced Polymer/Plastic, CFRP) are widely used in the industrial fields of aerospace aircrafts, golf clubs, tennis racquets, cars, wind powers, and medical devices since the carbon fiber polymer composite have properties of the high strength, the high elastic modulus, the nice heat resistance and the nice corrosion resistance. The produced scrap at the manufacturing stage or the carbon fiber polymer composite waste material of the scrap product with the ended usage lifetime may have the processing problem, wherein the manner for burning the carbon fiber polymer composite can merely burn the resin away, and the carbon fiber is still remained as the residue. Accordingly, the carbon fiber polymer composite waste material is usually seemed as the non-combustible solid waste and processed by the landfill manner. However, the landfill manner causes the waste of the land resource and further deteriorates surroundings. Moreover, the carbon fiber polymer composite has the high valuable carbon fiber therein, and processing by the landfill manner undoubtedly causes large waste of the carbon fiber.
There are several methods provided by the prior art to solve the above the problems, and they mainly decompose the polymers of the carbon fiber polymer composite, such that the carbon fiber in the carbon fiber polymer composite can be separated to achieve the objective of recycling the carbon fiber, wherein the polymer decomposing methods comprise the thermal decomposition, the inorganic strong acid decomposition, the organic solvent decomposition and the supercritical fluid decomposition. Though using the organic solvent decomposition can obtain the clean carbon fiber, much organic solvent is used during recycling, and thus it causes the pollution of the environment. Furthermore, after the solvent has been used, the separation operation of the solvent is complicate, and it causes the high recycling cost. Though the supercritical fluid decomposition has the clean and free pollution advantage, the supercritical fluid decomposition must progress under the high temperature and high pressure reaction condition, it needs high reaction device requirement, and the degraded production and the fluid are mixed together to be separated hardly.
The practicable industrial manner among the prior art is the thermal decomposition for processing the waste carbon fiber polymer composite. The thermal decomposition is to dispose the waste carbon fiber polymer composite in the thermal air for decomposition, and the manner is more effective for the carbon fiber polymer composite doped with the heterogeneous material, such as the metal, and can be operated continuously. However, the carbon fiber obtained from the reaction may be oxidized much, and it may have the little force property since the carbon fiber is strongly struck in the reactor or the separator. Accordingly, how to effectively use the novel hardware design to recycle the high pure and high performance carbon fiber disposed at different angles and to reduce the input energy, consuming time and labor cost is still an issue to be continuously improved or solved by the carbon fiber recycling industry and researcher.
Currently, the inventor is diligent to improve or eliminate the disadvantages of the conventional carbon fiber recycling device in practice based on his/her skill and experience in the art, so as to provide one carbon fiber recycling device in the present disclosure.
A main objective of the present disclosure is to provide a carbon fiber recycling device which radiate the microwave to the carbon fiber of the carbon fiber polymer composite, such that energy of the microwave is quickly absorbed by the carbon fiber to quickly increase a temperature of the carbon fiber, and the carbon fiber polymer composite is effectively and quickly decomposed to remove most polymer matrix of the carbon fiber polymer composite, so as to achieve the objective of recycling the carbon fiber indeed.
To achieve one of the above objectives, the present disclosure provides a carbon fiber recycling device, adapted to recycle a first carbon fiber from a carbon fiber polymer composite which comprises a polymer matrix and the first carbon fiber, wherein the polymer matrix is coupled to the first carbon fiber, the first carbon fiber comprises a first long axis direction, and the carbon fiber recycling device comprises: at least one first microwave supplying unit and a cavity; wherein the first microwave supplying unit is used to generate a first microwave, the first microwave has a first microwave direction, the first microwave is propagated to interior of the cavity; the first microwave comprises a first electric field, and the first electric field in the interior of the cavity has a first electric field direction being perpendicular to the first microwave direction; the first long axis direction of the first carbon fiber is perpendicular to the first microwave direction, or the first long axis direction of the first carbon fiber is parallel to the first electric field direction.
Regarding the above carbon fiber recycling device, the first long axis direction of the first carbon fiber is parallel to the first electric field direction.
Regarding the above carbon fiber recycling device, the cavity has a second long axis direction, and the second long axis direction of the cavity, the first electric field direction and the first long axis direction of the first carbon fiber are parallel to each other.
Regarding the above carbon fiber recycling device, the first long axis direction of the first carbon fiber is perpendicular to the first electric field direction.
Regarding the above carbon fiber recycling device, the interior of the cavity is opened to have an accommodating space, the cavity has a hollow tube installed in the accommodating space, an interior hollow portion of the hollow tube is opened to have a tube accommodating space, and the carbon fiber polymer composite is disposed in the tube accommodating space.
Regarding the above carbon fiber recycling device, the hollow tube is made of a microwave-penetrable material.
Regarding the above carbon fiber recycling device, the hollow tube is a quartz tube, a crystal tube or a glass tube.
Regarding the above carbon fiber recycling device, the cavity is a metal cavity.
Regarding the above carbon fiber recycling device, the first microwave supplying unit comprises a first microwave source and a first waveguide tube, wherein one end of the first waveguide tube is coupled to the first microwave source, and other one end of the first waveguide tube is coupled to the cavity.
Regarding the above carbon fiber recycling device, the carbon fiber recycling device comprises a condensation device, and the cavity is communicated with the condensation device.
Regarding the above carbon fiber recycling device, the carbon fiber recycling device comprises at least one second microwave supplying unit used to generate a second microwave, and the second microwave is propagated to the interior of the cavity; the second microwave comprises a second electric field, the second electric field has a second electric field direction being perpendicular to the first electric field direction
Regarding the above carbon fiber recycling device, the cavity has a second long axis direction, and the first microwave supplying unit and the second microwave supplying unit are arranged along the second long axis direction of the cavity in sequence.
Regarding the above carbon fiber recycling device, the cavity has a second long axis direction, and the first electric field direction and the long axis direction of the cavity have a tilting angle therebetween.
Regarding the above carbon fiber recycling device, the cavity is a hollow cylinder.
Regarding the above carbon fiber recycling device, the cavity is a hollow polygonal prism.
Regarding the above carbon fiber recycling device, the cavity has second long axis direction, outer circumference of the hollow polygonal prism is formed by a plurality of outer surfaces, and the first microwave supplying unit and the second microwave supplying unit are arranged on one outer surface of the hollow polygonal prism in sequence.
Regarding the above carbon fiber recycling device, the cavity has a second long axis direction, outer circumference of the hollow polygonal prism is formed by a plurality of outer surfaces, twos of the outer surfaces are respectively a first outer surface and a second outer surface, each of the first outer surface and the second outer surface has one of the first microwave supplying units and one of the second microwave supplying units, and the first microwave supplying unit and the second microwave supplying unit are arrange along the second long axis direction of the cavity in sequence; wherein the first microwave supplying unit of the first outer surface and the first microwave supplying unit of the second outer surface are located at different levels, and the second microwave supplying unit of the first outer surface and the second microwave supplying unit of the second outer surface are located at different levels.
Regarding the above carbon fiber recycling device, the cavity has a second long axis direction, outer circumference of the hollow polygonal prism is formed by a plurality of outer surfaces, twos of the outer surfaces are respectively a first outer surface and a second outer surface, each of the first outer surface and the second outer surface has one of the first microwave supplying units and one of the second microwave supplying units, and the first microwave supplying unit and the second microwave supplying unit are arrange along the second long axis direction of the cavity in sequence; wherein the first microwave supplying unit of the first outer surface and the second microwave supplying unit of the second outer surface are located at a same level, and the second microwave supplying unit of the first outer surface and the first microwave supplying unit of the second outer surface are located at a same level.
Regarding the above carbon fiber recycling device, outer circumference of the hollow polygonal prism is formed by a plurality of outer surfaces, each of the outer surfaces has one of the first microwave supplying units and one of the second microwave supplying units, and the first microwave supplying unit of one of the two adjacent outer surfaces and the first microwave supplying unit of other one of the two adjacent outer surfaces are located at different levels.
Regarding the above carbon fiber recycling device, outer circumference of the hollow polygonal prism is formed by a plurality of outer surfaces, each of the outer surfaces has one of the first microwave supplying units and one of the second microwave supplying units, and the first microwave supplying unit of one of the two adjacent outer surfaces and the second microwave supplying unit of other one of the two adjacent outer surfaces are located at a same level.
Regarding the above carbon fiber recycling device, outer circumference of the hollow polygonal prism is formed by a plurality of outer surfaces, twos of the outer surfaces are respectively a first outer surface and a second outer surface, and the first outer surface and the second outer surface are adjacent to each other; inner circumference of the hollow polygonal prism is formed by a plurality of inner surfaces, and the inner surfaces have a first inner surface corresponding to the first outer surface and a second inner surface corresponding to the second outer surface; the first outer surface and the second outer surface have an angle therebetween, or the first inner surface and the second inner surface have the angle therebetween; the angle is between 60 degrees and 160 degrees.
Regarding the above carbon fiber recycling device, the angle is between 90 degrees and 150 degrees.
Regarding the above carbon fiber recycling device, the angle is between 120 degrees and 144 degrees.
Regarding the above carbon fiber recycling device, the angle is 120 degrees.
The accompanying drawings are included to provide a further understanding of the present disclosure, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments of the present disclosure and, together with the description, serve to explain the principles of the present disclosure.
To understand the technical features, content and advantages of the present disclosure and its efficacy, the present disclosure will be described in detail with reference to the accompanying drawings. The drawings are for illustrative and auxiliary purposes only and may not necessarily be the true scale and precise configuration of the present disclosure. Therefore, the scope of the present disclosure should not be limited to the scale and configuration of the attached drawings.
Firstly, referring to
The carbon fiber recycling device 1 of the present disclosure comprises at least one first microwave supplying unit 11 and a cavity 12, wherein the first microwave supplying unit 11 comprises a first microwave source 111 and a first waveguide tube 112. One end of the first waveguide tube 112 is coupled to the first microwave source 111, and other one end of the first waveguide tube 112 is coupled to the cavity 12. The first microwave supplying unit 11 is used to generate a first microwave M1, and the first microwave M1 is propagated into interior of the cavity 12 through the first waveguide tube 112 from the first microwave source 111. The first microwave M1 comprises a first electric field E1 and a first magnetic field F1, wherein the first microwave M1 is propagated into the interior of the cavity 12 along a first microwave direction M11, the first electric field E1 within the interior of the cavity 12 has a first electric field direction E11, and the first magnetic field F1 within the interior of the cavity 12 has a first magnetic field direction F11. According to Fleming's right-hand rule, as shown in
The interior of the cavity 12 is opened to have an accommodating space S, and the carbon fiber polymer composite 2 is disposed in the accommodating space S. The cavity 12 has a first sidewall hole 121 coupled to the other one end of the first waveguide tube 112, such that the first microwave M1 can be propagated to the accommodating space S. The cavity 12 is made of the microwave-reflective material, such as the cavity 12 is made of the metal material to form a metal cavity with a close configuration. Since the metal can reflects the first microwave M1, the first microwave M1 in the accommodating space S can oscillate and be uniformly filled in the cavity 12. Furthermore, by using the metal to reflect the first microwave M1, the operator and other device out of the cavity 12 can be protected. The shape of the cavity 12 is not limited, for example, the cavity 12 can be one of the hollow cylinder and the hollow polygonal prism. The cavity 12 has a long axis direction XA, wherein the long axis direction XA of the cavity 12 is the extending direction of the cavity 12. As shown in
In practice, the carbon fiber polymer composite 2 is disposed in the accommodating space S. Next, the first microwave source 111 is activated to generate the first microwave M1, and the first microwave M1 is propagated to the accommodating space S through the first waveguide tube 112 and the first sidewall hole 121. The first microwave M1 is radiated to the carbon fiber polymer composite 2, such the first carbon fiber 21 within the carbon fiber polymer composite 2 can quickly absorb the energy of the first microwave M1, so as to increase the temperature of the first carbon fiber 21 immediately and to heat the first carbon fiber 21. Thus, the portion of the polymer matrix 24 contacting the carbon fiber is heated to be decomposed to a plurality of small organic molecules, and due to the heat transmission effect, the other portion of the polymer matrix 24 is also heated to be decomposed to a plurality of small organic molecules.
It is noted that, if the carbon fiber polymer composite 2 is disposed in the manner that the long axis direction X of first carbon fiber 21 is parallel to the first microwave direction M11, the absorption rate of the first carbon fiber 21 for the energy of the first microwave M1 will not be large, and the temperature of the first carbon fiber 21 will not be increased sufficiently, such that the polymer matrix 24 is unable to be decomposed to the small organic molecules. If he carbon fiber polymer composite 2 is disposed in the manner that the long axis direction X of first carbon fiber 21 is perpendicular to the first microwave direction M11, the absorption rate of the first carbon fiber 21 for the energy of the first microwave M1 will be large, and the temperature of the first carbon fiber 21 will be increased sufficiently, such that the polymer matrix 24 is able to be decomposed to the small organic molecules.
It is further to be noted that, in addition to make the long axis direction X of the first carbon fiber 21 be perpendicular to the first microwave direction M11, if the first carbon fiber 21 is disposed to further make the long axis direction X of the first carbon fiber 21 be perpendicular to the first electric field direction E11, the absorption rate of the first carbon fiber 21 for the energy of the first electric field E1 will not be large, and the temperature of the first carbon fiber 21 will not be increased sufficiently, such that the polymer matrix 24 is unable to be decomposed to the small organic molecules. If the first carbon fiber 21 is disposed to further make the long axis direction X of the first carbon fiber 21 be parallel to the first electric field direction E11, the absorption rate of the first carbon fiber 21 for the energy of the first electric field E1 will be large, and the temperature of the first carbon fiber 21 will be increased sufficiently, such that the polymer matrix 24 is able to be decomposed to the small organic molecules.
In the above descriptions, the preferred configuration is that the long axis direction XA of the cavity 12, the first electric field direction E11 and the long axis direction X of the first carbon fiber 21 are parallel to each other, the long axis direction XA of cavity 12 is perpendicular to the first microwave direction M11, and the long axis direction X of the first carbon fiber 21 is perpendicular to the first microwave direction M11.
The small organic molecules can be exhausted to be sent to a condensation device 3 from the accommodating space S of the cavity 12. The small organic molecules can be captured and condensed by the condensation device 3, so as to prevent the pollution of exhausting the small organic molecules to the air.
In the embodiment without additionally heating the cavity 12, the small organic molecules can be easily condensed at the sidewall of the cavity 12, and thus it causes the sidewall is polluted and not easily cleaned. In addition, the cavity 12 can be further has a hollow tube 122 installed within the accommodating space S, hollow portion of interior of the hollow tube 122 can be opened to have a tube accommodating space S1, and the carbon fiber polymer composite 2 is disposed in the tube accommodating space S1, wherein the hollow tube 122 can be made of a microwave-penetrable material, for example, the hollow tube 122 can be a quartz tube, a crystal tube or a glass tube. Therefore, the small organic molecules can be condensed at the tube wall of the hollow tube 122, such as the quartz tube, and cleaning the tube wall of the quartz tube is easier and faster than cleaning the sidewall of the cavity 12. Furthermore, the hollow tube 122 after one operation can be replaced by another one clean hollow tube 122, so as to increase the processing speed.
The first embodiment is particularly suitable for the carbon fiber polymer composite 2 which is formed by the longitude-arranged first carbon fibers 21 and the polymer matrix 24, for example, the ribbon shaped carbon fiber polymer composite 2 formed by the longitude-arranged first carbon fibers 21 and the polymer matrix 24, wherein a direction of the longitude related to “longitude-arranged” is the long axis direction X of the first carbon fiber 21.
Referring to
On the basis of the first embodiment, in the second embodiment, the carbon fiber polymer composite 2 further comprises a second carbon fiber 22, and the second carbon fiber 22 further comprises a long axis direction Y, wherein the long axis direction Y of the second carbon fiber 22 is the extending direction of the second carbon fiber 22. Preferably, the polymer matrix 24 covers the second carbon fiber 22 and couples the second carbon fiber 22. Preferably, the carbon fiber polymer composite 2 comprises the polymer matrix 24 and a plurality of second carbon fibers 22, and the second carbon fibers 22 are arranged parallel to each other and along the long axis direction Y of the second carbon fiber 22.
The descriptions similar to the first embodiment will not be described again in the second embodiment. The long axis direction Y of the second carbon fiber 22 is perpendicular to the second microwave direction M21, and the long axis direction Y of the second carbon fiber 22 is parallel to the second electric field direction E21.
The long axis direction XA of the cavity 12 is perpendicular to the second electric field direction E21, the long axis direction XA of the cavity 12 is perpendicular to the long axis direction Y of the second carbon fiber 22, and the long axis direction XA of the cavity 12 is perpendicular to the second microwave direction M21.
The second electric field direction E21 is perpendicular to the first electric field direction E11.
The second embodiment is suitable for the carbon fiber polymer composite 2 which is formed by the latitude-arranged second carbon fibers 22 and the polymer matrix 24, for example, the ribbon shaped carbon fiber polymer composite 2 formed by the latitude-arranged second carbon fibers 22 and the polymer matrix 24, wherein a direction of the latitude related to “latitude-arranged” is the long axis direction Y of the second carbon fiber 22.
Referring to
Referring to
Similarly, the second microwave supplying unit 13 can adjust the second microwave M2 to make the angle between the second electric field direction E21 and the long axis direction XA of the cavity 12 change according to the actual requirement. Since the operation mechanism and principle are the same as the above descriptions in the fourth embodiment, thus omitting the redundant descriptions.
Referring to
Referring to
The first outer surface H1 and the second outer surface H2 have an angle θ2 therebetween; or alternatively, inner circumference of the hollow polygonal prism is formed by a plurality of inner surfaces, the inner surfaces have a first inner surface (not shown in the drawings) corresponding to the first outer surface H1, the inner surfaces have a second inner surface (not shown in the drawings) corresponding to the second outer surface H2, and the first and second inner surface have the angle θ2 therebetween. The angle θ2 is between 60 degrees and 160 degrees. Preferably, the angle θ2 is between 90 degrees and 150 degrees. More preferably, the angle θ2 is between 120 degrees and 144 degrees. Optimally, the angle θ2 is 120 degrees. It is noted that, the range in the present disclosure comprises the end value.
Certainly, the present disclosure can dispose one of the first microwave supplying units 11 and one of the second microwave supplying units 13 on each of the outer surfaces H, wherein the first microwave supplying unit 11 on one of the two adjacent outer surfaces H and the first microwave supplying unit 11 on other one of the two adjacent outer surfaces H are located at different levels, and the first microwave supplying unit 11 on one of the two adjacent outer surfaces H and the second microwave supplying unit 13 on other one of the two adjacent outer surfaces H are located at a same level.
To sum up, the carbon fiber recycling device of the present disclosure is indeed disclosed by the descriptions of different embodiments, and the carbon fiber recycling device in one of the embodiments can achieve the desired result(s). Furthermore, the carbon fiber recycling device of the present disclosure is not anticipated and obtained by the prior art, and the present disclosure complies with the provision of the patent act. The present disclosure is applied according to the patent act, and the examination and allowance requests are solicited respectfully.
The above-mentioned descriptions represent merely the exemplary embodiment of the present disclosure, without any intention to limit the scope of the present disclosure thereto. Various equivalent changes, alternations or modifications based on the claims of present disclosure are all consequently viewed as being embraced by the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
107101347 | Jan 2018 | TW | national |