The present disclosure relates generally to carburetors and more particularly to a fuel control device for a carburetor.
Many carburetors for gasoline powered utility engines have a needle valve assembly for adjusting the flow rate of fuel supplied to an air and fuel mixing passage of the carburetor. The needle valve has a shank threadably received in a cavity in a carburetor body and a tapered or conical tip which cooperates with an annular valve seat in the cavity to vary and control the flow rate of fuel passing between them by rotating the valve to advance or retract the conical tip relative to the valve seat.
In some implementations a somewhat flexible body with a central passage is received in a carburetor valve cavity and has an axially elongate inlet passage communicating with a fuel supply passage and an outlet downstream of the inlet, and a needle valve having a shank received in the valve cavity with a cylindrical metering portion slidably and rotatably received in the central passage and axially movable to at least partially block the inlet to change the effective flow area of the inlet into the central passage. In some implementations the cylindrical metering portion is received in the central passage with an interference fit and the needle valve is in one piece, threadably engaged with the valve cavity, and has a head with a tool engaging feature for rotating the needle valve.
The following detailed description of certain embodiments and best mode will be set forth with reference to the accompanying drawings, in which:
Referring in more detail to the drawings,
The fuel control device 8 may, in at least some implementations, take the form of a needle valve and one or more such valves may be provided in a carburetor. At least some implementations of the carburetor may include two needle valves 10 rotatably carried by the carburetor body 14 in separate cavities 12 (only one of which is shown) formed in the body. Rotation of the needle valves 10 relative to the carburetor body 14 in one direction advances the needle valves further into the carburetor body and rotation in the other direction retracts the needle valve from the carburetor body. Such rotation of the needle valves 10 moves an end portion 24 of the needle valve relative to a port or the passage 18 to control the flow rate of fuel through that port or passage. In the implementation shown, one needle valve controls fuel flow through part of a low speed fuel circuit and the other needle valve controls fuel flow through part of a high speed fuel circuit. Each needle valve 10 may receive a limiter cap to control or limit rotation of the valves and hence, adjustment of the flow rate of fuel through the respective fuel circuit in the carburetor 10. The needle valves 10 may be arranged generally parallel to each other, side-by-side, and may be rotated independently of each other through at least a portion of their adjustment range. Each needle valve 10 and cavity 12 may have the same features and so only one needle valve 10 and cavity 12 will be shown and described in detail. The needle valve 10 shown in
The needle valve 10 may have a shank 28 with a threaded portion 30 that engages complementary threads formed in the cavity 12, or in a retainer 26 adjacent to or partially received in the cavity 12. A head 32 of the needle valve 10 may extend axially from a rear end of the shank 28 and, in order to rotate and adjust the valve 12, a tool receiving feature, such as a recess or slot 34 may be defined in the head 32 to facilitate rotation of the needle valve 10. Of course, the tool receiving feature 34 may be formed in any desired shape or orientation, and may include a projection rather than a cavity or slot. The needle valve 12 may include one or more shoulders 44 or other features adapted to provide a stop surface limiting advancement of the needle valve into the carburetor body 14 or to engage a seal within the carburetor body 14 to inhibit or prevent fuel leaking from the carburetor 10.
The shank 28 and needle valve 10 generally, may be symmetrical about an axis 46 of rotation, and may be concentric with an axis 47 of the cavity 12. The cavity 12 may be defined at least in part by or include or communicate with the outlet bore 20 which may be spaced from the end portion 24 of the needle valve 10 and leading to the main fuel nozzle passage 21 and one or more counterbores 50 that define radially inwardly extending shoulders that may be generally complementarily arranged with respect to the shoulders and corresponding surfaces of the needle valve so that the needle valve is closely received within the cavity. At least one cavity shoulder 52 may be engaged by a needle valve shoulder to define a fully inserted or advanced position of the needle valve 10 relative to the carburetor body 14. In at least some implementations, the needle valve shoulder 44 is located between the threaded portion 30 and the end portion 24, and is shown in
The end portion 24 of the needle valve 10 may include or define a metering portion that adjusts the size or flow area of the fuel flow path between the passage 18 and the bore 20. In at least some implementations, the metering portion 24 is defined by or includes an axial end 54 of the needle valve 10, although the metering portion could be spaced from the end 54. In the implementation shown, the metering portion 24 is defined by the end portion of the needle valve and is cylindrical, with a constant diameter. Of course, other shapes and arrangements may be used as desired, and the metering portion 24 may be defined by all or only a portion of the constant diameter end portion, or otherwise shaped end portion.
To control the flow rate of fuel as indicated above, the metering portion 24 of the needle valve is adjusted or moved relative to a port or passage through which fuel flows. The port or passage may be defined within the carburetor body itself, or in a separate component. In at least some implementations, including that shown in
The flow control body 58 may include a mid-section 70 with a reduced outer diameter compared to portions 72, 74 of the body axially outboard of the mid-section. The portions 72, 74 axially outboard of the mid-section, in at least some implementations, include the ends of the body 58 and are received with an interference fit within the cavity 12. The inlet 60 is formed in the mid-section 70 and any fuel that does not flow through the inlet may be received in a circumferential/annular gap 76 (
The flow control body 58 may be installed into the cavity 12 in any desired manner. In one method, the body 58 is pressed partially onto the metering portion 24 of the needle valve 10 (e.g. in an orientation to ensure desired alignment of the inlet 60 with the carburetor passage 18 when fully installed) and the needle valve 10 is installed into the cavity 12. The body 58 will be pressed into the counterbore 50 in the cavity 12 and will eventually engage a needle valve shoulder 82 adjacent to the metering portion 24. The fully installed position of the body 58 may coincide with the fully advanced position of the needle valve 10 wherein the needle shoulder 44 engages the cavity shoulder 52 as described above. In this position, the metering portion 24 axially overlaps and blocks at least a portion of the inlet 60 and thereby reduces the effective flow area of the inlet through which fuel may flow. From this fully advanced position, the needle valve 10 may be rotated in the opposite direction to at least partially back out or withdraw the metering portion 24 from the body 58 (i.e. move the needle valve axially relative to the body) and open or further open the inlet 60, thereby increasing the effective flow area of the inlet. Instead of putting the body 58 onto the metering portion 24 before the needle valve 10 is inserted into the cavity 12, the body 58 can be at least partially pressed into the counterbore 50, using a separate tool, before the needle valve 10 is installed into the cavity 12. For this purpose, the body 58 may include an alignment feature, such as a notch 84 (
Conventional needle valves utilize a tapered tip of the needle that is axially movable relative to a valve seat to increase or decrease the width of an annular flow gap between the tip and the carburetor body. The radial width of the annular gap is small and subject to becoming at least partially clogged by debris, including but not limited to particles of filtration material, which reduces the effective flow area of the flow gap. Further, eccentricity between the tapered tip and carburetor body provides an uneven flow gap (radially smaller in some areas and larger in others) that changes the fuel flow characteristics therethrough. Further, the tapered tip provides a non-linear change to the flow gap area for a given axial movement of the needle valve, and this can decrease the sensitivity of the needle valve (i.e. a small axial movement may result in a large change in fuel flow rate). These things individually or in combination can make calibration of the carburetors difficult because of the significantly different fuel flow characteristics that may be found among a production run of carburetors. That is, the amount of adjustment of the needle valve to achieve a desired fuel flow rate may vary more among different carburetors in a production run.
In at least some implementations, the metering portion 24 has a constant diameter, and the inlet 60 has a uniform width along its axial length and this permits a linear change to the open surface area of the inlet (its effective flow area) for a given axial movement of the needle valve 10. Further, instead of using an annular gap of relatively small width, the inlet 60 is provided in one open area whose smallest dimension is considerably larger than the radial width of the annular gap in prior needle valves. Hence, the inlet 60 is not prone to being clogged with debris. In at least some implementations, the smallest dimension of the flow area of the inlet 60 is at least 140 μm and in some implementations may be 200 μm or more. Further, the larger open area of the inlet facilitates fuel flow therethrough and reduces the number of turns and small gaps through which the fuel must flow, all of which tend to increase vapor generation in the fuel, especially when the carburetor may be at an elevated temperature.
Rotation of the needle valve 10 moves the metering portion 24 axially which uncovers or increasingly covers more of the axial length of the inlet 60, as desired, to provide a desired effective flow area of the inlet. Eccentricity between the needle valve 10 and cavity 12 is accommodated and does not change the flow area of the inlet or render the inlet more susceptible to blockage from debris. The linear movement of the metering portion and uniform width of the inlet provides greater consistency among carburetors. The ability to reliably calibrate and control fuel flow through the inlet is improved and the interference fit between the needle valve 10, flow control body 58 and carburetor body 14 resist unintended movement of the metering portion 24 relative to the inlet 60 such as may be caused by vibration or other forces in use of the carburetor. The straight and constant diameter metering portion 24 (in implementations were such is provided), also resists breaking during installation, such as sometimes occurs with tapered needle valve tips, for example, when fully advanced and not concentric with the valve seat that they engage. In at least some implementations, the metering portion 24 does not directly engage the carburetor body 14 and instead engages only the flow control body 58 which may be made of a polymeric or metallic material, as desired (if made of metal, appropriate o-rings or other seals may be used to provide a seal between the metering portion and body). A polymeric body 58 avoids the porosity problems with cast aluminum carburetor bodies in the area of the cavity and seat for conventional needle valve assemblies. A suitable polymeric material of body 58 may be POM such as Duracon M90-44.
As shown in
Desirably the diameter of this cylindrical surface 162 is also slightly larger than the diameter of the cavity counterbore 140 to provide in assembly an interference fit creating a seal between them. Desirably the cylindrical surface 162 blends into a chamfer or frusto-conical surface 164 extending to the end 166 of the body to facilitate insertion of the end portion of the body into the cavity counterbore 140 during assembly. In a central portion the body has a through and axially elongate slot or inlet 60 desirably with tapered or inclined sidewall surfaces 69. This inlet 60 communicates with the fuel flow passage 18, the annular space or gap 76, and the interior central passage or bore 64 of the body 58′.
Adjacent the other end 170 the body has a circumferentially continuous rib 144 which desirably has a diameter somewhat larger than the diameter of the cavity counterbore 142 to provide in assembly a press fit or interference fit providing a seal between the body and the carburetor. Desirably this rib has a chamfer or frusto-conical surface 176 on the axially inner edge of the rib to facilitate insertion of the body 58′ into the counterbore 142.
As shown
The control valve body 58′ may be assembled with an interference fit or press fit into the counterbores of 140 and 142 of the valve cavity 12′ in at least the same ways as described above with respect to assembly of the control body 58 into the cavity 12 and thus these ways are incorporated hereat by reference and will not be repeated.
While the forms of the invention herein disclosed constitute presently preferred embodiments, many others are possible. It is not intended herein to mention all the possible equivalent forms or ramifications of the invention. It is understood that the terms used herein are merely descriptive, rather than limiting, and that various changes may be made without departing from the spirit or scope of the invention.
This application claims the benefit of U.S. Provisional Patent Application No. 62/111,717 filed Feb. 4, 2015 which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/016397 | 2/3/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/126839 | 8/11/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4102952 | Snipes | Jul 1978 | A |
7070173 | Dow | Jul 2006 | B2 |
20040036184 | Nonaka | Feb 2004 | A1 |
20040075180 | Nonaka | Apr 2004 | A1 |
20040251565 | Douyama et al. | Dec 2004 | A1 |
20050062176 | Nonaka | Mar 2005 | A1 |
20050236722 | Dow et al. | Oct 2005 | A1 |
20060151893 | Horikawa | Jul 2006 | A1 |
20180156160 | Nonaka | Jun 2018 | A1 |
20190360432 | Habu | Nov 2019 | A1 |
20200032742 | Tobinai | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
452148 | Nov 1927 | DE |
683168 | Oct 1939 | DE |
2860383 | Apr 2015 | EP |
598841 | Dec 1925 | FR |
812641 | Jan 1936 | FR |
928775 | Apr 1941 | FR |
1481601 | May 1966 | FR |
252389 | Aug 1927 | GB |
2802220 | Oct 1998 | JP |
11-351065 | Dec 1999 | JP |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority in PCT/US2016/016397 dated May 24, 2016. |
CN Office Action for CN Application No. 201680008997.2 dated May 29, 2019 (17 pages). |
Number | Date | Country | |
---|---|---|---|
20180023514 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
62111717 | Feb 2015 | US |