BACKGROUND OF THE DISCLOSURE
1. Field of the Disclosure
The present disclosure relates to a card edge connector, and particularly to a card edge connector equipped with metal members thereof.
2. Description of Related Arts
As disclosed in Taiwan patent No. M294139, a card edge connector mounted to a circuit board for interfacing with an electronic card, the card edge connector comprises an insulative housing, a plurality of conductive terminals enclosed in the insulative housing, a locking mechanism mounted on one end of the insulative housing and a metal shell covering the insulative housing, the insulative housing defines a central slot and two end walls located at both ends of the central slot, the central slot of the card edge connector defines a fool-proof key for fear that the electronic card inserting to a wrong place. However, the cooperation of the metal member and the insulative housing is only depend on the tab of the insulative housing matched with the aperture of the metal member, during the insertion and removal of the electronic card is easy to cause the metal member falling off from the connector. In addition, the metal member covers the top face of the housing except the central slot, thus blocking heat transfer via the upper opening of each terminal-receiving passageway disadvantageously.
Hence, an improved card edge connector is required to overcome the disadvantages of the related art.
SUMMARY OF THE DISCLOSURE
Accordingly, an object of the present disclosure is to provide a card edge connector with reliable and enhanced stability function derived from the corresponding associated metal members.
To achieve the above object, a card edge connector includes an insulative housing, a plurality of conductive terminals and a pair of metal members. The insulative housing defines two side walls extending in a longitudinal direction and a central slot disposed between said two side walls, the conductive terminals are disposed in the insulative housing and protruding into the central slot, the pair of metal members enclose the insulative housing, wherein each side wall defines an embedded groove recessed from a top surface thereof and extending along the side wall in said longitudinal direction, each metal member defines a main portion enclosing an outside of the side wall and a bending portion bending from an upside thereof, the bending portion is retained in the embedded groove to provide a stability for the card edge connector.
Other objects, advantages and novel features of the disclosure will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of a card edge connector including two metal members;
FIG. 2 is another perspective view of the card edge connector of FIG. 1;
FIG. 3 is an exploded perspective of the card edge connector of FIG. 1;
FIG. 4 is partial enlarged view of the card edge connector of FIG. 3;
FIG. 5 is an another exploded perspective view of the card edge connector of FIG. 3;
FIG. 6 is an another exploded view of the card edge connector of FIG. 1;
FIG. 7 is a vertical cross-sectional view of the card edge connector taken along line 7-7 in FIG. 1;
FIG. 8 is another vertical cross-sectional view of the card edge connector taken along a line around the first retaining groove in FIG. 1;
FIG. 9 is another vertical cross-sectional view of the card edge connector taken along a line around the tower portion in FIG. 1; and
FIG. 10 is a partial horizontal cross-sectional view of the card edge connector taken along a line around the tower portion in FIG. 1.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Reference will now be made in detail to the embodiments of the present disclosure. The insertion direction is an up-to-down direction. Referring to FIGS. 1-7, a card edge connector 100 is assembled to a print circuit board (not shown) for an electronic card (not shown) to insert. The card edge connector 100 includes a longitudinal insulative housing 1, a plurality of conductive terminals 2 disposed in the insulative housing 1, a pair of metal members 3 enclosing the insulative housing 1 and a least one latching mechanism 4 disposed on one end of the insulative housing 1 for latching the electronic card.
Referring to FIG. 2 and FIG. 3, the insulative housing 1 defines two side walls 11 extending from a longitudinal direction perpendicular to the insertion direction, a central slot 12 disposed between said two side walls 11 in a transverse direction perpendicular to the longitudinal direction and communicating with an exterior in a vertical direction perpendicular to both the longitudinal direction and said transverse direction, a fool-proof key 13 disposed in the central slot 12 and two tower portions 121 disposed at two ends of the central slot 12, the latching mechanism 4 is assembled on one of the tower portion 121. The insulative housing 1 includes a top surface 14 and a mounting surface 15 opposite to the top surface 14, the central slot 12 penetrates the top surface 14, the top surface 14 of the insulative housing 1 is also too the top surface of the side wall 11. Each side wall 11 defines an embedded groove 111 recessed from the top surface 14 thereof and extending along an outside of the side wall 11 in the longitudinal direction, the embedded groove 111 locates more closely to the outer side of the side wall 11 than the central slot 12. The insulative housing 1 defines a plurality of terminal grooves 16 disposed at two sides of the central slot 12 and arranged along a longitudinal direction, the conductive terminals 2 are enclosed in the terminal grooves 16 and protruding into central slot 12, the terminal grooves 16 are penetrating the top surface 14 of the side walls 11 and communicating with the two embedded grooves 111,
Referring to FIG. 3 to FIG. 10, the pair of metal members 3 are opposite and parallel to each other. Each metal member 3 defines a main portion 31 enclosing an outside of the side wall 11, a bending portion 32 bending from an upside thereof, two first retaining portions 33 retained in the side wall 11 and corresponding to the upside and downside of the fool-proof key 13, two second retaining portions 34 locked at the tower portion 121 and two third retaining portions 35 mounted at the bottom mounting surface 15 of the insulative housing 1, the bending portion 32 is assembled in the embedded groove 16. All of the first retaining portions 33, second retaining portions 34 and third retaining portions 35 are extending from one side of the metal member 3. The insulative housing 1 defines two first retaining grooves 112 for retaining the first retaining portions 33 near the fool-proof key 13, the mounting surface 15 defines two tabs 113 matching with the downside of first retaining portions 33, the tower portion 121 defines a mounting groove 1211 for the latching mechanism 4 to pivot and a second retaining groove 1212 disposed at the downside of the mounting groove 1211 to retain the second retaining portion 34. Due to the first retaining portions 33, second retaining portions 34 and the third retaining portions 35 are respectively lock to the insulative housing 1, it is stable that the metal member 3 is retained to the insulative housing 1. The bending portion 3 of the metal member 3 includes a horizontal part 321 bending inwardly form the main portion 31 and a vertical part 322 bending downwardly from the horizontal part 31, the horizontal part 321 is not higher than the top surface 14 of the side wall 11, the top surface 14 of the side wall 11 defines a recess 17 disposed at the upper side of the embedded groove 111 and communicating with the embedded groove 111. The terminal grooves 16 are penetrating the top surface 14 of the side walls 11 and communicating with the two embedded grooves 111 and the recess 17. The bending portion 32 of the metal member 3 is assembled to the embedded groove 111 along an up-to-down direction perpendicular to said longitudinal direction, specifically, the horizontal part 321 is saddling across the recess 17, the vertical part 322 is retaining on the embedded groove 111, the embedded groove 111 is penetrating the top surface 14 of the insulative housing 1 and parallelling to the central slot 12, however, the height of the embedded groove 111 is much less than central slot 12.
Above of all, because of the embedded grooves 111 are penetrating the up surface 14 of the insulative housing 1 and locating more closely to the outer side of the side wall 11 than the central slot 12, and the two metal members 3 respectively defines an U-shaped bending part 32 engaging with said embedded groove 111, not only the structural strength of the card edge connector 100 and the contacting strength of the top surface 14 of the insulating housing 1 can be raised, but also the metal element 3 can be stably assembled to the insulating housing 1, thereby preventing the metal element 3 from being warped, deformed or dropped off from the side wall 11 of the insulating housing 1, so as to enhancing the use performance of the card edge connector 100. In this embodiment, each metal element 3 has the second retaining portion 34 and the third retaining portion 35 grasping the housing 1 around the corresponding tower portion 121, and the first retaining portion 33 grasping the housing 1 around the fool-proof key 13. Simultaneously, each metal element 3 has the bending part 32 extending continuously along the longitudinal direction for continuously grasping the housing 1 around the top face so as to achieve reliable fixation between the metal element 3 and the housing 1 while still exposing an upper opening of each terminal groove 16 so as to facilitate heat dissipation. Notably, in this embodiment, the distal end region of each terminal 2 directly faces the bending part 32 in the transverse direction with therebetween a sufficient distance which is large enough to still separate the distal end region of the terminal 2 and the bending part 32 for no shorting therebetween when the terminal 2 is outwardly deflected by the electronic card inserted within the central slot 12. Understandably, this sufficient distance also assures full upward exposure of the terminal groove 16 to the exterior for heat dissipation.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.