The present invention relates in general to carbon nanotubes, and in particular, to a process for growing carbon nanotubes.
Metal catalysts, such as nickel (Ni), cobalt (Co), iron (Fe), and their alloys, have been extensively investigated for carbon nanotube growth by chemical vapor deposition (CVD). A typical means of growing carbon nanotubes (CNTs) on the surface of a substrate is to deposit a thin film catalyst onto the surface. However, the thickness of catalyst is critical to the CVD grown CNTs in terms of their density, diameter, and length. Moreover, with Ni, Co, and Fe catalysts, it is difficult to control the diameter and density of CNTs due to their relatively high deposition rates and thickness sensitivity. On the other hand, field emission properties of CNTs are strongly dependent on their distributed density and aspect ratio. Thus, to control the growth of CNTs for a variety of applications, more types of catalyst and alloy need to be developed.
Beside nickel, cobalt, iron and their alloys, copper (Cu) as catalyst for CNT growth has been investigated. It has been found that CNTs can be grown with copper by a CVD technique, and demonstrate very good field emission properties. The copper catalyst can be used to grow thinner CNTs to obtain a relatively high aspect ratio for field emission applications. Moreover, the lower growth rate with copper than with nickel is strongly dependent on the deposition time to provide a way for controlling the length or thickness of CNTs.
The present invention deposits a thin film catalyst using thick-film techniques. Thus, one can deposit a preferred amount of catalyst using inexpensive processes. Other means of preparing a copper thin film catalyst may be employed, such as evaporating, sputtering, and other physical vapor deposition coating techniques, but thickness sensitivity still remains so that it is relatively hard to control the growth of CNTs to meet field emission application. Therefore, copper thin film coated on small particles is used for CVD deposition.
The method uses a three-step process.
Step 1: Coating a Metal Catalyst Layer on Small Particles.
Referring to
The metal film (e.g., Cu, Ag, Co, Ni, Fe) on the particles that are coated with the electroless plating bath 100 is the catalyst for carbon nanotube growth. Alloys of these metals may also be used. Multiple layers of these metals may also be used. Other means of coating the particles with the metal films may be used, such as plating with electrodes, spraying, evaporating, sputtering, and other physical vapor deposition coating techniques.
The bath used to coat the particles with Cu may be an electroless plating bath for coating Cu, containing water and the following chemicals:
1. Cu salt (CuSO4-5H2O).
2. Promoter to dissolve the Cu salt in the solution (KNa3C4H4O6-4H2O). Concentration 80-100 grams per liter.
3. Solution to slow the reaction (NH4—H2O, 25%). Concentration 120 ml per liter.
4. Balancing agent (NaOH). This material is used to control the pH value of the solution. The amount of this material used is that needed to achieve a pH of 8-10 of the plating solution.
The Cu ions will be produced at room temperature at this solution. The pH of the solution is important and is to be controlled before and during the reaction. In this solution above, the PH value is 12-14. It may be necessary to add NaOH during the plating process to control the pH of the solution. The details of this plating bath solution can be varied.
After the bath is prepared, the particles are added to the solution 109. The particles are added quickly while the solution 109 is being stirred with stir and motor 110. A thermometer 107 may be used to measure the temperature of the water 103, which is contained within beaker 102 having an insulating coating. A lid 105 may be placed over beaker 102. Additionally, a heater plate with a magnetic stirring motor 101 is used with a stirring rod 106 within the holder 104 to support the beaker 108. The amount of particles (weight) is determined by the desired thickness of the Cu coating on the particles. For one liter of the above solution, 5-10 grams of the alumina powder (particles) are added to the solution 109. If more Cu is desired, a less amount of particles is added. If less metal of the particles is desired, more particles are added. The typical time of reaction is about 5-10 minutes. Longer times may not effect the results greatly. During reaction, much gas is evolved from the solution. The powder is white at the beginning and turns to black gradually. At the end of the reaction, little or no gas is evolved from the solution.
After reaction/deposition of metal, the reaction beaker 108 holding the bath and powder may be taken out of the water bath 103 and allowed to cool down to room temperature. After several hours, the particles will collect at the bottom of the beaker 108 and allow one to decant the solution 109 from the powder. Water may be added carefully to the powder in the beaker 108 to wash the powder. This may be done several times, each time being careful to not disturb the powder. Washing dilutes the concentration of the Cu bath still remaining on the powder after the reaction. The powder can be removed and dried in a furnace (not shown) at about 60° C.-100° C. Other techniques may be used to wash and recover the particles. Filters may be used or centrifuges or other common laboratory techniques to recover the particles.
The result is that the particles are coated with a thin layer of catalytic film. This film may not be necessarily uniform on each particle or uniform from particle to particle. The film thickness on a particle can range from 1 nm to 100 nm because different shapes, edges, or tips of the particles may have more surface energy and promote more deposition of the catalyst than other less reactive areas of a particle. This has several advantages:
1. It provides a wide range of catalytic activity for the metal coated particles. Some particles may be more reactive than others for a particular process (such as growing carbon nanotubes as will be described later). If the process changes, then other particles may be reactive.
2. This provides a large surface area for later reactions. The surface area of a layer of particles may be orders of magnitude larger than a well polished surface.
Step 2. Depositing the Catalytic Particles on a Substrate or Surface.
Once the particles are activated with a catalytic layer, these catalytic particles can be deposited onto a substrate for certain reactions. The catalytic particles may be used to assist in growing a carbon nanotube film on a substrate. Other applications may not require this.
To deposit the catalytic particles onto a surface, many techniques have been developed. These include electrophoresis, spraying (see FIGS. 3A-3F), painting, printing (including ink jet), and emersing (dunking) a substrate in a solution of catalytic particles. Other processes may be used for applying the particles to a substrate.
Referring to FIGS. 2 and 4A-4G, one method of depositing the particles is by using electrophoresis (EP) techniques. In this method, the particles 202 are suspended in a bath 203 containing a solvent (e.g., isopropyl alcohol) and particle surface charge promoters such as Mg(NO3)2-6H2O in order to improve the deposition rate. The concentration of the Mg(NO3)2-6H2O may be on the order of 10−5 to 10−2 moles/liter. The technique is much like a plating process, except particles 202 are coated onto the surface 206 instead of atoms of materials. EP techniques are commonly used for depositing particles of phosphor onto conducting anode faceplates used in cathode ray tubes (televisions). The substrate 206 is placed in the solution 203 opposite an electrode 207 that is also placed in the solution 203. The electrode 207 may be metal or graphite and could be a mesh or screen and not a solid sheet. The gap between the electrode 207 and the substrate 206 may be on the order of 2 cm-4 cm. The electrode 207 and substrate 206 are about the same size, but it is not necessary. The voltage between the anode 207 and substrate 206 is on the order of 400V, with the electrode 207 being positive and the substrate surface 206 being negative with respect to each other. The solution 203 may be stirred constantly, using a stirring bar 205 and magnetic agitator 204, to disperse the particles 202 in the solution 203 uniformly. After the deposition of particles 202, the substrate 206 is dried in a furnace at 50C-100C in air.
Step 3: Deposition of the Carbon Nanotube Film
Referring to
The substrate 206 is placed at the cold end of the reactor. After the substrate 206 is placed in the reactor, the reactor is closed off to room atmosphere and pumped down to 10−2 Torr using standard rough pumps. Then the reactor is back-filled with nitrogen gas to a pressure of 100 Torr. Nitrogen continues to flow at about 100 sccm but the pressure is regulated with a throttle valve above the pump. Then the substrate 206 is pushed into the center of the furnace where it will heat up to high temperature. After the substrate 206 is pushed into the furnace, the nitrogen gas is switched off, and hydrogen gas is switched on, also at 100 sccm flow rate. The temperature can be in a range from 450° C. to 750° C. The substrate 206 sits in this environment of flowing hydrogen for about 10-30 minutes to allow the temperature of the substrate 206 to come to equilibrium with its new environment. Then the hydrogen is switched off and acetalene (C2H2) gas flow is turned on at a flow rate of 20-50 sccm. The pressure remains at 100 Torr. The time of this period is 5-60 minutes. After this carbon growth period, the acetalene gas flow is turned off and the nitrogen gas flow is turned on at a flow rate of 100 sccm. At the same time the substrate 206 is pulled from the hot zone of the reactor to the cold zone and allowed to cool down to near room temperature. After about 10 minutes, the reactor is again evacuated and then vented to air. When the pressure reaches 1 atmosphere, the reactor is opened and the substrate 206 is removed, inspected and tested.
These parameters can be varied. Other hydrocarbon gasses can be used. Combinations of hydrocarbon gasses with each other and with hydrogen or other gasses may also be used. Carbon monoxide gas may also be used. Other forms of CVD deposition may also be used. Examples such as RF, microwave and DC plasma generation and hot wire filaments CVD are well-known methods for growing CNT films.
In summary, copper coated catalytic particles 202 are used for carbon film 410 growth. It was found that thinner CNTs with a relatively high aspect ratio were prepared. This catalyst provides a way to controllably grow CNTs by CVD. The copper coated particles also allow the use of thick film techniques to deposit the thin film catalysts on substrates for CVD carbon growth.
Substrates can be of different materials such as silicon, ceramic or glass. The catalyst can be applied in patterns as well as blanket coats on the substrates. The carbon films have then been deposited and the cathodes have emitted with good definition in the patterned areas.
Cathodes on silicon are tested by mounting them with a phosphor screen in a diode configuration with a gap of about 0.5 mm. The test assembly is placed in a vacuum chamber and pumped to 10−7 Torr. The electrical properties of the cathode are then measured by applying a negative, pulsed voltage to the cathode and holding the anode at ground potential and measuring the current at the anode. A pulsed voltage is used to prevent damage to the phosphor screen at the high current levels. Tests on the cathodes show threshold extraction fields of about 2 V/μm, and current densities reaching near 15 mA/cm2 at an electric field strength of around 3.7 V/μm. I-V curves of field emission from CNTs prepared from copper and nickel coated particles are shown in FIG. 6. The higher current at low fields from CNTs grown from copper catalyst than that of nickel is mainly attributed to a smaller diameter of CNTs resulting in a larger aspect ratio.
Referring to
Referring to
A representative hardware environment for practicing the present invention is depicted in
The present invention claims priority to the following: Provisional Patent Application Ser. No. 60/314,870, entitled “PROCESS FOR PRODUCING PATTERNED CARBON NANOTUBE FILMS,” filed on Aug. 24, 2001; and Provisional Patent Application Ser. No. 60/336,351, entitled “CATALYST FOR CARBON NANOTUBE GROWTH,” filed on Nov. 2, 2001.
Number | Name | Date | Kind |
---|---|---|---|
3866077 | Baker et al. | Feb 1975 | A |
4272699 | Faubel et al. | Jun 1981 | A |
4728851 | Lambe | Mar 1988 | A |
5453297 | Dye et al. | Sep 1995 | A |
5773921 | Keesmann et al. | Jun 1998 | A |
5872422 | Xu et al. | Feb 1999 | A |
5925415 | Fry et al. | Jul 1999 | A |
6097138 | Nakamoto | Aug 2000 | A |
6239547 | Uemura et al. | May 2001 | B1 |
6265466 | Glatkowski et al. | Jul 2001 | B1 |
6325909 | Li et al. | Dec 2001 | B1 |
6339281 | Lee et al. | Jan 2002 | B2 |
6359383 | Chuang et al. | Mar 2002 | B1 |
6380671 | Lee | Apr 2002 | B1 |
20010053344 | Harutyunyan et al. | Dec 2001 | A1 |
20020006489 | Goth et al. | Jan 2002 | A1 |
Number | Date | Country |
---|---|---|
0 905 737 | Mar 1999 | EP |
0 913 508 | May 1999 | EP |
0 951 047 | Oct 1999 | EP |
1 047 097 | Oct 2000 | EP |
1 061 544 | Dec 2000 | EP |
1 061 555 | Dec 2000 | EP |
1069587 | Jan 2001 | EP |
1 073 090 | Jan 2001 | EP |
1 102 298 | May 2001 | EP |
1 102 299 | May 2001 | EP |
1 122 759 | Aug 2001 | EP |
1 146 541 | Oct 2001 | EP |
58-216327 | Feb 1994 | JP |
10-050240 | Feb 1998 | JP |
9-221309 | Jun 1998 | JP |
10-199398 | Jul 1998 | JP |
11-111161 | Apr 1999 | JP |
11-135042 | May 1999 | JP |
11-260244 | Sep 1999 | JP |
11-260249 | Sep 1999 | JP |
11-297245 | Oct 1999 | JP |
11-329311 | Nov 1999 | JP |
11-329312 | Nov 1999 | JP |
WO 9821736 | May 1998 | WO |
WO 0017102 | Mar 2000 | WO |
WO 0073205 | Dec 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20030039750 A1 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
60336351 | Nov 2001 | US | |
60314870 | Aug 2001 | US |