This invention relates to cards such as payment cards.
A card, or other device, is provided with a magnetic emulator operable to communicate with a magnetic stripe reader. The emulator may be operable to communicate a block of information serially such that a reader may sense the emulator and the information may be transmitted through the emulator serially. Accordingly, the emulator may comprise of, for example, a single wire or coil and may transmit bits one-by-one at high frequencies such that all information in a block is transmitted to a magnetic stripe reader while the read head of the reader is in the proximity of the single wire or coil. An emulator may also be provided in a parallel configuration such that multiple bits of data are emulated at the same time. For example, a parallel emulator may include 3000 regions to emulate 3000 bits simultaneously while a serial emulator may include a single region to communicate the 3000 bits in rapid succession.
A card, or other device, having a magnetic emulator may take the form of, for example, a credit card, debit card, security card, and/or any other type of card. Accordingly, the dynamic information may be a dynamic credit card number, a dynamic debit card number, a dynamic security number, or any other type of dynamic number. A display may be provided to display the data, or a portion of the data, communicated through an emulator or additional data. For example, a one type of security code may be displayed on a display and another type of security code may be communicated through a magnetic emulator.
A payment card, such as a credit card, may be provided that includes a display. All, or a portion of, a payment card number (e.g., a credit card) may, for example, be changed periodically and displayed on the display. Similarly, this changed information may be emulated via a parallel or serial emulator. A magnetic encoder may also be utilized to erase and write information to a magnetic medium.
A parallel or serial emulator may be located next to one or more magnetic stripe segments (e.g., sandwiched between two magnetic stripe segments). A magnetic stripe may be utilized to transmit static information such that power is conserved. For example, if the beginning bits of a data block must take a particular form (e.g., start bits followed by user identification information) then this information may be embodied as a magnetic stripe. A serial or parallel emulator may then be provided to communicate the remaining information of the block (e.g., dynamic credit card number).
Numerous types of structures may be utilized to determine when a read head of a magnetic stripe reader is reading, or is about to read, a magnetic stripe or a dynamic magnetic communications device (e.g., a magnetic emulator or encoder). Such structures may be utilized to turn a magnetic emulator, such as a serial magnetic emulator, ON. By only turning an emulator ON when the emulator is in the proximity of a magnetic stripe reader, power may be conserved. For example, a button may be provided on a card, or other device, such that a user may provide manual input to instruct the card, or other device, to turn an emulator ON. Alternatively, for example, one or more sensors may be provided to determine the presence of a read-head of a magnetic stripe reader. For example, a hall-effect sensor may be provided to detect a magnetic field's interaction with a read-head, a circuit may be provided to detect the presence of a conductive material, and/or a circuit may be provided to detect the capacitance of a particular material. Alternatively still, for example, the swiping motion of a card may be detected via one or more inertial sensors such as accelerometers and/or gyroscopes. Upon the initiation of turning an emulator ON, the emulator may be driven through a routine (e.g., repeatedly emulating the same block of information serially for a period of time or for a number of data transmissions). A card, or other device, may include, for example, a magnetic stripe section, followed by a read head detector, followed by a serial or parallel encoder. A second magnetic stripe section may follow the serial or parallel encoder (e.g., and another read head detector may precede the encoder to determine when the read head is not reading the encoder).
An emulator may be fabricated using a PCB printing technique. Such a technique may provide the emulator on, for example, a PCB board (e.g. FR4 board). Any additional components may be fabricated on the flexible PCB board. For example, a processor, display, and emulator may be fabricated on the same flexible PCB board. Such a flexible PCB board may be coupled to a flexible battery and hot-film laminated or cold laminated (e.g., injection molding) to form a card. The flexible PCB board and flexible battery may be placed into any housing of any device.
The principles and advantages of the present invention can be more clearly understood from the following detailed description considered in conjunction with the following drawings, in which the same reference numerals denote the same structural elements throughout, and in which:
Identification information 120 may be provided on card 100. Accordingly, for example, a dynamic number may be provided for a particular period of time according to a coding scheme for that particular period of time. Thus, the identification information, time, and dynamic information may be transmitted via manual entry (e.g., through an online store) or via a magnetic emulator (e.g., through a magnetic stripe reader). A remote server may receive such information and verify whether the dynamic information is correct for particular identification information and a particular period of time.
Card 150 is provided and may include magnetic emulator 160 instead of magnetic stripe 170. Persons skilled in the art will appreciate that magnetic emulator 160 may be embedded behind a magnetic stripe or may be located next to a magnetic stripe. Magnetic emulator 160 may take many forms. For example, magnetic emulator 160 may include any number of emulation segments (e.g., one or more wires or coils) to emulate a particular bit or number of bits of information.
Emulator 160 may include a single emulation segment and may communicate a block of information serially by communicating bits at a high data transmission rate. Accordingly, a serial emulator may be provided.
Emulator 160 may include multiple emulation segments—each of which may, for example, simultaneously emulate a different bit of information. Accordingly, a parallel emulator may be provided.
Emulator 160 may include multiple emulation segments—each of which may, for example, emulate the same bit of information. Accordingly, a serial emulator may be provided. Such a serial emulator may, for example, allow for a larger area to be read by a reader. In doing so, for example, a read head may be located over emulator 160 for a longer period of time such that more information may be read by a read-head for a particular period of time.
A magnetic stripe reader may, for example, determine information on a magnetic stripe by detecting the frequency of changes in magnetic fields (e.g., flux transversals). A particular frequency of flux transversals may correlate to, for example, a particular information state (e.g., a logic “1” or a logic “0”). Accordingly, for example, a magnetic emulator may change the direction of an electromagnetic field at particular frequencies in order to communicate a different state of information (e.g., a logic “1” or a logic “0”).
Persons skilled in the art will appreciate that a magnetic emulator may electromagnetically communicate information serially by changing the magnitude of an electromagnetic field with respect to time. As such, for example, a current in a single direction may be provided through a magnetic emulator in order for that magnetic emulator to generate an electromagnetic field of a single direction and a particular magnitude. The current may then be removed from the magnetic emulator such that, for example, the electromagnetic field is removed. The creation of a presence of an electromagnetic field, and the removal of that electromagnetic field, may be utilized to communicate information to, for example, a magnetic stripe reader. A magnetic stripe reader may be configured to read, for example, the change in flux versus time and may associate an increase in an electromagnetic field (e.g., creation of a field) as one flux transversal and a decrease (e.g., removal of a field) as another transversal. In doing so, for example, driving circuitry (not shown) may be provided which, in turn, controls when current is provided to a magnetic emulator. The timing of magnetic flux transversals, as determined by a magnetic stripe reader, may be utilized by that reader to determine whether a logic one (“1”) or logic zero (“0”) was communicated. Accordingly, a driving circuit may change the frequency of when current is supplied and removed from a magnetic emulator in order to communicate a logic one (“1”) or a logic zero (“0”).
A driving circuit may, for example, change the direction of current supplied to a magnetic emulator to increase the amount of change in an electromagnetic field magnitude for a period of time. In doing so, for example, a magnetic stripe reader may more easily be able to discern overall changes in an electromagnetic field and, as such, may more easily be able to discern information. As such, for example, a driving circuit may increase the magnitude of an electromagnetic field by providing negative current, decrease the amount of negative current until no current is provided and provide an increasing positive current in order to provide a large swing in the magnitude of an electromagnetic field. Similarly, a driving circuit may switch from providing one amount of negative current (or positive current) to one amount of positive current (or negative current).
Persons skilled in the art will appreciate that a string of a particular bit of data (e.g., a string of logic zeros “0s”) may be communicated before as well as after information is communicated through a magnetic emulator. A magnetic stripe reader may utilize such data, for example, to determine base timing information such that the magnetic stripe reader has a timing reference that the reader can utilize to assist in determining timing changes of perceived flux transversals. Accordingly, for example, a magnetic emulator may send data at different overall frequencies and a magnetic stripe reader may be able to reconfigure itself to receive data at such overall frequencies.
Information may be encoded using, for example, Frequency/Double Frequency (F2F) encoding such that magnetic stripe readers may perform F2F decoding.
A processor may control one or more emulators by, for example, controlling the direction of the current supplied through one or more segments of an emulator. By changing the direction of current through a region, for example, the direction of an electromagnetic field may be changed. Similarly, a processor may control one or more emulators by, for example, controlling the change in magnitude of current supplied through one or more segments of an emulator. As such, for example, a processor may increase the magnitude of current as well as decrease the magnitude of current supplied through an emulator. A processor may control the timing of such increases and decreases in current such that a magnetic emulator may, for example, communicate F2F encoded information.
Card 250 may be provided and may include emulator 260. Emulator 260 may be configured so that it can be read by more than one read heads. For example, emulator 260 may be configured so that it can be read by three read heads. Accordingly, one region may be utilized to communicate the same information across all three read heads simultaneously. Emulator 260 may, for example, cycle through transmitting information from each track such that all tracks are communicated serially. Such tracks may be communicated with bits identifying each track such that processing connected to each read-head can determine the information desired to be communicated to each particular read-head. As such, a magnetic stripe reader may be configured to receive the multiple tracks (e.g., tracks 1 and 2) through each read-head such that the magnetic stripe reader receives four tracks of data. The magnetic stripe reader may then, for example, utilize identification bits (e.g., start sentinels) in each track to identify the received track. Similarly, for example, the magnetic stripe reader may be configured to recognize that multiple instances of the same track were received and only forward a single instance of each received track to a processor. Persons skilled in the art will appreciate that different tracks may be communicated with the same identification bits. Accordingly, for example, a magnetic stripe reader may be configured to determine the identity of tracks by performing additional computations. For example, the magnetic stripe reader may be configured to check all of the information sent in those tracks and, if the information is the same, a single instance may be provided to subsequent processing. Additionally, for example, the magnetic stripe reader may be configured to determine the length of tracks with the same identification bits (e.g., start sentinels) to determine whether different tracks were communicated. Similarly, a single emulator that sequentially communicates multiple different tracks of information to a single read-head may, for example, change the timing of each communicated track such that processing coupled to the single read-head discerns just the single track that the read-head expected to receive.
Persons skilled in the art will appreciate that a magnetic stripe on a card may be of a particular density having a fixed amount of bits. A serial emulator, for example, may communicate more than this fixed amount of bits by, for example, increasing the rate at which bits are serially communicated. A serial emulator may, for example, communicate a format code that a reader may utilize to discern the length of the communicated information. For example, a serial emulator may communicate a track of information that is greater than, approximately, 750 bits in length, 1,000 bits in length, or 2,000 bits in length. Any number of bits may define, for example, a character (e.g., 4-bit characters, 5-bit characters, 6-bit characters, 7-bit characters, or 8-bit characeters).
Card 350 may include emulator 360. Emulator 360 may extend, for example, along the majority of the length of card 350 (or approximately all of card 350). Emulator 360 may be a parallel emulator or, for example, may be a serial emulator. For example, emulator 360 may be a coil such that a single bit is emulated by emulator 360 at a time. Such an emulator 380 may, for example, switch bits being emulated at a high rate so that a read-head of a magnetic stripe reader can receive a large amount of information while the read-head of the magnetic stripe reader is located over emulator 360.
Emulator 400 may be fabricated, for example, using any fabrication technique such as a printed circuit board fabrication technique (e.g., utilizing FR4). Via 410 and via 415 may be included to electrically couple conductive segments 405 and 407 to conductive segment 406. Accordingly, for example, conductive segment 406 may be provided at a different height then conductive segment 405 and conductive segment 407 (e.g., with respect to a base). For example, conductive segments 405 and 407 may be provided one surface of a material while conductive segment 406 is provided on another surface of a material. Segment 405 and 407 may be located closer to the reverse side of a card while segment 406 may be located closer to the obverse side of a card (or vise versa). Accordingly, for example, wire segments 405, 406, and 407 may take on a three-dimensional shape and particular segments (e.g., wire segment 406) may be closer to a particular surface than other segments. Persons skilled in the art will appreciate that segment 406 may be angled (e.g., with respect to a top or bottom edge of a card) or may be in parallel (with respect to a top or bottom edge of a card). An emulator may include multiple instances of emulator 400 coupled in, for example, a series configuration. Conductive segments on the same surface of a material may be, for example, spaced uniformly on that surface. Accordingly, for example, a coil may be provided as an emulator with numerous turns and a current may be provided through that emulator such that an electromagnetic field is generated that is operable to be sensed by a magnetic stripe reader.
Persons skilled in the art will appreciate that numerous vias and line segments may be provided such that conductive segments are provided at several heights. Thus, for example, a coil may be fabricated on a multiple layer board. Emulator 400 may be utilized, for example, to transmit information serially. For example, the direction of the electromagnetic field created by line segments 405, 406, and 407 may be changed. Control circuitry may, in turn, change the direction of the electromagnetic field (e.g., by changing the direction of the current) at different frequencies such that a reader configured to detect the frequency of field reversals (e.g., using F2F decoding) can receive information. As such, emulator 400 may communicate multiple bits of data serially by utilizing line segments 405, 406, and 407. Any number of line segments may be added.
Additionally, for example, only a single conductive segment may be provided. Furthermore, multiple instances of emulator 400 may be placed next to each other and may be separately controlled. In doing so, for example, multiple, independent electromagnetic fields may be controlled such that different information may be emulated simultaneously (e.g., in parallel).
Conductive segments may, for example, be printed on a board (e.g., a flexible PCB board) in a conductive material (e.g., a metal). Similarly, vias may be provided and filled to provide conductive interconnects. Multiple layers may be printed to provide a three-dimensional PCB. Persons skilled in the art will appreciate, however, that an emulator may be provided on a single layer with any number of conductive segments (e.g., one or more than one).
Emulator 420 may be provided and may include conductive segment array 423. Person skilled in the art will appreciate that conductive segment array 423 may be fabricated in multiple layers to form a coil. Accordingly, the coil may be provided with a current of a particular direction and may generate an associated electromagnetic field across the coil. Additionally, for example, current may be provided and removed from emulator 420 to communicate information. In extending the length of an array (e.g., adding more segments or increasing the space of segments), the amount of time a read head is operable to read information from an array may be increased.
Emulator 450 may be provided and may include contacts 451 and 452 to provide a current (e.g., a current of a particular direction) to conductive segment array 453. Persons skilled in the art will appreciate that conductive segments in array 453 may be coupled to vias that are not horizontally aligned with one another. Accordingly, the vias may be staggered. In doing so, for example, the conductive segments may be spaced closer together as vias may be spaced closer together. For example, by staggering the lengths of line segments, vias 454 and 455 may be able to be provided at larger densities. In turn, a coil may be provided with an increased number of turns.
Emulator 470 may be provided and may include array 471 controlled by contacts 472 and 473. Vertical conductive segments may, for example, be controlled together or may be controlled independently (e.g., by having a separate pair of contacts for each vertical conductive segment). Components may be provided on each segment in order to, for example, provide current through each segment. For example, resistors may be added to each segment. The resistors of each segment may be different. For example, the resistance of each segment may be configured to be substantially equal. Multiple emulators may be utilized on a structure (e.g., a card or other device) to communicate to, for example, communicate to different read heads or the same read head.
Flow chart 520 may be provided and may include step 521, in which a signal is received to initiate a transmission. Such a transmission may take the form of an emulation and may be triggered autonomously through software (e.g., the detection of a read head) or manually through a manual interface (e.g., one or more buttons). Step 522 may initiate and repeatedly send a block of data serially. Step 523 may initiate and a signal may be received to end a transmission. Such a signal may be provided, for example, autonomously through software (e.g., the detection of a read-head by a second detector circuit after an emulator) or manually through a manual interface (e.g., on or more buttons. Transmission may be ended in step 524.
Persons skilled in the art will appreciate that a read-head detector may be utilized to cause a magnetic emulator to, for example, transmit a block of information serially (e.g., payment information) once each time the read-head detector senses a read-head. Alternatively, for example, a read-head detector may be utilized to cause a magnetic emulator to, serially transmit the same block of information repeatedly a particular number of times or for a particular period of time. Pauses may be introduced between transmissions of the block of information (e.g., payment information). Any dynamic magnetic communications device (e.g., one or more emulators and/or encoders) may be utilized based on the readings of one or more read-head detectors.
Flow chart 530 may be provided. Step 531 may, for example, change the coding of a number based on time (e.g., may code a credit card number differently with respect to time). Accordingly, a number may be changed based on the changed coding in step 532. The coded block may be transmitted in step 533. Persons skilled in the art will appreciate that a number (e.g., a dynamic number) may be provided visual via a display as well as magnetically via an emulator. Such a visual and emulation display may occur simultaneously. A different manual interface may be utilized (e.g., a different button) to turn a display ON or to turn an emulator ON.
Persons skilled in the art will appreciate that a particular magnetic stripe track (e.g., track 2 of a payment card such as a credit card) may have a particular amount of information at a particular density and in a particular format. For example, an emulator may transmit 40 characters, where each character is represented by 5 bits, by transmitting 200 bits. A magnetic stripe may include a track with, for example, 400 magnetic regions that may represent a maximum of approximately 400 flux reversals. Persons skilled in the art will appreciate that, furthering this example, with serial transmission, all 400 flux reversals (or more) may be transmitted by a single region. If start bits are utilized in a data block, then, for example, the data block may be repeatedly sent and resent and be properly utilized by a reader. For example, if a reader picks up a serial transmission in the middle of a transmission, the reader may not recognize the start bits and may wait until a start bits are received. Thus, an emulator may be driven such that it can, for example, send a data block approximately at least twice (e.g., approximately 800 associated flux reversals if a block is associated with 400 flux reversals) while a read-head of a magnetic stripe reader is operable to communicate with an emulator (e.g., the read-head is located over the emulator). In doing so, for example, an emulator may be able to transmit a block regardless of when a read head starts reading a block.
A magnetic stripe reader may, for example, be configured such that it is able to sense approximately at least 30,000 flux changes per second. Accordingly, an emulator region may transmit, for example, two blocks of information (e.g., of 400 transversals) to such a reader in approximately 0.0266 seconds. If, for example, the region is approximately 1 mm wide, the user may be operable to swipe at approximately 0.037 meters/second (approximately 1.5 inches/second) and the information may be communicated to a reader. If, for example, the region is approximately 5 mm wide, the user may swipe at approximately 7.5 inches/second and the information may be communicated to a reader. Persons skilled in the art will appreciate that larger currents may be utilized to drive larger regions. Persons skilled in the art will appreciate that users may be able to swipe at a variety of speeds, and may change the speed of the swipe while a card is being read by a reader, and an emulator may still properly transmit information via emulation. An emulator may be provided, for example, such that a user may swipe at speeds up to at least approximately 0.5, 1, 5, 10 feet/second for a particular reader (e.g., a reader operable of reader 30,000 flux changes a second).
Persons skilled in the art will appreciate that a number of manufacturing techniques may be utilized. An emulator may provide a uniform field for a particular distance about the surface of a card, but may be able to rapidly change the direction of the field. A coil may be provided using a two-layer or several-layer PCB techniques. Persons skilled in the art will appreciate that the width of a conductive segment (e.g., a wire trace) may be approximately 0.003 inches (or larger) and the diameter of vias connecting layers may be approximately 0.008 inches (or larger). Additionally, for example, a pattern of concentric rectangles may be utilized to produce a desired field in serial (or in parallel, for example, if multiple are utilized) transmission scheme. A single trace may also be split into multiple parallel traces that collective generate a desired field pattern.
A button, such as button 651, may be utilized, for example, to display a number. Such a number may be, for example, encrypted from a secure number based on time or use. For example, one-time use numbers (e.g., a payment number or code) may be retrieved from a list of numbers on memory each time button 651 is pressed and displayed on display 650. A processor may only go through each number once on a list. A registration process may be provided in which a user may be requested to enter in a sequence of numbers such that a remote server may validate the card and learn where in a sequence of a list a card currently resides. Numbers may be repeated on a list or may only occur once on a list. All of the numbers available by the length of the number may be utilized by the list or only a portion of the numbers available by the length of the number may be provided by the list. A secret number may be encrypted on a card and a verification server may also have knowledge of this secret number. Accordingly, the remote server may perform the same encryption function as the card on the secret number and verify that the resultant encrypted number is the same as the resultant encrypted number on a card. Alternatively, for example, the remote server may decrypt the received encrypted number to determine the authenticity of the encrypted number and validate an activity (e.g., validate a security access request or a purchase transaction).
A display may be bi-stable or non bi-stable. A bi-stable display may consume electrical energy to change the information displayed on the bi-stable display but may not consume electrical energy to maintain the display of that information. A non bi-stable display may consume electrical energy to both change and maintain information on the non bi-stable display. A display driving circuit may be provided, for example, for a bi-stable display (or a non bi-stable display). Such a display driving circuit may step-up a supply voltage (e.g., 1-5 volts) to a larger voltage (e.g., 6-15 volts) such that a bi-stable display may change displayed information. A controller (e.g., a processor) may be utilized to control such a display driving circuit. Persons skilled in the art will appreciate that a display may be configured to display numerical data or alphanumerical data. A display may also be configured to display other indicia (e.g., the image of a battery and its remaining life).
Persons skilled in the art will appreciate that a dynamic magnetic communications device (e.g., a magnetic emulator or magnetic encoder) may be fabricated, either completely or partially, in silicon and provided as a silicon-based chip. Other circuitry (e.g., driving circuitry) may also be fabricated on such a silicon-based chip. A processor, such as a processor for controlling a magnetic communications device, may be, for example, a programmable processor having on-board programmable non-volatile memory (e.g., FLASH memory), volatile memory (e.g., RAM), as well as a cache. Firmware as well as payment information (e.g., dynamic numbers) may be, for example, communicated from a programming device to a processor's on-board programmable non-volatile memory (e.g., a FLASH memory) such that a card may provide a variety of functionalities. Such a processor may also have one or more power-saving operating modes, in which each operating mode turns OFF a different set of circuitry to provide different levels of power consumption. One or more power-savings modes may turn OFF, for example, one or more clocking circuitry provided on a processor. An Application-Specific Integrated Circuit (ASIC) may also be included in a card or other device to provide, for example, processing, dynamic magnetic communications, as well as driving capabilities.
Persons skilled in the art will also appreciate that the present invention is not limited to only the embodiments described. Instead, the present invention more generally involves dynamic information. Persons skilled in the art will also appreciate that the apparatus of the present invention may be implemented in other ways then those described herein. All such modifications are within the scope of the present invention, which is limited only by the claims that follow.
This application is a continuation of U.S. patent application Ser. No. 13/186,469, filed on Jul. 20, 2011, which is a continuation of, and claims benefit to, U.S. patent application Ser. No. 12/339,042, filed on Dec. 19, 2008, which claims the benefit of U.S. Provisional Patent Application No. 61/016,491 filed on Dec. 24, 2007, 61/026,846 filed on Feb. 7, 2008, 61/027,807 filed on Feb. 11, 2008, 61/081,003 filed on Jul. 15, 2008, 61/086,239 filed on Aug. 5, 2008, 61/090,423 filed on Aug. 20, 2008, 61/097,401 filed Sep. 16, 2008, 61/112,766 filed on Nov. 9, 2008, 61/117,186 filed on Nov. 23, 2008, 61/119,366 filed on Dec. 2, 2008, and 61/120,813 filed on Dec. 8, 2008, all of which are hereby incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3955180 | Hirtle | May 1976 | A |
4328415 | Eaton | May 1982 | A |
4353064 | Stamm | Oct 1982 | A |
4354099 | Rayment et al. | Oct 1982 | A |
4394654 | Hofmann-Cerfontaine | Jul 1983 | A |
4587410 | Milnes | May 1986 | A |
4614861 | Pavlov et al. | Sep 1986 | A |
4667087 | Quintana | May 1987 | A |
4701601 | Francini et al. | Oct 1987 | A |
4720860 | Weiss | Jan 1988 | A |
4786791 | Hodama | Nov 1988 | A |
4788766 | Burger et al. | Dec 1988 | A |
4789776 | Inoue | Dec 1988 | A |
4790283 | Uranishi | Dec 1988 | A |
4791283 | Burkhardt | Dec 1988 | A |
4795898 | Bernstein et al. | Jan 1989 | A |
4797542 | Hara | Jan 1989 | A |
4902146 | Ishikawa | Feb 1990 | A |
4931991 | Cvijanovich | Jun 1990 | A |
4960983 | Inoue | Oct 1990 | A |
5038251 | Sugiyama et al. | Aug 1991 | A |
5166774 | Banerji et al. | Nov 1992 | A |
5168520 | Weiss | Dec 1992 | A |
5180311 | Schreiber et al. | Jan 1993 | A |
5237614 | Weiss | Aug 1993 | A |
5254843 | Hynes et al. | Oct 1993 | A |
5276311 | Hennige | Jan 1994 | A |
5291068 | Rammel | Mar 1994 | A |
5347580 | Molva et al. | Sep 1994 | A |
5361062 | Weiss et al. | Nov 1994 | A |
5412199 | Finkelstein et al. | May 1995 | A |
5428214 | Hakkers et al. | Jun 1995 | A |
5434398 | Goldberg | Jul 1995 | A |
5434405 | Finkelstein et al. | Jul 1995 | A |
5477038 | Levine et al. | Dec 1995 | A |
5478994 | Rahman | Dec 1995 | A |
5479512 | Weiss | Dec 1995 | A |
5484997 | Haynes | Jan 1996 | A |
5485519 | Weiss | Jan 1996 | A |
5521831 | May | May 1996 | A |
5585787 | Wallerstein | Dec 1996 | A |
5591949 | Bernstein | Jan 1997 | A |
5608203 | Finkelstein et al. | Mar 1997 | A |
5623552 | Lane | Apr 1997 | A |
5657388 | Weiss | Aug 1997 | A |
5748737 | Daggar | May 1998 | A |
5834747 | Cooper | Nov 1998 | A |
5834756 | Gutman et al. | Nov 1998 | A |
5838549 | Nagata et al. | Nov 1998 | A |
5856661 | Finkelstein et al. | Jan 1999 | A |
5862039 | Oertel | Jan 1999 | A |
5864623 | Messina et al. | Jan 1999 | A |
5866949 | Schueller | Feb 1999 | A |
5880934 | Haghiri-Tehrani | Mar 1999 | A |
5886874 | Onoda et al. | Mar 1999 | A |
5907142 | Kelsey | May 1999 | A |
5907350 | Nemirofsky | May 1999 | A |
5913203 | Wong et al. | Jun 1999 | A |
5937394 | Wong et al. | Aug 1999 | A |
5955021 | Tiffany, III | Sep 1999 | A |
5955961 | Wallerstein | Sep 1999 | A |
5956699 | Wong et al. | Sep 1999 | A |
6005691 | Grot | Dec 1999 | A |
6012636 | Smith | Jan 2000 | A |
6025054 | Tiffany, III | Feb 2000 | A |
6045043 | Bashan et al. | Apr 2000 | A |
6076163 | Hoffstein et al. | Jun 2000 | A |
6085320 | Kaliski | Jul 2000 | A |
6095416 | Grant et al. | Aug 2000 | A |
6129274 | Suzuki | Oct 2000 | A |
6129277 | Grant et al. | Oct 2000 | A |
6130621 | Weiss | Oct 2000 | A |
6145079 | Mitty et al. | Nov 2000 | A |
6157920 | Jakobsson et al. | Dec 2000 | A |
6161181 | Haynes, III et al. | Dec 2000 | A |
6168080 | Verschuur et al. | Jan 2001 | B1 |
6176430 | Finkelstein et al. | Jan 2001 | B1 |
6182894 | Hackett et al. | Feb 2001 | B1 |
6189098 | Kaliski | Feb 2001 | B1 |
6193163 | Fehrman et al. | Feb 2001 | B1 |
6199052 | Mitty et al. | Mar 2001 | B1 |
6206293 | Gutman et al. | Mar 2001 | B1 |
6240184 | Huynh et al. | May 2001 | B1 |
6241153 | Tiffany, III | Jun 2001 | B1 |
6256873 | Tiffany, III | Jul 2001 | B1 |
6269163 | Rivest et al. | Jul 2001 | B1 |
6286022 | Kaliski et al. | Sep 2001 | B1 |
6308890 | Cooper | Oct 2001 | B1 |
6313724 | Osterweil | Nov 2001 | B1 |
6378774 | Emori et al. | Apr 2002 | B1 |
6389442 | Yin et al. | May 2002 | B1 |
6393447 | Jakobsson et al. | May 2002 | B1 |
6402029 | Gangi | Jun 2002 | B1 |
6411715 | Liskov et al. | Jun 2002 | B1 |
6412702 | Ishikawa et al. | Jul 2002 | B1 |
6417754 | Bernhardt et al. | Jul 2002 | B1 |
6422462 | Cohen | Jul 2002 | B1 |
6446052 | Juels | Sep 2002 | B1 |
6460141 | Olden | Oct 2002 | B1 |
6554193 | Fehrman et al. | Apr 2003 | B1 |
6592044 | Wong et al. | Jul 2003 | B1 |
6607127 | Wong | Aug 2003 | B2 |
6609654 | Anderson et al. | Aug 2003 | B1 |
6631849 | Blossom | Oct 2003 | B2 |
6655585 | Shinn | Dec 2003 | B2 |
6681988 | Stack et al. | Jan 2004 | B2 |
6705520 | Pitroda et al. | Mar 2004 | B1 |
6715679 | Infosino | Apr 2004 | B1 |
6722570 | Eisele | Apr 2004 | B1 |
6755341 | Wong et al. | Jun 2004 | B1 |
6764005 | Cooper | Jul 2004 | B2 |
6769618 | Finkelstein | Aug 2004 | B1 |
6805288 | Routhenstein et al. | Oct 2004 | B2 |
6811082 | Wong | Nov 2004 | B2 |
6813354 | Jakobsson et al. | Nov 2004 | B1 |
6817532 | Finkelstein | Nov 2004 | B2 |
6873974 | Schutzer | Mar 2005 | B1 |
6902116 | Finkelstein | Jun 2005 | B2 |
6929550 | Hisada | Aug 2005 | B2 |
6970070 | Juels et al. | Nov 2005 | B2 |
6980969 | Tuchler et al. | Dec 2005 | B1 |
6985583 | Brainard et al. | Jan 2006 | B1 |
6991155 | Burchette, Jr. | Jan 2006 | B2 |
7013030 | Wong et al. | Mar 2006 | B2 |
7030860 | Hsu et al. | Apr 2006 | B1 |
7035443 | Wong | Apr 2006 | B2 |
7039221 | Tumey et al. | May 2006 | B1 |
7039223 | Wong | May 2006 | B2 |
7044394 | Brown | May 2006 | B2 |
7051929 | Li | May 2006 | B2 |
7083094 | Cooper | Aug 2006 | B2 |
7097108 | Zellner et al. | Aug 2006 | B2 |
7100049 | Gasparini et al. | Aug 2006 | B2 |
7100821 | Rasti | Sep 2006 | B2 |
7111172 | Duane et al. | Sep 2006 | B1 |
7114652 | Moullette et al. | Oct 2006 | B2 |
7136514 | Wong | Nov 2006 | B1 |
7140550 | Ramachandran | Nov 2006 | B2 |
7163153 | Blossom | Jan 2007 | B2 |
7195154 | Routhenstein | Mar 2007 | B2 |
7197639 | Juels et al. | Mar 2007 | B1 |
7219368 | Juels et al. | May 2007 | B2 |
7225537 | Reed | Jun 2007 | B2 |
7225994 | Finkelstein | Jun 2007 | B2 |
7246752 | Brown | Jul 2007 | B2 |
7298243 | Juels et al. | Nov 2007 | B2 |
7306144 | Moore | Dec 2007 | B2 |
7334732 | Cooper | Feb 2008 | B2 |
7337326 | Palmer et al. | Feb 2008 | B2 |
7346775 | Gasparinl et al. | Mar 2008 | B2 |
7347382 | Ferber et al. | Mar 2008 | B2 |
7356696 | Jakobsson et al. | Apr 2008 | B1 |
7357319 | Liu et al. | Apr 2008 | B1 |
7359507 | Kaliski | Apr 2008 | B2 |
7360688 | Harris | Apr 2008 | B1 |
7363494 | Brainard et al. | Apr 2008 | B2 |
7364092 | Narendra et al. | Apr 2008 | B2 |
7380710 | Brown | Jun 2008 | B2 |
7398253 | Pinnell | Jul 2008 | B1 |
7404087 | Teunen | Jul 2008 | B2 |
7424570 | D'Albore et al. | Sep 2008 | B2 |
7427033 | Roskind | Sep 2008 | B1 |
7454349 | Teunen et al. | Nov 2008 | B2 |
7461250 | Duane et al. | Dec 2008 | B1 |
7461399 | Juels et al. | Dec 2008 | B2 |
7472093 | Juels | Dec 2008 | B2 |
7472829 | Brown | Jan 2009 | B2 |
7494055 | Fernandes et al. | Feb 2009 | B2 |
7502467 | Brainard et al. | Mar 2009 | B2 |
7502933 | Jakobsson et al. | Mar 2009 | B2 |
7503485 | Routhenstein | Mar 2009 | B1 |
7516492 | Nisbet et al. | Apr 2009 | B1 |
7516883 | Hardesty | Apr 2009 | B2 |
7523301 | Nisbet et al. | Apr 2009 | B2 |
7530495 | Cooper | May 2009 | B2 |
7532104 | Juels | May 2009 | B2 |
7543739 | Brown et al. | Jun 2009 | B2 |
7559464 | Routhenstein | Jul 2009 | B2 |
7562221 | Nystrom et al. | Jul 2009 | B2 |
7562222 | Gasparini et al. | Jul 2009 | B2 |
7580898 | Brown et al. | Aug 2009 | B2 |
7584153 | Brown et al. | Sep 2009 | B2 |
7591416 | Blossom | Sep 2009 | B2 |
7591426 | Osterweil et al. | Sep 2009 | B2 |
7591427 | Osterweil | Sep 2009 | B2 |
7602904 | Juels et al. | Oct 2009 | B2 |
7621458 | Zellner et al. | Nov 2009 | B2 |
7631804 | Brown | Dec 2009 | B2 |
7639537 | Sepe et al. | Dec 2009 | B2 |
7641124 | Brown et al. | Jan 2010 | B2 |
7660902 | Graham et al. | Feb 2010 | B2 |
7690580 | Shoemaker | Apr 2010 | B2 |
7784687 | Mullen et al. | Aug 2010 | B2 |
7793851 | Mullen | Sep 2010 | B2 |
7828207 | Cooper | Nov 2010 | B2 |
7828220 | Mullen | Nov 2010 | B2 |
7931195 | Mullen | Apr 2011 | B2 |
7954705 | Mullen | Jun 2011 | B2 |
7954708 | Blossom | Jun 2011 | B2 |
8011577 | Mullen et al. | Sep 2011 | B2 |
8020775 | Mullen et al. | Sep 2011 | B2 |
8052052 | Power | Nov 2011 | B1 |
8074877 | Mullen et al. | Dec 2011 | B2 |
8226001 | Foo et al. | Jul 2012 | B1 |
8286876 | Mullen et al. | Oct 2012 | B2 |
8302872 | Mullen | Nov 2012 | B2 |
8317103 | Foo et al. | Nov 2012 | B1 |
8376239 | Humphrey | Feb 2013 | B1 |
8382000 | Mullen et al. | Feb 2013 | B2 |
8413892 | Mullen et al. | Apr 2013 | B2 |
8424773 | Mullen et al. | Apr 2013 | B2 |
8459548 | Mullen et al. | Jun 2013 | B2 |
8485437 | Mullen et al. | Jul 2013 | B2 |
8517276 | Mullen et al. | Aug 2013 | B2 |
8579203 | Lambeth | Nov 2013 | B1 |
8608083 | Mullen et al. | Dec 2013 | B2 |
8668143 | Mullen et al. | Mar 2014 | B2 |
8678276 | Poidomani et al. | Mar 2014 | B2 |
8733638 | Mullen et al. | May 2014 | B2 |
8763916 | Foo et al. | Jul 2014 | B1 |
8875999 | Mullen et al. | Nov 2014 | B2 |
8881989 | Mullen et al. | Nov 2014 | B2 |
8973824 | Mullen et al. | Mar 2015 | B2 |
9004368 | Mullen et al. | Apr 2015 | B2 |
9010630 | Mullen et al. | Apr 2015 | B2 |
1043070 | Mullen et al. | Sep 2015 | A1 |
1057992 | Mullen et al. | Mar 2016 | A1 |
9361569 | Mullen et al. | Jun 2016 | B2 |
9384438 | Mullen et al. | Jul 2016 | B2 |
9547816 | Mullen et al. | Jan 2017 | B2 |
9639796 | Mullen et al. | May 2017 | B2 |
9684861 | Mullen et al. | Jun 2017 | B2 |
9697454 | Mullen et al. | Jul 2017 | B2 |
9704088 | Mullen et al. | Jul 2017 | B2 |
9704089 | Mullen et al. | Jul 2017 | B2 |
9727813 | Mullen et al. | Aug 2017 | B2 |
9805297 | Mullen et al. | Oct 2017 | B2 |
10032100 | Mullen et al. | Jul 2018 | B2 |
10095974 | Mullen et al. | Oct 2018 | B1 |
10169692 | Mullen et al. | Jan 2019 | B2 |
10198687 | Mullen et al. | Feb 2019 | B2 |
10223631 | Mullen et al. | Mar 2019 | B2 |
10255545 | Mullen et al. | Apr 2019 | B2 |
10325199 | Mullen et al. | Jun 2019 | B2 |
10467521 | Mullen et al. | Nov 2019 | B2 |
10496918 | Mullen et al. | Dec 2019 | B2 |
20010017690 | Vernackt et al. | Aug 2001 | A1 |
20010034702 | Mockett et al. | Oct 2001 | A1 |
20010047335 | Arndt et al. | Nov 2001 | A1 |
20020032657 | Singh | Mar 2002 | A1 |
20020043566 | Goodman et al. | Apr 2002 | A1 |
20020052230 | Martinek et al. | May 2002 | A1 |
20020059114 | Cockrill et al. | May 2002 | A1 |
20020071385 | Ebara | Jun 2002 | A1 |
20020082989 | Fife et al. | Jun 2002 | A1 |
20020096570 | Wong et al. | Jul 2002 | A1 |
20020108066 | Masui | Aug 2002 | A1 |
20020120583 | Keresman, III et al. | Aug 2002 | A1 |
20020153424 | Li | Oct 2002 | A1 |
20020163479 | Lin et al. | Nov 2002 | A1 |
20020179329 | Fukuoka et al. | Dec 2002 | A1 |
20020185302 | Henson | Dec 2002 | A1 |
20030002718 | Hamid | Jan 2003 | A1 |
20030034388 | Routhenstein et al. | Feb 2003 | A1 |
20030052168 | Wong | Mar 2003 | A1 |
20030057278 | Wong | Mar 2003 | A1 |
20030116635 | Taban | Jun 2003 | A1 |
20030152253 | Wong | Aug 2003 | A1 |
20030163287 | Vock et al. | Aug 2003 | A1 |
20030169039 | Kang et al. | Sep 2003 | A1 |
20030173409 | Vogt et al. | Sep 2003 | A1 |
20030178495 | Jones et al. | Sep 2003 | A1 |
20030179909 | Wong et al. | Sep 2003 | A1 |
20030179910 | Wong | Sep 2003 | A1 |
20030205624 | Huang et al. | Nov 2003 | A1 |
20030209608 | Blossom | Nov 2003 | A1 |
20030218066 | Fernandes et al. | Nov 2003 | A1 |
20030226899 | Finkelstein | Dec 2003 | A1 |
20040011877 | Reppermund | Jan 2004 | A1 |
20040026495 | Finkelstein | Feb 2004 | A1 |
20040035942 | Silverman | Feb 2004 | A1 |
20040097054 | Abe | May 2004 | A1 |
20040127256 | Goldthwaite | Jul 2004 | A1 |
20040133787 | Doughty | Jul 2004 | A1 |
20040145858 | Sakurada | Jul 2004 | A1 |
20040159700 | Khan et al. | Aug 2004 | A1 |
20040162732 | Rahim et al. | Aug 2004 | A1 |
20040172535 | Jakobsson | Sep 2004 | A1 |
20040177045 | Brown | Sep 2004 | A1 |
20040179718 | Chou | Sep 2004 | A1 |
20040251303 | Cooper | Dec 2004 | A1 |
20050001711 | Doughty et al. | Jan 2005 | A1 |
20050043997 | Sohata et al. | Feb 2005 | A1 |
20050080747 | Anderson et al. | Apr 2005 | A1 |
20050086160 | Wong et al. | Apr 2005 | A1 |
20050086177 | Anderson et al. | Apr 2005 | A1 |
20050092830 | Blossom | May 2005 | A1 |
20050116026 | Burger et al. | Jun 2005 | A1 |
20050119940 | Concilio et al. | Jun 2005 | A1 |
20050133590 | Rettenmyer et al. | Jun 2005 | A1 |
20050133606 | Brown | Jun 2005 | A1 |
20050139685 | Kozlay | Jun 2005 | A1 |
20050154643 | Doan et al. | Jul 2005 | A1 |
20050168345 | Swafford, Jr. et al. | Aug 2005 | A1 |
20050194452 | Nordentoft et al. | Sep 2005 | A1 |
20050199734 | Puschner et al. | Sep 2005 | A1 |
20050211785 | Ferber et al. | Sep 2005 | A1 |
20050219728 | Durbin et al. | Oct 2005 | A1 |
20050228959 | D'Albore et al. | Oct 2005 | A1 |
20050247787 | von Mueller et al. | Nov 2005 | A1 |
20050274803 | Lee | Dec 2005 | A1 |
20060000900 | Fernandes et al. | Jan 2006 | A1 |
20060037073 | Juels et al. | Feb 2006 | A1 |
20060041759 | Kaliski et al. | Feb 2006 | A1 |
20060085328 | Cohen et al. | Apr 2006 | A1 |
20060091223 | Zellner | May 2006 | A1 |
20060124756 | Brown | Jun 2006 | A1 |
20060131393 | Cok et al. | Jun 2006 | A1 |
20060131396 | Blossom | Jun 2006 | A1 |
20060161435 | Atef et al. | Jul 2006 | A1 |
20060161789 | Doughty et al. | Jul 2006 | A1 |
20060163353 | Moulette et al. | Jul 2006 | A1 |
20060174104 | Crichton et al. | Aug 2006 | A1 |
20060186209 | Narendra et al. | Aug 2006 | A1 |
20060194331 | Pamula et al. | Aug 2006 | A1 |
20060196931 | Holtmanns et al. | Sep 2006 | A1 |
20060226224 | Henry | Oct 2006 | A1 |
20060226240 | Singleton | Oct 2006 | A1 |
20060231611 | Chakiris | Oct 2006 | A1 |
20060249574 | Brown et al. | Nov 2006 | A1 |
20060256961 | Brainard et al. | Nov 2006 | A1 |
20060283958 | Osterweil | Dec 2006 | A1 |
20060287964 | Brown | Dec 2006 | A1 |
20060289202 | Takeuchi | Dec 2006 | A1 |
20060289632 | Walker | Dec 2006 | A1 |
20070002551 | Ger | Jan 2007 | A1 |
20070003781 | de Rochemont | Jan 2007 | A1 |
20070023532 | Narendra et al. | Feb 2007 | A1 |
20070034700 | Poidomani | Feb 2007 | A1 |
20070051535 | Ger et al. | Mar 2007 | A1 |
20070063025 | Blossom | Mar 2007 | A1 |
20070063776 | Okuda | Mar 2007 | A1 |
20070100754 | Brown | May 2007 | A1 |
20070114274 | Gibbs et al. | May 2007 | A1 |
20070124321 | Szydlo | May 2007 | A1 |
20070131759 | Cox et al. | Jun 2007 | A1 |
20070136211 | Brown et al. | Jun 2007 | A1 |
20070139976 | deRochemont | Jun 2007 | A1 |
20070152070 | D'Albore | Jul 2007 | A1 |
20070152072 | Frallicciardi et al. | Jul 2007 | A1 |
20070153487 | Frallicciardi et al. | Jul 2007 | A1 |
20070164101 | Meyerhofer | Jul 2007 | A1 |
20070174614 | Duane et al. | Jul 2007 | A1 |
20070182367 | Partovi | Aug 2007 | A1 |
20070192249 | Biffle et al. | Aug 2007 | A1 |
20070241183 | Brown et al. | Oct 2007 | A1 |
20070241201 | Brown et al. | Oct 2007 | A1 |
20070256123 | Duane et al. | Nov 2007 | A1 |
20070285246 | Koyama | Dec 2007 | A1 |
20070290049 | Ratcliffe | Dec 2007 | A1 |
20070291753 | Romano | Dec 2007 | A1 |
20080005510 | Sepe et al. | Jan 2008 | A1 |
20080008315 | Fontana et al. | Jan 2008 | A1 |
20080008322 | Fontana et al. | Jan 2008 | A1 |
20080010675 | Massascusa et al. | Jan 2008 | A1 |
20080013290 | Creasy et al. | Jan 2008 | A1 |
20080016351 | Fontana et al. | Jan 2008 | A1 |
20080019507 | Fontana et al. | Jan 2008 | A1 |
20080028447 | O'Malley et al. | Jan 2008 | A1 |
20080029607 | Mullen | Feb 2008 | A1 |
20080035738 | Mullen | Feb 2008 | A1 |
20080040271 | Hammad et al. | Feb 2008 | A1 |
20080040276 | Hammad et al. | Feb 2008 | A1 |
20080054068 | Mullen | Mar 2008 | A1 |
20080054079 | Mullen | Mar 2008 | A1 |
20080054081 | Mullen | Mar 2008 | A1 |
20080058016 | Di Maggio et al. | Mar 2008 | A1 |
20080059379 | Ramaci et al. | Mar 2008 | A1 |
20080065555 | Mullen | Mar 2008 | A1 |
20080093467 | Narendra et al. | Apr 2008 | A1 |
20080096326 | Reed | Apr 2008 | A1 |
20080116285 | Shoemaker | May 2008 | A1 |
20080121726 | Brady et al. | May 2008 | A1 |
20080126398 | Cimino | May 2008 | A1 |
20080128515 | Di Iorio | Jun 2008 | A1 |
20080140536 | Ruiz | Jun 2008 | A1 |
20080148394 | Poidomani et al. | Jun 2008 | A1 |
20080150123 | Li et al. | Jun 2008 | A1 |
20080201264 | Brown et al. | Aug 2008 | A1 |
20080209550 | Di Iorio | Aug 2008 | A1 |
20080223937 | Preta et al. | Sep 2008 | A1 |
20080286990 | Hiew et al. | Nov 2008 | A1 |
20080288699 | Chichierchia | Nov 2008 | A1 |
20080290166 | von Mueller | Nov 2008 | A1 |
20080294930 | Varone et al. | Nov 2008 | A1 |
20080302869 | Mullen | Dec 2008 | A1 |
20080302876 | Mullen | Dec 2008 | A1 |
20080302877 | Musella et al. | Dec 2008 | A1 |
20080314976 | Capurso et al. | Dec 2008 | A1 |
20090006262 | Brown et al. | Jan 2009 | A1 |
20090013122 | Sepe et al. | Jan 2009 | A1 |
20090036147 | Romano | Feb 2009 | A1 |
20090037275 | Pollio | Feb 2009 | A1 |
20090046522 | Sepe et al. | Feb 2009 | A1 |
20090048971 | Hathaway et al. | Feb 2009 | A1 |
20090055893 | Manessis et al. | Feb 2009 | A1 |
20090108064 | Fernandes et al. | Apr 2009 | A1 |
20090143104 | Loh | Jun 2009 | A1 |
20090145964 | Blythe | Jun 2009 | A1 |
20090150295 | Hatch et al. | Jun 2009 | A1 |
20090152365 | Li et al. | Jun 2009 | A1 |
20090153297 | Gardner | Jun 2009 | A1 |
20090159663 | Mullen | Jun 2009 | A1 |
20090159667 | Mullen et al. | Jun 2009 | A1 |
20090159668 | Mullen et al. | Jun 2009 | A1 |
20090159669 | Mullen et al. | Jun 2009 | A1 |
20090159670 | Mullen et al. | Jun 2009 | A1 |
20090159671 | Mullen et al. | Jun 2009 | A1 |
20090159672 | Mullen et al. | Jun 2009 | A1 |
20090159673 | Mullen | Jun 2009 | A1 |
20090159680 | Mullen et al. | Jun 2009 | A1 |
20090159681 | Mullen et al. | Jun 2009 | A1 |
20090159682 | Mullen et al. | Jun 2009 | A1 |
20090159688 | Mullen et al. | Jun 2009 | A1 |
20090159689 | Mullen | Jun 2009 | A1 |
20090159690 | Mullen et al. | Jun 2009 | A1 |
20090159696 | Mullen | Jun 2009 | A1 |
20090159697 | Mullen et al. | Jun 2009 | A1 |
20090159698 | Mullen et al. | Jun 2009 | A1 |
20090159699 | Mullen et al. | Jun 2009 | A1 |
20090159700 | Mullen et al. | Jun 2009 | A1 |
20090159701 | Mullen et al. | Jun 2009 | A1 |
20090159702 | Mullen | Jun 2009 | A1 |
20090159703 | Mullen et al. | Jun 2009 | A1 |
20090159704 | Mullen et al. | Jun 2009 | A1 |
20090159705 | Mullen et al. | Jun 2009 | A1 |
20090159706 | Mullen et al. | Jun 2009 | A1 |
20090159707 | Mullen et al. | Jun 2009 | A1 |
20090159708 | Mullen et al. | Jun 2009 | A1 |
20090159709 | Mullen | Jun 2009 | A1 |
20090159710 | Mullen et al. | Jun 2009 | A1 |
20090159711 | Mullen et al. | Jun 2009 | A1 |
20090159712 | Mullen et al. | Jun 2009 | A1 |
20090159713 | Mullen et al. | Jun 2009 | A1 |
20090160617 | Mullen et al. | Jun 2009 | A1 |
20090164380 | Brown | Jun 2009 | A1 |
20090170432 | Lortz | Jul 2009 | A1 |
20090173785 | Cooper | Jul 2009 | A1 |
20090191811 | Griffin | Jul 2009 | A1 |
20090200367 | Arnouse | Aug 2009 | A1 |
20090210308 | Toomer | Aug 2009 | A1 |
20090222383 | Tato | Sep 2009 | A1 |
20090242648 | Di Sirio et al. | Oct 2009 | A1 |
20090244858 | Di Sirio et al. | Oct 2009 | A1 |
20090253460 | Varone et al. | Oct 2009 | A1 |
20090255996 | Brown et al. | Oct 2009 | A1 |
20090288012 | Hertel | Nov 2009 | A1 |
20090290704 | Cimino | Nov 2009 | A1 |
20090303885 | Longo | Dec 2009 | A1 |
20090308921 | Mullen | Dec 2009 | A1 |
20100019033 | Jolivet | Jan 2010 | A1 |
20100023449 | Skowronek | Jan 2010 | A1 |
20100045627 | Kennedy | Feb 2010 | A1 |
20100066701 | Ningrat | Mar 2010 | A1 |
20100078472 | Lin et al. | Apr 2010 | A1 |
20100108771 | Wong | May 2010 | A1 |
20100153269 | McCabe | Jun 2010 | A1 |
20100163614 | Yang et al. | Jul 2010 | A1 |
20100230793 | Kudose | Sep 2010 | A1 |
20100259110 | Kurs et al. | Oct 2010 | A1 |
20100270373 | Poidomani et al. | Oct 2010 | A1 |
20100304670 | Shuo | Dec 2010 | A1 |
20100320274 | Nielsen et al. | Dec 2010 | A1 |
20110028184 | Cooper | Feb 2011 | A1 |
20110062239 | Lau et al. | Mar 2011 | A1 |
20110066550 | Shank | Mar 2011 | A1 |
20110084933 | Curtis et al. | Apr 2011 | A1 |
20110272465 | Mullen et al. | Nov 2011 | A1 |
20110272466 | Mullen et al. | Nov 2011 | A1 |
20110272467 | Mullen et al. | Nov 2011 | A1 |
20110272471 | Mullen | Nov 2011 | A1 |
20110272472 | Mullen | Nov 2011 | A1 |
20110272473 | Mullen et al. | Nov 2011 | A1 |
20110272474 | Mullen et al. | Nov 2011 | A1 |
20110272475 | Mullen et al. | Nov 2011 | A1 |
20110272476 | Mullen et al. | Nov 2011 | A1 |
20110272477 | Mullen et al. | Nov 2011 | A1 |
20110272478 | Mullen | Nov 2011 | A1 |
20110272479 | Mullen | Nov 2011 | A1 |
20110272480 | Mullen et al. | Nov 2011 | A1 |
20110272481 | Mullen et al. | Nov 2011 | A1 |
20110272482 | Mullen et al. | Nov 2011 | A1 |
20110272483 | Mullen et al. | Nov 2011 | A1 |
20110272484 | Mullen et al. | Nov 2011 | A1 |
20110276380 | Mullen et al. | Nov 2011 | A1 |
20110276381 | Mullen et al. | Nov 2011 | A1 |
20110276416 | Mullen et al. | Nov 2011 | A1 |
20110276424 | Mullen | Nov 2011 | A1 |
20110276425 | Mullen | Nov 2011 | A1 |
20110276436 | Mullen et al. | Nov 2011 | A1 |
20110276437 | Mullen et al. | Nov 2011 | A1 |
20110278364 | Mullen et al. | Nov 2011 | A1 |
20110282753 | Mullen et al. | Nov 2011 | A1 |
20120101881 | Taylor et al. | Apr 2012 | A1 |
20120187199 | Poidomani et al. | Jul 2012 | A1 |
20120205450 | Poidomani et al. | Aug 2012 | A1 |
20120280033 | Mitchell et al. | Nov 2012 | A1 |
20120280782 | Ross et al. | Nov 2012 | A1 |
20120286037 | Mullen et al. | Nov 2012 | A1 |
20120318871 | Mullen et al. | Dec 2012 | A1 |
20130020396 | Mullen et al. | Jan 2013 | A1 |
20130282573 | Mullen et al. | Oct 2013 | A1 |
20130282575 | Mullen et al. | Oct 2013 | A1 |
20130320080 | Olson et al. | Dec 2013 | A1 |
20130335542 | Li | Dec 2013 | A1 |
20140001269 | Hartwick | Jan 2014 | A1 |
20140138447 | Goldman et al. | May 2014 | A1 |
20140160684 | Wittenberg | Jun 2014 | A1 |
20140203902 | Shippee et al. | Jul 2014 | A1 |
20150069126 | Leon | Mar 2015 | A1 |
20150073983 | Bartenstein et al. | Mar 2015 | A1 |
20150083808 | Parashar et al. | Mar 2015 | A1 |
20150115042 | Miura et al. | Apr 2015 | A1 |
20150170014 | Olson et al. | Jun 2015 | A1 |
20150186766 | Mullen et al. | Jul 2015 | A1 |
20160180209 | Mullen et al. | Jun 2016 | A1 |
20160239735 | Mullen et al. | Aug 2016 | A1 |
20160283837 | Mullen et al. | Sep 2016 | A1 |
20160307085 | Mullen et al. | Oct 2016 | A1 |
20160335529 | Mullen et al. | Nov 2016 | A1 |
20160342876 | Mullen et al. | Nov 2016 | A1 |
20160342877 | Mullen et al. | Nov 2016 | A1 |
20160342878 | Mullen et al. | Nov 2016 | A1 |
20160342879 | Mullen et al. | Nov 2016 | A1 |
20160342880 | Mullen et al. | Nov 2016 | A1 |
20170286817 | Mullen et al. | Oct 2017 | A1 |
20170300796 | Mullen et al. | Oct 2017 | A1 |
20190065928 | Mullen et al. | Feb 2019 | A1 |
20190197387 | Mullen et al. | Jun 2019 | A1 |
20190340484 | Mullen et al. | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
102008060513 | Jun 2010 | DE |
0203683 | Dec 1986 | EP |
2259815 | Mar 1993 | GB |
2420098 | May 2006 | GB |
S63155188 | Jun 1988 | JP |
05210770 | Aug 1993 | JP |
H06150078 | May 1994 | JP |
2005010964 | Jan 2005 | JP |
2005190363 | Jul 2005 | JP |
2006195925 | Jul 2006 | JP |
2006252160 | Sep 2006 | JP |
2007172214 | Jul 2007 | JP |
2008225626 | Sep 2008 | JP |
2009037495 | Feb 2009 | JP |
2010044730 | Feb 2010 | JP |
2010086026 | Apr 2010 | JP |
2011134298 | Jul 2011 | JP |
WO1989001672 | Feb 1989 | WO |
WO9852735 | Nov 1998 | WO |
WO0247019 | Jun 2002 | WO |
WO06066322 | Jun 2006 | WO |
WO2006078910 | Jul 2006 | WO |
WO06080929 | Aug 2006 | WO |
WO06105092 | Oct 2006 | WO |
WO06116772 | Nov 2006 | WO |
WO07141779 | Dec 2007 | WO |
WO2008066806 | Jun 2008 | WO |
Entry |
---|
The Bank Credit Card Business. Second Edition, American Bankers Association, Washington, D.C., 1996. |
A Day in the Life of a Flux Reversal. http://www.phrack/org/issues.html?issue=37&id=6#article. As viewed on Apr. 12, 2010. |
Dynamic Virtual Credit Card Numbers. http://homes.cerias.purdue.edu/˜jtli/paper/fc07.pdf. As viewed on Apr. 12, 2010. |
USPTO, International Search Report, dated Apr. 28, 2009. |
English translation of JP 05210770 A. |
Extended European Search Report. |
Australian OA. |
EPO OA. |
Magnetic stripe card, Mindmatrix (this document is presented by the European Patent Office without a link). |
EPO Summons. |
Examination Report dated Nov. 9, 2016, received from Australian Patent Office for Australian Patent Application No. 2011218216. |
Examination Report dated Sep. 19, 2017, received from Australian Patent Office for Australian Patent Application No. 2016259296. |
Examination Report dated Feb. 17, 2016, received from Australian Patent Office for Australian Patent Application No. 2011255568. |
Examination Report dated Feb. 13, 2017, received from Australian Patent Office for Australian Patent Application No. 2011255568. |
Examination Report dated Oct. 30, 2017, received from Australian Patent Office for Australian Patent Application No. 2017201100. |
Examination Report dated Feb. 23, 2016, received from Australian Patent Office for Australian Patent Application No. 2011283665. |
Examination Report dated Feb. 23, 2017, received from Australian Patent Office for Australian Patent Application No. 2011283665. |
Examination Report dated Aug. 25, 2016, received from Australian Patent Office for Australian Patent Application No. 2012240353. |
Examination Report dated Feb. 17, 2016, received from Australian Patent Office for Australian Patent Application No. 2017219095. |
Examination Report dated Jun. 14, 2016, received from Australian Patent Office for Australian Patent Application No. 2012235439. |
Examination Report dated May 12, 2017, received from Australian Patent Office for Australian Patent Application No. 2012235439. |
Examination Report dated Jun. 13, 2017, received from Australian Patent Office for Australian Patent Application No. 2012235439. |
Examination Report dated Mar. 29, 2018, received from Australian Patent Office for Australian Patent Application No. 2017204011. |
Examination Report dated Oct. 11, 2012, received from Australian Patent Office for Australian Patent Application No. 2008340226. |
Examination Report dated Oct. 11, 2016, received from Australian Patent Office for Australian Patent Application No. 2008340226. |
Examiner's Requisition dated Mar. 29, 2016, received from Canadian Patent Office for Canadian Patent Application No. 2,789,461. |
Examiner's Requisition dated Mar. 8, 2017, received from Canadian Patent Office for Canadian Patent Application No. 2,798,984. |
Examiner's Requisition dated Feb. 22, 2018, received from Canadian Patent Office for Canadian Patent Application No. 2,805,310. |
Examiner's Requisition dated Dec. 10, 2018, received from Canadian Patent Office for Canadian Patent Application No. 2,831,459. |
Examiner's Requisition dated Jan. 18, 2018, received from Canadian Patent Office for Canadian Patent Application No. 2,831,464. |
Examiner's Requisition dated Dec. 13, 2018, received from Canadian Patent Office for Canadian Patent Application No. 2,831,464. |
Office Action dated Dec. 6, 2018, received from Indian Patent Office for Indian Patent Application No. Dec. 6, 2018. |
Office Action dated Dec. 12, 2017, received from South Korean Patent Office for Korean Patent Application No. 2013-7029089. |
English translation of Office Action dated Dec. 12, 2017, received from South Korean Patent Office for Korean Patent Application No. 2013-7029089. |
Office Action dated May 28, 2018, received from South Korean Patent Office for Korean Patent Application No. 2013-7029089. |
English translation of Office Action dated May 28, 2018, received from South Korean Patent Office for Korean Patent Application No. 2013-7029089. |
Office Action dated Sep. 13, 2018, received from South Korean Patent Office for Korean Patent Application No. 20137029089. |
English translation of Office Action dated Sep. 13, 2018, received from South Korean Patent Office for Korean Patent Application No. 2013-7029089. |
Office Action dated Nov. 14, 2018, received from Japanese Patent Office for Japanese Patent Application No. 2017195295. |
English translation of Office Action dated Nov. 14, 2018, received from Japanese Patent Office for Japanese Patent Application No. 2017195295. |
Office Action dated Jun. 27, 2018, received from Japanese Patent Office for Japanese Patent Application No. 2016210782. |
English translation of Office Action dated Jun. 27, 2018, received from Japanese Patent Office for Japanese Patent Application No. 2016210782. |
Office Action dated Oct. 30, 2017, received from Japanese Patent Office for Japanese Patent Application No. 2016210782. |
English translation of Office Action dated Oct. 30, 2017, received from Japanese Patent Office for Japanese Patent Application No. 2016210782. |
Office Action dated Aug. 29, 2018, received from Japanese Patent Office for Japanese Patent Application No. 2016153360. |
English translation of Office Action dated Aug. 29, 2018, received from Japanese Patent Office for Japanese Patent Application No. 2016153360. |
Office Action dated Oct. 12, 2017, received from Japanese Patent Office for Japanese Patent Application No. 2016153360. |
English translation of Office Action dated Oct. 12, 2017, received from Japanese Patent Office for Japanese Patent Application No. 2016153360. |
Office Action dated Jun. 5, 2016, received from Japanese Patent Office for Japanese Patent Application No. 2016000177. |
English translation of Office Action dated Jun. 5, 2016, received from Japanese Patent Office for Japanese Patent Application No. 2016000177. |
Office Action dated Nov. 9, 2016, received from Japanese Patent Office for Japanese Patent Application No. 2016000177. |
English translation of Office Action dated Nov. 9, 2016, received from Japanese Patent Office for Japanese Patent Application No. 2016000177. |
Office Action dated Jun. 27, 2016, received from Japanese Patent Office for Japanese Patent Application No. 2013522010. |
English translation of Office Action dated Jun. 27, 2016, received from Japanese Patent Office for Japanese Patent Application No. 2013522010. |
Office Action dated Jul. 29, 2017, received from Japanese Patent Office for Japanese Patent Application No. 2013522010. |
English translation of Office Action dated Jul. 29, 2017, received from Japanese Patent Office for Japanese Patent Application No. 2013522010. |
Office Action dated Apr. 4, 2016, received from Japanese Patent Office for Japanese Patent Application No. 2013533532. |
English translation of Office Action dated Apr. 4, 2016, received from Japanese Patent Office for Japanese Patent Application No. 2013533532. |
Office Action dated Mar. 18, 2015, received from Japanese Patent Office for Japanese Patent Application No. 2013533532. |
English translation of Office Action dated Mar. 18, 2015, received from Japanese Patent Office for Japanese Patent Application No. 2013533532. |
Office Action dated Dec. 2, 2015, received from Japanese Patent Office for Japanese Patent Application No. 2012553989. |
English translation of Office Action dated Dec. 2, 2015, received from Japanese Patent Office for Japanese Patent Application No. 2012553989. |
Office Action dated Nov. 4, 2014, received from Japanese Patent Office for Japanese Patent Application No. 2012553989. |
English translation of Office Action dated Nov. 4, 2014, received from Japanese Patent Office for Japanese Patent Application No. 2012553989. |
Summons to attend oral proceedings dated Sep. 18, 2013, received from European Patent Office for European Patent Application No. 08865573.3. |
European Search Report dated Jan. 25, 2012, received from European Patent Office for European Patent Application No. 08865573.3. |
European Search Report dated May 2, 2013, received from European Patent Office for European Patent Application No. 08865573.3. |
Decision on Appeal dated May 5, 2014, received from European Patent Office for European Patent Application No. 08865573.3. |
European Search Report dated Sep. 23, 2015, received from European Patent Office for European Patent Application No. 13752216.5. |
Summons to attend oral proceedings dated Jul. 4, 2018, received from European Patent Office for European Patent Application No. 12783038.8. |
European Search Report dated Feb. 27, 2015, received from European Patent Office for European Patent Application No. 12783038.8. |
European Search Report dated Apr. 8, 2016, received from European Patent Office for European Patent Application No. 12783038.8. |
European Search Report dated Oct. 19, 2017, received from European Patent Office for European Patent Application No. 17173592.1. |
Summons to attend oral proceedings dated Sep. 19, 2016, received from European Patent Office for European Patent Application No. 12767357.2. |
European Search Report dated Aug. 22, 2014, received from European Patent Office for European Patent Application No. 12767357.2. |
European Search Report dated Aug. 18, 2015, received from European Patent Office for European Patent Application No. 12767357.2. |
Decision on Appeal dated Mar. 30, 2017, received from European Patent Office for European Patent Application No. 12767357.2. |
European Search Report dated Feb. 12, 2018, received from European Patent Office for European Patent Application No. 17182452.7. |
Summons to attend oral proceedings dated Oct. 19, 2016, received from European Patent Office for European Patent Application No. 11813282.8. |
European Search Report dated Jul. 22, 2014, received from European Patent Office for European Patent Application No. 11813282.8. |
European Search Report dated Aug. 24, 2015, received from European Patent Office for European Patent Application No. 11813282.8. |
Decision on Appeal dated Oct. 5, 2017, received from European Patent Office for European Patent Application No. 11813282.8. |
European Search Report dated Oct. 7, 2016, received from European Patent Office for European Patent Application No. 16172188.1. |
European Search Report dated Jun. 15, 2015, received from European Patent Office for European Patent Application No. 11784196.5. |
European Search Report dated Nov. 10, 2015, received from European Patent Office for European Patent Application No. 11784196.5. |
European Search Report dated Aug. 15, 2018, received from European Patent Office for European Patent Application No. 11784196.5. |
European Search Report dated Dec. 18, 2017, received from European Patent Office for European Patent Application No. 11784196.5. |
European Search Report dated Feb. 7, 2014, received from European Patent Office for European Patent Application No. 11745157.5. |
European Search Report dated Oct. 29, 2018, received from European Patent Office for European Patent Application No. 11745157.5 |
European Search Report dated Jun. 20, 2017, received from European Patent Office for European Patent Application No. 11745157.5. |
European Search Report dated Jul. 7, 2016, received from European Patent Office for European Patent Application No. 11745157.5. |
Number | Date | Country | |
---|---|---|---|
20160283837 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
61016491 | Dec 2007 | US | |
61026846 | Feb 2008 | US | |
61027807 | Feb 2008 | US | |
61081003 | Jul 2008 | US | |
61086239 | Aug 2008 | US | |
61090423 | Aug 2008 | US | |
61097401 | Sep 2008 | US | |
61112766 | Nov 2008 | US | |
61117186 | Nov 2008 | US | |
61119366 | Dec 2008 | US | |
61120813 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13186469 | Jul 2011 | US |
Child | 15173255 | US | |
Parent | 12339042 | Dec 2008 | US |
Child | 13186469 | US |