The invention concerns a carrier for the production, and optionally the transport, of cable harnesses or parts of cable harnesses that are formed at least partially from ribbon cables
Cable harnesses, especially in the automotive industry, because of the high percentage of manual labor both in production and incorporation, are now intense objects of study, in which an attempt is being made to find solutions that permit cable harnesses to be produced in a more automated manner than previously.
In the prior art, cable harnesses have been produced by hand on so-called plug tables, also simply called tables, in which cables are successively built-up by appropriately trained employees with the correct position and generally the correct connectors to ultimately be used in the vehicle and attached to each other with different clamps, mounts, or the like in the proper position. Finally, the finished cable harness (or also a part of the cable harness, a distinction which will no longer be made below) is tested and folded together or rolled up for transport to the plant, in which it is incorporated in a vehicle.
In a first step to facilitate automatic production, ribbon cables for some time have been used instead of the previously used common round cables, in which thus far only parts of cable harnesses have been replaced by such structures; for example, the cabling of a driver's door (control of the outside mirror, warning light in the door when the door is open, operating element for the window levers and central lock, etc.) were constructed with this new technique. On the one hand, the ribbon cables are advantageous in assembly in the vehicle, because of their limited height perpendicular to the plane of the ribbon cable, and because of their rigidity in the plane of the cable, which facilitates automatic handling. To this, we can add that the individual conductors within the ribbon cable are found at precisely defined locations and not, as in twisted round cables, exclusively found by color coding.
Ribbon cables also have the advantage that they can be placed one on the other at an angle and, in this position, one or all of the conductors of one of the cables can be joined to corresponding conductors of the other cable by means of appropriate techniques, for example, welded. Thus, it is possible to create branches or the like without additional connectors, which on the one hand keeps the manufacturing costs low and, on the other hand, keeps the design height small.
It has now been shown that the increasingly automated manipulation of such ribbon cables, during the production of cable harnesses that consist at least partially of such ribbon cables, poses a variety of problems on the ordinary table on which such cable harnesses are produced, since it is necessary or at least favorable that the different automatic manipulation machines have access to the ribbon cables lying on the table not only from the top, but also from the side or bottom. The interim solution, conducted in the laboratory by cutting out holes in the table to create a suitable access, is not a solution on an industrial scale because of the lack of flexibility of this process.
The objective of the invention is to create a device (carrier) on which cable harnesses that consist at least partly of ribbon cables can be produced and, in a preferred variant, a device that is also supposed to be capable of carrying out ordinary folding at the end of production of the cable harness or after some manufacturing steps of the cable harness for further transport.
The mentioned objects are achieved according to the invention in that the carrier is constructed from elongated profiles preferably joined releasably to each other, so that these profiles have a top on which the ribbon cables come to lie during their connection into a cable harness, and that a T-groove or other undercut groove is provided in one of the other sides of the profile.
With such a system, the surfaces on which ribbon cables come to lie in the finished state of the cable harness can be devised with simple connection elements quickly, easily, and flexibly. Because of the at least one groove present in the profile and not covered by the ribbon cable, it is possible in a simple manner to fasten connection elements or functional elements, such as pneumatic cylinders, clamping devices, holding devices, magnetic valves, pneumatic or electrical couplings, guide elements, mounts for connectors, etc., at the necessary sites.
In one embodiment of the invention, through which folding of the cable harness is made possible, a folding device is provided at at least one site of the carrier, through which folding of the cable harness after production occurs without a significant or harmful mechanical tensile or compressive load of the ribbon cables of the cable harness passing through the folding area.
This folding device moves the two parts of the carrier participating in folding along an evolvent (folding line) relative to each other, so that tension- and compression-free folding of the cable harness occurs, while maintaining a spacing between the two parts of the folded cable harness in the folded state.
In a preferred variant of this folding device, it consists of three gears, two of which are arranged coaxial and are connected to rotate in unison, in which the two rotational axes of the gears are fastened to a rocker that is mounted fixed on an axis between the two gears and two racks, the first of which cooperates with one of the two coaxially mounted gears and the second of which meshes with the two other gears that are situated on different axes. The first of the two racks is fixed with reference to the part of the carrier that does not move. The actual drive for the folding device can act on one of these elements or on the moving part of the carrier.
The invention is further explained below with reference to the drawings. In the drawings:
For illustration, as examples of devices 13, folding devices for the ribbon cable, holding devices for the already formed folds, cylinder-piston units for movement of the devices, etc., are shown.
It is naturally possible to achieve foldability of the carrier in another way. Particularly in carriers that are used only to produce cable harnesses, but not for their transport, a costly system can be used, in which the two parts being folded are guided relative to each other by means of a pneumatically or electrically operated EDP device. In this case, the cable harness is preferably folded via a transport carrier that imparts to it the rigidity necessary for transport.
It is obvious to one skilled in the art, according to the above comments, that multiple folds are also possible, which, in principle, changes nothing relative to the devices and expedients according to the invention necessary and sufficient for this. It is naturally also possible, instead of or in addition to one or more “main folds”, as described above, to fold one or more peripheral parts of the cable harness, optionally also about different axes, into the center, in order to arrive at transportable structures.
Both metals and plastics are considered as material for the carrier and they need only exhibit the necessary mechanical strength. Fastening of the devices 13 to the individual profiles 11 preferably occurs by clamping, but it is also conceivable that the profiles have recesses or openings on at least one of their sides at a periodic spacing, so that shape-matched assembly is possible.
| Number | Date | Country | Kind |
|---|---|---|---|
| 1003/2001 | Jun 2001 | AT | national |
| Number | Name | Date | Kind |
|---|---|---|---|
| 3836138 | Klepper et al. | Sep 1974 | A |
| 3950213 | Rejeski et al. | Apr 1976 | A |
| 4034658 | Sherman | Jul 1977 | A |
| 5478243 | Hopkins et al. | Dec 1995 | A |
| Number | Date | Country |
|---|---|---|
| 3405126 | Aug 1985 | DE |
| Number | Date | Country | |
|---|---|---|---|
| 20030134524 A1 | Jul 2003 | US |