Catheter for placement of therapeutic devices at the ostium of a bifurcation of a body lumen

Information

  • Patent Grant
  • 6544219
  • Patent Number
    6,544,219
  • Date Filed
    Friday, December 15, 2000
    24 years ago
  • Date Issued
    Tuesday, April 8, 2003
    21 years ago
Abstract
The catheter assembly includes an expandable member mounted to the distal end of a placement catheter, for delivery of a therapeutic device in one of the branch vessels of a bifurcated vessel. The catheter assembly includes lumens for a tracking guide wire and a positioning guide member for placement of the therapeutic device. The therapeutic device is mounted on the expandable member, the tracking guide wire is placed into the target branch vessel, and the placement catheter is then introduced over the tracking guide wire. A positioning guide member is introduced through the catheter, extended through an exit port in the catheter proximal to the expandable member, and then placed in another branch vessel of the bifurcation. The placement catheter then is advanced until the positioning guide member engages the vessel carina between the branch vessels, and the therapeutic device then may be placed accurately in the target branch vessel. In another form of the catheter assembly, a secondary catheter member is mounted to the placement catheter and adapted to receive the positioning guide member for placement of the positioning guide member in the vessel branch not to be treated. An elongated angle member is mounted to the secondary catheter member for engagement with the vessel carina.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates generally to catheters for placement of a therapeutic device at a bifurcation of a body lumen, and more particularly concerns a catheter adapted to utilize two guide wires for precise placement of a therapeutic device with respect to the ostium of a vascular bifurcation for repairing lesions at the vascular bifurcation.




2. Description of Related Art




Stents are typically implanted within a vessel in a contracted state and expanded when in place in the vessel in order to maintain patency of the vessel to allow fluid flow through the vessel. Implantation of such stents is commonly accomplished by mounting the stent on the balloon portion of a catheter, positioning the stent in a body lumen, and expanding the stent to an expanded state by inflation of a balloon within the stent. The stent can then be left in place by deflating the balloon and removing the catheter. An alternate approach is to utilize a self-expanding stent that is introduced in a collapsed state, so that when properly positioned, a retaining sheath can be withdrawn, allowing the stent to expand into position.




A bifurcated stenosis typically can occur in the carotid or coronary arteries at the carina between adjoining arterial branches and around the ostia of the adjoining arterial branches. A bifurcated stenosis can also occur in other bifurcated body lumens, such as in the renal and iliac arteries, for example. Particularly at a vascular bifurcation, lesions may form along the side walls of the blood vessel and at the carina of the bifurcation, contributing to stenosis of the main branch and side branch of the bifurcation, interfering with the normal rheology of flow at the bifurcation, and contributing to the formation of thrombosis.




The accurate, precise delivery of stents at a treatment site of a bifurcated blood vessel has heretofore presented numerous problems. Current methods of placing a stent rely heavily on fluoroscopic equipment and the physician's ability to accurately visualize and place a stent. This technique is relatively effective in a straight or non-branched anatomy. However, it has been found that the precise positioning of a stent in a specific location such as at the carina of a vascular bifurcation using two dimensional images of a three dimensional vascular bifurcation can pose significant problems for the practitioner. While visualizing the delivery system itself is not a critical issue, holding and accurately placing a stent within 1 mm of an ostium of a side branch vessel at a vascular bifurcation can be a tremendous challenge.




In one method for delivery of a stent at a treatment site of a bifurcated blood vessel, a main vessel stent is implanted at the bifurcation across a side branch, and the structure of main vessel stent must be spread apart sufficiently to form an opening to the side branch vessel for a catheter with a stent for the side branch to be delivered through the opening. The portion of the structure of the main vessel stent to be spread apart is typically selected by trial and error by crossing and recrossing the structure of the main vessel stent with a wire. In addition, the aperture created through the main vessel stent may not provide a clear opening and can create a major distortion in the surrounding structure of the stent.




A need continues to exist for a system for accurately and precisely placing a stent within a side branch portion of a bifurcated blood vessel at the ostium of the side branch vessel to be treated, to minimize the unstented portion of a lesion at the vascular bifurcation, without blocking flow to an unstented side branch of the bifurcation of the blood vessel to be treated. The present invention solves these and other problems, as will be shown.




SUMMARY OF THE INVENTION




Briefly, and in general terms, the present invention provides for an ostial placement catheter assembly and a method for placing a therapeutic device with the catheter assembly, permitting improved accuracy and decreased variability in positioning of a therapeutic device such as a graft or stent at an ostium of a bifurcation of a body lumen, by providing a mechanical stop, allowing the graft or stent to be automatically positioned at the ostium of the bifurcation. The ostial placement catheter assembly and method of the invention can also reduce the amount of time needed to place the stent. While the invention can be used in treatment of vascular bifurcations such as can occur in the carotid or coronary arteries, the invention can also be used in treatment of other vascular bifurcations such as at the renal or iliac arteries, for example, or in treatment of other bifurcated body lumens.




The invention accordingly provides for a catheter assembly for placement of a therapeutic device for treatment of a patient's bifurcated body lumen, such as a bifurcated blood vessel, having a main vessel portion, a plurality of branch vessels extending from the main vessel portion, and a vessel carina between the branch vessels. The catheter assembly includes a placement catheter, with an expandable member mounted adjacent to the distal end of the placement catheter. The placement catheter includes means for inflating and deflating the expandable member, for delivery of a therapeutic device mounted onto the expandable member in one of the branch vessels. The catheter assembly typically includes an adapter hub which provides access to an inflation/deflation lumen. A tracking guide wire lumen within at least a portion of the placement catheter is adapted to receive a tracking guide wire for slidable movement within the tracking guide wire lumen, and a positioning guide member lumen within at least a portion of the placement catheter, having an exit port in the catheter proximal to the expandable member, is adapted to receive a positioning guide member for slidable movement within the positioning guide member lumen.




The present invention also provides for a method for placement of a therapeutic device for treatment of a patient's bifurcated body lumen, such as a bifurcated vessel, having a main vessel portion, a plurality of branch vessels extending from the main vessel portion, and a vessel carina between the branch vessels. The method involves the steps of providing a placement catheter of the first preferred embodiment, and mounting a therapeutic device on the expandable member for placement in a target branch vessel. The distal end of a tracking guide wire is placed into the target branch vessel, the placement catheter is introduced over the tracking guide wire through the tracking guide wire lumen, and a positioning guide member is introduced into the positioning guide member lumen from the proximal end of the catheter. The positioning guide member remains hidden inside the positioning guide member lumen during tracking of the target vessel. Near the target vessel, the distal end of the positioning guide member is extended through the exit port in the catheter proximal to or proximally adjacent to the expandable member, and is placed in another branch vessel. The placement catheter is then advanced distally in the main vessel until the positioning guide member engages the vessel carina between the branch vessels, and the therapeutic device is placed in the target branch vessel, as is illustrated in FIG.


2


.




In a second presently preferred embodiment, the invention provides for a catheter assembly for placement of a therapeutic device for treatment of a patient's bifurcated body lumen, such as a bifurcated blood vessel, having a main vessel portion, a plurality of branch vessels extending from the main vessel portion, and a vessel carina between the branch vessels. The catheter assembly includes a placement catheter, with an expandable member mounted to the distal end of the placement catheter, and means for inflating and deflating the expandable member. The catheter assembly typically includes an adapter hub which provides access to an inflation/deflation lumen. The expandable member is adapted for mounting and delivery of a therapeutic device in one of the branch vessels. A tracking guide wire lumen within at least a portion of the placement catheter is adapted to receive a tracking guide wire for slidable movement within the tracking guide wire lumen, and a positioning guide member lumen within at least a portion of the placement catheter, and having an exit port in the catheter proximal to the expandable member, is adapted to receive a positioning guide member for slidable movement within the positioning guide member lumen.




The second embodiment of the catheter assembly includes a secondary catheter member mounted to the placement catheter and including a positioning guide member lumen connected in communication with the positioning guide member lumen of the placement catheter, with the positioning guide member lumen of the secondary catheter member adapted to receive the positioning guide member for slidable movement within the positioning guide member lumen of the secondary catheter member. An elongated angle member is mounted to the secondary catheter member, and is adapted to extend between and to be retained by the therapeutic device mounted to the expandable member, between the therapeutic device and the expandable member, so as to form an arch in the elongated angle member between the ends of the elongated angle member and proximal to the therapeutic device. In one currently preferred aspect, one end of the elongated angle member is mounted adjacent to the distal end of the secondary catheter member, and the other end of the elongated angle member is mounted to the placement catheter distal to the expandable member. In another presently preferred aspect means are provided for coupling and uncoupling the distal end of the secondary catheter member to the distal end of the placement catheter distal to the expandable member, and in a currently preferred embodiment the means for coupling and uncoupling includes an annular coupling member connected to the distal end of the placement catheter and adapted to receive the distal end of the positioning guide member.




In the method of placement of a therapeutic device utilizing the catheter assembly of the second preferred embodiment, the distal end of a tracking guide wire is placed into the target branch vessel, and is positioned at a treatment site using standard techniques. The placement catheter is introduced over the tracking guide wire through the tracking guide wire lumen. In a preferred embodiment, an elongated guide member, such as the positioning guide member or another elongated guide member such as a standard guide wire or other type of elongated member, passes through an annular coupling member connected to the distal end of the placement catheter thereby coupling them together. Once the tracking guide wire and elongated guide member are correctly positioned, the catheter is advanced to the treatment site over the tracking wire. The distal end of the secondary catheter member is uncoupled from the distal end of the placement catheter. The positioning guide member is positioned in the alternate, non-treated leg of the bifurcation, and the catheter is advanced over both the tracking guide wire and the positioning guide member until the elongated angle member engages the vessel carina between the branch vessels. The therapeutic device can then be placed in the target branch vessel.




Alternatively, if the tips are not to be bound, a positioning guide member can be introduced through the positioning guide member lumen. In this case, typically the positioning guide member will be advanced until the tip is just proximal to the exit port of the secondary catheter member. The placement catheter is introduced over the tracking guide wire through the tracking guide wire lumen, and the distal end of the positioning guide member is then advanced through the positioning guide member lumen and through the secondary catheter member into the main branch vessel. The placement catheter is advanced distally with a tip in each vessel of the bifurcation until the elongated angle member engages the vessel carina between the branch vessels, and the therapeutic device can then be placed in the target branch vessel as is illustrated in FIG.


5


.




As used herein, the terms “proximal” and “proximal direction” when used with respect to the invention are intended to mean moving away from or out of the patient, and the terms “distal” and “distal direction” when used with respect to the invention are intended to mean moving toward or into the patient. These definitions will apply with reference to apparatus, such as catheters, guide wires, and stents. When used with reference to body lumens, such as blood vessels, the terms “proximal” and “proximal direction” are intended to mean closer to the aorta; the terms “distal” and “distal direction” are intended to mean farther from the aorta; and with respect to a bifurcated body lumen in general, the terms “distal” and “distal direction” are intended to mean in the direction in which the branching from the parent lumen to the branched lumens occurs.




These and other aspects and advantages of the invention will become apparent from the following detailed description and the accompanying drawings, which illustrate by way of example the features of the invention.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic diagram of an ostial placement catheter assembly according to a first embodiment of the invention;





FIG. 2

is a schematic diagram illustrating placement of a therapeutic device with the ostial placement catheter assembly of

FIG. 1

;





FIG. 3

is a schematic diagram of an ostial placement catheter assembly according to a second embodiment of the invention showing the secondary catheter member coupled to the placement catheter;





FIG. 4

is a schematic diagram of the ostial placement catheter assembly of

FIG. 3

, showing the secondary catheter member uncoupled from the placement catheter; and





FIG. 5

is a schematic diagram illustrating placement of a therapeutic device with the ostial placement catheter assembly of FIG.


3


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




In treating branch vessels and the region at the ostium of the branch vessels that are diseased at and around a bifurcation with a straight stent, the unstented side region between the main vessel and the branch vessel to be treated can be excessive, or an excessive projection into the main vessel portion can result, if the stent can not be positioned accurately and precisely near the ostium of the branch vessel being treated.




As is illustrated in the drawings, in order to improve the accuracy and decreased variability in positioning of a straight therapeutic device such as a straight stent at an ostium of a bifurcation, the invention is accordingly embodied in a catheter assembly for placement of a therapeutic device for treatment of a patient's bifurcated body lumen such as a bifurcated blood vessel having a main vessel portion, a plurality of branch vessels extending from the main vessel portion, and a vessel carina between the branch vessels, and a method for placement of the therapeutic device utilizing the catheter assembly of the invention. With reference to

FIGS. 1 and 2

, in one currently preferred embodiment, the present invention provides for an ostial placement catheter assembly


20


for placement of a therapeutic device in a side branch of a bifurcated body lumen


22


, such as a blood vessel having a trunk or main vessel portion


24


, a first or target side branch vessel


26


, and one or more second branch vessels


28


such as a main branch vessel connected to the main vessel portion adjacent to a carina


30


of the bifurcation between the branch vessels.




The catheter assembly includes a placement catheter shaft


32


, having a proximal end


34


and a leading edge distal end


36


, with an over-the-wire adapter hub


38


typically provided at the proximal end of the placement catheter. An expandable member, such as a dilatation balloon


40


, having a proximal end


42


and a distal end


44


, is typically mounted adjacent to the distal end of the placement catheter shaft. The placement catheter includes a lumen


46


, in fluid communication with the expandable member, and typically extending to the proximal end of the catheter and to the adapter hub, for inflation and deflation of the expandable member. The placement catheter also includes a tracking guide wire lumen


48


, with a guide wire entry port


49


, and a first guide member exit port


50


for a tracking guide wire


52


, such as a rapid exchange tracking guide wire or an over the wire style guide wire, for example, which is placed in the branch in which the therapeutic device is to be placed. The placement catheter also includes a distal soft tip


54


, and a positioning guide member lumen


56


typically extending to the proximal end of the placement catheter and to the adapter hub, with a second guide member exit port


58


on the placement catheter shaft adjacent to the proximal end of the balloon, for a positioning guide member such as an over-the-wire positioning guide member


60


. The positioning guide member is currently preferably a metal guide wire, but may also be an elongated member formed of nylon, Teflon, HDPE, and the like. A therapeutic device


62


, having a proximal end


64


and a distal end


66


, is preferably mounted on the expandable member, such as by crimping the therapeutic device on the expandable member. The therapeutic device may be a graft or stent, for example, that can have virtually any pattern known from prior art grafts and stents, and may be made of a suitable biocompatible material such as stainless steel, titanium, tantalum, super-elastic nickel-titanium (NiTi) alloys, and polymeric materials, for example, and similar suitable materials such as are known to those skilled in the art.




Referring to

FIG. 2

, the two guide wires are used to position the delivery system at the ostium of a vessel. The therapeutic device is mounted on the expandable member for placement in a target branch vessel, and the distal end of the tracking guide wire is placed into the target branch vessel. The placement catheter is then introduced over the tracking guide wire through the tracking guide wire lumen, and the positioning guide member is introduced through the positioning guide member lumen and extending the distal end of the positioning guide member through the exit port and is positioned in a remaining branch vessel. The distal end of the positioning guide member is placed in another vessel branching from the ostium of the target branch vessel, such as in the main branch vessel, for example. The exit port for the positioning guide member is optimally located in the catheter proximal to the position of the therapeutic device on the expandable member and the therapeutic device mounted on the expandable member, to assure accuracy in delivery of the therapeutic device, and may partially overlay the expandable member. The positioning guide member preferably exits the catheter shaft just proximal to the position of the therapeutic device on the expandable member, thus forming an intersection of the positioning guide member and the catheter shaft, which allows accurate positioning of the stent at the ostium by accurate mating of the intersection of the positioning guide member and the catheter shaft with the vessel carina. Alternatively, the positioning guide member may exit the catheter shaft partially in a manner so as to partially overlay the expandable member. The placement catheter is then advanced distally in the main vessel until the positioning guide member engages the vessel carina between the branch vessels. The mechanical stop as the positioning guide member engages the vessel carina can typically be felt by the practitioner, and the therapeutic device is then placed in the target branch vessel, such as by expanding the expandable member to lodge the therapeutic device in the target branch vessel.




With reference to

FIGS. 3

,


4


, and


5


, in a second presently preferred embodiment, the invention provides for an ostial placement catheter assembly


70


for placement of a therapeutic device such as a graft or a stent, in a branch of a bifurcated body lumen


72


, such as a blood vessel having a trunk or main vessel portion


74


, a first or target side branch vessel


76


, and one or more second branch vessels


78


such as a main branch vessel connected to the main vessel portion adjacent to a carina


80


of the bifurcation between the main vessel portion and the branch vessels. The catheter assembly includes a placement catheter shaft


82


, having a proximal end


84


and a distal end


86


, with a first leading edge distal tip


87


at the distal end, and an over-the-wire attachment hub


88


at the proximal end of the placement catheter. An expandable member such as a dilatation balloon


90


, having a proximal end


92


and a distal end


94


, is preferably mounted onto the distal end of the placement catheter shaft. The placement catheter includes a lumen


96


, in fluid communication with the expandable member, and typically extending to the proximal end of the placement catheter and to the adapter hub, for inflation and deflation of the expandable member. The placement catheter also includes a tracking guide wire lumen


98


, with a guide wire entry port


99


, and a first guide member exit port


100


for a tracking guide wire


102


, such as a rapid exchange tracking guide wire or an over the wire style guide wire, for example, which is placed in the branch in which the therapeutic device is to be placed.




The second embodiment of the catheter assembly also includes a secondary catheter member


104


, having a positioning guide member lumen


106


within the secondary catheter member, connected in fluid communication with a positioning guide member lumen


105


in the placement catheter shaft typically extending to the proximal end of the placement catheter, and to the adapter hub, and a second leading edge distal tip


107


. The secondary catheter member is preferably attached to the distal portion of the shaft adjacent to the proximal end of the expandable member. The second leading edge distal tip of the secondary catheter member is typically placed in the altenate branch or main branch vessel not being treated, and provides a support for creation of the mechanical stop for the placement catheter. The first leading edge distal tip is typically longer than the second leading edge distal tip. Means


108


are also provided for coupling the secondary catheter member to the distal end of the placement catheter, distal to the expandable member, such as an annular coupling member defining an opening adapted to receive the positioning guide member, and from which the positioning guide member or another separate elongated coupling member can be inserted and withdrawn by the practitioner, for coupling and uncoupling the secondary catheter member from the first leading edge distal tip as is shown in

FIG. 3

, for deployment in the alternate or main branch that is not being treated. Alternatively, the means for coupling can be a short flexible section of dual lumen extending from the catheter shaft proximal to the first leading edge distal tip, connecting the shorter secondary catheter member to the leading edge distal tip of the placement catheter while the first leading edge distal tip is maneuvered to the bifurcation site.




A second guide wire exit port


110


, connected in communication with the positioning guide member lumen adjacent to the proximal end of the balloon, is provided at the end of the second leading edge distal tip of the secondary catheter member, for a positioning guide member such as an over-the-wire positioning guide member


112


. The positioning guide member is currently preferably a metal guide wire, but may also be an elongated member formed of nylon, Teflon, HDPE, and the like. A therapeutic device


114


such as a straight stent, having a proximal end


116


and a distal end


118


, is preferably mounted on the expandable member, such as by crimping the therapeutic device on the expandable member. An elongated angle member


120


, having the shape of a two pronged, J-shaped stirrup, is also advantageously provided for engaging the carina of the bifurcation to be treated. The elongated angle member is currently preferably made of a nylon material, although the elongated angle member may also be made of polyamide block copolymers, such as those available from Elf Atochem under the brand name “PEBAX”, or other similar suitable materials. The elongated angle member has a distal end


122


forming a first prong disposed near the distal end of the first leading edge distal tip


87


, and a proximal end


124


forming a second prong attached near the distal end of the secondary catheter member. The first and second prongs are joined together by a curved intermediate arch section


126


, located near the proximal end of the therapeutic device. The proximal end


124


, the second prong, of the elongated angle member is preferably attached adjacent to the distal end of the secondary catheter member, typically by an adhesive such as a cyanoacrylate adhesive for example, available from Loctite Corporation, although other similar adhesives, and other means of attachment such as solvent bonding, heat bonding or welding, and the like, may also be suitable. The distal end


122


, the first prong, of the elongated angle member is adapted to extend between and to be secured to the catheter by the therapeutic device, between the therapeutic device and the expandable member, so as to form the arch section in the elongated angle member between the ends of the elongated angle member proximal to the therapeutic device. The first prong of the elongated angle member may optionally be attached to the first leading edge distal tip of the placement catheter, such as by adhesive or other means as noted above.




It should be appreciated that alternatively, a secondary catheter member for a positioning guide member may also be retracted and advanced through the second guide member port. It should also be understood that the invention may also be used for placement of a self-expanding stent that is introduced in a collapsed state, and can be allowed to expand into position without the need for the use of an expandable member, once the self-expanding stent is properly positioned. It will be apparent from the foregoing that while particular forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.



Claims
  • 1. A catheter assembly for placement of a therapeutic device for treatment of a patient's bifurcated body lumen having a main vessel portion, a plurality of branch vessels extending from the main vessel portion, and a vessel carina between the branch vessels, comprising:a placement catheter having a proximal end and a distal end, the placement catheter being adapted for mounting a therapeutic device at a location proximal to the distal end of the placement catheter, and for delivery of the therapeutic device in one of the branch vessels, the placement catheter including an expandable member mounted to the placement catheter adjacent to the distal end of the placement catheter, the placement catheter including means for inflating and deflating the expandable member, and the expandable member being adapted for mounting and delivery of the therapeutic device in one of the branch vessels; a tracking guide wire lumen disposed and extending within at least a portion of the placement catheter, the tracking guide wire lumen adapted to receive a tracking guide wire for slidable movement within the tracking guide wire lumen; and a positioning guide member lumen disposed and extending within at least a portion of the placement catheter and having an exit port in the catheter, the exit port being toward the proximal end and adjacent to a central location of the expand member on the placement catheter, the positioning guide member lumen adapted to receive a positioning guide member for slidable movement within the positioning guide member lumen.
  • 2. The catheter assembly of claim 1, wherein the placement catheter comprises an adapter hub.
  • 3. A catheter assembly for placement of a therapeutic device for treatment of a patient's bifurcated body lumen having a main vessel portion, a plurality of branch vessels extending from the main vessel portion, and a vessel carina between the branch vessels, comprising:a placement catheter having a proximal end and a distal end, the placement catheter being adapted for mounting a therapeutic device at a location proximal to the distal end of the placement catheter, and for delivery of the therapeutic device in one of the branch vessels; a tracking guide wire lumen disposed and extending within at least a portion of the placement catheter, the tracking guide wire lumen adapted to receive a tracking guide wire for slidable movement within the tracking guide wire lumen; a positioning guide member lumen disposed and extending within at least a portion of the placement catheter and having an exit port in the placement catheter, the exit port being toward the proximal end and adjacent to a central location of the therapeutic device on the placement catheter, the positioning guide member lumen adapted to receive a positioning guide member for slidable movement within the positioning guide member lumen; a secondary catheter member having a distal end and a proximal end, the secondary catheter member mounted to the placement catheter and including a positioning guide member lumen connected in communication with the positioning guide member lumen of the placement catheter, the positioning guide member lumen of the secondary catheter member adapted to receive the positioning guide member for slidable movement within a positioning guide member lumen of the secondary catheter member; means for coupling and uncoupling the distal end of the secondary catheter member from the distal end of the placement catheter distal to the location of the therapeutic device; and an elongated angle member having a distal end and a proximal end, the elongated angle member mounted to the secondary catheter member and adapted to be retained by the therapeutic device and extending between the therapeutic device and the location of the therapeutic device so as to form an arch in the elongated angle member between the distal and proximal ends of the elongated angle member proximal to the therapeutic device.
  • 4. The catheter assembly of claim 3, wherein the means for coupling and uncoupling comprises an annular coupling member adapted to receive the distal end of the positioning guide member.
  • 5. The catheter assembly of claim 3, wherein one end of the elongated angle member is mounted adjacent to the distal end of the secondary catheter member.
  • 6. A catheter assembly for placement of a therapeutic device for treatment of a patient's bifurcated body lumen having a main vessel portion, a plurality of branch vessels extending from the main vessel portion, and a vessel carina between the branch vessels, comprising:a catheter having a proximal end and a distal end, the catheter being adapted for mounting a therapeutic device at a location proximal to the distal end of the catheter, and for delivery of the therapeutic device in a target branch vessel; a tracking guide wire lumen disposed and extending within at least a portion of the catheter, the tracking guide wire lumen adapted to receive a tracking guide wire for slidable movement within the tracking guide wire lumen; a positioning guide member lumen disposed and extending within at least a portion of the catheter and having an exit port in the catheter proximal to the location of the therapeutic device, the positioning guide member lumen adapted to receive a positioning guide member for slidable movement within the positioning guide member lumen; a secondary catheter member having a distal end and a proximal end, the secondary catheter member mounted to the placement catheter and including a positioning guide member lumen connected in communication with the positioning guide member lumen of the placement catheter, the positioning guide member lumen of the secondary catheter member adapted to receive the positioning guide member for slidable movement within the positioning guide member lumen of the secondary catheter member; means for coupling and uncoupling the distal end of the secondary catheter member from the distal end of the placement catheter distal to the location of the therapeutic device; and an elongated angle member having a distal end and a proximal end, the elongated angle member mounted to the secondary catheter member and adapted to be retained by the therapeutic device and extending between the therapeutic device and the secondary catheter so as to form an arch in the elongated angle member between the distal and proximal ends of the elongated angle member proximal to the therapeutic device.
  • 7. The catheter assembly of claim 6, wherein the catheter comprises an expandable member mounted adjacent to the distal end of the placement catheter, the catheter including means for inflating and deflating the expandable member, the expandable member being adapted for mounting and delivery of the therapeutic device in a target branch vessel, and wherein the exit port in the placement catheter is located proximal and adjacent to a main body location of the expandable member.
  • 8. The catheter assembly of claim 6, wherein the placement catheter comprises an adapter hub.
  • 9. The catheter assembly of claim 6, wherein the means for coupling and uncoupling comprises an annular coupling member adapted to receive the distal end of the positioning guide member.
  • 10. The catheter assembly of claim 6, wherein one end of the elongated angle member is mounted adjacent to the distal end of the secondary catheter member.
  • 11. A method for placement of a therapeutic device for treatment of a patient's bifurcated body lumen having a main vessel portion, a plurality of branch vessels extending from the main vessel portion, and a vessel carina between the branch vessels, comprising the steps of:providing a placement catheter having a proximal end and a distal end, the placement catheter having an expandable member mounted to the distal end of the placement catheter, a tracking guide wire lumen disposed and extending within at least a portion of the placement catheter, and a positioning guide member lumen disposed and extending within at least a portion of the placement catheter and having an exit port in the catheter proximal and adjacent to main body location of the expandable member; mounting a therapeutic device on the expandable member for placement in a target branch vessel; placing a distal end of a tracking guide wire into the target branch vessel; introducing the placement catheter over the tracking guide wire through the tracking guide wire lumen; introducing a positioning guide member through the positioning guide member lumen and extending a distal end of the positioning guide member through the exit port in the catheter proximal to the expandable member; placing the distal end of the positioning guide member in another branch vessel; advancing the placement catheter distally in the main vessel portion until the positioning guide member engages the vessel carina between the branch vessels; and placing the therapeutic device in a target branch vessel.
  • 12. A method for placement of a therapeutic device for treatment of a patient's bifurcated body lumen having a main vessel portion, a plurality of branch vessels extending from the main vessel portion, and a vessel carina between the branch vessels, comprising the steps of:providing a placement catheter having a proximal end and a distal end, the placement catheter having a therapeutic device mounted thereon, a tracking guide wire lumen disposed and extending within at least a portion of the placement catheter, a positioning guide member lumen disposed and extending within at least a portion of the placement catheter and having an exit port in the catheter proximal to the therapeutic device mounted on the placement catheter, a secondary catheter member having a distal end and a proximal end, the secondary catheter member mounted to the placement catheter and including a positioning guide member lumen connected in communication with the positioning guide member lumen of the placement catheter, and an elongated angle member having a distal end and a proximal end, the elongated angle member mounted to the secondary catheter member and adapted to be retained by the therapeutic device and extending between the therapeutic device and the placement catheter so as to form an arch in the elongated angle member between the distal and proximal ends of the elongated angle member proximal to the therapeutic device; placing the distal end of a tracking guide wire into a main vessel portion of a target branch vessel; coupling the distal end of the secondary catheter member to the distal end of the placement catheter distal to the therapeutic device mounted on the placement catheter; introducing the placement catheter over the tracking guide wire using the tracking guide wire lumen; introducing a positioning guide member through the positioning guide member lumen and extending the distal end of the positioning guide member through the exit port in the placement catheter proximal to the therapeutic device mounted on the placement catheter; uncoupling the distal end of the secondary catheter member from the distal end of the placement catheter distal to the therapeutic device mounted on the placement catheter; placing the distal end of a positioning guide member disposed in the positioning guide member lumen in another branch vessel; advancing the placement catheter distally in the main vessel portion until the arch of the elongated angle member engages the vessel carina between the branch vessels; and placing the therapeutic device in the target branch vessel.
  • 13. The method of claim 12, wherein the placement catheter comprises an expandable member adjacent to the distal end of the placement catheter, and the therapeutic device is mounted on the expandable member.
  • 14. The method of claim 13, wherein the distal end of the placement catheter distal to the expandable member includes an annular coupling member adapted to receive the distal end of the positioning guide member, and wherein a step of coupling the distal end of the secondary catheter member to the distal end of the placement catheter comprises placing the distal end of the positioning guide member in the annular coupling member.
  • 15. The method of claim 14, wherein a step of uncoupling the distal end of the secondary catheter member from the distal end of the placement catheter comprises withdrawing the distal end of the positioning guide member from the annular coupling member.
US Referenced Citations (135)
Number Name Date Kind
2845959 Sidebotham Aug 1958 A
2978787 Liebig Apr 1961 A
2990605 Demsyk Jul 1961 A
3096560 Liebig Jul 1963 A
3142067 Liebig Jul 1964 A
3657744 Ersek Apr 1972 A
3908662 Razgulov et al. Sep 1975 A
3945052 Liebig Mar 1976 A
4041931 Elliot et al. Aug 1977 A
4047252 Liebig et al. Sep 1977 A
4061134 Samuels et al. Dec 1977 A
4108161 Samuels et al. Aug 1978 A
4140126 Choudhury Feb 1979 A
4193137 Heck Mar 1980 A
4202349 Jones May 1980 A
4214587 Sakura, Jr. Jul 1980 A
4517687 Liebig et al. May 1985 A
4560374 Hammerslag Dec 1985 A
4562596 Kornberg Jan 1986 A
4577631 Kreamer Mar 1986 A
4617932 Kornberg Oct 1986 A
4652263 Herweck et al. Mar 1987 A
4693249 Schenck et al. Sep 1987 A
4728328 Hughes et al. Mar 1988 A
4732152 Wallsten et al. Mar 1988 A
4739762 Palmaz Apr 1988 A
4787899 Lazarus Nov 1988 A
4793348 Palmaz Dec 1988 A
4795458 Regan Jan 1989 A
4795465 Marten Jan 1989 A
4830003 Wolff et al. May 1989 A
4872874 Taheri Oct 1989 A
4878906 Lindemann et al. Nov 1989 A
4892539 Koch Jan 1990 A
4950227 Savin et al. Aug 1990 A
4969890 Sugita et al. Nov 1990 A
4969896 Shors Nov 1990 A
4994071 MacGregor Feb 1991 A
5047050 Arpesani Sep 1991 A
5104399 Lazarus Apr 1992 A
5108424 Hoffman, Jr. et al. Apr 1992 A
5127919 Ibrahim et al. Jul 1992 A
5135536 Hillstead Aug 1992 A
5156619 Ehrenfeld Oct 1992 A
5178630 Schmitt Jan 1993 A
5178634 Martinez Jan 1993 A
5197976 Herweck et al. Mar 1993 A
5197977 Hoffman, Jr. et al. Mar 1993 A
5304220 Maginot Apr 1994 A
5316023 Palmaz et al. May 1994 A
5360443 Barone et al. Nov 1994 A
5443497 Venbrux Aug 1995 A
5443498 Fontaine Aug 1995 A
5456712 Maginot Oct 1995 A
5507769 Marin et al. Apr 1996 A
5514154 Lau et al. May 1996 A
5522880 Barone et al. Jun 1996 A
5527355 Ahn Jun 1996 A
5562724 Vorwerk et al. Oct 1996 A
5562726 Chuter Oct 1996 A
D376011 Nunokawa Nov 1996 S
5571167 Maginot Nov 1996 A
5571170 Palmaz et al. Nov 1996 A
5571171 Barone et al. Nov 1996 A
5571173 Parodi Nov 1996 A
5575817 Martin Nov 1996 A
5578071 Parodi Nov 1996 A
5578072 Barone et al. Nov 1996 A
5591228 Edoga Jan 1997 A
5591229 Parodi Jan 1997 A
5603721 Lau et al. Feb 1997 A
5609627 Goicoechea et al. Mar 1997 A
5613980 Chauhan Mar 1997 A
5617878 Taheri Apr 1997 A
5632763 Glastra May 1997 A
5632772 Alcime et al. May 1997 A
5639278 Dereume et al. Jun 1997 A
5643340 Nunokawa Jul 1997 A
5649952 Lam Jul 1997 A
5669924 Shaknovich Sep 1997 A
5676696 Marcade Oct 1997 A
5676697 McDonald Oct 1997 A
5683450 Goicoechea et al. Nov 1997 A
5683452 Barone et al. Nov 1997 A
5683453 Palmaz Nov 1997 A
5693084 Chuter Dec 1997 A
5693086 Goicoechea et al. Dec 1997 A
5693087 Parodi Dec 1997 A
5693088 Lazarus Dec 1997 A
5695517 Marin et al. Dec 1997 A
5709713 Evans et al. Jan 1998 A
5713917 Leonhardt et al. Feb 1998 A
5718734 Goicoechea et al. Feb 1998 A
5720735 Dorros Feb 1998 A
5735893 Lau et al. Apr 1998 A
5749825 Fischell et al. May 1998 A
5755734 Richter et al. May 1998 A
5755735 Richter et al. May 1998 A
5755771 Penn et al. May 1998 A
5776180 Goicoechea et al. Jul 1998 A
5782906 Marshall et al. Jul 1998 A
5800508 Goicoechea et al. Sep 1998 A
5800520 Fogarty et al. Sep 1998 A
5827320 Richter et al. Oct 1998 A
5879382 Boneau Mar 1999 A
5893887 Jayaraman Apr 1999 A
5895407 Jayaraman Apr 1999 A
5902332 Schatz May 1999 A
5916234 Lam Jun 1999 A
5916263 Goicoechea et al. Jun 1999 A
5919225 Lau et al. Jul 1999 A
5921995 Kleshinski Jul 1999 A
5938696 Goicoechea et al. Aug 1999 A
5954693 Barry Sep 1999 A
5972017 Berg et al. Oct 1999 A
5976155 Foreman et al. Nov 1999 A
6030413 Lazarus Feb 2000 A
6030414 Taheri Feb 2000 A
6030415 Chuter Feb 2000 A
6033434 Borghi Mar 2000 A
6033435 Penn et al. Mar 2000 A
6039754 Caro Mar 2000 A
6048361 Von Oepen Apr 2000 A
6051020 Goicoechea et al. Apr 2000 A
6051021 Frid Apr 2000 A
6059810 Brown et al. May 2000 A
6066168 Lau et al. May 2000 A
6086610 Duerig et al. Jul 2000 A
6129738 Lashinski et al. Oct 2000 A
6221090 Wilson Apr 2001 B1
6258073 Mauch Jul 2001 B1
6355061 Quiachon et al. Mar 2002 B1
6361544 Wilson et al. Mar 2002 B1
6361555 Wilson Mar 2002 B1
6447501 Solar et al. Sep 2002 B1
Foreign Referenced Citations (24)
Number Date Country
0 461 791 Dec 1991 EP
0 466 518 Jan 1992 EP
0 747 020 Dec 1996 EP
0 804 907 Nov 1997 EP
0 673 843 Sep 1992 FR
2 737 969 Feb 1997 FR
1217402 Mar 1986 SU
1318235 Jun 1987 SU
1389778 Apr 1988 SU
1457921 Feb 1989 SU
1482714 May 1989 SU
WO 9516406 Jun 1995 WO
WO 9521592 Aug 1995 WO
WO 9623455 Aug 1996 WO
WO 9624306 Aug 1996 WO
WO 9624308 Aug 1996 WO
WO 9634580 Nov 1996 WO
WO 9707752 Mar 1997 WO
WO 9715346 May 1997 WO
WO 9716217 May 1997 WO
WO 9741803 Nov 1997 WO
WO 9745073 Dec 1997 WO
WO 9836709 Aug 1998 WO
WO 9904726 Feb 1999 WO
Non-Patent Literature Citations (6)
Entry
Lawrence, David D., Jr., M.D., et al., Percutaneous Endovascular Graft: Experimental Evaluation, Radiology, vol. 163, No. 2, pp. 357-360 (1987).
Yoshioka, Tetsuya, et al., Self-Expanding Endovascular Graft: An Experimental Study in Dogs, Radiology, vol. 170, pp. 673-676 (1989).
Mirich, David, M.D., et al., Percutaneously Placed Endovascular Grafts for Aortic Aneurysms: Feasibility Study, Radiology, vol. 170, No. 3, Part 2, pp. 1033-1037 (1989).
Parodi, J.C., M.D., et al., Transfemoral Intraluminal Graft Implantation for Abdominal Aortic Aneurysms, Annals of Vascular Surgery, vol. 5, No. 6, pp. 491-499 (1991).
Chuter, Timothy A.M., et al., Transfemoral Endovascular Aortic Graft Placement, Journal of Vascular Surgery, pp. 185-196 (Aug. 1993).
Bard XT Catina Bifurcate Stent (Brochure) (Undated).