The present invention contains subject matter related to Japanese Patent Application JP 2007-227207 filed in the Japanese Patent Office on Aug. 31, 2007, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to a card-type peripheral device such as a memory card.
2. Description of the Related Art
In a related art, there is a card-type peripheral device called a PC card used in a state in which it is inserted in a card slot of a personal computer or the like. In recent years, a reduction in size and an increase in operating speed of personal computers have been achieved. In order to adapt to such an advance, ExpressCard (known as NEWCARD before) has been proposed as a card-type peripheral device that is smaller in outside dimensions than the PC card and that can transfer data at a high rate (see, for example, “New standard ‘NEWCARD’ allows a reduction in size and an increase in operating speed of PC cards, which will lead to a further advance in personal computers” (Nikkei Electronics, Jun. 9, 2003, pp. 67-76)).
The ExpressCard is intended to be used instead of PC cards (PCMCIA) that are currently in wide use. The ExpressCard uses a PCI Express interface that is an interface according to a new I/O bus standard intended to be an alternative to a PCI bus. Compared with other cards currently used, the interface for the ExpressCard can operate at a much higher speed. Thus, when a nonvolatile memory is installed in this card so that the card functions as a memory card, the resultant memory card can write/read data at a very high rate.
Because of its high performance and usability, ExpressCard is expected to be used in a wide variety of devices such as a digital camera, a portable telephone device, a PDA (Personal Digital Assistants) device, a music player, etc.
However, as shown in
Memory cards with a still smaller size are available for use in electronic devices such as portable telephone devices, information terminal devices, digital still cameras, etc. Such small-size memory cards are usable not only in small-size electronic devices but also usable in rather-large-size external devices such as personal computers (PCs) having a slot for receiving the small-size memory card. However, at present, it is difficult to use small-size memory cards in devices originally designed for use with standard ExpressCard. In view of the above, there is a need for a new card-type peripheral device having an adapter function that allows a small-size memory card to be used in a device originally designed for use with ExpressCard.
Some small-size memory cards have a switch for disabling writing information to cards and deleting information stored in the cards thereby to protect information from being deleted by mistake. The switch operates according to one of two techniques described below.
In a first technique, as shown in
In a second technique, as shown in
In both types of cards, a problem can occur when a card is inserted into the adapter described above. In the case of the first type card, to change the position of the switch, it is necessary to pull the card out of the adapter. That is, it is necessary to first pull the adapter out of the host device and then the card out of the adapter. In view of the above, priority is given to convenience in pulling the card out of the adapter, i.e., the adapter is configured so that the card can be easily pulled out.
In the case of the second type card, when the adapter has a switch for enabling/disabling writing/deleting of information, the state of the switch disposed on the card is ignored. This produces a possibility that the intention of a user as to whether writing/deleting is enabled or disabled is not reflected. To avoid the above problem, a delete protection switch is not generally disposed on the adapter, as with the adapter for the first type card. In view of the above, the present invention provides a card-type peripheral device realized in a small form, having a switch for disabling writing/deleting of information to/from the card, and having a function of providing information indicating the status of the switch to the outside thereby allowing a host device to handle the card in an efficient manner.
According to an embodiment of the present invention, there is provided a card-type peripheral device including an electronic component including a memory disposed in a case, a terminal part including connection terminals connectable with a to-be-connected device, and a switch for disabling writing to the memory, wherein the card-type peripheral device further includes a signal terminal capable of transmitting a signal indicating the status of the switch to the to-be-connected device.
A function of the electronic component and the number of terminals of the terminal part may be maintained to be compatible with those of the to-be-connected device.
The signal terminal may be realized by one of the connection terminals of the terminal part.
The electronic component may include a controller adapted to control the operation of the electronic component so as to disable writing of information to the memory and deleting of information stored in the memory depending on the status of the switch.
The controller may control the signal terminal level depending on the status of the switch. The card-type peripheral device may further include a card adapter capable of being connected with the terminal part and capable of being connected with the to-be-connected device, wherein the card adapter may include a switch for switching between a write/delete enable state and a write/delete disable state, and the card adapter may have a function of transmitting information indicating the status of the switch to the card via the signal terminal.
The card-type peripheral device may further include a card adapter capable of being connected with the terminal part and capable of being connected with the to-be-connected device, the card adapter may include a switch for switching between a write/delete enable state and a write/delete disable state, and the card adapter may have a function of transmitting information indicating the status of the switch to the card via the signal terminal, and, if the controller receives, via the signal terminal, information indicating that the switch of the card adapter is in the write/delete disable state, the controller may control the card so that writing/deleting is disabled.
The card adapter may have a mechanism adapted to prevent the card inserted in the card adapter from being pulled out.
As described above, the present invention provides the advantage that the card-type peripheral device is realized in a small form and has the switch for disabling writing/deleting of information to/from the card, and further has a function of providing information indicating the status of the switch to the outside thereby allowing the host device to handle the card in an efficient manner.
Embodiments of the present invention are described below with reference to the accompanying drawings.
First, an overview is given of a characteristic configuration and functions of the card-type peripheral device (a memory card and an adapter) 100 according to the present embodiment.
The card-type peripheral device 100 according to the present embodiment is implemented in the form of a PC card medium that directly uses PCI Express or USB as an interface, and that includes a nonvolatile memory disposed therein whereby the PC card medium functions as a memory card adapted to store/read data via the interface. The card-type peripheral device 100 is configured so as to serve as a small-size high-capacity memory card usable as a removable storage medium for a high-performance mobile device such as a video camera, a digital still camera, etc. To this end, the memory card has functions and the number of pins compatible with those for the above-described use. The card-type peripheral device 100 is configured to be smaller in outside dimensions than a standard PCI ExpressCard medium so that the card-type peripheral device can be used in a small-size device. The card-type peripheral device 100 is configured to be greater in outside dimensions than commercially available small-size memory cards (such as a memory stick (registered trademark) or an SD Card®. The card-type peripheral device 100 has a switch for disabling storing (writing) of data to the small-size memory card and also has a signal terminal for notifying the host device of the status of the switch. The card-type peripheral device 100 has a card adapter that allows the small-size memory card to be used in a device adapted for use with an ExpresCard medium. The adapter has a switch for disabling writing data to the memory card, and the adapter has a function of transmitting information indicating the status of the switch on the adapter to the card via the switch status signal terminal thereby to allow the card to internally control the operation thereof so that writing is disabled. In the present embodiment, the ExpressCard conversion adapter has a function of locking the small-size card inserted in the adapter thereby to prevent the small-size card from unexpectedly popping out of the adapter or from being easily pulled out.
Further referring to
In this memory card 100, a card case 101 is formed between a first surface 100a and a second surface 100b opposing to the first surface 100a. The card case 101 has a form of a box located on the first surface 100a.
A terminal part 102 including terminals 1021 arranged in a line is formed in a front end portion of the second surface 100b. The terminal part 102 allows the memory card 100 to receive electric power and transmit/receive data via contact pins of a connector disposed on the host device (not shown). Note that in
The front end portion of the second surface 100b is recessed toward the first surface 100a so as form a recess 103, and the terminal part 102 is located on the bottom of this recess 103 such that the terminal part 102 is exposed to the outside via the recess 103. The recess 103 is surrounded by side walls 1031 and 1032 that are formed on respective sides of the terminal part 102 and by a side wall 1033 that is formed at a rear end of the terminal part 102 such that the side walls 1031, 1032, and 1033 function as partition walls. Furthermore, on the second surface 100b, a terminal cover receiving part 104 is formed such that a terminal cover described later is allowed to be fitted therein. The terminal cover receiving part 104 is configured in the shape of a step recessed from the second surface 100b into the inside of the card to a depth substantially equal to the thickness of the terminal cover such that the terminal cover in the form of a thin plate can be fitted in the terminal cover receiving part 104 in such a manner that one surface of the terminal cover is flush with the second surface 100b.
As described above, the memory card 100 according to the present embodiment has the interface according to the ExpressCard standard.
The ExpressCard standard specifies that a card has 26 terminals in total, as shown in
In the memory card 100 according to the present embodiment, a write/delete protection switch is formed on an upper surface, a lower surface, or a bottom surface of the card.
In the example shown in
In the example shown in
In the card-type peripheral device 100 according to the present embodiment, as shown in
In the example shown in
In the control system configured in either one of the examples described above, if the switch 110 is changed over to the write/delete disable position, the controller 120 of the memory card 100 controls the operation of the card 100 so that writing/deleting of information to/from the card 100 is disabled. At the same time, the controller 120 connects the signal terminal 1022 to a common level (ground level). When this card is inserted into the host device 200, the host device 200 first detects the card and then detects the status of the signal terminal 1022. Because the other terminal of the comparator 201 serving as a detection circuit in the host device 200 is pulled up or pulled down, if the switch 110 is in the write disable position, then the voltage is at the common level (ground level), and thus it is detected that the switch 110 is in the write disable position.
Thus, the host device does not try to send a delete command to the card, and thus an improvement in efficiency of the process can be achieved. Even if, by some chance, the delete command is sent to the card, a signal indicating that the card is internally in the write/delete disable state is sent to the host device thereby achieving high reliability in preventing information from being deleted erroneously. The signal terminal 1022 disposed on the card is also capable of receiving data. That is, when the switch is in the write enable state, the signal terminal 1022 can be used to detect a signal supplied from the outside.
The card-type peripheral device according to the present embodiment has been described above assuming that the card-type peripheral device is used as a memory card. Next, an example of a configuration of the card-type peripheral device is described below for a case where the card-type peripheral device is used in a state in which it is connected to a card adapter according to an embodiment.
This card adapter 300 has a write/delete enable/disable changeover switch 310.
The memory card 100 has a circuit configuration equivalent to that shown in
As shown in
On the other hand, when the switch 310 of the card adapter 300 is in the write disable position, the terminal in the adapter is connected to the ground level, and thus the controller 120 in the memory card 100 controls the memory card 100 such that writing/deleting is disabled.
The memory card 100 has a circuit configuration equivalent to that shown in
By employing one of the configurations described above, the status of the write/delete protection switch disposed in the adapter for conversion to a large-size card is reflected in the function of the write/delete protection switch operable independently in the small-size memory card. In the examples described above, it is assumed that the interface is converted by the adapter to an interface similar to that of the small-size card. However, it is not necessary that the interface be converted to a similar one.
In a case where the interface is the same for the card and the host device, the card adapter 300 directly transfers information to the host device 200 other than information associated with the switch, as shown in
In some applications, once the card is inserted into the card adapter 300, the card is maintained in the adapter for a long period without being pulled out of the adapter. For convenience in use in such applications, a card stopper mechanism may be disposed on the card adapter 300 thereby to prevent the card inserted in the card adapter 300 from being easily pulled out or from popping out due to an external factor such as a shock.
In this example, a plate spring 342 made of an elastic material is disposed at the top of a region of a card insertion slot 330 of the card adapter 300 such that the plate spring 342 is isolated by slits 341 from an upper surface 340 of the card adapter 300. The insertion slot 330 has a guide/stopper part 343 whose lower surface is gradually tapered in a direction toward the center of the insertion slot, and the plate spring 342 has a notch 344 formed at a location close to the guide/stopper part 343.
As shown in
The card adapter of this type may be slightly greater in length than the card adapters of the previous examples, as shown in
In the embodiment of the present invention, as described above, the small-size memory card is realized, which can transfer data at a very high rate and which has the switch 110 for disabling writing/deleting of information to/from the card. The memory card has the function of providing information indicating the status of the switch to the outside thereby allowing the host device 200 to handle the card in an efficient manner. The switch functioning in a similar manner may be disposed on the card adapter 300 adapted to convert the card size and/or the interface, and the status of this switch can be reflected in the operation of the card.
For convenience in use where the card is maintained in the adapter for a long period without being pulled out of the adapter, the card stopper mechanism may be disposed on the card adapter thereby to prevent the card inserted in the card adapter from being easily pulled out.
It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and alterations may occur depending on design requirements and other factors insofar as they are within the scope of the appended claims or the equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
JP2007-227207 | Aug 2007 | JP | national |