Carbon Nanotube Enhanced Conductors for Communications Cables and Related Communications Cables and Methods

Abstract
A conductor for a communications cable includes an elongated metal wire and a metal sheet that includes a plurality of carbon nanotubes that at least partially surrounds the elongated metal wire. The metal wire may include copper, and the metal sheet may likewise include copper and may be welded to an outside surface of the metal wire to surround the metal wire. This conductor may be used in a variety of communications cables that carry high frequency signals.
Description
FIELD OF THE INVENTION

The present invention relates generally to communications systems and, more particularly, to conductors and cables for communications systems that exhibit enhanced conductivity.


BACKGROUND

A variety of communications cables are well known in the art. Many such communications cables are designed to carry high frequency signals such as, for example, signals with center frequencies of 100 MHz or more. Two types of communications cables are primarily used to carry such high frequency signals, namely (1) communications cables that include metal conductive wires and (2) fiber optic communications cables.


A variety of different conductive wire-based communications cables are known in the art, with two of the most widely used being coaxial cables and twisted pair cables. Typically, the conductive wires used in both coaxial and twisted pair cables use pure copper wires or wires formed of copper alloys, as copper is highly conductive and relatively inexpensive (e.g., as compared to silver which is more conductive but far more expensive). In order to reduce the weight or expense of a communications cable, in some cases copper or copper alloys may be plated onto the outside of another lighter and/or cheaper metal wire such as, for example, aluminum.


As a demand for communications systems that operate at higher frequencies and/or data rates increases, a need exists for communications cables that support these higher data rates without prohibitive increases in the expense, size and/or weight of the communications cables.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a perspective view of a conductor for a communications cable according to embodiments of the present invention.



FIG. 1B is an enlarged, cross-sectional view of the conductor of FIG. 1A.



FIG. 2 is a perspective view of a coaxial cable.



FIG. 3 is a perspective view of one embodiment of the outer conductor 58 of the coaxial cable 50 of FIG. 2.



FIG. 4A is a perspective view of a twisted pair cable according to embodiments of the present invention, where a jacket thereof is partially removed to show four twisted wire pairs and a separator of the cable.



FIG. 4B is an enlarged, fragmentary, side view of the cable of FIG. 4A with a portion of the jacket removed to show a twisted core of the cable.



FIG. 5 is a flowchart diagram illustrating a method of making a conductor for a communications cable according to certain embodiments of the present invention.





DETAILED DESCRIPTION

Pursuant to embodiments of the present invention, conductors for communications cables are provided that may exhibit significantly enhanced conductivity at high frequencies. These conductors are formed by welding or otherwise bonding a thin, elongated metal sheet such as a metal tape onto an outside surface of an elongated metal wire so that the metal tape at least partially surrounds the elongated metal wire. The thin metal tape may include a large number of carbon nanotubes either embedded therein and/or plated onto the metal tape.


As is known to those of skill in the art, carbon nanotubes are structural bodies formed of carbon atoms that have a generally cylindrical shape. The diameter of the cylindrical structure may be on the order of, for example, a few nanometers to a few hundred nanometers, while the length of the cylindrical structure may be much larger such as, for example, thousands or millions of times the diameter (e.g., tens or hundreds of microns). Carbon nanotubes may exhibit unique electrical properties, including conductivity along the length of the carbon nanotube that may be 1000 times greater than copper for the same area. Carbon nanotubes are commercially available in large quantities from a variety of sources including, for example, Mitsui & Co., Ltd. (Tokyo, Japan) and Bayer AG (Leverkusen, Germany). Carbon nanotubes may be plated in order to maintain conductivity even in the presence of imperfect internal lattice structures. The term carbon nanotubes as used herein is inclusive of such plated carbon nanotubes.


For high frequency communications, nearly all of the energy of an electrical signal will travel on or about the surface of an electrical conductor due to a phenomena known as the “skin effect” that is caused by eddy currents that are generated by the alternating current characteristic of the high frequency signal. As high frequency electrical signals flow primarily in only a small portion of a metal conductor, the effective resistance of the conductor may be significantly increased since nearly all of the current must flow through a small portion of the conductor.


Pursuant to embodiments of the present invention, conductors for high frequency communications signals are provided that include a metal core that has a carbon nanotube enhanced metal sheet (e.g., a metal tape) bonded to the outer surface of the metal core. In some embodiments, the metal core may comprise a copper wire, a copper alloy wire, a copper plated wire or a copper alloy plated wire. The metal sheet may be a thin copper or copper alloy tape that has the carbon nanotubes embedded therein and/or deposited thereon. In some embodiments, the metal sheet may comprise two separate metal tapes, the first of which is bonded along the longitudinal length of the top half of the copper/copper alloy wire core, while the second metal tape is bonded along the longitudinal length of the bottom half of the copper/copper alloy wire core so that the two tapes may substantially or completely surround the copper/copper alloy wire core. The metal core may also be hollow to reduce material usage.


In some embodiments, the metal sheet/tape may be manufactured so that the carbon nanotubes have enhanced alignment along at least one direction (i.e., the carbon nanotubes have a preference to generally align to be parallel to the x-axis, but may be randomly aligned with respect to the y-axis and the z-axis). In some embodiments, the carbon nanotubes may have enhanced alignment along two directions so that the carbon nanotubes have a preference to generally align along the axis of the wire core. Techniques for aligning carbon nanotubes are known in the art and hence will not be discussed further herein. The metal tape(s) may be welded to the exterior of the wire core by, for example, bringing the carbon nanotube containing metal tape and the wire core together while heating the metal tape and the wire core to a temperature that is sufficient to at least partially melt a surface of the metal tape and an outer surface of the wire core so that the two materials coalesce to have a common crystallographic structure.


The above-described conductors may exhibit substantially improved conduction of high frequency communications signals. As noted above, the high frequency signal will tend to congregate on the outer surface of the conductor. By providing carbon nanotubes to an appropriate depth (e.g., 260 microinches) along the outer surface of the conductor, substantially improved conductivity may be achieved at high frequencies (e.g. 100 MHz). Even very thin depths (e.g. 100 microinches) along the surface of the conductor may substantially improve conductivity at higher frequencies (e.g. 700 MHz). Moreover, by processing the metal sheet/tape so that the carbon nanotubes have a preference to be aligned along the axial direction of the conductor, the conductivity may be further enhanced.


Methods of plating metal wires for communications cables are already known in the art. For example, copper plated aluminum wires are used in certain communications cables in order to take advantage of the lower cost and/or weight of aluminum as compared to copper. The copper (or a copper alloy) is typically plated onto the aluminum wire core using a welding process whereby a molten copper coating is applied to an aluminum wire core that is likewise heated to a temperature at which the aluminum on the surface starts to melt so that the copper and aluminum coalesce. This method or similar methods may be used to weld the carbon nanotube containing metal sheet to partially or completely surround an outside surface of a metal wire core. Moreover, since both the metal wire core and the carbon nanotube containing metal sheet may use copper or a copper alloy as the base metal, a very strong weld may be achieved between the wire core and the metal sheet.



FIG. 1A is a perspective view of a conductor 10 for a communications cable according to embodiments of the present invention. FIG. 1B is a cross-sectional view of the conductor 10 of FIG. 1A.


As shown in FIG. 1A, the conductor 10 comprises a metal wire core 20 that has a metal sheet 30 bonded to an outside surface thereof. The metal wire core 20 may have a generally circular cross-section in some embodiments, and may have a length that far exceeds the diameter of the cross-section. In some embodiments, the metal wire core 20 may comprise a copper wire or a wire formed of a copper alloy. In other embodiments, the metal wire core 20 may comprise a copper plated metal wire core such as, for example, a copper plated aluminum wire. In some embodiments, the metal wire core 20 may comprise a solid metal wire core, while in other embodiments (not shown) the metal wire core 20 may have a hollow central section such that the metal wire core 20 has an annular cross-section.


The metal sheet 30 may comprise, for example, a thin metal tape that is formed of, for example, copper or a copper alloy. The metal sheet 30 may be bent into a circular shape so as to surround (or, alternatively, partially surround) the outer surface of the metal wire core 20. In such embodiments, the ends of the metal sheet 30 may be welded together to provide metal sheet 30 having an annular cross-section. As illustrated in the callout 32 of FIG. 1A, in some embodiments, carbon nanotubes 40 may be embedded in or on a surface of the metal sheet 30. In other embodiments, carbon nanotubes 40 may be plated onto one or both major surfaces of the metal sheet 30. The carbon nanotubes 40 may have a preference to generally align along an axis defined by the axis of the metal wire core 20.


The conductors according to embodiments of the present invention may be used in a variety of communications cables, specifically including coaxial cables. FIG. 2 is a perspective view of a coaxial cable 50 that has both a center conductor and an outer conductor that are formed using carbon nanotube enhanced conductors according to embodiments of the present invention.


As shown in FIG. 2, the coaxial cable 50 includes a central conductor 52 that is surrounded by a dielectric 54. A tape 56 may be preferentially bonded to the dielectric 54. An outer conductor 58 that acts as a return conductor and as an electrical shield surrounds the tape 56. One or more optional electrical shielding tapes 60 may surround the outer conductor 58. The outer conductor 58 may be corrugated in order to improve overall cable flexibility. A cable jacket 62 may surround the outer conductor 58 and any electrical shielding tapes 60. The conductor 10 of FIGS. 1A and 1B may be used as the central conductor 52 of coaxial cable 50. The central conductor 52 may also be corrugated in order to improve overall cable flexibility. The carbon nanotubes provided on or at the outer surface of the central conductor may enhance the conductivity of the central conductor 52.



FIG. 3 is a perspective view of one embodiment of the outer conductor 58 of the coaxial cable 50 of FIG. 2. As shown in FIG. 3, the outer conductor 58 may comprise a metal sheet 70 that is formed into an annular shape so as to have an inner surface 72 and an outer surface 74. A plurality of carbon nanotubes 76 may be deposited onto at least the inner surface 72 of the metal sheet 70. Such a plurality of carbon nanotubes 76 are graphically illustrated as being provided at the inner surface of the metal sheet 70 in the callout 78 provided in FIG. 3. As shown in the callout 78, the carbon nanotubes 76 may only be provided in the surface region of the outer conductor 78. These carbon nanotubes 76 may, in some embodiments, be more aligned along the axis defined by the central conductor 52 than in other directions.


As noted above, in some embodiments (and particularly in embodiments that use larger gauge wires for the central conductor), the central conductor 52 may have a hollow central region. In such embodiments, the central conductor 52 may appear identical (except in diameter) to the outer conductor 58 depicted in FIG. 3. As with the outer conductor 58 depicted in FIG. 3, such an annular central conductor 52 may have carbon nanotube containing metal sheet(s) bonded to at least the outer surface of the central conductor 52.


The conductors according to embodiments of the present invention may also be used in twisted pair communications cables such as the so-called “Ethernet” cables that are commonly used in local area networks and various other applications. FIG. 4A is a perspective view of a carbon nanotube enhanced twisted pair cable 100 according to embodiments of the present invention, where a jacket thereof is partially removed to show the four twisted wire pairs and an optional separator that are included in the cable 100. FIG. 4B is an enlarged, fragmentary, side view of the cable 100 of FIG. 4A with a portion of the cable jacket removed.


As shown in FIG. 4A and 4B, the cable 100 includes a total of eight conductors 101-108 that are arranged as four twisted pairs of conductors 111, 112, 113, 114. Each conductor 101-108 may include an outer insulation. A separator such as a separator tape or flute 110 may be included that separates at least some of the twisted pairs 111-114 from other of the twisted pairs 111-114. The twisted pairs 111-114 may be twisted together to provide a core twist. The twisted core including twisted pairs 111-114 and separator 110 may be enclosed in a cable jacket 120. One or more of the twisted pairs may be wrapped in a foil shield (not shown). Similarly, the twisted core may be wrapped in a foil shield and/or covered by a metallic braid. Some or all of the conductors 101-108 may be implemented using the conductor 10 of FIGS. 1A and 1B. The carbon nanotubes provided on or at the outer surface of each conductor 101-108 that is implemented in this fashion may enhance the conductivity of the conductor.



FIG. 5 is a flowchart diagram illustrating a method of making a conductor for a communications cable according to certain embodiments of the present invention. As shown in FIG. 5, operations may begin with a process that is used to form an elongated metal sheet that includes a plurality of carbon nanotubes (block 200). The carbon nanotubes may be deposited onto one or both major surfaces of the metal sheet and/or embedded within the metal sheet. Either during or after the formation of this metal sheet, one or more processes may be performed to improve an alignment of the plurality of carbon nanotubes along a longitudinal axis of the elongated metal sheet, which is the axis of the metal sheet that will be coincident with the axis of an elongated metal wire of the conductor (block 205). An elongated metal wire such as, for example, a copper wire, a copper alloy wire or a copper-plated aluminum wire is provided (block 210), and then at least one of the elongated metal sheet and the elongated metal wire are heated (block 215). In some embodiments, the elongated metal sheet may be heated to at least a first temperature that is sufficient to at least partially melt a surface of the elongated metal sheet and the elongated metal wire may be heated to at least a second temperature that is sufficient to at least partially melt a surface of the elongated metal wire. The elongated metal sheet may then be bonded to the elongated metal wire using, for example, a welding process (block 220).


While the present invention is described above with reference to drawings that illustrate preferred embodiments thereof, it will be appreciated that the present invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Instead, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.


In the drawings, the size of lines and elements may be exaggerated for clarity. It will also be understood that when an element is referred to as being “coupled” to another element, it can be coupled directly to the other element, or intervening elements may also be present. In contrast, when an element is referred to as being “directly coupled” to another element, there are no intervening elements present. Likewise, it will be understood that when an element is referred to as being “connected” or “attached” to another element, it can be directly connected or attached to the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly connected” or “directly attached” to another element, there are no intervening elements present.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


In the drawings and specification, there have been disclosed typical embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.

Claims
  • 1. A conductor for a communications cable, comprising: an elongated metal wire;a metal sheet that includes a plurality of carbon nanotubes, the metal sheet at least partially surrounding the elongated metal wire.
  • 2. The conductor of claim 1, wherein the metal wire comprises a copper wire, a copper alloy wire, a copper plated wire or a copper alloy plated wire.
  • 3. The conductor of claim 2, wherein the metal sheet comprises a metal tape selected from the group of a copper tape or a copper alloy tape.
  • 4. The conductor of claim 3, wherein the carbon nanotubes are embedded in the metal tape and/or plated onto the metal tape.
  • 5. The conductor of claim 4, wherein the metal tape completely surrounds the elongated metal wire.
  • 6. The conductor of claim 5, wherein the elongated metal wire has a substantially circular cross-section, and the metal tape comprises a first metal tape that surrounds approximately half the circumference of the elongated metal wire and a separate, second metal tape that surrounds approximately the other half the circumference of the elongated metal wire.
  • 7. The conductor of claim 1, wherein the axial direction of the carbon nanotubes is generally aligned with a longitudinal axis of the elongated metal wire.
  • 8. The conductor of claim 1, wherein the metal sheet is welded to an exterior surface of the elongated metal wire.
  • 9. The conductor of claim 1, wherein the metal wire comprises a copper-plated aluminum wire.
  • 10. The conductor of claim 1, wherein the elongated metal wire has a hollow center.
  • 11. A coaxial cable that includes a center conductor, an outer conductor that surrounds the center conductor, a dielectric layer that is disposed between the center conductor and the outer conductor, and an outer jacket, wherein the center conductor comprises a conductor according to claim 1.
  • 12. The coaxial cable of claim 11, wherein the outer conductor comprises: an elongated annular metal sheet; andan elongated metal tape that includes a plurality of carbon nanotubes welded to an outer surface of the elongated metal sheet.
  • 13. A communications cable that includes at least one twisted pair of insulated conductors that are contained within a cable jacket, wherein each of the conductors of the pair of insulated conductors comprises a conductor according to claim 1.
  • 14. A method of forming a conductor of a communications cable, the method comprising: forming an elongated metal sheet that includes a plurality of carbon nanotubes;providing an elongated metal wire;heating at least one of the elongated metal sheet and the elongated metal wire;bonding the elongated metal sheet to the elongated metal wire.
  • 15. The method of claim 14, further comprising performing at least one process to improve an alignment of the plurality of carbon nanotubes along a longitudinal axis of the elongated metal sheet:
  • 16. The method of claim 15, wherein heating at least one of the elongated metal sheet and the elongated metal wire comprises heating the elongated metal sheet to at least a first temperature that is sufficient to at least partially melt a surface of the elongated metal sheet and heating the elongated metal wire to at least a second temperature that is sufficient to at least partially melt a surface of the elongated metal wire.
  • 17. The method of claim 16, wherein elongated metal wire has a generally circular cross-section, wherein a width of the elongated metal sheet is approximately one-half the outer circumference of the elongated metal wire, wherein bonding the elongated metal sheet to the elongated metal wire comprises welding the elongated metal sheet to cover approximately one-half the outer circumference of the elongated metal wire, the method further comprising welding a second elongated metal sheet to substantially cover the remainder of the outer surface of the elongated metal wire.
  • 18. The method of claim 14, wherein the metal wire comprise a copper wire, a copper alloy wire or a copper-plated aluminum wire.
  • 19. The method of claim 14, wherein the carbon nanotubes are plated onto the metal sheet and/or embedded in the metal sheet.
  • 20. The method of claim 14, wherein the metal sheet completely surrounds the elongated metal wire.
Provisional Applications (1)
Number Date Country
61476825 Apr 2011 US