Not Applicable
1. Field of the Invention
The disclosed subject matter is in the field of corrugated packaging, which is widely used in the shipping industry to store or transport goods. This subject matter includes improvements to corrugated cardboard boxes for other packaging made of such materials as cellulose fibers or synthetic fiber mixtures) for transporting/shipping and storing products.
2. Background of the Invention
Cardboard box packaging is widely used for transporting goods through shipping companies and their networks. Such packaging is subject to stresses and other compressive pressures when such cardboard boxes are stacked or mishandled (e.g., dropped). These stresses/pressures can weaken the structural frame of the cardboard box, allowing greater likelihood of damage to the boxes contents when the cardboard boxes are mishandled or transported across long distances.
Often card board boxes are corrugated, which means each wall of the boxes is defined by a fluted sheet of paper-based material between two linerboards. Since the flutes of the cardboard boxes are paper-based material, corrugated cardboard boxes tend to get damaged easily (e.g., buckled or crushed), particularly when stacked under other packages/parcels with varying shapes and weights. Although a boxes' contents help prevent inward buckling/crushing via combatting compressive pressures, the contents at times get damaged in this supporting role. Thus, a need exists for mechanisms that combat compressive pressures caused by stacked packages or mishandling.
A limitation of corrugated cardboard boxes is that the compressive strength of the package lies in the corners of the boxes. In fact, the industry test to determine the strength of a cardboard box is determined and acknowledged through the Edge Crush Test. Without strong corners, tensile and compressive strength in the sides of the box are low unless the density of the flutes are increased via the layering of cardboard sidewalls or the addition of a loadbearing cardboard wall section. Layering and adding loadbearing walls entail the use of more material to construct the box, increasing the production cost of the box. Also, additional layers or load bearing walls also increase the tare weight of the packaging, which increases the shipping costs of the package. Thus, a need exists for mechanisms that combat compressive pressures caused by stacked packages or mishandling without the use of additional layering or load bearing walls.
Disclosed are improvements to box packaging and standard corrugated cardboard box packaging in particular. In one embodiment, boxes are improved by integrating a resilient polymer frame structure and utilizing structural engineering principles into the core frame of the box. Specifically, plastic members replace the flutes of corrugated paperboard between the exterior and interior linerboards of the packaging. Suitably, these improvements result in a higher crush strength of the package and a lower tare weight.
The disclosed packaging (sometimes referred to herein as a “smart package”) improves standard corrugated cardboard boxes. Suitably, the flutes of the standard corrugated cardboard packaging are replaced with a truss structure and its accompanying structural engineering principles. This truss structure includes a core frame that suitably increases the tensile and compressive strength of the who e package and not just the package's corners. In a preferred embodiment, the core frame of the truss structure is made of polymers such as polypropylene, polyethylene, polystyrene or other suitable materials. Polypropylene, polyethylene, or polystyrene are the most preferred polymers for constructing the core frame due to their light weight, versatile strength, molding quality, and low cost. However, other types of polymers can also be used in this embodiment, such as natural or sustainable polymers.
The preferred embodiment disclosed herein achieves similar tensile and compressive strengths in elongated shaped packages (e.g., rectangular box packages) via I-beam frame structures that are inter-connected by truss structures running the length of the I-beams. These I-beams and truss frame shapes may be made of made out of polymers such as polyethylene, polypropylene, or polystyrene or other suitable polymer. However, other types of polymers can also be used in this embodiment, such as natural or sustainable polymers. The I-beam structures may be made through an injection process of the polymer or use of a mold for the shapes. Suitably, copolymer adhesive may be used to bond the polymer frame to the exterior and interior linerboards of the cardboard package.
When constructed according to this disclosure, supporting packaging walls with a polymer framed truss-structure results in the use of less material during construction when compared with typical corrugated cardboard package. The use of less materials results in a lower tare weight and material costs.
The manner in which these objectives and other desirable characteristics can be obtained is explained in the following description and attached figures in which:
It is to be noted, however, that the appended figures illustrate only typical embodiments of the disclosed assemblies, and therefore, are not to be considered limiting of their scope, for the disclosed assemblies may admit to other equally effective embodiments that will be appreciated by those reasonably skilled in the relevant arts. Also, figures are not necessarily made to scale.
Disclosed are preferred embodiments of a novel package container with various shapes such as but not limited to; square, rectangular, elongated or tubular shapes for transporting goods or storing purposes. When compared with standard corrugated packaging, the disclosed packaging features polymeric truss-structures instead of the corrugated cardboard flutes. In a preferred embodiment, the sidewalls of a package feature a polymer truss frame sandwiched within the exterior and interior linerboards for cardboard walls). In preferred embodiments, each section of the packaging contains polymer truss structures within its core and can consists of such polymers such as synthetic polymers like polyethylene, polypropylene, or polystyrene due to their strength qualities and low costs. Other types of natural, synthetic and sustainable polymers can be utilized, including polymer blends.
As highlighted in
Another embodiment of the invention involves longer or elongated shaped boxes such as a rectangular package box as shown in
Other features will be understood with reference to the drawings. While various embodiments of the method and apparatus have been described above, it should be understood that they have been presented by way of example only, and not of limitation. Likewise, the various diagrams might depict an example of an architectural or other configuration for the disclosed method and apparatus, which is done to aid in understanding the features and functionality that might be included in the method and apparatus. The disclosed method and apparatus is not restricted to the illustrated example architectures or configurations, but the desired features might be implemented using a variety of alternative architectures and configurations. Indeed, it will be apparent to one of skill in the art how alternative functional, logical or physical partitioning and configurations might be implemented to implement the desired features of the disclosed method and apparatus. Also, a multitude of different constituent module names other than those depicted herein might be applied to the various partitions. Additionally, with regard to flow diagrams, operational descriptions and method claims, the order in which the steps are presented herein shall not mandate that various embodiments be implemented to perform the recited functionality in the same order unless the context dictates otherwise.
Although the method and apparatus is described above in terms of various exemplary embodiments and implementations, it should be understood that the various features, aspects and functionality described in one or more of the individual embodiments are not limited in their applicability to the particular embodiment with which they are described, but instead might be applied, alone or in various combinations, to one or more of the other embodiments of the disclosed method and apparatus, whether or not such embodiments are described and whether or not such features are presented as being a part of a described embodiment. Thus the breadth and scope of the claimed invention should not be limited by any of the above-described embodiments.
Terms and phrases used in this document, and variations thereof, unless otherwise expressly stated, should be construed as open-ended as opposed to limiting. As examples of the foregoing: the term “including” should be read as meaning “including, without limitation” or the like, the term “example” is used to provide exemplary instances of the item in discussion, not an exhaustive or limiting list thereof, the terms “a” or “an” should be read as meaning “at least one,” “one or more,” or the like, and adjectives such as “conventional,” “traditional,” “normal,” “standard,” “known” and terms of similar meaning should not be construed as limiting the item described to a given time period or to an item available as of a given time, but instead should be read to encompass conventional, traditional, normal, or standard technologies that might be available or known now or at any time in the future. Likewise, where this document refers to technologies that would be apparent or known to one of ordinary skill in the art, such technologies encompass those apparent or known to the skilled artisan now or at any tine in the future.
The presence of broadening words and phrases such as “one or more,” “at least,” “but not limited to” or other like phrases in some instances shall not be read to mean that the narrower case is intended or required in instances where such broadening phrases might be absent. The use of the term “module” does not imply that the components or functionality described or claimed as part of the module are all configured in a common package. Indeed, any or all of the various components of a module, whether control logic or other components, might be combined in a single package or separately maintained and might further be distributed across multiple locations.
Additionally, the various embodiments set forth herein are described in terms of exemplary block diagrams, flow charts and other illustrations. As will become apparent to one of ordinary skill in the art after reading this document, the illustrated embodiments and their various alternatives might be implemented without confinement to the illustrated examples. For example, block diagrams and their accompanying description should not be construed as mandating a particular architecture or configuration.
This application claims the benefit of U.S. Provisional Application No. 61/847,967 filed Jul. 18, 2013 entitled “Improved Cardboard Packaging with Internal Polymer Frame Structures.” The provisional patent application is incorporated by reference its entirety as fully set forth herein.
Number | Date | Country | |
---|---|---|---|
61847967 | Jul 2013 | US |