Not applicable.
Not applicable.
Not applicable.
1. Field of the Invention
The present invention relates to the real time monitoring and weight adjusting of the food and meat producing animals. This system provides data needed to control the facility water spray and refrigeration system to maintain carcass weight and reduce carcass shrinkage.
2. Background Art
As part of the processing of meat, carcasses are hung on trolleys 100, such as that shown in
A challenge in the chilling process is that of maintaining carcass weight. The system in use today makes use of a single scale located on the facility's track system. Selected carcasses are diverted to the single scale where each carcass is weighed and tagged before the chilling process starts. These data are kept for later reference. After a selected carcass is identified and weighed, it is sent back to the main track system, then to the chilling room or carcass cooler. In the chilling room, all the carcasses are refrigerated and sprayed with chilled water to drop the internal temperature of the carcasses to the desired processing temperature. The time required for chilling can vary from hours to days, depending upon the product. The required chilling time notwithstanding, when the identified (pre-weighed and tagged) carcasses leave the carcass cooler, they will be diverted to the scale and reweighed. The difference in the entering weight and leaving weights of the carcasses will be used to adjust the refrigeration and spray equipment. This method for controlling weight loss is effective, and loss due to shrinkage in most facilities averages 0.8% to 1.5% weight reduction on all carcasses.
However, even the apparently low loss of 0.8% to 1.5% for each carcass results overall in thousands of pounds and millions of dollars due to the total mass of meat processed. Many variables during the chilling process affect the rate of weight loss. Because of the complexity of the problem and the regulations prohibiting suppliers from having weight gain (carcasses weighing more after the chilling process), the industry has accepted the current loss averages. However, the losses in weight and revenue remain.
There is, therefore, a need for a method and apparatus for providing real-time monitoring and constant weight adjusting to minimize carcass weight loss while avoiding carcass weight gain.
An object of the present invention is to provide a method and apparatus for reducing carcass weight loss during carcass cooling. Another object of this invention is to avoid carcass weight gain. Still another object is to archive data that will help design future effective chilling and moistening processes.
By use of real-time monitoring and continuous adjustment of the spraying process, the variables affecting shrinkage can be handled, and the product weight loss reduced significantly.
In the preferred embodiment of the present invention, selected trolleys located on a track system in a processing facility, are designed to include a wireless (remote readable) load cell to provide a continuous, real-time weight measurement of the carcass hanging thereon during the entire chilling process. The same selected trolleys are also fitted with Radio Frequency Identification (RFID) to provide the location of the carcasses hanging on the selected trolleys while in the carcass cooler. For the purposes of this document, including the claims, the term selected trolley is hereby defined to mean a carcass trolley outfitted with a load cell and RFID module.
Both the weight and the carcass location information are sent, stored, displayed, and used to tune the operating controller/computer. The identification, address (location) of each selected trolley and the carcass weight are displayed on a display screen as the trolley enters the chill cooler and stops at the location it will reside for the chilling process. The complete chiller room layout, or floor plan, and the facility carcass spray system with all sprays and zones are displayed on the display screen for operators and managers.
As the chilling process begins, the carcasses begin to lose weight while, at the same time, carcass temperature drops. Based on the instantaneous weight measurement taken by the load cell on the selected trolleys, the program detects this weight loss and energizes an appropriate spray zone solenoid valve, hence the reason for the RFID. Most chill coolers have multiple spray zones due to size and location restraints.
The spray in the relevant zone operates until the selected carcass returns to its original weight as reported by the selected trolleys' load cells. If multiple selected trolleys and carcasses are located in this particular spray zone, the computer program uses all the data to determine the status of the spray solenoid and spray time length.
With this invention, a minimum of one selected trolley with its carcass is required to provide data for each of the water spray zones. However, any number of selected trolleys can be used to control spray zones. This also will be beneficial to meet government and individual plant requirements.
The computer program provides historical data on all the selected trolley locations, carcass weights, and spray zone operations, including number of spray cycles, frequency of spray cycles, and length of spray cycles. By storing and having access to these data, normal operating patterns will develop and any major deviations may be addressed. These historical data are also used to design duplicate or similar systems.
For the purposes of this document, including the claims, the term instantaneous weight is hereby defined to connote the most recent weight value of a carcass measured by the load cell on the selected trolley. Because the present invention is most likely to be carried out digitally, as opposed to using analog signals representing weights, weight measurements are taken at discrete times. The instantaneous weight is, then, updated on a frequent, probably periodic, basis.
For the purposes of this document, including the claims, the word carcass is hereby defined to mean the animal matter hung on a single trolley. Hence, carcass may connote a part of one animal carcass such as when a side of beef is hung on a single trolley. Carcass may also imply multiple animal carcasses if more than one animal carcass or parts of multiple carcasses are hung on a single trolley.
Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings.
A selected trolley 200, essentially a trolley of the prior art with the addition of instrumentation according to the present invention, is shown in
A carcass 310 hung from a selected trolley 200 under spray 530 is shown in
A flowchart of the process of the present invention is shown in
The predetermined incremental weight value, ΔW, may be determined to avoid rapid cycling of the water spray on and off. In other words, the incremental weight value, ΔW, may be determined to build in some hysteresis in the system.
The above embodiments are the preferred embodiments, but this invention is not limited thereto. It is, therefore, apparent that many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
Number | Name | Date | Kind |
---|---|---|---|
3634096 | Ferrarini | Jan 1972 | A |
4300644 | Meyn | Nov 1981 | A |
4597495 | Knosby | Jul 1986 | A |
4791790 | Tongu | Dec 1988 | A |
5781112 | Shymko | Jul 1998 | A |
6481220 | Butler | Nov 2002 | B2 |
6550267 | Maxwell et al. | Apr 2003 | B2 |
20030037563 | Maxwell | Feb 2003 | A1 |
20030234630 | Blake | Dec 2003 | A1 |
20040117330 | Ehlers | Jun 2004 | A1 |
20070278319 | Jenkins et al. | Dec 2007 | A1 |
20080087475 | Petrucelli | Apr 2008 | A1 |
20090004958 | Katori et al. | Jan 2009 | A1 |
20100055270 | Glascock et al. | Mar 2010 | A1 |
20110105001 | Nieuwelaar | May 2011 | A1 |
20120123595 | Bower et al. | May 2012 | A1 |
20120244261 | Harvey | Sep 2012 | A1 |
20140035730 | Dando et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
2009151597 | Dec 2009 | WO |
Entry |
---|
8 pages, of Notification of International Search Report and Written Opinion of PCT/US2013/033695—corresponding to US application. |
7 pages, of Notification of International Search Report, Int'l Preliminary Report on Patentability and Written Opinion of the ISA for PCT/US2013/033695—corresponding to US application. |
Number | Date | Country | |
---|---|---|---|
20130255282 A1 | Oct 2013 | US |