Particular embodiments generally relate to enterprise systems.
Despite the advances in Service-Oriented Architectures (SOA), the integration of complementary services into standard enterprise systems requires deep expert knowledge. Typically the integration of services, provided by partners or independent software vendors, is carried out in time- and cost intensive integration projects.
In most cases, extension or adaptation of a core enterprise system itself is required. In order to extend or adapt standard enterprise systems a very high level of business domain knowledge as well as technical expert knowledge are required. Therefore services are typically integrated by highly specialized expert consultants (system or service integrators).
System integrators typically start from scratch while integrating services into standard enterprise systems. Given a new integration problem system integrators implicitly and manually search for similar problems they solved in the past, e.g. by searching in code fragments or documentations of already solved integration solutions. This implies a high degree of manual work and therefore leads to high integration costs.
In one embodiment, a method includes storing a set of integration cases previously used for adapting a standard enterprise system. The integration cases include a problem description and a problem solution for the adapting of the standard enterprise system. The method receives an integration problem for extending the standard enterprise system. The integration problem has a problem description and not a problem solution. A similarity between the problem description of the integration problem and the problem description of the set of integration cases is determined and one or more similar integration cases from the set of integration cases to the integration problem is determined based on the determined similarity. The method then outputs the one or more similar integrations cases to a user. The problem solution for a similar integration case is usable to determine the problem solution for the integration problem.
In one embodiment, the problem description for the integration problem comprises a first set of attributes, the problem descriptions for the set of integration cases comprise a second set of attributes, and the similarity is determined between the first set of attributes and each of the second set of attributes.
In one embodiment, determining the similarity includes computing local similarity measures for an integration goal description, an integration context description, and an integration requirements description.
In one embodiment, the method includes outputting a questionnaire; receiving answers to questions for the integration problem on the questionnaire; and generating the problem description for the integration problem from the answers.
In another embodiment, a non-transitory computer-readable storage medium contains instructions for controlling a computer system to be operable to: store a set of integration cases previously used for adapting a standard enterprise system, wherein integration cases include a problem description and a problem solution for the adapting of the standard enterprise system; receive an integration problem for extending the standard enterprise system, the integration problem having a problem description and not a problem solution; determine a similarity between the problem description of the integration problem and the problem description of the set of integration cases; determine one or more similar integration cases from the set of integration cases to the integration problem based on the determined similarity; and output the one or more similar integrations cases to a user, wherein the problem solution for a similar integration case is usable to determine the problem solution for the integration problem.
In one embodiment, an apparatus includes one or more computer processors and a computer-readable storage medium including instructions for controlling the one or more computer processors to be operable to: store a set of integration cases previously used for adapting a standard enterprise system, wherein integration cases include a problem description and a problem solution for the adapting of the standard enterprise system; receive an integration problem for extending the standard enterprise system, the integration problem having a problem description and not a problem solution; determine a similarity between the problem description of the integration problem and the problem description of the set of integration cases; determine one or more similar integration cases from the set of integration cases to the integration problem based on the determined similarity; and output the one or more similar integrations cases to a user, wherein the problem solution for a similar integration case is usable to determine the'problem solution for the integration problem.
The following detailed description and accompanying drawings provide a better understanding of the nature and advantages of the present invention.
a shows an example of integration goal similarity measure according to one embodiment.
b shows an integration context similarity measure according to one embodiment.
c shows an example of integration requirements similarity measure according to one embodiment.
d depicts the global integration case similarity measure according to one embodiment.
a shows an interface used by the service integrator to define the integration goal attributes according to one embodiment.
b shows an interface used by the service integrator to input the integration context definition according to one embodiment.
c and 8d depict interfaces that allow the service integrator to input information for the integration requirements attributes according to one embodiment.
e shows an interface that allows the service integrator to input similarity measures to be used with different attributes according to one embodiment.
f shows an example of retrieved results according to one embodiment.
Described herein are techniques for a case-based retrieval framework. In the following description, for purposes of explanation, numerous examples and specific details are set forth in order to provide a thorough understanding of embodiments of the present invention. Particular embodiments as defined by the claims may include some or all of the features in these examples alone or in combination with other features described below, and may further include modifications and equivalents of the features and concepts described herein.
In one example, the service integrator inputs a new integration problem that includes a problem description into case-based retrieval framework 104. The integration problem may be considered an integration case also. However, the term integration problem is used for discussion purposes and is an integration cases that does not include a solution. Case-based retrieval framework 104 searches knowledge base 106 to determine integration cases that have been previously solved. Case-based retrieval framework 104 outputs the integration cases based on the similarity to the new integration problem. The service integrator may then use the integration cases, which include a problem description and problem solution to determine the solution for the new integration problem.
In one embodiment, case-based retrieval framework 104 is used when an extension to a standard enterprise system is being performed. A standard enterprise system may be a standard software system, such as an enterprise resource planning (ERP), customer relationship management (CRM), supply chain management (SCM), or supplier relationship management (SRM) system. The standard enterprise system may be sent to a variety of companies. Each company may want to adapt or extend the standard enterprise system. For example, certain customizations may be performed, such as by adding new service integrator interface (UI) elements to core UI components, adding new process steps to core process models or even extending business objects with additional fields.
In one embodiment, the system integrator may want to integrate a complementary service into the standard enterprise system. The integration problem may be described based on different categories that define the problem, such as the categories of an integration goal, an integration context, and integration requirements. Based on the problem description, case-based retrieval framework 104 searches knowledge base 106 for similar integration cases that have already been solved in the past using a case retrieval algorithm. A list of existing integration cases is generated and output to the system integrator. The list contains integration cases that are ranked according to their computed similarity to the integration problem currently. An integration case may be selected and adapted to the integration problem that is trying to be solved.
Particular embodiments use case-based reasoning for determining the integration cases.
At 202, a new integration case is initiated. At 204, an integration goal phase is performed. The integration goal defines the general goal that should be reached by the integration solution. For example, the goal may indicate what kind of target system should be extended, what kind of customizing/flexibility use case should be implemented, or what kind of integration flavor should be implemented (e.g., a service integrator interface or process extension). As will be described below, the integration goal may be defined using a wizard-based questionnaire.
At 206, a define integration context phase is performed. The integration context defines the functional area within the enterprise system where the service should be integrated. For example, the functional area may be core UI or process components that need to be extended to integrate the service. The context may be a service context and/or a target system context. The service context is associated with the provider of the service and describes the context of a service that may be integrated. For example, the service may be provided by an outside provider and/or the enterprise. The service context may define what service should be integrated or what are the business semantics of the service.
The target system context is a consumer context, that is, the context associated with the customized enterprise system. The target system context determines which functional area of the enterprise system the service should be integrated (business semantics) or what components in the enterprise system should be extended (e.g., UI and/or process components). The integration context may be defined using a wizard-based questionnaire as will be described below.
At 208, a define integration requirements phase is performed. The integration requirements may be grouped into different categories that may describe requirements for the integration solution. For example, the categories may be UI extension requirements, process extension requirements, business logic extension requirements, technical integration requirements, and non-functional integration requirements. These integration requirements may be defined using the wizard-based questionnaire and will be described in more detail below.
At 210, a retrieve similar integration cases phase is performed. In this phase, existing integration cases that have problem descriptions that are considered most similar to the problem description of the new integration problem are determined and output. The similarity is computed using a range of different similarity measures. The different types of similarity measures may depend on different attributes defined in the new integration problem. Customization of weights for the different similarity measures may be provided and are described below.
At 212, an adapt integration solution phase is performed. A similar integration case that is output may be selected and re-used as a template to be adapted with respect to the new integration problem. In one embodiment, a problem solution part of a similar case may be extracted and adapted to the new application context of the new integration problem to be solved. The integration solution may be modeled using adaptation patterns that may link patterns to extension points of service elements, add patterns, delete patterns, and replace patterns.
At 214, a revise integration solution phase is performed. In this phase, the adapted or solved new integration case is validated as to whether it meets the integration requirements. The criteria may include the correctness of the solution and quality of the solution.
At 216, a retain integration case phase is performed. After the solved new integration problem has been validated, an integration case with the problem description and the solution is stored in knowledge base 106. This case may be used in future cases to solve other integration problems. For example, case-based retrieval framework 104 may learn by the learning of a new experience (new integration case), learning of similarity knowledge (e.g. weights), or learning of adaptation knowledge.
Case representation meta-model 302 provides metadata that describes categories for an integration case. For example,
Integration problem 406 is a description of the problem for the integration case. For example, a description of the problem may be what extension needs to be performed on the standard enterprise system. Integration problem 406 covers all the information needed to decide if this case is applicable for a new integration problem (query case). In one embodiment, the content includes the goal to be achieved by the integration solution, the context of the problem situation, and requirements/constraints for the integration solution.
Integration solution 408 is the solution for the problem. The solution for the problem may be how to extend the standard enterprise system. Integration solution 408 includes information that describes a solution to the integration problem sufficiently. For example, the information includes the solution itself (e.g., integration models, substantiated adaptation patterns, extended core models, other documentation), possible alternative solutions, feedback/solution evaluation, and justification/explanations.
At 410, the specific categories for integration case 402 are shown. The meta-model includes a problem description 412 (corresponding to integration problem 406) and a problem solution 414 (corresponding to integration solution 408).
Problem description 412 includes different attributes that can be defined for the problem. Although the attributes included in problem description 412 are described, case-based retrieval framework 100 is designed in such a way that it is possible to flexibly add further attributes and similarity measures. The attributes outlined are just examples. The integration goal description includes attributes that may define the enterprise system that should be extended, define the customizing or flexibility use case that should be implemented, or define the principle integration flavor of the service in the target consumption environment of the enterprise system. Different attributes are described in Table 1 in Appendix A.
The integration context description describes the service that should be integrated into the enterprise system and defines the business semantics of the service to be integrated. Also, in an enterprise system context, the business semantics of the target components in the enterprise system that should be extended by the new service, the target UI components of the enterprise system that should be extended/adapted, and the target process components of the enterprise system that should be extended/adapted may be defined. Different attributes for the integration context specification are described in Table 2 of Appendix A.
The integration requirements specification includes different categories of UI extension requirements, process extension requirements, business logic extension requirements, technical integration requirements, and non-functional requirements. UI extension requirements define how an existing UI component of the standard enterprise system should be extended in order to integrate the complementary service (delivered by a third party provider, e.g. ISV).
UI extension requirements are the requirements that define what is needed to extend the UI. UI extension requirements that define a textual description of the integration requirements, how the service should be triggered within a UI component, whether the UI component needs to be extended with additional UI controls, and whether the UI component needs to be extended with additional UI controls to gather information that is required to call the service or show/display result values of the service implication. Table 3 of Appendix A shows different attributes for the UI extension requirements specification.
Process extension requirements define how an existing process component of the standard enterprise system should be extended in order to integrate the complementary service (delivered by a third party provider, e.g. ISV). Process extension requirements may define the initiator of a process extension scenario, a position with respect to a process where the extension process should be plugged in, whether data should flow from a core process to an extension process, whether data should flow from the extension process to the core process, the communication mode between the core process and the extension process, whether multiple core processes are involved in the integration scenario, and whether multiple extension processes are involved in the integration scenario may be defined. Table 4 of Appendix A describes different attributes for process extension requirements.
Business logic extension requirements define how the existing business or application logic of the standard enterprise system should be extended in order to integrate the complementary service (delivered by a third party provider, e.g. ISV). Business logic extension requirements may define different attributes that may be associated with the business logic of an application. For example, the different attributes may define whether data returned from a service should be persistent in the enterprise system, whether the integration logic has to read data from the enterprise system, whether the integration logic has to write data into the enterprise system, whether the integration logic needs to access additional business logic on the enterprise system, whether an interactive service integrator task is required in the integration logic, whether a human service integrator task is required in the integration logic, whether a customizing parameter has to be set/adjusted in the enterprise system, and whether a new customizing parameter has to be added to the enterprise system. Table 5 of Appendix A describes attributes in the business logic extension requirements.
External service integration requirements describe requirements that are used to define how to integrate external services. The attributes define whether standard business-to-business (B2B) protocols should be used for the communication with the external service and which technical communication protocols should be used for the communication with the external service. Table 6 of Appendix A shows different attributes for the external service integration requirements.
Non-functional integration requirements define non-functional constraints that the extension logic defined by the service integrator should fulfill. Non-functional integration requirements define whether the integration logic needs to authenticate in the communication with the external service, whether the communication is performance-critical and if caching mechanisms are required, whether the communication with the external service should be logged, whether the messages sent to the service or received from the service should be encrypted, whether the messages sent to the service or received from the service should be digitally signed, and whether some specific transaction handling is required. Table 7 of Appendix A shows different attributes for non-functional integration requirements.
The first three phases of defining the integration goal, defining the integration context, and defining the integration requirements have now been described. The following will describe the retrieve similar integration cases phase. In one example, a case retrieval algorithm uses a similarity assessment based on a local-global principle. The local-global principle computes local similarity measures for attributes and then computes a global similarity measure using the local similarity measures. This process will be described in more detail below.
The similarity assessment computes the similarity between a new integration problem (e.g., query case) and an integration case (e.g., existing case) from knowledge base 106.
Integration problem 502 includes a problem description but no integration solution. Integration case 504 includes a problem description and also an integration solution. The integration problem for the query case includes a number of attributes iq1 . . . iqn that describe the problem. Also, for the existing case, a number of attributes ic1-icn describe the problem for integration case 504. A similarity measure W1 . . . Wn between similar attributes of the problem description is calculated.
Each attribute may be assigned an attribute type. In one embodiment, each attribute of the integration problem is compared to the respective attribute of the integration case retrieved from the knowledge base. The similarity function depends on the attribute type. For each attribute type it might be possible to configure multiple similarity functions. Attributes of different types may also be compared in other embodiments. A single attribute may be compared or a group of attributes may be compared together. For each attribute, a separate similarity function may be used. However, the same similarity function may be used multiple times in comparing different attributes types. First, a local similarity measure is performed on the respective attribute type. A global similarity measure may then be determined by combining the local similarity measures using an amalgamation function (e.g., a weighted average of the local similarity measures).
The following will describe the global similarity measure and then different examples for local similarity measures for the attributes of the problem description. The global similarity measure measures global similarity for the integration problem and an integration case. In one embodiment, the global similarity measure weights and aggregates the different local similarity measure results. Other global similarity measures may also be used. In one example, the global similarity measure may be defined by weighting local similarity measures for the attributes as defined by:
The following will describe the various local similarity functions. The sample attributes that are described above with respect to
a shows an example of integration goal similarity measure according to one embodiment. The similarity measure simgoal is used to compare the attributes for the integration goal description in the integration problem and the integration case. The integration goal similarity measure may be the weighted average of the local similarity measures for the attributes “TargetBusinessSystemType”, “UsageScenario”, and “IntegrationFlavor”. These attributes are described in Table 1 of Appendix A. Attributes described in Appendix A herein are examples and other attributes may be contemplated. The following equation may be used to determine the integration goal similarity measure:
The above measure computes the local similarity measures for the attributes above, weights them, and aggregates them.
b shows an integration context similarity measure according to one embodiment. The integration context similarity measure simctx measures similarity for the attribute integration context description. The similarity measure simctx may be defined as the weighted average of the local similarity measures for the external service to be integrated and the core application components of the target system that have/had to be adapted. For example, the local attributes shown in Table 2 of Appendix A may be used. An equation for the integration context similarity may be:
The integration context similarity measure includes a service similarity measure and a core application component similarity measure. The service similarity measure simservice may be further defined as the weighted average of the local similarity measures for the business semantics and syntactical/technical characteristics of the services to be compared:
A core application component measure simcore
The core application component extensibility capability measure simcc
c shows an example of integration requirements similarity measure according to one embodiment. The integration requirements similarity measure simreqs may be defined as the weighted average of local similarity measures for the UT extension requirements, the process extension requirements, the business logic extension requirements, the technical integration requirements, and the non-functional requirements attributes:
The UI extension requirements measure may be defined as the weighted average of the local similarity measures of the attributes within the UI extension requirements sub-category as shown in Table 3 of Appendix A. The UI extension requirements measure may be defined as:
The process extension requirements measure may be defined as a weighted average of the local similarity measures of the attributes within the process extension requirements sub-category shown in Table 4 of Appendix A. The process extension requirements measure may be defined by:
The business logic extension requirements measure may be defined as the weighted average of the local similarity measures of the attributes within the business logic extension requirements sub-category shown in Table 5 of Appendix A. The business logic extension requirements measure may be defined as:
The technical integration requirements measure may be a weighted average of the local similarity measures of the attributes within the technical integration requirements sub-category of Table 6 of Appendix A. This technical integration requirements measure may be defined as:
The non-functional requirements measure may be defined as a weighted average of the local similarity measures of the attributes within the non-functional requirements sub-category shown in Table 7 of Appendix A. The non-functional requirements measure may be defined as:
d depicts the global integration case similarity measure according to one embodiment. The global integration case similarity measure simcom may be defined as the weighted average of the local similarity measures for the integration goal, the integration context, and the integration requirements categories:
The global integration case similarity measure weights the local similarity measures for the three categories in the problem description to determine the global similarity measure. This measure may be used to determine if the integration case is similar to the integration problem. The above calculations may be performed for many different integration cases. The most similar integration cases may then be determined and provided to the service integrator.
Referring back to
Referring back to
Referring back to
Referring back to
At 712, a selection of an integration case is received from a service integrator. The problem solution of the integration case may then be adapted for the integration problem.
A service integrator may also want to know more details about the retrieved integration cases. In this case, the service integrator may select an integration case and be provided with more details as shown in
The case-based retrieval method may be used in extending standard enterprise systems. Standard enterprise systems may be described with a single overall abstracted model that spans across four abstraction layers, such as the presentation layer, business process layer, service layer, and business configuration layer. An enterprise system includes multiple business applications or reference processes that leverage a common service and business configuration layer.
Presentation layer 902 comprises all artifacts and components for a service integrator interface (UI) part of the business application. In one embodiment, UI components (UI views 910) for a dedicated UI platform with all interrelations are located within presentation layer 902. The service integrator interface will be described in more detailed below.
Business process layer 904 contains models 912 of business processes 914 that are realized within the business application. Modeling elements for business processes may contain references to elements on other layers. For example, a human activity in a business process can refer to a UI component 910 with the implementation of the human service integrator interface. An automated activity can refer to a service declared in the service layer 906 with the implementation of the needed business functionality.
Service layer 906 contains services offered by enterprise system 900. Core services provide access to business objects. Composite services represent compositions of core services into larger bundles to provide advanced higher-value business functionality or application logic.
Business configuration layer 908 contains the configuration data for business applications with available parameters and configuration options (also known as ‘customizing’) for business applications.
In order to adapt standard business applications to customer specific needs, enterprise systems 900 provide a large set of proprietary extensibility/adaptability features 916.
The integration of services into the enterprise systems will now be described. In order to adapt standard business applications to customer specific needs, enterprise systems include proprietary extensibility/adaptability features. The following describes an example of an extension of a service to a standard enterprise system.
The missing functionality has been created and published as a service on the service marketplace by a service provider. The service allows the calculation of eco values for products including certification. A product designer as a service integrator of a product lifecycle management (PLM) application in the company wants to extend business application with this missing kind of functionality. The product designer takes the role of a service consumer and accesses the service marketplace directly from within the business application. The product designer searches for services that provide the missing functionality and receives a list of matching services from various service providers certified for enterprise system 900. According to a working context, the designer selects a service called “Eco-Calculator” and purchases it on the marketplace.
Subsequently the service is automatically integrated into the core business application without running a manual integration project. The following extensions are performed to the core business application to extend interface 1000 with (1) an additional table column 1002 (“Eco Value”) in a product components table 1004, (2) an additional button 1006 (“Calculate Eco Value”) and (3) an additional field 1008 indicating the total eco value for the car seat (“Entire Eco Value”).
After the service is integrated into the business application, the service can be used by the product designer to calculate eco values for a given bill of material. If the total eco value fulfils the legal requirements, a certificate is generated and passed to the consumer application.
This scenario shows an example for extending a core UI component with additional UT elements. Based on the same principles a core process model can be extended, e.g., by inserting additional process steps.
Particular embodiments provide many advantages. For example, a systematic, tool-supported definition of retrieval of existing integration knowledge is provided. The case-based retrieval framework provides a platform with a rich knowledge base for the systematic, tool-supported definition and retrieval of integration cases already solved in the past. This allows systematic reuse of valuable integration-, adaptation and extension experience of past implementation projects. The framework allows specification of new integration problems and retrieval of existing integration cases that are similar to a new integration problem to be solved by applying similarity measures within a case retrieval algorithm. The knowledge base allows for a search of extension size adaptation knowledge of past integration projects.
The description and retrieval of similar, existing integration cases on a problem space level using integration cases is provided. Integration scenarios may be described using a set of attributes formulated in a meta-model. Search and re-use steps may then build upon the abstracted information on a problem space level. This enables gathering of integration requirements for a central questionnaire as disclosed in the interfaces described in
Also, the description and retrieval of integration scenarios on a problem space level includes scenarios within extension/adaptation needs of different application layers of the enterprise system. Integration cases cover extension/adaptation as well as service mediation needs in a single format. Problem descriptions of integration cases include requirements/integration needs of various application layers in categories. This allows systematic searches for existing integration cases with similar integration requirements/needs of one of the categories.
Computer system 1110 may be coupled via bus 1105 to a display 1112, such as a cathode ray tube (CRT) or liquid crystal display (LCD), for displaying information to a computer service integrator. An input device 1111 such as a keyboard and/or mouse is coupled to bus 1105 for communicating information and command selections from the service integrator to processor 1101. The combination of these components allows the service integrator to communicate with the system. In some systems, bus 1105 may be divided into multiple specialized buses.
Computer system 1110 also includes a network interface 1104 coupled with bus 1105. Network interface 1104 may provide two-way data communication between computer system 1110 and the local network 1120. The network interface 1104 may be a digital subscriber line (DSL) or a modem to provide data communication connection over a telephone line, for example. Another example of the network interface is a local area network (LAN) card to provide a data communication connection to a compatible LAN. Wireless links are another example. In any such implementation, network interface 1104 sends and receives electrical, electromagnetic, or optical signals that carry digital data streams representing various types of information.
Computer system 1110 can send and receive information through the network interface 1104 across a local network 1120, an Intranet, or the Internet 1130. In the Internet example, software components or services may reside on multiple different computer systems 1110 or servers 1131-1135 across the network. The processes described above may be implemented on one or more servers, for example. A server 1131 may transmit actions or messages from one, component, through Internet 1130, local network 1120, and network interface 1104 to a component on computer system 1110. The software components and processes described above may be implemented on any computer system and send and/or receive information across a network, for example.
Particular embodiments may be implemented in a non-transitory computer-readable storage medium for use by or in connection with the instruction execution system, apparatus, system, or machine. The computer-readable storage medium contains instructions for controlling a computer system to perform a method described by particular embodiments. The instructions, when executed by one or more computer processors, may be operable to perform that which is described in particular embodiments.
As used in the description herein and throughout the claims that follow, “a”, “an”, and “the” includes plural references unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
The above description illustrates various embodiments of the present invention along with examples of how aspects of the present invention may be implemented. The above examples and embodiments should not be deemed to be the only embodiments, and are presented to illustrate the flexibility and advantages of the present invention as defined by the following claims. Based on the above disclosure and the following claims, other arrangements, embodiments, implementations and equivalents may be employed without departing from the scope of the invention as defined by the claims.