1. Field of the Invention
This invention relates to catheter technology and more specifically, to a flushing assembly which can be operated to concurrently flush a plurality of primary flow lines that are normally disposed in fluid communication with a working catheter. Use of the flushing assembly decreases the risk of many types of infections typically associated with catheter use, by establishing a flushing orientation comprising independent and concurrent paths of flushing fluid-flow from each of the primary flow lines, towards, through and out of separate flush ports, each of which is associated with a different one of the plurality of primary flow lines.
2. Description of the Related Art
The use of catheters for a variety of different medical procedures is well known and commonly practiced in the field of medicine. More in particular, a working catheter, dependent upon its intended use, is applied to a patient and operatively structured to carry different fluids including, but not limited to, blood, urinary fluids, biliary fluids, etc. By way of example, intra-vascular catheters may be applied and/or inserted beneath the skin of a patient with chronic kidney disease, then moved into his or her bloodstream, into or through the central veins and into the heart, where it can be used to recycle and process the patient's blood with the aid of a dialysis machine. This procedure, known as hemodialysis, typically involves the placement of a catheter in a patient's body and bloodstream and leaving it there for a relatively long period of time because the patient is suffering from kidney failure, such that the treatment procedure or sessions must be ongoing, e.g., three days a week for months or longer at a time. Thus, the catheter is in place on or in the patient for a relatively long period of time in order to provide a ready means for vascular access into his/her bloodstream. A particular technique is typically followed for placement of such catheters, which involves creating a small incision in the patient's skin, often near the shoulder and neck area; puncturing into the bloodstream and advancing a double-lumen catheter into the central veins and the heart, where the catheter can remain in the patient safely for a relatively long period of time. The opposite or external end of the catheter can remain somewhat exposed on the patient's skin, and while protected, serves as a port for providing access to his/her vascular system.
Regardless of the specific application of the catheter assembly, it has been found to be important for the interior lumens of such devices to be kept clean and/or otherwise maintained, at least to the extent of limiting the introduction of bacteria into them and also, removing any bacterial presence and/or assuring that the passageways of the catheter lumens are free or at least substantially free from the collection or build-up of residue or clots and the like, on the interior surfaces thereof. It is universally recognized that the build-up of residue or bacterial formations leads to a possible interruption of fluid flow through the catheter, or of potentially grave danger, infection. Additionally, if there is limited or uneven fluid flow through the lumens of the catheter, it may delay the treatment time for a patient and/or recovery time, dependent upon the intended use of the catheter assembly. Such delays may, in turn, result in complications or possibly to a life threatening infection if harmful bacteria is present and/or is permitted to grow and colonize. Problems of this type are especially prevalent with catheters intended for longer periods of installation and use, such as those described above and commonly used for dialysis.
As a result, various components of a working catheter must be periodically “flushed” to ensure that any build up, such as that described above, is completely or at least substantially removed and that the presence of bacteria is greatly reduced, if not eliminated. In conventional fashion, the flushing of a catheter assembly involves the connection of a source of flushing fluid such as, but not limited to, a saline solution directed under pressure through the lumens of each of the two catheter ports. During the flushing procedure, the flushing fluid is then allowed to flush the catheter lumens and be deposited in the bloodstream. While this flushing procedure is commonly applied at the initiation of each dialysis session, a number of disadvantages and/or problems may be encountered. For instance, upon initiation of each dialysis treatment, and in accordance with standard practice, the hub of the catheter is opened manually. Such handling can introduce bacteria into both the catheter lumens and has been known to be a major factor in causing catheter related infections. The conventional standard flushing phase that comes next flushes bacteria and other constituents contained in the catheter into the bloodstream, thereby increasing the risk of catheter related infections.
Accordingly, it would be prudent to devise a system that would allow for an alternative way to flush the catheter, such that bacteria and other constituents could be flushed from at least a portion of the catheter to the external environment, instead of into the bloodstream of the patient.
In other words, there is a need in the medical profession for an efficient and effective assembly which facilitates the flushing of at least predetermined portions of a catheter, such as, but not limited to, the ingress and egress lines or other “primary flow lines” of an intravascular catheter, as generally set forth above. Further, if any such improved flushing assembly were developed, it would preferably include one or more structural and operative features which render it readily adaptive and effectively operable to accomplish the required or intended flushing procedure, without fear of inadvertently exposing the patient to the flushing fluid, in case a fluid or agent for cleaning bacteria, other than saline solution, is used and which might be toxic if infused into the bloodstream. If any such flushing assembly were developed, it would ideally include appropriately structured and disposed flush ports, associated with the primary flow lines to be flushed, in a manner which regulates the introduction and passage of the flushing fluid through the flow lines in a direction towards the flush ports and outwardly there-from, such that any collected residue and in particular, bacterial formations are removed in an effective, efficient and safe manner. Finally, it would also be ideal if any such proposed flushing assembly were capable of being adaptable for use with a variety of catheter structures, whether by being fixedly or removably associated with the catheter, and thereby, able to provide versatility in structure and operation to accomplish an efficient flushing procedure.
The present invention is intended to present a solution to these and other needs which remain in this field of art, and as such, is directed to an assembly for flushing proximately disposed, primary flow lines associated with a working catheter, such as, but not limited to, an intravascular catheter. More specifically, the primary flow lines may comprise egress and ingress lines associated with the catheter, which are proximally disposed in a physically accessible location when the catheter is implanted. Further, the primary flow lines may be structured to be part of the catheter or an auxiliary structure connected to or otherwise associated with the catheter. In addition, the primary flow lines are associated with or operatively connected to a main hub or junction and thereby, disposed in fluid communication with the lumens of catheter embedded within the patient.
More specifically, the flushing assembly of the present invention includes a first flush port and a second flush port, each connected to a different one of the ingress and egress lines, which are synonymously referred to herein as the primary flow lines. A primary flow restrictor assembly, preferably comprising a plurality of two independently adjustable safety valves or alternatively, two safety flow restrictors which may be in the form of externally applied clamps or other appropriate flow restrictor structures. As such, the primary flow restrictor assembly is connected at the main junction or hub serving to interconnect the lumens of the catheter with the primary flow lines. Moreover, each of the safety valves or clamps is structured to be selectively disposed between an open position and a closed position. This feature facilitates the selective regulation of fluid flow from the primary flow lines into the working catheter, as well as regulating fluid communication between the first and second flush ports and the primary flow lines, as will be described in greater detail hereinafter. A secondary flow restrictor assembly comprises at least two clamps or other appropriate flow restrictors, independently operable and positioned, to isolate or establish fluid communication between the first and second flush ports and corresponding ones of the primary flow lines.
In use, a flushing orientation of the flushing assembly is established by concurrently disposing each of the two safety valves or safety clamps in a closed orientation, while removing or otherwise opening the clamps associated with the secondary flow restrictor assembly. This will define open, fluid communication between the primary flow lines and corresponding ones of the first and second flush ports. Flushing occurs by directing or “pushing” a flow of flushing fluid into the open ends of the primary flow lines, while the flushing assembly is in the aforementioned flushing orientation. As a result, a forced flow of flushing fluid will pass concurrently into and along each of the primary flow lines and there-from, into and through the corresponding first and second flush ports.
In at least one preferred embodiment, a one-way valve is connected at the exit end of each of the first and second flush ports, with each structured to allow the passage of the flushing fluid out of the flush ports through the corresponding exit ends thereof. Moreover, the one-way valves are further structured to prevent the passage of fluid into the flush ports through the exit ends from an exterior of the catheter or flushing assembly. Accordingly, the structural and operative features of the flushing assembly of the present invention facilitate the flushing of bacteria and other collected material from the primary flow lines in a direction towards the corresponding flush ports and outwardly therefrom, through corresponding exit ends associated with the flush ports.
After the flushing procedure, the clamps associated with the secondary flow restrictor assembly may be closed, thereby isolating fluid communication between the first and second flush ports and respective ones of the primary flow lines. In order to make the flushing procedure completely sterile, an appropriately dimensioned, sterile syringe can be inserted into the one-way valve located at the exit end of each of the flush ports in order to receive the fluid being flushed. After the catheter has been used, the traditional “locking” procedure may be applied utilizing a heparin or other appropriate solution, as is known in the art.
In addition to the above, and in an effort to decrease the risk of infection, the lumens of the catheter and/or the lumens of the flush ports can be filled with an antiseptic/antibiotic solution, if desired. Utilization of the flushing assembly in the intended manner, as generally set forth above, can be said to offer an additional benefit by preventing the antimicrobial solution (antibiotic/antiseptic) from entering the catheter and patient's blood stream. Seepage of the antibiotic/antiseptic solution into circulation is prohibited due to the cooperative structuring of the flush ports with the primary and secondary flow restrictor assemblies. As a result, antibiotic resistance and medication toxicity can be avoided. Additional features of at least one preferred embodiment of the present invention is the connection of the two safety valves at the main junction or hub connecting the primary flow lines to the lumens of the remainder of the catheter. This location serves to eliminate “dead space” in the area of the path of fluid flow of the flushing fluid, during the flushing procedure. Therefore, the two safety valves are disposed and structured to selectively and concurrently close the connection of the primary flow lines to the lumens of the catheter, and accordingly, to the patient when the catheter is not in use. The selective manipulation of the safety valves or other safety flow restrictors also provides for the holding and maintaining of antiseptic, antibiotic solution in the lumens of the flush ports, as well as the primary flow lines when the catheter is not being used.
The flushing assembly of the present invention will now be described in greater detail hereinafter in various preferred embodiments, and also, with specific reference to an intravascular catheter. It is pointed out, however, that the flushing assembly of the present invention can be utilized, with minimal or no structural modification, in conjunction with other long term use catheter structures including, oncology catheters, nutrition catheters, short and long term central line catheters, etc.
These and other objects, features and advantages of the present invention will become clearer when the drawings as well as the detailed description are taken into consideration.
For a fuller understanding of the nature of the present invention, reference should be had to the following detailed description taken in connection with the accompanying drawings in which:
Like reference numerals refer to like parts throughout the several views of the drawings.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the attached drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention, as defined by this description and the appended claims.
Turning now to the accompanying drawings, the present invention is directed to a flushing assembly, generally indicated as 10, structured to flush at least the proximately located ingress and egress lines, hereinafter also referred to as “primary flow lines,” 12 and 14 associated with a catheter assembly 16. While the structural and operative versatility of the flushing assembly 10 facilitate its use with a variety of different catheter structures, the present invention is described hereinafter with specific, but not necessarily exclusive, reference to an intravascular catheter. In addition, the primary flow lines 12 and 14 are connected in fluid communication with the catheter assembly 16 by a hub and/or main junction 18.
It is further emphasized that the primary flow lines 12 and 14, as well as other operative components associated with the flush assembly 10, may be considered in one preferred embodiment to be a fixed or integrated part of the catheter assembly 16. In other preferred embodiments, however, the primary flow lines 12 and 14 may be a supplementary component that may be effectively connected to the catheter assembly 16 and easily removed therefrom, as described for instance, with reference to the invention represented in
Turning now to
Still referring to
As set forth above, the two safety valves 30 and 32 are selectively adjustable and capable of being independently or collectively oriented between an open flow position and a closed flow position. When in the open position, the safety valves 30 and 32 establish fluid communication between the primary flow lines 12 and 14 and the main hub or junction 18, as well as the lumens of the catheter 16. In contrast, selective orientation of the safety valves 30 and 32 into a closed position will isolate fluid communication between the primary flow lines 12 and 14 and the main junction or hub 18, as well as the catheter 16.
Still referring to
More specifically, and as at least partially set forth above, the adjustment of each of the safety valves 30 and 32 to a closed position will isolate fluid communication and restrict fluid flow between the primary flow lines 12 and 14 and the hub 18 and lumens of the catheter 16. Concurrently, the flow restrictors 40 and 42 of the secondary flow restrictor assembly 40 may be removed or otherwise adjusted, so as to be opened and thereby, establish fluid flow and fluid communication between the primary flow lines 12 and 14 and corresponding ones of the flush ports 20 and 22. Once the flushing assembly 10 is in the aforementioned “flushing orientation” then a flushing fluid such as, but not limited to, a saline solution can be forced or “pushed” into the primary flow lines 12 and 14, through the end or ejector caps 13 and 15. Flow of the flushing fluid will continue along the length of the respective primary flow lines 12 and 14 into, through, out of and away from corresponding ones of the flush ports 20 and 22. The direction of flushing fluid flow is indicated by corresponding directional arrows 46 and 48 in
As represented in the embodiment of
As set forth above, the location and/or disposition of the flush ports 20 and 22, relative to corresponding ones of the primary flow lines 12 and 14, may vary. Therefore, with primary reference to
As represented in the additional preferred embodiment of
The versatility of the flushing assembly 10 is further represented in
Yet additional preferred embodiments are represented in
Turning now to the additional preferred embodiment of
Turning now to
Yet another preferred embodiment of the present invention is represented in
Yet another preferred embodiment is illustrated in
Still referring to
As a result, the path of the flushing fluid within the assembly 210 of
Since many modifications, variations and changes in detail can be made to the described preferred embodiment of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. For instance, it should be appreciated that the flushing assembly may be fixedly associated with or incorporated with a catheter, such as might occur during the manufacturing process associated with the catheter, or alternatively, produced as a stand alone device that may be interconnected with and removably attached to a catheter for use. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents.
Now that the invention has been described,
The present application is based on and a claim of priority is made under 35 U.S.C. Section 119(e) to a provisional patent application that is currently pending in the U.S. Patent and Trademark Office, namely, that having Ser. No. 61/153,638 and a filing date of Feb. 18, 2009, the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61153638 | Feb 2009 | US |