There are systems in the art for intercepting intercontinental ballistic missiles, shoulder-launched rockets, and/or rocket propelled grenades. One example of an interception system operates by deploying a kill missile to destroy the incoming missile, which results in a debris field. Another example of an interception system involves launching a containment blanket made of Kevlar to contain the missile even if it detonates. Still further, an intercept device for flying objects exists that neither seriously damages nor destroys the flying object in question, but has a negative effect on its flying properties and then the intercept device destroys itself at a selected point in time so the flying object can return to its airfield unhindered and safely land.
However, with the advent of the low cost unmanned aerial vehicle, which can carry a significant payload of biological or chemical weapons, these previous interception systems are ineffective. Shooting down the UAV could trigger dispersal of the chemical or biological agent onboard. In addition, simply capturing the UAV in a net or containment blanket will not prevent the chemical or biological agent from leeching out into the atmosphere since these structures are not equipped to contain vapors and/or liquids. Moreover, merely diverting a UAV from its mission path does not constitute containing and isolating a biological or chemical threat. Thus, systems that can safely guide the UAV to earth, while at the same time preventing release of the biological or chemical threat until a hazmat team can isolate it, are generally desirable.
The discovery presented herein details a catch and snare system for an unmanned aerial vehicle that has a beneficial effect of preventing the release of chemical or biological agents from the captured unmanned aerial vehicle into the environment.
Thus, in one aspect, the present invention provides a catch and snare system for an unmanned aerial vehicle comprising: (a) a detection system, (b) a deployment system in communication with the detection system, (c) a capture system placed at an interference position by the deployment system, wherein the capture system comprises a net, a plurality of foam deploying canisters attached to the net for deploying foam, and at least one canister for deploying a decelerating parachute attached to the net, wherein the foam prevents the release of chemical or biological agents from the captured unmanned aerial vehicle into the environment, and (d) a descent system to bring the capture system and a captured unmanned aerial vehicle back to earth.
In a second aspect, the present invention provides a catch and snare system for an unmanned aerial vehicle comprising: (a) a detection system, (b) a deployment system in communication with the detection system, (c) a capture system placed at an interference position by the deployment system, wherein the capture system comprises a plurality of foam mines that create an aerial minefield that is triggered to expand just before the unmanned aerial vehicle flies into the minefield to adhere to the unmanned aerial vehicle via surface contact with the foam while the plurality of foam mines continue to expand until at least a portion of the unmanned aerial vehicle is encapsulated in the expanded foam mines, wherein the foam prevents the release of chemical or biological agents from the captured unmanned aerial vehicle into the environment, and (d) a descent system to bring the capture system and a captured unmanned aerial vehicle back to earth.
In a third aspect, the present invention provides a method for employing a catch and snare system for an unmanned aerial vehicle comprising: (a) monitoring the perimeter of a target site, (b) detecting an unmanned aerial vehicle within a predetermined distance of the perimeter, (c) launching a capture system, (d) capturing the unmanned aerial vehicle, wherein capturing the unmanned aerial vehicle comprises the steps of (i) deploying a net, (ii) deploying at least one decelerating parachute, (iii) deploying foam, (iv) blocking the unmanned aerial vehicle's flight path and causing the unmanned aerial vehicle to contact the net, and (v) encapsulating at least a portion of the unmanned aerial vehicle in the foam and the net, wherein the foam prevents the release of chemical or biological agents from the captured unmanned aerial vehicle into the environment, and (e) guiding the captured unmanned aerial vehicle to earth.
In a fourth aspect, the present invention provides a method for employing a catch and snare system for an unmanned aerial vehicle comprising: (a) monitoring the perimeter of a target site, (b) detecting an unmanned aerial vehicle within a predetermined distance of the perimeter, (c) launching a capture system, (d) capturing the unmanned aerial vehicle, wherein the step of capturing the unmanned aerial vehicle comprises the steps of (i) dispersing a plurality of foam mines to create an aerial minefield, (ii) triggering the plurality of foam mines to expand just before the unmanned aerial vehicle flies into the minefield, (iii) adhering the plurality of foam mines to the unmanned aerial vehicle via surface contact with the foam while the plurality of foam mines continue to expand, and (iv) encapsulating at least a portion of the unmanned aerial vehicle in the expanded foam mines, wherein the foam prevents the release of chemical or biological agents from the captured unmanned aerial vehicle into the environment, and (e) guiding the captured unmanned aerial vehicle to earth.
a is a view of one embodiment of the capture system's foam mines and mine field.
b is a view of one embodiment of the capture system's foam mines dispersing within the mine field.
In one aspect, as shown in
As used herein, there are a variety of detection systems known in the art for detecting an unmanned aerial vehicle (UAV) 12. For example, the detection system 14 may identify the UAV 12, via radar, and a local or satellite-based communications network may transmit data to a command, control, and communications (CCC) base that indicates the UAV's location, velocity, and trajectory. The CCC base receives the data and determines a launch position and/or other trajectory characteristics necessary to intercept, contain, and retrieve the UAV 12.
As used herein, a deployment system 16 comprises a launcher configured to dispatch the capture system 18 to the interference position. The deployment system 16 may be based on land, air, or water. The air-based deployment system 16 may include, for example, a tethered balloon or manned or unmanned aerial vehicle that launches the capture system 18 from a guided missile or, alternatively, moves into position and drops the capture system 18 to the interference position. The CCC base and deployment system 16 may be positioned in separate locations or may be integrated systems in the same locale. The land- and water-based deployment systems 16 may comprise standard mortar launch systems. In addition, the air-, land-, and water-based deployment systems 16 may each be of another type known in the art. The deployment system 16 receives data from the CCC base that triggers deployment of the capture system 18 to the proper coordinates or interference position in order to intercept, contain, and retrieve the UAV 12.
As used herein, a capture system 18 comprises a launch capsule 19 into which is packaged a net 20, a plurality of foam deploying canisters 22 attached to the net 20, and at least one canister 24 for deploying a decelerating parachute 25 attached to the net 20. The net 20 is made of a lightweight, low volume, high strength fiber, preferably Spectra® fiber. The impact between the UAV 12 and the net 20 should generally be negligible so as not to trigger premature release of the biological or chemical weapon. Depending on the kinetic energies of the UAV 12 and the net assembly, the net 20 may not slow the UAV 12 to a stop necessitating the use of parachutes to further slow the combined assembly. The at least one decelerating parachute 25 may deploy prior to or after the UAV 12 contacts the net 20. If the at least one decelerating parachute 25 is deployed prior to the UAV 12 contacting the net 20, then the decelerating parachute 25 may assist the net 20 with hovering in mid-air. Once the UAV 12 contacts the net 20, the net 20 wraps around the UAV 12 such that the edges of the net 20 essentially join at or near the rear of the UAV 12, properly aligning the plurality of foam deploying canisters 22 along the length of the UAV 12. The typical UAV 12 weighs between 1 to 50 kilograms and is traveling between 30 to 120 knots. The at least one decelerating parachute 25 alone, or in combination with additional decelerating parachutes 25, is capable of rapidly bringing this typical UAV 12 to a halt. Since the velocity of the UAV 12 is greatly slowed, the wind velocity will be substantially lower during foam deployment.
As shown in
As used herein, the plurality of foam deploying canisters 22 are made of a lightweight material, preferably carbon fiber. Each of the plurality of foam deploying canisters 22 contains one or more jets that direct the path of the foam 26. The foam deploying canisters 22 are oriented in a cooperative direction so that the foam paths merge and join completely to encapsulate at least a portion of the UAV 12, namely the portion containing the hazardous payload. The foam deploying canister 22 may be constructed using systems known in the art. For instance, the foam deploying canister 22 may comprise a pressurized gas supply, a gas valve, a gas conduit, a vessel containing sticky foam, a burst valve, a solution conduit, and a delivery orifice. The pressurizing gas is inactive until the gas valve is actuated, and the gas flows through the gas conduit into the vessel until the pressure within the vessel reaches a predetermined value and the burst valve ruptures directing the contents of the vessel to flow through the solution conduit to the delivery orifice and then into the surrounding environment. The combined plurality of foam deploying canisters 22 would have to deploy approximately five hundred cubic feet of expanded foam 26 to substantially encapsulate an entire UAV 12 weighing 50 kg. Lighter than air propellants may be used to assist in keeping the foam bubble aloft and to reduce the sink rate.
As used herein, the foam 26 remains stable sufficiently long enough for hazmat neutralization of any potential chemical or biological agents. The closed cell structure of the foam 26 captures or contains any vapors to the extent that vapors do not degrade the foam 26. The thickness of the foam covering 26 can vary according to the anticipated biological or chemical agent payload on the UAV 12 and is controlled by the pressure under which the foam 26 is released. Preferably the foam 26 is a ninety percent closed cell structure that is substantially four inches thick. The preferred cure time is very rapid, approximately thirty seconds, though longer cure times are contemplated depending on the type of threat. Examples of the type of foam 26 contemplated include sticky foam disclosed in U.S. Pat. No. 4,202,279 and stabilized aqueous foam systems and concentrate disclosed in U.S. Pat. No. 4,442,018. The disclosures of U.S. Pat. Nos. 4,202,279 and 4,442,018 are incorporated by reference herein.
As used herein, a descent system 30 comprises at least one canister 32 attached to the net 20 that deploys at least one descent parachute 34 to guide the captured UAV 28 to the ground. The at least one descent parachute 34 must be capable of withstanding the dynamic forces of the descending UAV 28, the plurality of foam deploying canisters 22, as well as the deployed foam 26. In one embodiment, the descent parachute 34 may be the same as the at least one decelerating parachute 25. For example, after the UAV 12 decelerates sufficiently due to the decelerating parachute 25, the UAV 12, 28 will begin to fall towards the ground at which time the decelerating parachute 25 will be substantially vertical relative to the ground and acting as a descent parachute 34. Alternatively, a separate descent parachute 34 may be deployed from a canister 32 attached to the net 20 near the net's edge and therefore near the rear of the UAV 12, 28. This separate descent parachute 34 preferably deploys at approximately the same time the foam 26 begins to deploy from the canisters 22. Further, this separate descent parachute 34 is preferably attached to the net 20 by one or more lines (not shown) that extend the suspension lines 36 and the parachute's canopy 38 beyond the reach of the foam 26.
In one embodiment, the foam has an expansion ratio that is at least 20:1. The preferred foam expansion ratio is in the range of 20:1 to 200:1, although higher expansion ratios are contemplated.
In one embodiment, as shown in
In one embodiment, the plurality of foam deploying canisters 22 are arranged along at least two lines 46 that cross at the center of the net 20, as shown in
In one embodiment, the capture system 18 further comprises at least one canister 50 attached to the net 20 for deploying at least one hover parachute 52, and wherein the descent system 30 comprises at least one canister 32 attached to the net 20 for deploying at least one descent parachute 34. As used herein, employing a hover parachute 52 allows the net 20 to be launched further in advance of the approach of the UAV 12 and still remain at the proper interference position. The at least one hover parachute 52 may comprise the at least one decelerating parachute 25 such that the decelerating parachute 25 is deployed essentially at the time the net 20 has unfolded from the launch capsule 19 or shortly thereafter. Alternatively, the at least one hover parachute 52 may be smaller and weigh less than the at least one decelerating parachute 25 and the at least one hover parachute 52 may have shorter suspension lines 36 such that a portion of the at least one hover parachute 52 may be subsumed by the foam 26.
As used herein, the at least one descent parachute 34 may comprise the hover parachute 52 and/or the decelerating parachute 25 or may comprise a separate parachute altogether. The descent parachute 34 may be deployed at any time after the net 20 is unfolded as long as the canopy 38 and suspension lines 36 are long enough to extend beyond the deployed foam's reach 26. Alternatively, the descent parachute 34 is deployed after the UAV's forward velocity has halted.
In one embodiment, as shown in
In one embodiment, the capture system 18 further comprises at least one canister 50 attached to the net 20 for deploying at least one hover parachute 52, and wherein the descent system 30 comprises at least one canister 32 attached to the net 20 for deploying at least one descent parachute 34. As used herein, employing a hover parachute 52 allows the net 20 to be launched further in advance of the approach of the UAV 12 and still remain at the proper interference position. The at least one hover parachute 52 may comprise the at least one decelerating parachute 25 such that the decelerating parachute 25 is deployed essentially at the time the net 20 has unfolded from the launch capsule 19 or shortly thereafter. Alternatively, the at least one hover parachute 52 may be smaller and weigh less than the at least one decelerating parachute 25 and the at least one hover parachute 52 may have shorter suspension lines 36 such that a portion of the at least one hover parachute 52 is subsumed by the foam 26.
As used herein, all the foregoing descriptions and embodiments with respect to the first aspect are equally applicable to the following aspects as well. Furthermore, all embodiments disclosed for each aspect may be combined with other embodiments.
In a second aspect, as shown in
As used herein, the capture system 18 comprises one or more launch capsules 19 into which are packaged a plurality of foam mines 56. Upon release from the launch capsule 19, the foam mines 56 are scattered across the projected path of the UAV 12 in a pattern based on the capture area that each foam mine 56 is capable of achieving. Due to the kinetic energy of the UAV 12, the UAV 12 will substantially embed within the sticky foam 26, which absorbs energy while slowing the UAV's velocity. The foam mines 56 begin deploying foam 26 after release from the launch capsule 19 and are triggered either by an accelerometer, a timer, a manual signal from the CCC base, or any other technique known in the art. Lighter-than-air foaming gasses, such as helium, may be employed to help keep the foam aloft long enough to make contact with the UAV 12. As the UAV 12 flies through the minefield 58 the sticky foam 26 adheres the mines 56 to the surface of the UAV 12, 28. The impact between the UAV 28 and the foam mines 56 should generally be negligible so as not to trigger premature release of the biological or chemical weapon. The first foam mine 56 to contact and adhere to the UAV 12 will provide drag slowing the whole mass. As the mass slows, sticky foam 26 simultaneously encapsulates the UAV 12 preventing release of biological or chemical weapons.
In one embodiment, the descent system 30 comprises a canister 32 for deploying a descent parachute 34 attached to each foam mine 56. Each foam mine 56 that adheres to the UAV 12 will contain a descent parachute 34. The trigger for the descent parachute canister 32 may be an accelerometer, a timer, a manual signal from the CCC base, or any other technique known in the art.
In a third aspect, as shown in
As used herein, deployment 72, 74 of the foam 26 and parachutes 25, 34, 52 from the various canisters 22, 24, 32, 50 is achieved using a trigger device such as an accelerometer, a timer, a manual signal from the CCC base, or any other technique known in the art. For example, in the foam deploying canister 22, the trigger device may activate the gas valve, or any other mechanism, that is intended to activate the canister 22. Similarly, the trigger device can activate a canister 24, 32, 50 for deploying a parachute 25, 34, 52 by causing a detonation via an explosive device or by release of fasteners holding portions of the canister 24, 32, 50 together.
In one embodiment, capturing 68 the UAV 12 further comprises the step of hovering 82 via the at least one decelerating parachute 25 prior to encapsulating 78 at least a portion of the UAV 28 in the foam 26 and the net 20.
In one embodiment, guiding 80 the UAV 28 comprises the step of deploying 84 at least one descent parachute 34.
In one embodiment, the net 20 is made of a lightweight, high strength fiber.
In one embodiment, the net 20 is made of spectra fiber.
In one embodiment, the net 20 is substantially planar upon deployment.
In a fourth aspect, as shown in
In one embodiment, the plurality of foam mines 56 are dispersed from an airborne vehicle. The airborne vehicle may comprise a tethered balloon, a manned aerial vehicle, an unmanned aerial vehicle, or any other type of aerial vehicle known in the art. The airborne vehicle may physically move to a drop point and release the plurality of foam mines 56 or alternatively may launch a guided missile, which ejects the foam mines 56 above the interference position.
In one embodiment, the plurality of foam mines 56 are dispersed from a ground missile. The ground missile may launch from either a land- or water-based location and then release the plurality of foam mines 56 at the interference position.
Number | Name | Date | Kind |
---|---|---|---|
4196668 | Morlock et al. | Apr 1980 | A |
4202279 | Rand | May 1980 | A |
4442018 | Rand | Apr 1984 | A |
4768417 | Wright | Sep 1988 | A |
5150857 | Moffitt et al. | Sep 1992 | A |
5152478 | Cycon et al. | Oct 1992 | A |
5295643 | Ebbert et al. | Mar 1994 | A |
5467682 | Brooks | Nov 1995 | A |
5575438 | McGonigle et al. | Nov 1996 | A |
5583311 | Rieger | Dec 1996 | A |
5695153 | Britton et al. | Dec 1997 | A |
5898125 | Mangolds et al. | Apr 1999 | A |
6182553 | Peterson | Feb 2001 | B1 |
6450445 | Moller | Sep 2002 | B1 |
6604706 | Bostan | Aug 2003 | B1 |
6626077 | Gilbert | Sep 2003 | B1 |
6691949 | Plump et al. | Feb 2004 | B2 |
6721646 | Carroll | Apr 2004 | B2 |
6854374 | Breazeale | Feb 2005 | B1 |
6904838 | Dindl | Jun 2005 | B1 |
6957602 | Koenig et al. | Oct 2005 | B1 |
7032861 | Sanders, Jr. et al. | Apr 2006 | B2 |
7044422 | Bostan | May 2006 | B2 |
7097137 | McDonnell | Aug 2006 | B2 |
7201348 | Flammer | Apr 2007 | B1 |
7249732 | Sanders, Jr. et al. | Jul 2007 | B2 |
7264204 | Portmann | Sep 2007 | B1 |
7328644 | Vickroy | Feb 2008 | B2 |
7412916 | Lloyd | Aug 2008 | B2 |
7415917 | Lloyd | Aug 2008 | B2 |
7900548 | Hoadley et al. | Mar 2011 | B2 |
20040094662 | Sanders, Jr. et al. | May 2004 | A1 |
20040129828 | Bostan | Jul 2004 | A1 |
20050082421 | Perlo et al. | Apr 2005 | A1 |
20060049304 | Sanders, Jr. et al. | Mar 2006 | A1 |
20060192047 | Goossen | Aug 2006 | A1 |
20060231675 | Bostan | Oct 2006 | A1 |
20070034738 | Sanders, Jr. et al. | Feb 2007 | A1 |
20070051848 | Mantych et al. | Mar 2007 | A1 |
20070193650 | Annati | Aug 2007 | A1 |
20070221790 | Goossen et al. | Sep 2007 | A1 |
20070228214 | Horak | Oct 2007 | A1 |
20070244608 | Rath et al. | Oct 2007 | A1 |
20070261542 | Chang et al. | Nov 2007 | A1 |
20070262195 | Bulaga et al. | Nov 2007 | A1 |
20070295298 | Mark | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
1767453 | Mar 2007 | EP |
1767453 | Jun 2008 | EP |
0015497 | Mar 2000 | WO |
2004002821 | Jan 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20100181424 A1 | Jul 2010 | US |