Catalyst-containing oxygen transport membrane

Information

  • Patent Grant
  • 11052353
  • Patent Number
    11,052,353
  • Date Filed
    Thursday, March 2, 2017
    7 years ago
  • Date Issued
    Tuesday, July 6, 2021
    2 years ago
Abstract
A method is described of producing a catalyst-containing composite oxygen ion membrane and a catalyst-containing composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln1−xAx)wCr1−yByO3−δ and a doped zirconia. Adding certain catalyst metals into the fuel oxidation layer not only enhances the initial oxygen flux, but also reduces the degradation rate of the oxygen flux over long-term operation. One of the possible reasons for the improved flux and stability is that the addition of the catalyst metal reduces the chemical reaction between the (Ln1−xAx)wCr1−yByO3−δ and the zirconia phases during membrane fabrication and operation, as indicated by the X-ray diffraction results.
Description
FIELD OF THE INVENTION

The present invention relates to a composite oxygen transport membrane and the method of forming such membranes in which catalyst particles, selected to enhance the oxygen flux and oxygen flux stability over long-term operation, are located in the porous fuel oxidation layer, which in turn is located between the porous support layer and the dense separation layer.


BACKGROUND OF THE INVENTION

Oxygen transport membranes function by transporting oxygen ions through a material that is capable of conducting oxygen ions and electrons at elevated temperatures. When an oxygen partial pressure difference exists between opposite sides of such a membrane, oxygen molecules will be reduced to oxygen ions on one surface of the membrane, transport through the dense membrane, and emerge on the opposite side of the membrane and recombine into elemental oxygen and release electrons. The free electrons resulting from the combination will be transported back through the membrane to ionize the oxygen. The oxygen partial pressure difference can be produced by providing the oxygen containing feed to the membrane at an elevated pressure or by providing a combustible fuel or other reducing species in the presence of the separated oxygen on the opposite side of the membrane or a combination of the two methods. It is to be noted that the combustion will produce heat that is used to raise the temperature of the membrane to an operational temperature at which the oxygen ion transport can occur and also, to supply heat to an industrial process that requires heating. Moreover, whether or not heat is required for a process, the combustion itself can produce products such as synthesis gases by means of partial oxidation of a fuel or other combustible substance occasioned as a result of the combustion.


Oxygen transport membranes can utilize a single phase mixed conducting material such as a perovskite to conduct the electrons and transport the oxygen ions. While perovskite materials with mixed electronic and ionic conductivity, such as La1 −xSrxCo1−yFeyO3−δ or Ba1−xSrxCo1−yFeyO3−δ, can exhibit a significant oxygen flux, such materials tend to be very fragile under operating conditions where a fuel or other combustible substance is used to provide the partial pressure difference. This is because the perovskite exhibits a variable stoichiometry with respect to oxygen chemical potential or decompose in reducing atmosphere, which makes the material unsuitable for processes in which a reducing species is introduced. In order to overcome this problem, a two-phase mixture of more stable materials can be used in which a primarily ionic conductor is provided to conduct the oxygen ions and a primarily electronic conductor is used to conduct the electrons. The primarily ionic conductor can be a fluorite structured oxide such as a stabilized zirconia and the primarily electronic conductor can be a perovskite structured oxide which contains Cr and is therefore more stable than Co-containing mixed conducting materials.


Typically, when oxygen transport membranes are composed of mixtures of two separate phases, due to the relatively low ambipolar conductivity of the composite materials, the membrane needs to be made thin to minimize the oxygen chemical potential difference required to provide an oxygen flux and therefore needs to be supported on a porous substrate. The supported thin film usually includes a dense separation layer, a porous fuel oxidation layer located between the dense separation layer and the porous support layer and a porous surface activation layer located opposite to the porous fuel oxidation layer and on the other side of the dense separation layer. All of these layers are supported on a porous support, or porous supporting substrate. Oxygen ion transport occurs principally in the dense separation layer. Although defects can exist in the dense separation layer that enable the passage of gas through such layer, it is intended to be gas tight and therefore, not porous. Both the porous surface activation layer and the porous fuel oxidation layers are “active”, that is, they are formed from materials that permit the transport of oxygen ions and the conduction of electrons. The porous fuel oxidation layer enhances the rate of fuel oxidation by providing a high surface area where fuel can react with oxygen ions. The oxygen ions diffuse through the mixed conducting matrix of this porous layer towards the porous support and react with the fuel that diffuses inward from the porous support into the porous fuel oxidation layer. The porous surface activation layer enhances the rate of oxygen incorporation by enhancing the surface area of the dense separation layer while providing a path for the resulting oxygen ions to diffuse through the oxygen ion conducting phase to the dense separation layer and for oxygen molecules to diffuse through the open pore space to the dense separation layer. The surface activation layer therefore, reduces the loss of driving force in the oxygen incorporation process and thereby increases the achievable oxygen flux. Preferably, the porous fuel oxidation layer and the porous surface exchange layer are formed from similar electronic and ionic phases as the dense separation layer to provide a close match in thermal expansion between the layers.


U.S. Pat. No. 7,556,676 describes a composite oxygen ion transport membrane. In order to form a dense, gas impermeable dual phase membrane layer from these materials the membrane needs to contain vanadium, and be sintered in a furnace atmosphere containing a mixture of hydrogen and nitrogen. From a cost perspective for high volume manufacturing it would be preferable to sinter in an atmosphere which does not contain hydrogen. From an environmental viewpoint it would be beneficial to eliminate vanadium. The materials of both the porous intermediate fuel oxidation layer and the porous air side surface exchange layers described in this patent have shown a tendency to densify during prolonged usage at high temperatures. Densification of these layers results in degradation of oxygen flux through the membrane due to loss of surface area and therefore active reaction site.


U.S. Pat. No. 8,795,417 B2 and its continuation-in-part application, U.S. application Ser. No. 14/322,981, provide a method of producing a composite oxygen ion membrane consisting of a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer from mixtures of (Ln1−xAx)wCr1−yByO3−δ and a doped zirconia, where Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B is Fe, Mn, Co, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.1 to about 0.6. The typical materials are (La0.8Sr0.2)0.95Cr0.7Fe0.3O3−δ (LSCrF73) for the porous fuel oxidation layer, (La0.8Sr0.2)0.95Cr0.5Fe0.5O3−δ (LSCrF55) for the dense separation layer, and (La0.8Sr0.2)0.95Cr0.3Fe0.7O3−δ (LSCrF37) for the optional porous surface exchange layer. The membrane is sintered to full density in a nitrogen atmosphere without the need of a sintering aid or hydrogen in the sintering atmosphere. Sintering in a non-hydrogen atmosphere not only reduces the manufacturing cost, but also eliminates the formation of insulating phases between the perovskite and zirconia materials otherwise formed when a hydrogen-containing atmosphere is used. Formation of such insulating phases reduces the achievable oxygen flux.


Oxygen membranes fabricated in such approach exhibit a high initial oxygen flux. However, the oxygen flux decreases rapidly over the first few hours of operation. The reason for the initial degradation of flux is unclear. X-ray diffraction results for a powder mixture of LSCrF55 and doped zirconia after exposure to fuel atmosphere at operating temperatures indicate that an new insulating phase, lanthanum zirconate (La2Zr2O7), is formed, which might contribute to the degradation of flux. Moreover, when the oxygen membrane is used as a secondary reformer to produce synthesis gas, in addition to its oxygen transport capability, it is desirable that the oxygen membrane should also have some catalytic activity for methane reforming to convert the remaining methane to synthesis gas.


As will be discussed, the present invention provides a method of manufacturing a catalyst-containing composite oxygen ion transport membrane which exhibits higher initial oxygen flux and lower degradation rate over long time operation.


SUMMARY OF THE INVENTION

The present invention provides a method of manufacturing a catalyst containing oxygen ion composite membrane. In accordance with such method, a first layer containing a first mixture of particles of (Ln1−xAx)wCr1−yByO3−δ, doped zirconia, an optional metal M, and pore formers is formed on a porous support. Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B is Fe, Mn, Co, Ni, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.1 to about 0.6, M is Ru, Rh, Pd, Pt, Co, or Ni or combinations thereof. The first mixture contains the (Ln1−xAx)wCr1−yByO3−δ, the doped zirconia, and the optional metal M such that when sintered, the first layer will contain from about 20 vol. % to about 70 vol. % of the (Ln1−xAx)wCr1−yByO3−δ, from about 30 vol. % to about 80 vol. % of the doped zirconia, and optionally from about 0.1 vol. % to about 20 vol. % of the metal M, all based on the volume percentage of the total solid mass. A second layer is formed on the first layer that contains a second mixture of particles of (Ln1−xAx)wCr1−yByO3−δ and the doped zirconia. In one embodiment this second mixture of particles is substantially free of pore formers. In another embodiment, the second mixture of particles does not contain pore formers. In such mixture, Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, and B is Fe, Mn, Co, Ni, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.1 to about 0.7. The second mixture contains the (Ln1−xAx)wCr1−yByO3−δ and the doped zirconia such that when sintered, the second layer will contain the (Ln1−xAx)wCr1−yByO3−δ and the doped zirconia in a volume percentage of (Ln1−xAx)wCr1−yByO3−δ of from about 20 vol. % to about 70 vol. % of the total solid mass. The first layer and the second layer and porous support are heated so that said first layer partially sinters into a porous mass containing the first mixture of particles, thereby to provide a porous fuel oxidation layer and the second layer sinters fully into a densified mass containing the second mixture of particles, thereby to provide a dense separation layer. Said heating can be conducted in a nitrogen or predominantly nitrogen atmosphere, e.g., air (79% N2/21% O2) atmosphere or forming gas (95% N2/5% H2) atmosphere, or in any other inert atmosphere conventionally employed in heating and/or sintering steps, including but not limited to CO2, argon, or mixtures thereof. While maintaining a fully densified separation layer, the porosity of the first layer can be controlled by adjusting either the amount of pore formers, the Cr content in the perovskite material, or optionally, the amount of metal M in the first layer.


In addition to the foregoing, a third layer can be formed on the second layer containing a third mixture of particles of (Ln1−xAx)wCr1−yByO3−δ and the doped zirconia and pore formers. Again, for such mixture, Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B is Fe, Mn, Co, Ni, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.1 to about 0.7. The third mixture has a third volume percentage of the (Ln1−xAx)wCr1−yByO3−δ and the doped zirconia such that, when sintered, the third layer will contain the (Ln1−xAx)wCr1−yByO3−δ and the doped zirconia in a volume percentage of (Ln1−xAx)wCr1−yByO3−δ from about 20 vol. % to about 70 vol. % of the total solid mass. The third layer is sintered in air at a temperature such that the third layer is porous. In one embodiment, the doped zirconia is 10 mol % scandia and 1 mol % yttria doped zirconia (10Sc1YSZ) or 10 mol % scandia and 1 mol % ceria doped zirconia (10Sc1CeSZ) or 10 mol % scandia and 1 mol % ceria and 1 mol % yttria doped zirconia (10Sc1Ce1YSZ).


The (Ln1−xAx)wCr1−yByO3−δ within the first and second mixtures of particles can be (La1−xSrx)wCr1−yFeyO3−δ, where w is 0.95, x is 0.2 and y is 0.3. The (Ln1−xAx)wCr1−yByO3−δ within the third mixture of particles can be (La1−xSrx)wCr1−yFeyO3−δ, where w is 0.95, x is 0.2 and y is 0.3.


In one embodiment, the first layer contains about 28-30 vol. % of (La1 −xSrx)wCr1−yFeyO3−δ, about 67-70 vol. % of the doped zirconia, and optionally about 5 vol. % of the metal M, the second layer contains about 30 vol. % of (La1−xSrx)wCr1−yFeyO3−δ and about 70 vol. % of the doped zirconia, and the third layer contains about 30 vol. % of (La1−xSrx)wCr1−yFeyO3−δ and about 70 vol. % of the doped zirconia, all in volume percentages of the total solid mass. The porous support can be of tubular or planar configuration. In one specific embodiment, the porous support is formed of 4 mol % Yttria Stabilized Zirconia (4YSZ) and fired at a temperature of about 1050° C., so that it is not fully sintered prior to forming the first layer on the porous support. Alternatively, the first, second and optional third layers can be formed on an unfired green porous support and the entire structure can be heated together. In such an embodiment, the first layer is formed on the porous support and dried at ambient temperature. The second layer is then formed on the first layer. The first layer, the second layer and the porous support are then sintered at a temperature of from about 1350° C. to about 1450° C. in a predominantly nitrogen atmosphere. Additionally, the third layer can be formed on the second layer and be sintered at a temperature of from about 1250° C. to about 1350° C. in air. Alternatively, the first layer, the second layer and the third layer can be sintered together at a temperature of from 1350° C. to about 1450° C. in a predominantly nitrogen atmosphere. In any embodiment of the present invention, the first layer, the second layer and/or the third layer can be formed by any conventional coating method. In one embodiment, the first layer, the second layer and/or the third layer are formed by slurry coating.


The present invention also provides an oxygen ion composite membrane that comprises first and second layers on a porous support providing a porous fuel oxidation layer and a dense separation layer, respectively. The first layer contains a first mixture of particles of (Ln1−xAx)wCr1−yByO3−δ, doped zirconia, a metal M, and pore formers formed on a porous support. Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B is Fe, Mn, Co, Ni, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.1 to about 0.7, M is Ru, Rh, Pd, Pt, Co, or Ni or combinations thereof. The second layer, which is formed on the first layer, contains a second mixture of particles of (Ln1−xAx)wCr1−yByO3−δ and doped zirconia, where Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, and B is Fe, Mn, Co, Ni, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.1 to about 0.7. The first layer contains from about 20 vol. % to about 70 vol. % of the (Ln1−xAx)wCr1−yByO3−δ, from about 30 vol. % to about 80 vol. % of the doped zirconia, and optionally from about 0.1 vol. % to about 20 vol. % of the metal M, all in volume percentage of the total solid mass. The second layer contains from about 20 vol. % to about 70 vol. % of the (Ln1−xAx)wCr1−yByO3−δ and from 30 vol. % to about 80 vol. % of the doped zirconia, all in volume percentage of the total solid mass.


A third layer can be situated on the second layer to form a porous surface exchange layer and that also contains the mixture of (Ln1−xAx)wCr1−yByO3−δ and the doped zirconia. In such layer, Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B is Fe, Mn, Co, Ni, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.1 to about 0.7. The third layer contains the (Ln1−xAx)wCr1−yByO3−δ and the doped zirconia in a volume percentage of (Ln1−xAx)wCr1−yByO3−δ between about 20 vol. % and about 70 vol. % of the total solid mass.


Further, the doped zirconia can be 10Sc1YSZ or 10Sc1CeSZ or 10Sc1Ce1YSZ. Preferably, the (Ln1−xAx)wCr1−yByO3−δ within the first and the second layers is (La0.8Sr0.2)0.95Cr0.7Fe0.3O3−δ; and the (La1−xAx)wCr1−yByO3−δ within the third layer is preferably (La0.8Sr0.2)0.95Cr0.7Fe0.3O3−δ. Additionally, preferably, the first layer contains about 28-30 vol. % of (Ln1−xAx)wCr1−yByO3−δ, about 67-70 vol. % of doped zirconia, and optionally about 5 vol. % of metal M; the second layer contains about 30 vol. % of (Ln1−xAx)wCr1−yByO3−δ and about 70 vol. % of doped zirconia; and the third layer contains about 30 vol. % of (Ln1−xAx)wCr1−yByO3−δ and about 70 vol. % of doped zirconia. All of the aforementioned percentages are volume percentage of the total solid mass. In one non-limiting embodiment of the present invention, the porous support is of tubular configuration.





BRIEF DESCRIPTION OF THE DRAWINGS

While the specification concludes with claims distinctly pointing out the subject matter that the inventors regard as their invention, it is believed that the invention will be better understood when taking in connection with the accompanying drawings in which:



FIG. 1 is a cross-sectional SEM micrograph image of a composite oxygen ion transport membrane.



FIG. 2 is a comparison of oxygen flux between membranes with and without Ru in the fuel oxidation layer.



FIG. 3 is a comparison of X-ray diffraction patterns of powder mixtures of (La0.8Sr0.2)0.95Cr0.5Fe0.5O3−δ and 10Sc1YSZ with and without Ru after exposure in reducing atmosphere at 1200° C. for 100 hours.





DETAILED DESCRIPTION


FIG. 1 illustrates a cross-sectional micrograph of a composite oxygen transport membrane 1 of the invention. Composite oxygen transport membrane 1 has a porous support layer 10. Applied to the porous support layer 10 is a first layer 12, a second layer 14 and a third layer 16. The composite oxygen transport membrane is specifically designed to function in an environment in which a fuel or other combustible substance is introduced to the porous support layer 10, on the side opposite to the first, second and third layer 12, 14 and 16, and subjected to combustion supported by permeated oxygen to both provide the partial pressure difference necessary to drive oxygen ion transport and also to heat the membrane to an operational temperature at which oxygen ion transport will occur. In this regard, the term “fuel” when used in connection with this layer, both herein and in the claims, is not intended to be limiting, but rather, to indicate and include any substance that can be oxidized through permeation of oxygen through the membrane. The second layer 14 is the active layer at which oxygen ion transport principally occurs and as such, serves as dense separation layer that is impervious to gas, but allows oxygen ion transport. The third layer 16 serves to initially reduce the oxygen and thus serves as a porous surface activation layer. Each of the first layer 12, the second layer 14 and the third layer 16 after heating and sintering will preferably each have a thickness of between about 10 micron and about 50 micron.


The porous support layer 10 could be formed preferably from partially stabilized zirconia oxide e.g. from about 3 to about 7 mol % yttria stabilized zirconia. Partially doped zirconia with yttria content lower than 4 mol % tends to experience a tetragonal-to-monoclinic phase transformation at ambient temperature, especially when under stress or in the presence of water vapor. The tetragonal-to-monoclinic phase transformation is accompanied by about 5% volume increase and results in cracking of the porous support or delamination of the coating layers from the porous support. Although not part of the present invention, as would be appreciated by those skilled in the art, porous support layer 10 should provide as open an area as possible while still being able to be structurally sound in its supporting function.


A stabilized zirconia, namely, Zr1−x−yAxByO2−δ is a common material in all three “active” membrane layers, namely, the first layer 12, the second layer 14 and the third layer 16. As mentioned above in all of these layers oxygen ion transport occurs and as such, are “active”. In order to generate industrially relevant levels of oxygen ion conductivity, A and B are typically Sc, Y, Ce, Al, Yb or Ca. Preferably, such stabilized zirconia has a composition given by the formula: Zr0.802Sc0.180Y0.018O2−δ or Zr0.809Sc0.182Ce0.009O2−δ, often denoted as 10Sc1YSZ or 10Sc1CeSZ, respectively, in literature associated with this class of membrane. However it should be noted that many different combinations of Sc, Y, Ce, Al, Yb, Ca or other elements can be substituted to achieve the same end.


Turning first to the first layer 12, this layer is formed from a first mixture of particles of (Ln1−xAx)wCr1−yByO3−δ, 10Sc1YSZ, metal M, and pore formers. In this layer, Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B can be Mn, Fe, Co, Ni, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.1 to about 0.6. The metal M can be added in the form of elemental state or compounds, including but not limited to oxides, carbonates or nitrates. The preferred composition of the perovskite material for this layer is (La0.8Sr0.2)0.95Cr0.7Fe0.3O3−δ. The first layer contains from about 20 vol. % to 70 vol. % of (La1−xAx)wCr1−yByO3−δ, from 30 vol. % to 80 vol. % of the doped zirconia, and optionally from 0.1 vol. % to 20 vol. % of the metal M, all in volume percentage of the total sintered mass. In one embodiment, the first layer contains 28-30 vol. % of (La1 −xAx)wCr1−yByO3−δ, 67-70 vol. % of the doped zirconia, and optionally 5 vol. % of the metal M, all in volume percentage of the sintered mass. In another embodiment, the first layer contains 28-30 vol. % of (La0.8Sr0.2)0.95Cr0.5Fe0.5O3−δ, 67-70 vol. % of 10Sc1YSZ, and optionally 5 vol. % of Ru, all in volume percentage of the sintered mass.


The second layer 14 is formed of a second mixture of particles of (Ln1 −xAx)wCr1−yByO3−δ and the doped zirconia. The function of the second layer 14 is to be a gas separation layer that is impervious to gas molecules but should be conductive to oxygen ions and electrons. In this layer, Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B is Mn, Fe, Co, Ni, Al, Ti or combinations thereof, x is from about 0.1 to about 0.3, y is from about 0.1 to about 0.7 and w is from about 0.9 to about 1.0. In one embodiment, the preferred compositions of material for this layer are (La0.8Sr0.2)0.95Cr0.7Fe0.3O3−δ and 10Sc1YSZ. Within the second mixture of particles, the (Ln1−xAx)wCr1−yByO3−δ and the doped zirconia should be present within a second volume percentage of (Ln1−xAx)wCr1−yByO3−δ of from about 20 vol. % to about 70 vol. % of the total sintered mass. In one embodiment, the second volume percentage is about 30 vol. % of (Ln1−xAx)wCr1−yByO3 −δ and 70 vol. % of the doped zirconia.


The third layer 16, that serves as the porous surface exchange layer, is formed of a third mixture of particles of (Ln1−xAx)wCr1−yByO3−δ and the doped zirconia. In this layer, Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B can be Mn, Fe, Co, Ni, Al, Ti or combinations thereof; w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.1 to about 0.7. In one embodiment, the compositions of material for this layer are (La0.8Sr0.2)0.95Cr0.7 Fe0.3 O3−δ and 10Sc1YSZ. The (Ln1−xAx)wCr1−yByO3−δ and the doped zirconia should be present within a third volume percentage of (Ln1−xAx)wCr1−yByO3−δ of from about 20 vol. % to about 70 vol. % of the total sintered mass. In one embodiment, the third volume percentage of (Ln1−xAx)wCr1−yByO3−δ is about 30 vol. %.


Example 1

In a first example of forming the composite oxygen ion transport membrane 1, the perovskite material (La0.8Sr0.2)0.95Cr0.Fe0.5O3−δ (LSCrF55) for the second layer 14, the gas separation layer, can be obtained from NexTech Materials, Ltd., Lewis Center, Ohio and Zr0.802Sc0.180Y0.018O2−δ (10Sc1YSZ) can be obtained from Daiichi Kigenso Kagaku Kogyo Co., Ltd, Osaka, Japan through their US agent Sojitz, Ltd, in New York, United States of America. The perovskite phase LSCrF55 can have a particle size d50 in the range of from about 0.3 to about 0.5 micron, the 10Sc1YSZ should have a d50 of less than 0.6 micron. In order to fabricate a 70 gram batch of gas separation layer slurry, 36.75 gram of LSCrF55 are mixed with 33.25 gram of 10Sc1YSZ, 36 gram Ferro B73210 binder, 170 gram toluene and 1200 gram of 1.5 millimeter diameter YSZ milling media in a 500 milliliter Teflon bottle. The mixture is milled until the particle size of the mixture is in the range of from about 0.3 to 0.5 micron. The perovskite material (La0.8Sr0.2)0.95Cr0.5Fe0.5O3−δ (LSCrF55) for the first layer 12, the fuel oxidation layer, is also obtained from NexTech Materials, Ltd., Lewis Center, Ohio and the 10Sc1YSZ can also be obtained from Daiichi Kigenso Kagaku Kogyo Co. Ltd, Osaka, Japan through their US agent Sojitz, Ltd, in New York. Ru is added in the form of RuO2 which is procured from Johnson Matthey, West Deptford, N.J. and has a particle size d50 of 1.3 micron. The perovskite phase LSCrF55 is specified as having a particle size d50 in the range of from about 0.3 to about 0.5 micron, the 10Sc1YSZ has a particle size d50 of less than 0.6 μm as received. In order to prepare a 60 gram batch of fuel oxidation layer slurry, 30 gram of LSCrF55, 18.09 gram of 10Sc1YSZ, 2.91 gram of RuO2, 100 gram of toluene, 20 gram of Ferro B73210 binder, and 500 gram of 1.5 millimeter diameter YSZ grinding media are added in a 250 milliliter Teflon bottle. The mixture is then milled for about 6 hours to form a slurry having a particle size d50 of from about 0.3 to about 0.5 micron. About 9 gram of carbon black having a particle size of about d50 of 0.8 micron and 1.2 gram of surfactant KD-1 are added to the slurry and milled for additional 2 hours. To prepare the surface exchange layer slurry, 80 gram of the electronic and ionic mixture having (La0.8Sr0.2)0.95Cr0.3Fe0.7O3−δ (LSCrF37) and 10Sc1YSZ is prepared so that the mixture contains about 60% of LSCrF37 and about 40% of 10Sc1YSZ by volume. To the mixture, 28.8 gram of toluene, 19.2 gram of ethyl alcohol, 16 gram of the same Ferro binder mentioned above, 1.6 gram of surfactant KD-1, and about 500 gram of 1.5 millimeter diameter YSZ grinding media are added and the resultant mixture is milled for about 2 hours to form a slurry having a particle size d50 of from about 0.3 to about 0.5 micron. About 12 gram of carbon black are added to the slurry and it is milled for additional 2 hours.


In order to form a composite oxygen transport membrane 1 from these slurries the slurries are deposited on a porous support 10 by slurry coating followed by firing in nitrogen. The porous support 10 can be tubular and fabricated by an extrusion process. Although the porous support 10 can be fully sintered, it can first be fired at a low temperature e.g. at about 1050° C. after green forming such that some residual shrinkage remains when the coated substrate is fired again at higher temperatures. The first layer 12 is then deposited on the surface of the porous support layer 10 and the proper thickness is controlled by the speed at which the supporting substrate is dipped into the slurry. The first layer 12 is allowed to dry at ambient temperature. The second layer 14 is then applied on top of the first layer 12 by dipping the component into the gas separation slurry and allowed to dry. The coating process is repeated two to three times to achieve the desirable thickness. The coated tube is slowly heated in flowing nitrogen to a temperature of from about 1350° C. to about 1450° C. and held at the same temperature for about 6 hours for the membrane to sinter completely. During sintering, the oxygen partial pressure of the atmosphere in the furnace is controlled below 20 Pa. The tube is then cooled in nitrogen to complete the sintering process. The sintered tube is checked for flow coefficient, Cv, as defined below:






Cv
=

q

0.471


N
2



p
1




1


G
g



T
1










where q is the flow rate, N2 is a constant, p1 is the inlet pressure, Gg is the gas specific gravity, and T1 is the absolute upstream temperature. The Cv of a sintered 2-foot long tube should not exceed 1.5×10−5. After densification of the separation layer 14, the third layer 16 is applied by slurry coating the sintered three layer membrane structure and firing at a temperature of from 1250° C. to about 1350° C. in air. The third layer 16 could also be applied after drying of the dense layer, 14 and then all three active layers 12, 14, 16 are co-fired together in one high temperature sintering step at a temperature of about 1430° C. in a nitrogen atmosphere. Combining the high temperature sintering steps for these three layers leads to lower manufacturing costs than can be achieved when using separate high temperature sintering steps for each of the three layers. The Cv of the tube is checked again after the sintering of the surface exchange layer to ensure no significant change has occurred.


The resultant tube has the preferred thickness, pore size and porosity within the ranges, namely, the fuel oxidation layer 12 has a thickness of from about 10 microns to about 50 micron, an average pore size of from about 0.1 micron to about 1 micron and a porosity of from about 25 percent to about 50 percent. The porous support layer 10 has a thickness of about 1.3 millimeter, an average pore size of from about 0.5 micron to about 3 micron and a porosity of from about 25 to 45 percent. The surface exchange layer 16 has a thickness of from about 10 micron to about 50 micron, an average pore size from about 0.1 micron to about 1 micron and a porosity of from about 25 percent to about 50 percent. The separation layer 14 has a thickness of from about 10 micron to about 50 micron, with substantially no connected porosity; in another embodiment with no connected porosity.


The oxygen flux of the tube with all three active layers and Ru catalyst in the fuel oxidation layer is tested in a single tube reactor at a high temperature for over 1000 hours. A tube with the same active layers but without catalyst addition in the fuel oxidation layer is also tested for comparison. FIG. 2 shows the normalized oxygen flux of the two tubes with and without Ru catalyst in the fuel oxidation layer. It can be appreciated that the tube with 5% Ru in the fuel oxidation layer exhibits a higher initial oxygen flux than the tube without Ru catalyst and does not show any noticeable degradation in flux over the whole testing period of time. The tube without Ru catalyst in the fuel oxidation layer shows a lower initial oxygen flux and degrades rapidly for the first 100 hours before it reaches a stable state. The higher initial flux might be attributed to the catalytical activity of the Ru metal in the fuel oxidation layer; however, it is unexpected that the addition of the Ru catalyst decreases the degradation rate as well.


To further understand the reason, powder mixtures of the fuel oxidation layer with and without the addition of the Ru catalyst are examined by X-ray diffraction to check if the two phases are chemically compatible under oxygen membrane operating conditions. In this experiment, the LSCrF55 and 10Sc1YSZ, either with or without Ru addition, are intimately mixed together by ball milling. The mixed powders are compacted into pellets and then exposed in reducing atmosphere at 1200° C. for 100 hours. The powders after exposure are examined by X-ray diffraction and the results are shown in FIG. 3. From FIG. 3, it can be easily appreciated that after high temperature exposure in reducing atmosphere, without Ru in the mixture, the LSCrF55 phase reacts with the 10Sc1YSZ phase and forms La2Zr2O7 and tetragonal ZrO2 phases, as evidenced by the appearance of additional peaks in the X-ray diffraction pattern. Formation of the La2Zr2O7 and tetragonal ZrO2 phases are detrimental to the performance of oxygen transport membrane, which is well documented in the literatures in solid oxide fuel cell community and explains the initial drop of oxygen flux for the tube without Ru in the fuel oxidation layer. The powder mixture with Ru addition, however, does not show any additional peak after high temperature exposure in reducing atmosphere, which means no new phase is formed. The lower degradation of flux of the tube with Ru in the fuel oxidation layer can be explained by the improved chemical compatibility between the LSCrF55 phase and the 10Sc1YSZ phase.


Example 2

In a second example of forming the composite oxygen ion transport membrane 1, the perovskite material (La0.8Sr0.2)0.95Cr0.7Fe0.3O3−δ (LSCrF73) for all the three active layers 12, 14 and 16, can be obtained from NexTech Materials, Ltd., Lewis Center, Ohio and Zr0.802Sc0.180Y0.018O2−δ (10Sc1YSZ) can be obtained from Daiichi Kigenso Kagaku Kogyo Co., Ltd, Osaka, Japan through their US agent Sojitz, Ltd, in New York, N.Y., USA. The perovskite powder LSCrF73 can have a particle size d50 in the range of from about 0.3 to about 0.5 micron, the 10Sc1YSZ powder should have a d50 of less than 0.6 micron. In order to fabricate a 70 gram batch of the gas separation layer slurry, 22.50 gram of LSCrF73 is mixed with 47.50 gram of 10Sc1YSZ, 36 gram Ferro B73210 binder, 170 gram toluene and 1200 gram of 1.5 millimeter diameter YSZ milling media in a 500 milliliter Teflon bottle. The mixture is milled until the particle size of the mixture is in the range of from about 0.3 to about 0.5 micron. The slurry was separated from the milling media and stored in a Teflon bottle. The fuel oxidation layer 12 and the surface activation layer 16 are coated from the same slurry. In order to prepare a 60 gram batch of the fuel oxidation and surface activation slurry, 16.39 gram of LSCrF73, 34.61 gram of 10Sc1YSZ, 100 gram of toluene, 20 gram of Ferro B73210 binder, and 600 gram of 1.5 millimeter diameter YSZ grinding media are added in a 250 milliliter Teflon bottle. The mixture is then milled for about 6 hours to form a slurry having a particle size d50 of from about 0.3 to about 0.5 micron. About 9 gram of carbon black having a particle size of about d50 of 0.8 micron and 1.2 gram of surfactant KD-1 are added to the slurry and milled for an additional 2 hours.


In order to form a composite oxygen transport membrane 1 from these slurries the slurries are deposited on a porous support 10 by slurry coating followed by firing in nitrogen. The porous support 10 can be tubular and fabricated by an extrusion process. Although the porous support 10 can be fully sintered, it can first be fired at a low temperature, for example at about 1050° C. after green forming such that some residual shrinkage remains when the coated substrate is fired again at a higher temperature. The first layer 12 is then deposited on the surface of the porous support layer 10 and the thickness is controlled by the speed at which the supporting substrate is dipped in the slurry. The first layer 12 is allowed to dry at ambient temperature. The second layer 14 is then applied on top of the first layer 12 by dipping the component into the gas separation slurry and allowed to dry. The coating process can be repeated two or more times to achieve the desired thickness. The third layer 16 is then applied on top of the second layer 14 by dipping the component into the surface activation slurry and allowed to dry. The tube coated with all three active layers is slowly heated in flowing nitrogen to a temperature of from about 1350° C. to about 1450° C. and held at the same temperature for about 6 hours to allow the membrane to sinter completely. During sintering the partial pressure of oxygen in the atmosphere of the furnace is maintained below 20 Pa. The tube is then cooled in nitrogen to complete the sintering process.


While the present invention has been described with reference to a preferred embodiment, as would occur to those skilled in the art, numerous changes, additions and omission may be made without departing from the spirit and scope of the present invention as set forth in the appended claims.

Claims
  • 1. A method of producing an oxygen ion composite membrane comprising: forming a first layer on a porous support containing a first mixture of particles of (Ln1−xAx)wCr1−yByO3−δ, doped zirconia, catalyst metal M, and pore formers, where Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B is Fe, Mn, Co, Ni, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3, y is from about 0.1 to about 0.7, and δ is a value that renders the composition charge neutral, catalyst metal M is a catalyst metal or an oxide, carbonate or nitrate of a catalyst metal, wherein said catalyst metal is Ru:the first mixture containing the (Ln1−xAx)wCr1−yByO3−δ, the doped zirconia and the catalyst metal M such that when sintered, the first layer will contain from about 20 vol. % to about 70 vol. % of the (Ln1−xAx)wCr1−yByO3−δ, from about 30 vol. % to about 80 vol. % of the doped zirconia, and from about 0.1 vol. % to about 20 vol. % of the catalyst metal M, based on the volume percentage of the total solid mass;forming a second layer on the first layer that contains a second mixture of particles of (Ln1−xAx)wCr1−yByO3−δ and the doped zirconia and that does not contain pore formers, where Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B is Fe, Mn, Co, Ni, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.1 to about 0.7 and δ is a value that renders the composition charge neutral;the second mixture containing the (Ln1−xAx)wCr1−yByO3−δ and the doped zirconia such that when sintered, the second layer will contain from about 20 vol. % to about 70 vol. % of the (Ln1−xAx)wCr1−yByO3−δ and from about 30 vol. % to about 80 vol. % of the doped zirconia, based on the volume percentages of the total solid mass;heating the first layer, the second layer and the porous support so that said first layer partially sinters into a porous mass containing the first mixture of particles, thereby to provide a porous fuel oxidation layer and the second layer fully sinters into a densified mass containing the second mixture of particles, thereby to provide a dense separation layer.
  • 2. The method of claim 1, wherein: prior to heating the first layer, the second layer and the porous support in nitrogen atmosphere a third layer is formed on the second layer containing a third mixture of particles of (Ln1−xAx)wCr1−yByO3−δ, the doped zirconia and pore formers, where Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B is Fe, Mn, Co, Ni, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.1 to about 0.7 and δ is a value that renders the composition charge neutral;the third mixture having a third volume ratio of the (Ln1−xAx)wCr1−yByO3−δ and the doped zirconia such that when sintered, the third layer will contain from about 20 vol. % to about 70 vol. % of the (Ln1−xAx)wCr1−yByO3−δ and from about 30 vol. % to about 80 vol. % of the doped zirconia, based on the volume percentages of the total solid mass; followed by heating the first layer, the second layer, the third layer and the porous support, wherein the first layer partially sinters into a porous mass containing the first mixture of particles, thereby to provide a porous fuel oxidation layer and the second layer fully sinters into a densified mass containing the second mixture of particles, thereby to provide a dense separation layer and the third layer is heated so that said third layer partially sinters into a porous mass containing the third mixture of particles, thereby to provide a porous surface exchange layer.
  • 3. The method of claim 2, wherein the doped zirconia is 10mol % scandia and 1 mol % yttria doped zirconia (10Sc1YSZ) or 10 mol % scandia and 1 mol % ceria doped zirconia (10Sc1CeSZ) or 10 mol % scandia and 1 mol % ceria and 1 mol % yttria doped zirconia (10Sc1Ce1YSZ10Sc1YSZ).
  • 4. The method of claim 3, wherein: the (Ln1−xAx)wCr1−yByO3−δ within the first mixture of particles is (La1−xSrx)wCr1−yFeyO3−δ, where w is 0.95, x is 0.2 and y is 0.3; the (Ln1−xAx)wCr1−yByO3−δ within the second mixture of particles is (La1−xSrx)wCr1−yFeyO3−δ, where w is 0.95, x is 0.2 and y is 0.3; the (Ln1−xAx)wCr1−yByO3−δ within the third mixture of particles is (La1−xSrx)wCr1−yFeyO3−δ, where w is 0.95, x is 0.2 and y is 0.3; andthe sintered porous support is formed from doped zirconium oxide or a mixture of MgO and MgAl2O4.
  • 5. The method of claim 4, wherein the first layer contains 20-60 vol. % of (Ln1−xAx)wCr1−yByO3−δ, 40-80 vol. % of the doped zirconia, and 1-15 vol. % of the catalyst metal M, the second layer contains 20-60 vol. % of (Ln1−xAx)wCr1−yByO3−δ and 40-80 vol. % of the doped zirconia, the third layer contains 20-60 vol. % of (Ln1−xAx)wCr1−yByO3−δ and 40-80 vol. % of the doped zirconia, based on the volume percentages of the total solid mass.
  • 6. The method of claim 5, wherein the porous support is of tubular or planar configuration.
  • 7. The method of claim 1, wherein the porous support is formed of 4YSZ and is optionally heated at a temperature ranging from about 950 to about 1200° C., so that it is not fully sintered prior to forming the first layer on the porous support; the first layer after having been formed on the porous support is dried at ambient temperature prior to coating the second layer on the first layer; and the first layer, the second layer and the porous support are heated at a temperature of from about 1350° C. to about 1450° C.
  • 8. The method of claim 7, wherein the third layer is heated at a temperature of from about 1250° C. to about 1350° C.
  • 9. The method of claim 2, wherein the porous support is formed of 4YSZ and is optionally heated at a temperature ranging from about 950 to about 1200° C., so that it is not fully sintered prior to forming the first layer on the porous support, wherein the first layer, the second layer, the third layer and the porous support are heated at a temperature of from about 1350° C. to about 1450° C. in an inert atmosphere, and wherein said first layer, second layer and/or said third layer are optionally formed by slurry coating.
  • 10. The method of claim 9, wherein the doped zirconia is 10Sc1YSZ or 10Sc1CeSZ or 10Sc1Ce1YSZ.
  • 11. The method of claim 10, wherein the porous support is 4YSZ.
  • 12. An oxygen ion composite membrane comprising: first and second layers on a porous support providing a porous fuel oxidation layer and a dense separation layer, respectively, for the oxygen ion composite membrane;the first of the layers containing a mixture of (Ln1−xAx)wCr1−yByO3−δ, doped zirconia, and catalyst metal M, where Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B is Fe, Mn, Co, Ni, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.1 to about 0.6, M is Ru; the second of the layers containing a mixture of (Ln1−xAx)wCr1−yByO3−δ and doped zirconia, where A is Ca or Sr, and B is Fe, Mn, Co, Ni, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.1 to about 0.7;the first of the layers containing from about 30% to about 70% of the (Ln1−xAx)wCr1−yByO3−δ, from about 30 vol. % to about 70 vol. % of the doped zirconia, and from about 0.1 vol. % to about 20 vol. % of the catalyst metal M; and the second of the layers containing from about 30 vol. % to about 70 vol. % of the (Ln1−xAx)wCr1−yByO3−δ and from about 30 vol. % to about 70 vol. % of the doped zirconia, based on the volume percentages of the total solid mass.
  • 13. The oxygen ion composite membrane of claim 12, wherein: a third layer is situated on the second layer to form a porous surface exchange layer and that also contains the mixture of (Ln1−xAx)wCr1−yByO3−δ and the doped zirconia, where Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B is Fe, Mn, Co, Ni, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.1 to about 0.7; andthe third layer containing the (Ln1−xAx)wCr1−yByO3−δ and the doped zirconia in a third volume percentage of (Ln1−xAx)wCr1−yByO3−δ of from about 20 vol. % to about 70 vol. % of the total solid mass.
  • 14. The oxygen ion composite membrane of claim 13, wherein the doped zirconia is the doped zirconia is 10 mol % scandia and 1 mol % yttria doped zirconia (10Sc1YSZ) or 10 mol % scandia and 1 mol % ceria doped zirconia (10Sc1CeSZ) or 10 mol % scandia and 1 mol % ceria and 1 mol % yttria doped zirconia (10Sc1Ce1YSZ10Sc1YSZ).
  • 15. The oxygen ion composite membrane of claim 14, wherein: the (Ln1−xAx)wCr1−yByO3−δ within the first layer is (La1−xSrx)wCr1−yFeyO3−δ, where w is 0.95, x is 0.2 and y is 0.3;the (Ln1−xAx)wCr1−yByO3−δ within the second layer is (La1−xSrx)wCr1−yFeyO3−δ, where w is 0.95, x is 0.2 and y is 0.3;the (Ln1−xAx)wCr1−yByO3−δ within the third layer is (La1−xSrx)wCr1−yFeyO3−δ, where w is 0.95, x is 0.2 and y is 0.3; andthe sintered porous support is formed from stabilized zirconia oxide or a mixture of MgO and MgAl2O4.
  • 16. The oxygen ion composite membrane of claim 15, wherein the first of the layers contains about 30 vol. % of (Ln1−xAx)wCr1−yByO3−δ, about 70 vol. % of doped zirconia; the second of the layers contains about 30 vol. % of (Ln1−xAx)wCr1−yByO3−δ and about 70 vol. % of doped zirconia; and the third of the layers contains about 30 vol. % of (Ln1−xAx)wCr1−yByO3−δ and about 70 vol. % of doped zirconia, based on the volume percentages of the total solid mass.
  • 17. The oxygen ion composite membrane of claim 16, wherein the porous support is of tubular or planar configuration and is formed from 4 mol % yttria stabilized zirconia (4YSZ).
  • 18. The method of claim 1 wherein said heating step is conducted in a nitrogen atmosphere, air, forming gas atmosphere, CO2, argon, or mixtures thereof.
RELATED APPLICATIONS

This application claims the benefit of International Application No. PCT/US2017/020408, filed on Mar. 2, 2017, which claimed the benefit of U.S. Provisional Application Ser. No. 62/316,694, filed on Apr. 1, 2016, which are incorporated herein by reference.

GOVERNMENT SUPPORT

This invention was made with Government support under Cooperative Agreement No. DE-FC26-07NT43088, awarded by the United States Department of Energy. The Government has certain rights in this invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2017/020408 3/2/2017 WO 00
Publishing Document Publishing Date Country Kind
WO2017/172238 10/5/2017 WO A
US Referenced Citations (309)
Number Name Date Kind
2593507 Wainer Apr 1952 A
2692760 Flurschutz Oct 1954 A
3282803 Poepel et al. Nov 1966 A
3317298 Klomp et al. May 1967 A
3770621 Collins et al. Nov 1973 A
3861723 Kunz et al. Jan 1975 A
3868817 Marion et al. Mar 1975 A
3930814 Gessner Jan 1976 A
3976451 Blackmer et al. Aug 1976 A
4013592 Matsuoka et al. Mar 1977 A
4128776 Boquist et al. Dec 1978 A
4153426 Wintrell May 1979 A
4162993 Retalick Jul 1979 A
4175153 Dobo et al. Nov 1979 A
4183539 French et al. Jan 1980 A
4206803 Finnemore et al. Jun 1980 A
4261167 Paull et al. Apr 1981 A
4292209 Marchant et al. Sep 1981 A
4350617 Retalick et al. Sep 1982 A
4357025 Eckart Nov 1982 A
4365021 Pirooz Dec 1982 A
4373575 Hayes Feb 1983 A
4402871 Retalick Sep 1983 A
4609383 Bonaventura et al. Sep 1986 A
4631238 Ruka Dec 1986 A
4650814 Keller Mar 1987 A
4651809 Gollnick et al. Mar 1987 A
4720969 Jackman Jan 1988 A
4734273 Haskell Mar 1988 A
4749632 Flandermeyer et al. Jun 1988 A
4783085 Wicks et al. Nov 1988 A
4791079 Hazbun Dec 1988 A
4862949 Bell, III Sep 1989 A
4866013 Anseau et al. Sep 1989 A
5021137 Joshi et al. Jun 1991 A
5035726 Chen et al. Jul 1991 A
5061297 Krasberg Oct 1991 A
5143751 Richard et al. Sep 1992 A
5169506 Michaels Dec 1992 A
5169811 Cipollini et al. Dec 1992 A
5171646 Rohr Dec 1992 A
5185301 Li et al. Feb 1993 A
5205990 Lawless Apr 1993 A
5240480 Thorogood et al. Aug 1993 A
5259444 Wilson Nov 1993 A
5286686 Haig et al. Feb 1994 A
5298469 Haig et al. Mar 1994 A
5302258 Renlund et al. Apr 1994 A
5306411 Mazanec et al. Apr 1994 A
5342705 Minh et al. Aug 1994 A
5356730 Minh et al. Oct 1994 A
5417101 Weich May 1995 A
5432705 Severt et al. Jul 1995 A
5454923 Nachlas et al. Oct 1995 A
5478444 Liu et al. Dec 1995 A
5534471 Carolan et al. Jul 1996 A
5547494 Prasad et al. Aug 1996 A
5569633 Carolan et al. Oct 1996 A
5599509 Toyao et al. Feb 1997 A
5643355 Phillips et al. Jul 1997 A
5649517 Poola et al. Jul 1997 A
5707911 Rakhimov et al. Jan 1998 A
5750279 Carolan et al. May 1998 A
5804155 Farrauto et al. Sep 1998 A
5820654 Gottzman et al. Oct 1998 A
5820655 Gottzmann et al. Oct 1998 A
5837125 Prasad et al. Nov 1998 A
5855762 Phillips et al. Jan 1999 A
5864576 Nakatani et al. Jan 1999 A
5902379 Phillips et al. May 1999 A
5927103 Howard Jul 1999 A
5932141 Rostrop-Nielsen et al. Aug 1999 A
5944874 Prasad et al. Aug 1999 A
5964922 Keskar et al. Oct 1999 A
5975130 Ligh et al. Nov 1999 A
5980840 Kleefisch et al. Nov 1999 A
6010614 Keskar et al. Jan 2000 A
6035662 Howard et al. Mar 2000 A
6048472 Nataraj et al. Apr 2000 A
6051125 Pham et al. Apr 2000 A
6070471 Westphal et al. Jun 2000 A
6077323 Nataraj et al. Jun 2000 A
6110979 Nataraj et al. Aug 2000 A
6113673 Loutfy et al. Sep 2000 A
6114400 Nataraj et al. Sep 2000 A
6139810 Gottzmann et al. Oct 2000 A
6153163 Prasad et al. Nov 2000 A
6191573 Noda Feb 2001 B1
RE37134 Wilson Apr 2001 E
6214066 Nataraj et al. Apr 2001 B1
6214314 Abbott Apr 2001 B1
6268075 Autenrieth et al. Jul 2001 B1
6290757 Lawless Sep 2001 B1
6293084 Drnevich et al. Sep 2001 B1
6293978 Kleefisch et al. Sep 2001 B2
6296686 Prasad et al. Oct 2001 B1
6333015 Lewis Dec 2001 B1
6352624 Crome et al. Mar 2002 B1
6355093 Schwartz et al. Mar 2002 B1
6360524 Drnevich et al. Mar 2002 B1
6368491 Cao et al. Apr 2002 B1
6382958 Bool, III et al. May 2002 B1
6394043 Bool, III et al. May 2002 B1
6402156 Schutz et al. Jun 2002 B1
6402988 Gottzmann et al. Jun 2002 B1
6430966 Meinhardt et al. Aug 2002 B1
6468328 Sircar et al. Oct 2002 B2
6475657 Del-Gallo et al. Nov 2002 B1
6492290 Dyer et al. Dec 2002 B1
6532769 Meinhardt et al. Mar 2003 B1
6537514 Prasad et al. Mar 2003 B1
6562104 Bool, III et al. May 2003 B2
6592731 Lawless Jul 2003 B1
6638575 Chen et al. Oct 2003 B1
6641626 Van Calcar et al. Nov 2003 B2
6652626 Plee Nov 2003 B1
6681589 Brudnicki Jan 2004 B2
6695983 Prasad et al. Feb 2004 B2
6783750 Shah et al. Aug 2004 B2
6786952 Risdal et al. Sep 2004 B1
6811904 Gorte et al. Nov 2004 B2
6846511 Visco et al. Jan 2005 B2
6916570 Vaughey et al. Jul 2005 B2
7077133 Yagi et al. Jul 2006 B2
7125528 Besecker et al. Oct 2006 B2
7153559 Ito et al. Dec 2006 B2
7179323 Stein et al. Feb 2007 B2
7229537 Chen et al. Jun 2007 B2
7261751 Duna et al. Aug 2007 B2
7279244 Morishima et al. Oct 2007 B2
7320778 Whittenberger Jan 2008 B2
7351488 Visco et al. Apr 2008 B2
7374601 Bonchonsky et al. May 2008 B2
7396442 Bagby et al. Jul 2008 B2
7427368 Drnevich Sep 2008 B2
7470811 Thiebaut Dec 2008 B2
7510594 Wynn et al. Mar 2009 B2
7534519 Cable et al. May 2009 B2
7556676 Nagabhushana et al. Jul 2009 B2
7588626 Gopalan et al. Sep 2009 B2
7658788 Holmes et al. Feb 2010 B2
7704070 Veenstra Apr 2010 B2
7786180 Fitzpatrick Aug 2010 B2
7833314 Lane et al. Nov 2010 B2
7846236 Del-Gallo et al. Dec 2010 B2
7856829 Shah et al. Dec 2010 B2
7871579 Tentarelli Jan 2011 B2
7901837 Jacobson et al. Mar 2011 B2
7906079 Whittenberger et al. Mar 2011 B2
7968208 Hodgson Jun 2011 B2
8070922 Nelson et al. Dec 2011 B2
8128988 Yasumoto et al. Mar 2012 B2
8196387 Shah et al. Jun 2012 B2
8201852 Linhorst et al. Jun 2012 B2
8262755 Repasky et al. Sep 2012 B2
8323378 Swami et al. Dec 2012 B2
8323463 Christie et al. Dec 2012 B2
8349214 Kelly et al. Jan 2013 B1
8419827 Repasky et al. Apr 2013 B2
8435332 Christie et al. May 2013 B2
8455382 Carolan et al. Jun 2013 B2
8658328 Suda et al. Feb 2014 B2
8722010 Grover May 2014 B1
8795417 Christie et al. Aug 2014 B2
8894944 Larsen et al. Nov 2014 B2
9023245 Chakravarti et al. May 2015 B2
9115045 Chakravarti et al. Aug 2015 B2
9212113 Chakravarti et al. Dec 2015 B2
9296671 Stuckert et al. Mar 2016 B2
9365422 Chakravarti et al. Jun 2016 B2
9365466 Chakravarti et al. Jun 2016 B2
9452401 Kelly et al. Sep 2016 B2
9453644 Kromer et al. Sep 2016 B2
9556027 Chakravarti et al. Jan 2017 B2
9611144 Chakravarti et al. Apr 2017 B2
20020073938 Bool et al. Jun 2002 A1
20020078906 Prasad et al. Jun 2002 A1
20020141920 Alvin et al. Oct 2002 A1
20020155061 Prasad et al. Oct 2002 A1
20030039601 Halvorson et al. Feb 2003 A1
20030039608 Shah et al. Feb 2003 A1
20030054154 Chen et al. Mar 2003 A1
20030068260 Wellington Apr 2003 A1
20030230196 Kim Dec 2003 A1
20040042944 Sehlin et al. Mar 2004 A1
20040043272 Gorte Mar 2004 A1
20040065541 Sehlin Apr 2004 A1
20040089973 Hoang May 2004 A1
20040135324 Brule et al. Jul 2004 A1
20040221722 Prasad et al. Nov 2004 A1
20050037299 Gottzmann Feb 2005 A1
20050058871 Li et al. Mar 2005 A1
20050061663 Chen et al. Mar 2005 A1
20050137810 Esposito, Jr. Jun 2005 A1
20050214612 Visco et al. Sep 2005 A1
20050248098 Sisk et al. Nov 2005 A1
20050263405 Jacobson et al. Dec 2005 A1
20060019827 Whittenberger Jan 2006 A1
20060029539 Dutta et al. Feb 2006 A1
20060054301 McRay et al. Mar 2006 A1
20060062707 Crome et al. Mar 2006 A1
20060063659 Xue et al. Mar 2006 A1
20060127656 Gallo et al. Jun 2006 A1
20060127749 Christie et al. Jun 2006 A1
20060191408 Gopalan et al. Aug 2006 A1
20060236719 Lane et al. Oct 2006 A1
20070004809 Lattner et al. Jan 2007 A1
20070029342 Cross et al. Feb 2007 A1
20070039466 Nawata et al. Feb 2007 A1
20070041894 Drnevich Feb 2007 A1
20070065687 Kelly et al. Mar 2007 A1
20070082254 Hiwatashi Apr 2007 A1
20070104793 Akash May 2007 A1
20070122667 Kelley May 2007 A1
20070137478 Stein et al. Jun 2007 A1
20070158329 Cao Jul 2007 A1
20070163889 Kato et al. Jul 2007 A1
20070212271 Kennedy Sep 2007 A1
20070245897 Besecker et al. Oct 2007 A1
20070289215 Hemmings et al. Dec 2007 A1
20070292342 Hemmings et al. Dec 2007 A1
20070292742 Ball et al. Dec 2007 A1
20080000350 Mundschau et al. Jan 2008 A1
20080000353 Rarig et al. Jan 2008 A1
20080006532 Mukundan et al. Jan 2008 A1
20080023338 Stoots et al. Jan 2008 A1
20080029388 Elangovan et al. Feb 2008 A1
20080047431 Nagabhushana Feb 2008 A1
20080141672 Shah et al. Jun 2008 A1
20080142148 Nielsen et al. Jun 2008 A1
20080168901 Carolan et al. Jul 2008 A1
20080169449 Mundschau Jul 2008 A1
20080226544 Nakamura Sep 2008 A1
20080302013 Repasky et al. Dec 2008 A1
20090001727 De Koeijer et al. Jan 2009 A1
20090018373 Werth et al. Jan 2009 A1
20090023050 Finnerty et al. Jan 2009 A1
20090029040 Christie et al. Jan 2009 A1
20090031895 Del-Gallo et al. Feb 2009 A1
20090084035 Wei Apr 2009 A1
20090107046 Leininger Apr 2009 A1
20090120379 Bozzuto et al. May 2009 A1
20090220837 Osada Sep 2009 A1
20090272266 Werth et al. Nov 2009 A1
20100015014 Gopalan et al. Jan 2010 A1
20100018394 Ekiner et al. Jan 2010 A1
20100074828 Singh Mar 2010 A1
20100076280 Bernstein et al. Mar 2010 A1
20100116133 Reed et al. May 2010 A1
20100116680 Reed et al. May 2010 A1
20100122552 Schwartz May 2010 A1
20100143824 Tucker et al. Jun 2010 A1
20100178219 Verykios et al. Jul 2010 A1
20100178238 Takamura et al. Jul 2010 A1
20100193104 Ryu et al. Aug 2010 A1
20100200418 Licht Aug 2010 A1
20100203238 Magno et al. Aug 2010 A1
20100266466 Froehlich et al. Oct 2010 A1
20100276119 Doty Nov 2010 A1
20100313762 Roeck et al. Dec 2010 A1
20110020192 Baumann et al. Jan 2011 A1
20110067405 Armstrong et al. Mar 2011 A1
20110070509 Mai Mar 2011 A1
20110076213 Carolan et al. Mar 2011 A1
20110111320 Suda et al. May 2011 A1
20110120127 Lippmann et al. May 2011 A1
20110132367 Patel Jun 2011 A1
20110141672 Farley et al. Jun 2011 A1
20110142722 Hemmings et al. Jun 2011 A1
20110143255 Jain et al. Jun 2011 A1
20110180399 Christie et al. Jul 2011 A1
20110200520 Ramkumar Aug 2011 A1
20110209618 Takahashi Sep 2011 A1
20110240924 Repasky Oct 2011 A1
20110253551 Lane et al. Oct 2011 A1
20120000360 Richet et al. Jan 2012 A1
20120067060 Greeff Mar 2012 A1
20120067210 Sane et al. Mar 2012 A1
20120194783 Palamara et al. Nov 2012 A1
20120288439 Sundaram et al. Nov 2012 A1
20130009100 Kelly et al. Jan 2013 A1
20130009102 Kelly et al. Jan 2013 A1
20130015405 Quintero Jan 2013 A1
20130072374 Lane et al. Mar 2013 A1
20130072375 Lane et al. Mar 2013 A1
20130156958 Belov et al. Jun 2013 A1
20130156978 Christie et al. Jun 2013 A1
20130258000 Ohashi et al. Oct 2013 A1
20140044604 Lane et al. Feb 2014 A1
20140056774 Kelly et al. Feb 2014 A1
20140060643 Martin et al. Mar 2014 A1
20140183866 Kromer et al. Jul 2014 A1
20140206779 Lackner Jul 2014 A1
20140231351 Wickramasinghe et al. Aug 2014 A1
20140319424 Chakravarti et al. Oct 2014 A1
20140319425 Chakravarti et al. Oct 2014 A1
20140319426 Chakravarti et al. Oct 2014 A1
20140319427 Chakravarti et al. Oct 2014 A1
20140323597 Stuckert et al. Oct 2014 A1
20140323598 Chakravarti et al. Oct 2014 A1
20140323599 Chakravarti et al. Oct 2014 A1
20150096506 Kelly et al. Apr 2015 A1
20150098872 Kelly et al. Apr 2015 A1
20150132485 Garing et al. May 2015 A1
20150226118 Kelly et al. Aug 2015 A1
20150328582 Joo et al. Nov 2015 A1
20160001221 Lu et al. Jan 2016 A1
20160118188 Wada Apr 2016 A1
20160155570 Shimada et al. Jun 2016 A1
Foreign Referenced Citations (47)
Number Date Country
10330859 Feb 2004 DE
102004038435 Feb 2006 DE
0 663 231 Jul 1995 EP
0926096 Jun 1999 EP
0984500 Mar 2000 EP
0989093 Mar 2000 EP
1 459 800 Sep 2004 EP
1504811 Feb 2005 EP
1717420 Nov 2006 EP
1743694 Jan 2007 EP
1930076 Jun 2008 EP
2098491 Sep 2009 EP
2873451 May 2015 EP
688657 Mar 1953 GB
689522 Apr 1953 GB
697377 Sep 1953 GB
713553 Nov 1954 GB
1199483 Jul 1970 GB
1348375 Mar 1974 GB
2016298 Sep 1979 GB
56-136605 Oct 1981 JP
WO 9741060 Nov 1997 WO
WO 9842636 Oct 1998 WO
WO 0017418 Mar 2000 WO
WO 0109059 Feb 2001 WO
WO 2004063110 Jul 2004 WO
WO 2006064160 Jun 2006 WO
WO 2007060141 May 2007 WO
WO 2007086949 Aug 2007 WO
WO 2007092844 Aug 2007 WO
WO 2008024405 Feb 2008 WO
WO 2009027099 Mar 2009 WO
WO 2010052641 May 2010 WO
WO 2011020192 Feb 2011 WO
WO 2011083333 Jul 2011 WO
WO 2011121095 Oct 2011 WO
WO 2012067505 May 2012 WO
WO 2012118730 Sep 2012 WO
WO 2013009560 Jan 2013 WO
WO 2013062413 May 2013 WO
WO 2013089895 Jun 2013 WO
WO 2014049119 Apr 2014 WO
WO 2014074559 May 2014 WO
WO 2014077531 May 2014 WO
WO 2014107707 Jul 2014 WO
WO 2014160948 Oct 2014 WO
WO 2014176022 Oct 2014 WO
Non-Patent Literature Citations (26)
Entry
Switzer et al., “Cost and Feasibility Study on the Praxair Advanced Boiler for the CO2 Capture Project's Refinery Scenario”, Carbon Dioxide Capture for Deep Geologic Formations, vol. 1, D.C. Thomas and S.M. Benson (Eds.), Copyright 2005 Published by Elsevier Ltd., Chapter 32, pp. 561-579.
David Studer; Demonstration of a cylinder fill system based on solid electrolyte oxygen separator (SEOS) technology: Early field assessment at a USAF maintenance facility, (Air Products & Chemicals Inc.); AFRL-RH-BR-TR-2010-0046; Jun. 2010.
Zhu et al.; “Development of Interconnect Materials for Solid Oxide Fuel Cells”; Materials Science and Engineering A348, Apr. 23, 2002, pp. 227-243.
Lee Rosen et al.; “Development of Oxygen Transport Membranes for Coal-Based Power Generation”; ScienceDirect (Available online at www.sciencedirect.com); Energy Procedia 4 (2011) pp. 750-755.
F. Bidrawn et al., “Efficient Reduction of CO2 in a Solid Oxide Electrolyzer” Electrochemical and Solid State Letters, vol. 11, No. 9, Jun. 20, 2008, pp. B167-B170, XP002644615, col. 1, 2.
Ebbesen et al., “Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells”, Journal of Power Sources, Elsevier SA, CH, vol. 193, No. 1, Aug. 1, 2009, pp. 349-358, XP026150424, ISSN: 0378-7753, DOI: 10.1016/J. JPOWSOUR. 2009. 02. 093.
The U.S. Department of Energy, “Evaluation of Fossil Fuel Power Plants with CO2 Recovery”, Final Report (Feb. 2002).
The U.S. Department of Energy—Office of Fossil Energy and U.S. Department of Energy/NETL, “Evaluation of Innovative Fossil Fuel Power Plants with CO2 Removal”, Interim Report (Dec. 2000).
Sylvain Deville; “Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues”; Advanced Engineering Materials 2008, 10, No. 3, pp. 155-169.
Neville Holt, “Gasification Process Selection—Trade-offs and Ironies”, Presented at the Gasification Technologies Conference 2004, Oct. 3-6, 2004 JW Marriott Hotel, Washington, DC, pp. 1-10.
Friedemann Marschner et al., “Gas Production”, Ullmann's Encyclopedia of Industrial Chemistry, Jun. 15, 2000, pp. 1-21, XP002253967.
Dyer et al., “Ion Transport Membrane Technology for Oxygen Separation and Syngas Production”, Solid State Ionics 134 (2000) p. 21-33.
Andrea Montebelli et al., “Methods for the catalytic activation of metallic structured substrates”, Catalysis Science & Technology, 2014, pp. 2846-2870.
Joseph J. Beaman, D.Sc.; “Oxygen Storage on Zeolites”; Prepared by USAF School of Aerospace Medicine, Human Systems Divisions (AFSC), Brooks Air Force Base, TX 78235-5301; USAFSAM-TR-88-26; AD-A209 352; pp. 1-77; Jan. 1989.
Radtke et al., “Renaissance of Gasification based on Cutting Edge Technologies”, VGB PowerTech (2005), XP-001235150, pp. 106-115.
L. N. Protasova et al., “Review of Patent Publications from 1990 to 2010 on Catalytic Coatings on Different Substrates, Including Microstructured Channels: Preparation, Deposition Techniques, Applications”, Recent Patents on Chemical Engineering, 2012, pp. 28-44.
Zhimin Zhong, “Stoichiometric lanthanum chromite based ceramic interconnects with low sintering temperature”, Solid State of Ionics, North Holland Pub. Company, Amsterdam, NL, vol. 177 No. 7-8, Mar. 15, 2006, pp. 757-764, XP027895768,ISSN: 0167-2738.
Babcock & Wilcox, Steam 40, “Sulfur Dioxide Control” (1992), pp. 35-1-35-15.
M.F. Lu et al., Thermomechanical transport and anodic properties of perovskite-type (LaSr) CrFeO, Journal of Power Sources, Elsevier SA, CH, vol. 206, Jan. 15, 2012, pp. 59-69, XP028403091.
Okawa et al., Trial Design for a CO2 Recovery Power Plant by Burning Pulverized Coal in O2/CO2 , Energy Conyers. Mgmt., vol. 38, Supplement (1997) pp. S123-S127.
Ciacchi et al., “Tubular zirconia-yttria electrolyte membrane technology for oxygen separation”, Solid State Ionics 152-153, 2002, pp. 763-768.
M. Solvang et al., “Optimization of Glass Ceramic Sealant for Intermediate Temperature Solid Oxide Fuel Cells”, Jan. 1, 2005, XP055352985, Retrieved from the Internet: URL:http://ma.ecsdl.org/content/MA2005-01/30/1206.full.pdf (retrieved on Mar. 8, 2017).
VDM Crofer et al., “Material Data Sheet No. 4046 May 2010 Edition”, Jan. 1, 2010, XP055353076, Retrieved from the Internet: URL:http://www.vdm-metals.com/fileadmin/user_upload/Downloads/Data_Sheets/Data_Sheet_VDM_Crofer_22_APU.pdf. retrieved on Mar. 9, 2017.
Yulia Hilli, et al.; “Sulfur adsorption and release properties of bimetallic Pd-Ni supported catalysts”; Journal of Molecular Catalysis A: Chemical, vol. 48, Jul. 28, 2015, pp. 161-171, XP029261263.
Magali Ferrandon, et al.; “Bimetallic Ni-Rh catalysts with low amounts of Rh for the steam and autothermal reforming of η-butane for fuel cell applications”; Applied Catalysis A: General, Elsevier, Amsterdam, NL, vol. 379, No. 1-2, 15 May 2010, pp. 121-128, XP027013168.
M. Boaro, et al.; “Comparison between Ni-Rh/gadolinia doped ceria catalysts in reforming of propane for anode implementations in intermediate solid oxide fuel cells”; Journal of Power Sources, Elsevier SA, CH, vol. 195, No. 2, Jan. 15, 2010, pp. 649-661, XP026640152.
Related Publications (1)
Number Date Country
20190022596 A1 Jan 2019 US
Provisional Applications (1)
Number Date Country
62316694 Apr 2016 US