Catheter placement device including an extensible needle safety component

Information

  • Patent Grant
  • 11040176
  • Patent Number
    11,040,176
  • Date Filed
    Friday, May 13, 2016
    8 years ago
  • Date Issued
    Tuesday, June 22, 2021
    3 years ago
Abstract
An insertion device for inserting a catheter into a patient's body is disclosed. The insertion device combines needle insertion, guidewire advancement, catheter insertion, and needle shielding in a single device. In one embodiment, the insertion device comprises a housing including a hollow needle distally extending from the housing. At least a portion of the catheter is pre-disposed over the needle such that the catheter is disposed substantially external to the housing. A guidewire is included, as well as an advancement assembly that is configured to selectively advance the distal end of the guidewire out a distal opening of the needle in preparation for distal advancement of the catheter. The advancement assembly is further configured to enable distal catheter advancement before shielding the needle after use. The insertion device is configured to be grasped and used by a single hand of a user during advancement of the guidewire and the catheter.
Description
BRIEF SUMMARY

Briefly summarized, embodiments of the present invention are directed to an insertion device for inserting a catheter or other tubular medical device into a body of a patient. The insertion device combines needle insertion, guidewire advancement, catheter insertion, and needle shielding in a single device. In one embodiment, the insertion device comprises a housing and a hollow needle that distally extends from the housing. At least a portion of the catheter is pre-disposed over the needle such that the catheter is disposed substantially external to the housing. A guidewire is included, as well as an advancement assembly that is configured to selectively advance the distal end of the guidewire out a distal opening of the needle in preparation for distal advancement of the catheter. The advancement assembly is further configured to enable selective advancement of the catheter in a distal direction. The insertion device is configured to be grasped and used by a single hand of a user during advancement of the guidewire and the catheter.


In another embodiment, continuous blood flash indicators are disclosed to assist in confirming that the needle of the catheter insertion device has accessed and remains in a vein or other blood-carrying vessel. In yet another embodiment, needle safety components are disclosed for use with the catheter insertion device.


These and other features of embodiments of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of embodiments of the invention as set forth hereinafter.





BRIEF DESCRIPTION OF THE DRAWINGS

A more particular description of the present disclosure will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. Example embodiments of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIGS. 1A-1J show various views of a catheter insertion tool according to one embodiment;



FIGS. 2A-2C show various views of components of the catheter insertion tool of FIGS. 1A-1J;



FIGS. 3A-3C show various stages of use of the catheter insertion tool of FIGS. 1A-1J;



FIG. 4 is a cross-sectional side view of a blood flash indicator according to one embodiment;



FIG. 5 is a perspective view of a blood flash indicator according to one embodiment;



FIG. 6 is a top view of a blood flash indicator according to one embodiment;



FIG. 7 is a top view of a blood flash indicator according to one embodiment;



FIGS. 8A-8H are various views of a catheter insertion tool according to one embodiment;



FIGS. 9A-9G are various views of a needle safety component according to one embodiment;



FIG. 10 is a cross-sectional view of a needle and guidewire according to one embodiment;



FIG. 11 is a cross-sectional view of a needle and guidewire according to one embodiment;



FIG. 12 is a cross-sectional view of a needle and guidewire according to one embodiment;



FIG. 13 is a partial cross-sectional side view of a needle and guidewire according to one embodiment;



FIG. 14 is a partial cross-sectional side view of a needle and guidewire according to one embodiment;



FIG. 15 is a partial cross-sectional side view of a needle and guidewire according to one embodiment;



FIG. 16 is a partial cross-sectional side view of a needle and guidewire according to one embodiment;



FIG. 17 is a side view of a guidewire according to one embodiment;



FIG. 18 is a perspective view of an advancement member of a catheter insertion tool according to one embodiment;



FIG. 19 is a top view of a blood flash indicator according to one embodiment;



FIG. 20 is a top view of a blood flash indicator according to one embodiment;



FIG. 21 is a top view of a blood flash indicator according to one embodiment;



FIG. 22 is a top view of a blood flash indicator according to one embodiment;



FIG. 23 is a top view of a blood flash indicator according to one embodiment;



FIG. 24 is a top view of a blood flash indicator according to one embodiment;



FIG. 25 is a top view of a blood flash indicator according to one embodiment;



FIGS. 26A-26D are various views of a catheter insertion tool according to one embodiment;



FIGS. 27A-27E are various views of a catheter insertion tool according to one embodiment;



FIG. 28 is a perspective view of a blood flash indicator according to one embodiment;



FIG. 29 is a perspective view of a catheter insertion tool according to one embodiment; and



FIGS. 30A and 30B depict various views of a blood flash indicator according to one embodiment.





DETAILED DESCRIPTION OF SELECTED EMBODIMENTS

Reference will now be made to figures wherein like structures will be provided with like reference designations. It is understood that the drawings are diagrammatic and schematic representations of exemplary embodiments of the present invention, and are neither limiting nor necessarily drawn to scale.


For clarity it is to be understood that the word “proximal” refers to a direction relatively closer to a clinician using the device to be described herein, while the word “distal” refers to a direction relatively further from the clinician. For example, the end of a catheter placed within the body of a patient is considered a distal end of the catheter, while the catheter end remaining outside the body is a proximal end of the catheter. Also, the words “including,” “has,” and “having,” as used herein, including the claims, shall have the same meaning as the word “comprising.”


Embodiments of the present invention are generally directed to a tool for assisting with the placement into a patient of a catheter or other tubular medical device. For example, catheters of various lengths are typically placed into a body of a patient so as to establish access to the patient's vasculature and enable the infusion of medicaments or aspiration of body fluids. The catheter insertion tool to be described herein facilitates such catheter placement. Note that, while the discussion below focuses on the placement of catheters of a particular type and relatively short length, catheters of a variety of types, sizes, and lengths can be inserted via the present device, including peripheral IVs, intermediate or extended-dwell catheters, PICCs, central venous catheters, etc. In one embodiment, catheters having a length between about 1 inch and about 1.9 inches can be placed, though many other lengths are also possible.



FIGS. 1A-1J depict various details regarding a catheter insertion tool (“insertion tool” or “insertion device”), generally depicted at 10, according to one embodiment. As shown, the insertion tool 10 includes a housing 12 that may itself include a top front housing portion 12A, a top back housing portion 12B, and a bottom housing portion 12C mated with one another via tabs and slots 78 or other suitable attachment modes. The housing 12 further includes an open distal end 12D, and a flat bottom 12E to enable the insertion device 10 to lie flat on a surface without tipping. In another embodiment, the housing is integrally formed. In yet another embodiment, only a top housing portion and a bottom housing portion are employed. In the present embodiment, the housing composed of a thermoplastic such as polycarbonate and is translucent, though other configurations are contemplated. A rib 38 runs along the longitudinal length of the bottom housing portion 12C, in the present embodiment. The housing 12 defines grip surfaces 74 on either side of the housing, as seen in FIGS. 1B and 1G, to enable grasping of the insertion device 10 by the user.


A needle hub 14 supporting a hollow needle 16 (which together form part of a needle assembly, in one embodiment) is included with the housing 12. In the present embodiment, the needle hub 14 is integrally formed with the housing 12 within a cavity 70 defined by the housing, as best seen in FIG. 1I, though the needle hub can be configured in other ways. The needle hub 14 includes a pocket 14A for receiving a portion of the needle 16 and a quantity of adhesive, such as liquid or UV-cure adhesive for example, in order to fix the needle in place in the needle hub. The needle 16 extends distally from the needle hub 14 so as to extend out an open distal end 12D of the housing 12 and terminates at a distal end 16B. A notch 18 is defined through the wall of the needle 16 proximate the distal end thereof. The notch 18 enables flashback of blood to exit the lumen defined by the hollow needle 16 once access to the patient's vasculature is achieved during catheter insertion procedures. Thus, blood exiting the notch 18 can be viewed by a clinician to confirm proper needle placement in the vasculature, as will be explained further below.


A catheter 42 is removably disposed on the portion of the needle 16 residing external to the housing 12 such that the needle occupies a lumen of the catheter defined by a catheter tube 44. The catheter tube 44 extends distally from a hub 46 of the catheter 42, which hub is initially disposed adjacent the open distal end 12D of the housing 12, as shown in FIG. 1A-1C.


The insertion tool 10 further includes a guidewire advancement assembly 20 for advancing a guidewire 22 through the needle 16 and into the vasculature of the patient once access by the needle has been achieved. The guidewire 22 (FIG. 1I) is pre-disposed within the lumen of the needle 16. The guidewire advancement assembly 20 includes a guidewire lever 24 that selectively advances the guidewire 22 in a distal direction during use of the insertion tool 10 such that the distal portion of the guidewire extends beyond the distal end 16B of the needle 16. A finger pad 28 of the guidewire lever 24 is slidably disposed on the housing 12 via a slot 32 to enable a thumb and/or finger(s) of the user to selectively advance the guidewire 22 distally past the distal end 16B of the needle 16. Of course, other engagement schemes to translate user input to guidewire movement could also be employed. In the present embodiment, the guidewire 22 includes a guidewire support tube 19 (FIGS. 1I, 1J) to provide additional stiffness to the guidewire and facilitate its distal advancement described above.


Together with FIG. 1H, reference is made to FIGS. 2A-2C in describing further details of the insertion tool 10 of FIGS. 1A-1J. Further details of the guidewire lever 24 are shown, including a lever tab 26 at the proximal end of the guidewire lever that is used as described below in distally advancing the guidewire 22. An angled portion 24A of the guidewire lever 24 is disposed distal to the lever tab 26. A push tab 30 is defined below the finger pad 28 and is employed during distal advancement of the guidewire lever 24 to partially advance the catheter 42 distally, as will be described below.


In the present embodiment, a proximal end of the guidewire 22 is attached at an anchor point 36 on an interior portion of the housing 12 (or other fixed portion of the insertion tool 10) and looped about the proximal portion of the guidewire lever 24 in a roughly U-shaped configuration (FIG. 1H) such that the distal end of the guidewire extends two units of distance distally past the distal end 16B of the needle 16 for every one unit of distance of movement of the finger pad 28.


In greater detail, FIGS. 2A-2C show that curved guide surfaces 34 are defined on the proximal end of the guidewire lever 24 to enable an intermediate portion of the guidewire 22 to loop back on itself proximate the proximal end of the device 10. The guide surfaces 34 constrain the flexible guidewire 22 into the looped, substantially U-shaped configuration. The angled portion 24A of the guidewire lever 24 helps to maintain the radius of the U-shaped portion of the guidewire 22 large enough so as to prevent kinking/undesired bending of the guidewire as it loops back. The looped-back intermediate portion of the guidewire 22 then extends toward the distal end of the device 10 within the cavity 70 of the housing 12 before it enters the lumen of the needle 16 at a proximal end of the needle, which is secured by the needle hub 14. A bar 34A is positioned across the guide surfaces 34 in the present embodiment to keep the guidewire 22 in contact with the guide surfaces. In one embodiment, the rib 38 can include a channel in which a portion of the intermediate portion of the looped guidewire 22 can reside so as to guide the guidewire toward the proximal end of the needle 16.


So configured, the free distal end of the guidewire 22 initially resides within the lumen of the needle 16 and is positioned for selective advancement by the guidewire advancement assembly 20 such that the free distal end thereof can distally extend from the open distal tip of the needle 16. This selective advancement of the guidewire 22 is achieved in the present embodiment via distal movement of the finger pad 28 included on the device housing 12. Distal movement of the finger pad 28 causes corresponding distal sliding movement of the guidewire lever 24. The guide surfaces 34 of the guidewire lever 26 push the bend of the guidewire 22 distally as the guidewire lever 24 advances. Note that the guidewire 22 is sufficiently rigid, in part due to the guidewire support tube 19, so as to be advanced by the guidewire lever 24 without buckling. Also, the guide surfaces 34 and guidewire 22 are configured to enable retraction of the guidewire 22 back into the insertion device housing 12 when the finger pad 28 (or other suitable mechanism in other embodiments) is slid proximally.


This distal sliding movement of the guidewire lever 24 causes the distal end of the guidewire 22 to extend distally from the open distal tip 16B of the needle 16. Because of its anchored proximal end at the anchor point 36 and its bent or looped U-shape configuration (FIG. 1H), the guidewire 22 is distally advanced at a linear rate of about twice the linear advancement rate of finger pad 28, which results in about twice the length of guidewire extension when compared with the length of movement of the guidewire advancement slide 28. This further desirably results in a relatively longer length of guidewire extension into the vein or other patient vessel so as to more suitably guide the catheter 42 into the patient's body. As such, the guidewire advancement assembly described here operates as a type of “reverse pulley” system for distal guidewire advancement. Note that other looping configurations of the guidewire can be included with the device 10 in addition to those shown and described herein. Also, differing ratios of guidewire extension vs. advancement assembly movement are also possible in other embodiments.


Note that the above-described structures for providing a looping guidewire are only examples of structures that can suitably perform the desired functionality described herein. Indeed, other structures can be employed to accomplish the principles described in connection with the present embodiment. Also, though shown and described above to be attached to the catheter insertion device housing, the proximal end of the guidewire can be attached to other structures within/on the device, such as the needle hub 14, for instance. The majority length of the guidewire in one embodiment includes a metal alloy of nickel and titanium commonly referred to as nitinol, which is sufficiently rigid and can be disposed in the U-shaped configuration without retaining a memory of that position when the guidewire is advanced. Note that other suitable guidewire materials can also be employed.


The insertion tool 10 further includes a catheter advancement assembly 40 for selectively advancing in a distal direction the catheter 42, pre-disposed on the needle 16 external to the housing 12. In particular, the catheter advancement assembly 40 includes an advancement member 48 that initially resides within the cavity 70 defined by the housing 12 and is used in selectively advancing the catheter 42 in a distal direction during use of the insertion tool 10 to insert the catheter into the body of the patient. As will be seen, the advancement member 48 also acts as a needle safety component for shielding the needle 16 from the user after use of the device 10 is complete, as will be described further below.



FIGS. 2A-2C depict further details of the advancement member 48 of the catheter advancement assembly 40 according to the present embodiment. As shown, the advancement member 48 defines an elongate body that is configured to straddle the needle 16 when the advancement member 48 is initially disposed within the housing cavity 70. The body of the advancement member 48 includes a distal portion 49. A pair of hub engagement tabs 50 extend distally from the distal end of the distal portion 49, and each engagement tab includes a radially extending protuberance 52. When the advancement member 48 is disposed within the housing 12, the needle 16 passes distally between the engagement tabs 50, as seen in FIG. 1H. The advancement member 48 is configured such that the needle 16 extends the engagement tabs 50 a relatively small distance radially outward while the needle is disposed therebetween. The catheter 42, when disposed over the needle 16, as seen in FIG. 1H, is kept in place against the open housing distal end 12D via the protuberances 52 of the engagement tabs 50 producing a friction fit against an inner surface of the catheter hub 46. As will be seen further below, when the needle 16 is no longer disposed between the engagement tabs 50, the tabs withdraw radially inward, allowing the catheter to separate from the distal end of the advancement member 48.


The distal portion 49 of the advancement member 48 further includes an advancement tab 54 for assisting with manual distal extension of the advancement tab during deployment of the catheter 42, and a plurality of top and bottom ribs 56 that extend across the advancement member body to join two elongate arms 58 that longitudinally extend proximally from the distal portion. FIGS. 1G and 1H show that the arms 58 straddle the needle 16 when the advancement member 48 is initially disposed in the cavity 70 of the housing 12. The top and bottom ribs 56 are positioned such that the distal tip 16B of the needle 16 is shielded from user contact after extension of the advancement member 48 from the housing 12 is complete, as discussed further below. In addition, a proximal end 56A of the ribs 56 (FIG. 1H) acts as a stop against a pair of lock wedges 72, formed in the housing 12, to prevent further proximal entry of the advancement member 48 into the housing cavity 70.


Each of the arms 58 includes secondary tabs 60 disposed proximal to the distal portion 49 to assist, together with the advancement tab 54, in manually extending the advancement member 48 in the distal direction by enabling locations for a finger of the user to push against. Proximate the proximal end of each advancement member arm 58, a locking tab 62 is included. The locking tabs 62 are deformable to enable them to pass over the lock wedges 72 when the advancement member 48 is distally extended during catheter distal advancement (described below) so as to prevent re-entry of the advancement member into the housing cavity 70, which also ensures that the distal tip 16B of the needle 16 remains shielded by the ribs 56 of the advancement member distal portion 49. In addition, stop surfaces 64 are included on the advancement member arms 58 proximal to each locking tab 62 so as to prevent the advancement member 48 from completely separating from the housing 12 when the advancement member is distally extended from the housing. This is accomplished by each stop surface 64 engaging with a respective one of the lock wedges 72, which prevents further distal movement of the advancement member. Thus, after full distal extension, the advancement member 48 is locked from either proximal movement to cause re-entry of the advancement member into the housing cavity 70 via engagement of the locking tabs 62 with the lock wedges 72, or further distal movement via engagement of the stop surfaces 64 with the lock wedges. In addition to these, other modes for preventing undesired proximal and distal movement of the advancement member after distal extension thereof can also be employed.


Note that in one embodiment the outer diameters of the needle 16 and the catheter tube 44 are lubricated with silicone or other suitable lubricant to enhance sliding of the catheter tube with respect to the needle and for aiding in the insertion of the catheter into the body of the patient.



FIGS. 3A-3C depict various stages of use of the insertion device 10 in placing the catheter 42 in the vasculature of a patient. For clarity, the various stages are depicted without actual insertion into a patient being shown. With the insertion tool 10 in the configuration shown in FIG. 1E, a user grasping the insertion device 10 first guides the distal portion of the needle 16 through the skin at a suitable insertion site and accesses a subcutaneous vessel.


After needle access to the vessel is confirmed, the guidewire advancement assembly 20 is actuated, wherein the finger pad 28 (disposed in the slot 32 defined in the housing) is advanced by the finger of the user to distally advance the guidewire 22 (FIG. 3A), initially disposed within the hollow needle 16. Note that the guidewire 22 is distally advanced by the guidewire lever 24, which is operably attached to the slidable finger pad 28.


Distal advancement of the guidewire 22 continues until the finger pad 28 has been distally slid a predetermined distance, resulting in a predetermined length of the guidewire 22 extending past the distal end of the needle 16, as shown in FIG. 3A.


At this point, the finger pad 28 is slid distally an additional distance, which causes the push tab 30 (FIG. 2B) of the guidewire lever 24 to abut against the proximal end 56A of the ribs 56 of the advancement member 48 of the catheter advancement assembly 40. This in turn causes the advancement member 48 to distally advance out the open distal end of the housing 12D a predetermined distance. As it is removably attached to the distal portion 49 of the advancement member 48 via the hub engagement tabs 50, the catheter 42 is also distally advanced the predetermined distance. Distal advancement of the advancement member 48 ceases when the notch above the guidewire lever push tab 30 contacts the distal end of the slot 32 (FIG. 1I) defined in the housing 12 and stops further distal sliding of the finger pad 28.


Once the guidewire lever 24 has been fully distally extended via sliding of the finger pad 28, which in turn has extended the guidewire 22 past the distal end 16B of the needle 16 and into the vessel of the patient and has distally advanced the advancement member 48 and connected catheter 42 a predetermined distance away from the device housing 12, further manual distal advancement of the advancement member 48 is performed by a finger of the user via pushing against the advancement tab 54 and then the secondary tabs 60 of the advancement member, as seen in FIG. 3B. This causes the catheter tube 44 to slide over distal portions of the needle 16 and guidewire 22 and into the patient's vasculature via the insertion site. In light of this, it is appreciated that the finger pad 28 acts as a first member used to advance the guidewire 22, whereas the advancement tab 54 acts as a second member used to advance the catheter 42, in the present embodiment. It is appreciated that the finger pad 28 is distally slidable to a distal termination point that is proximate a proximal commencement point of the second member such that movement of a finger of the user from the finger pad 28 to the advancement tab 54 occurs without substantial repositioning of the finger, in the present embodiment.


The advancement member 48 and connected catheter 42 are manually distally advanced until the advancement member has been fully extended, as seen in FIG. 3B, i.e., the locking tabs 62 slide over and lock with the lock wedges 72 defined by the housing 12, thus locking the advancement member from further distal advancement. In this fully extended state of the advancement member 48, the distal portion 49 is disposed over the needle 16 and shielded by the ribs 56. Thus, the advancement member 48 serves as one example of a needle safety component, according to the present embodiment. The engagement of the above-mentioned locking tabs 62, as well as the stop surfaces 64, of the advancement member 48 with the lock wedges 72 prevents further distal or proximal movement of the advancement member, thus desirably ensuring continued shielding of the distal end 16B of the needle 16.


The above distal advancement of the advancement member 48 likewise distally advances the catheter tube 44 over the needle 16 and guidewire 22 and into the vessel of the patient until the catheter hub 46 abuts the insertion site of the needle through the skin. As the needle 16 is no longer disposed between them, the hub engagement tabs 50 compress radially inward, thus releasing the friction fit between the protuberances 52 and the interior surface of the catheter hub. This enables the catheter 42 to be separated from the advancement member 48, as shown in FIG. 3C. The catheter 42, now in place in the patient, can be prepared for use and dressed down, per standard procedures. Then insertion device 10 can be discarded.


In light of the above, it is appreciated that the guidewire advancement assembly 20 and the catheter advancement assembly 40 operate in conjunction with one another in the present embodiment and thus comprise together a master advancement assembly for placing the catheter 42. It is further appreciated that the master advancement assembly can include both or only one of a guidewire advancement assembly and a catheter advancement assembly in other embodiments.


It is noted that the device 10 is configured such that grasping of the device and advancement of the guidewire 22 and the catheter 42 can be performed by only one hand of the user. This is accomplished in the present embodiment by placing the grip surfaces 74 and the finger pad 28 in convenient locations for user grasping of the device 10, together with enabling the finger pad 28 and guidewire advancement assembly 20 to be used to advance the guidewire 22 and the catheter 42 a predetermined distance, followed by manual advancement of the advancement member 48 by a finger of the user. This can be performed by a single thumb, finger, or fingers of the user, in the present embodiment. Of course, other grasping and advancement configurations can be employed.


Reference is now made to FIG. 4, which shows a continuous blood flash indicator 80 that can be used with the device 10 according to one embodiment. The flash indicator 80 is employed to indicate the presence of blood in the lumen of the needle 16 during use of the device 10, thus assuring that proper access has been made by the needle into a vein or other desired blood-carrying vessel. As shown, the flash indicator 80 includes a translucent chamber 82 that is generally cylindrical in shape, sealed at either end, and disposed about a portion of the needle 16 such that the needle protrudes out from either sealed end. In the present embodiment the chamber 82 is disposed just distal to the needle hub 14 within the housing 12, though other locations along the needle are also possible.


Two notches—a first notch 83 and a second notch 84—are defined in the needle 16 so as to provide fluid communication between the lumen of the needle and the interior of the chamber 82. The notches 83 and 84 replace the notch 18 (FIG. 1I) in one embodiment, and are included in addition to the notch 18, in another embodiment. It is appreciated that, in one embodiment, blood passage through the notch 18 serves as an initial indicator that the distal end 16B of the needle has entered the vein, while the embodiment shown here serves as an additional indicator to verify that the needle distal end remains in the vein after initial access.


In the present embodiment, the second notch 84 is disposed just proximal to the distal termination point of the guidewire support tube 19, though other locations for the notches are possible. Also as shown, the guidewire 22 passes through the lumen of the needle 16 so as to extend through the flash indicator 80. The first notch 83 is disposed distal to the second notch 84 toward the distal end of the chamber 82, as shown in FIG. 4.


When vessel access is achieved by the distal end 16B of the needle 16, blood travels proximally up the lumen of the needle, between the inner surface of the needle and the outer surface of the guidewire 22, disposed in the needle lumen. Upon reaching the relatively more distal first notch 83 defined in the needle 16, a portion of the blood will pass through the first notch and enter the chamber 82. As the blood fills the chamber 82, a user can observe the translucent chamber through the translucent housing 12 of the insertion device 10 and view the blood therein, thus confirming that the vessel access has been achieved. In another embodiment, the housing 12 can be configured such that direct viewing of the chamber 82 is possible, e.g., with no intervening structure interposed between the chamber and the user.


The second notch 84 is employed to provide an exit point for air in the chamber 82 to equalize air pressure and enable the blood to continue entering the chamber via the first notch 83. It is noted that the spacing between the inner surface of the needle 16 and the outer surface of the guidewire support tube 19 is such that air but not blood can pass therebetween, thus enabling air pressure equalization in the chamber 82 without blood passage through the second notch 84. In this way, the flash indicator 80 is a continuous indicator, enabling a continuous flow of blood into the chamber 82 while the needle distal end 16B is disposed within the vessel.


Note that the chamber 82 of the flash indicator 80 of the present embodiment is disposed so as to be directly under the ribs 56 of the distal portion 49 of the as-yet un-advanced advancement member 48 during the establishment of needle access to the vessel. This enables the ribs 56 to act as an indicia, or an approximate blood flash meter, as the blood proceeds proximally within the chamber 82 of the flash indicator 80; a user observing the blood in the spaces between the ribs 56 proceeding proximally can view the proximal travel of the blood during the catheter placement procedure. In another embodiment, a spring disposed in the housing 12, such as for retraction of the needle 16, can also serve as indicia to meter the flow of blood in the flash indicator. These and other indicia for metering blood flow in the flash indicator are therefore contemplated.


Note that the catheter insertion device 10 can include more than one flash indicator. In one embodiment and as mentioned above, for instance, the blood flash indicator 80 can be included, along with another flash indicator, such as the notch 18, which enables blood present in the lumen 17 of the needle 16 to proceed proximally up the space between the outer surface of the needle and the inner surface of the catheter 42.



FIGS. 5 and 6 show another example of a continuous blood flash indicator 80 according to one embodiment, wherein an absorbent component 86 capable of absorbing blood or other desired body fluid is wrapped/disposed about a portion of the outer surface of the needle 16 so as to cover the notch 18 of the needle (FIGS. 1I, 1J). Cotton, gauze, fabrics, wood-based products, hydrophilic materials, mesh materials, polymeric materials, polyester, woven materials, and other suitable substances—both natural and synthetic materials—are examples of materials that can be employed for the absorbent component. In one embodiment, the absorbent material is woven to include a weave such that the blood fills the spaces between the woven material. This enables the amount of expansion of the absorbent material as well as the speed of blood travel through the absorbent material. Note that expansion of the absorbent material can be radial, longitudinal, a combination of both, etc.


The absorbent component preferably has a color different from red so as to indicate when blood has been absorbed. A translucent cover 88, including a thermoplastic or other suitable material, can be optionally placed over the absorbent component 86 in one embodiment to contain it and isolate blood absorbed thereby.


When vessel access is achieved by the distal end 16B of the needle 16, blood travels proximally up the lumen of the needle, between the inner surface of the needle and the outer surface of the guidewire 22, which is disposed in the needle lumen. Upon reaching the notch 18 defined in the needle 16, a portion of the blood will pass through the notch and be absorbed by the absorbent component 86, which changes colors due to the blood absorption. This indicates to the user that the needle distal tip 16B is properly located in the vessel. As the needle distal tip 16B remains in the vessel, blood will continue to be absorbed by the absorbent component 86, causing the absorbed blood to progress along the length of the absorbent component, thus providing a continuous blood flash indication. FIG. 7 shows that the diameter of the absorbent component 86 can vary in size; as such, modifications to what has been shown and described herein are therefore contemplated. In another embodiment it is appreciated that the absorbent material can expand in size as it absorbs blood or other fluid with which it is to be used.



FIGS. 30A and 30B depict various details of a variation of the blood flash indicator 80 of FIGS. 5 and 6 wherein the absorbent component 86 includes a strip of absorbent material a first portion of which is disposed over a notch in the needle 16, such as the first needle notch 83. The first portion of the absorbent material strip is connected to a second portion of the absorbent material strip that longitudinally extends proximally from the first notch 83, though it may also extend in other directions and possess other shapes, sizes, etc. The second portion of the absorbent material strip is secured to an inner surface 70A of the housing cavity 70 and is connected to the first portion covering the first notch 83 via a tether 180, which also may comprise a portion of the absorbent material. So configured, the absorbent component 86 absorbs blood (or other fluid) that exits the lumen 17 of the needle 16 via the first notch 83, such as when the distal end 16B of the needle is disposed within a vein of the patient. As it continues to exit the first notch 83, the blood will be continually absorbed by the absorbent component 86 and travel from the first portion of the absorbent material, across the tether 180, and proximally along the strip of absorbent material, thus providing a continuous flash indicator to the observing user. The tether 180 is frangible in the one embodiment to enable the needle 16 to be retracted into the housing 12. Upon retracting the needle 16, the tether 180 will break, allowing the second portion of the absorbent material that is affixed to the housing cavity inner surface 70A to remain in place. In one embodiment, the flash indicator 80 described herein in connection with FIGS. 30A and 30B can be included in a flash chamber, such as the flash chamber 82 shown in FIG. 4, for instance. A variety of materials may be employed for the absorbent component, including those described in connection with FIGS. 5-7.



FIGS. 8A-8H depict details of the catheter insertion device 10 according to another embodiment, including the housing 12 from which distally extends the needle 16 secured in place by the needle hub 14 within the housing. The catheter 42 is removably disposed over the needle 16 such that the needle passes through the hub 46 and catheter tube 44, as shown. The guidewire 22 is initially disposed within the housing and the lumen of the needle 16 and is selectively advanceable.


The insertion device 10 includes an advancement assembly 120 for selectively advancing the guidewire 22 and the catheter 42. The advancement assembly 120 includes the finger pad 28 that is slidably connected with the housing 12. The finger pad 28 is part of a telescoping portion 90 and can be slid distally, as shown in FIGS. 8E and 8F, to distally advance the guidewire 22 out the distal end 16B of the needle 16. Once the guidewire 22 has been fully deployed distally, further distal sliding of the finger pad 28 causes a portion of the telescoping portion 90 to engage the catheter hub 46 (FIG. 8G) and move the catheter 42 distally until the telescoping portion is fully extended (FIG. 8H). At this point, the catheter 42 can be removed from the insertion device 10, at which point the telescoping portion 90 has extended sufficient to cover and shield the distal tip 16B of the needle 16, thus protecting the user from an unintended needle stick. Operation of the insertion device 10 of FIGS. 8A-8H as described herein enables the insertion device to be used in gaining access to a vessel in the body of a patient, deploying the guidewire and catheter into the vessel, and shielding the needle 16 after use, according to one embodiment. It is noted that the embodiment shown in FIGS. 8A-8H shows one example of an insertion device that enables full guidewire and catheter advancement using a single finger pad and telescoping component.



FIGS. 9A-9G depict details of a needle safety component 100 for use with a needle-bearing device, such as the insertion devices discussed herein. As shown, the needle safety component 100 is operably attached to the needle 16 and is disposed within a housing 101 (FIGS. 9E-9G). The needle safety component includes a locking element 102 that is implemented here as a flattened, elongate metal bar in which a wave-shaped spring element 104 is formed proximate one end and a hook portion 108, which acts as a cam follower, on an opposite end. A D-shaped hole 106 is defined through a central portion of the locking element 102 and the needle 16 initially passes through the hole and through the catheter 42, as shown in FIGS. 9A and 9B. Other hole shapes are also possible.


A cam 110 is rotatably within the housing 101, as shown in FIG. 9E, and includes a hub engagement portion 112, a biasing portion 114, and a locking portion 116. Before actuation, the needle safety component 100 is configured as shown in FIG. 9E, with the needle safety component disposed over the needle 16 such that the needle passes through the hole 106 and the cam 110 rotated such that the hub engagement portion 112 thereof engages a threaded portion of the hub 46 of the catheter 42 so as to maintain engagement between the catheter and the needle safety component. The biasing portion 114 of the cam 110 also engages a portion of the catheter hub 46 to help maintain engagement between the hub and the cam. Note that the spring element 104 is compressed against an interior surface of the housing 101 and the hook portion 108 of the locking element 102 is disposed in the locking portion 116 of the cam 110.


Once the catheter 42 has been positioned in the patient, the needle 16 is withdrawn from the catheter and retracted from the hole 106 in the locking element 102, while the catheter hub 46 separates from engagement with the cam 110, causing the cam to rotate counterclockwise. This rotation of the cam 110 causes the hook portion 108 of the locking element 102 to exit the locking portion 116 of the cam 110 and slide up against the side of the cam, as seen in FIG. 9F. This enables the spring element 104 to un-compress from its compressed state (shown in FIG. 9E), thus moving the hole 106 out of alignment with the needle 16 (FIG. 9G) and desirably preventing the ability of the needle to re-emerge from the housing 101. The distal tip 16B of the needle 16 is thus shielded from the user.



FIGS. 10-12 depict various examples of configurations of the guidewire 22 to enable blood to more easily pass through a lumen 17 of the needle 16, according to example embodiments. In the cross-sectional view of FIG. 10, for example, the guidewire 22 is shown disposed in a lumen 17 of the needle 16. The guidewire 22 defines a flattened bar, or generally rounded rectangular, cross-sectional shape, which frees up space within the needle lumen 17 for the passage of blood therethrough, such as when the distal tip 16B of the needle 16 enters a vein or other blood-carrying vessel of the patient. This, in turn, helps blood to flow into a blood flash indicator, such as those shown and described herein.



FIG. 11 shows a cross-sectional configuration of the guidewire 22 according to another embodiment, wherein the cross-sectional view of the guidewire depicts two longitudinal notches 117 defined in the guidewire profile. FIG. 12 shows three notches 117 defined in the cross-sectional profile of the guidewire 22. These and other guidewire configurations are therefore contemplated.



FIGS. 13-17 depict various examples of configurations of a distal end 22B of the guidewire 22 that are designed to provide an atraumatic tip to prevent damage to the vessel during catheter insertion procedures. For example, FIG. 13 shows the guidewire 22 extending out the distal tip 16B of the needle 16. The distal portion of the guidewire 22 includes a curled configuration proximate the distal guidewire end 22B. FIG. 14 shows a J-tipped guidewire configuration wherein the guidewire distal end 22B is doubled back on itself to form a J-tip. In FIG. 15, a thermoplastic or metallic ball 122 is secured to the distal end 22B of the guidewire 22. In FIG. 16, a three-dimensional whisk-like tip 126 is provided at the distal end 22B of the guidewire 22. FIG. 17 shows another configuration, wherein the guidewire distal end 22B includes a ball attached thereto, and the distal portion of the guidewire 22 is in a curled configuration. These and other modifications to the guidewire 22 are therefore contemplated. Note that in one embodiment, the guidewire 22 is composed of nitinol or other suitable material, as may be contemplated.



FIG. 18 depicts the advancement member of the catheter insertion device 10 according to another embodiment, wherein the advancement member includes outwardly-extending wings 130 on a proximal end thereof, which are configured to prevent re-entry of the advancement member into the housing of the insertion device after full extension of the advancement member has been performed. This is but one example of modes by which unintended advancement member re-entry can be prevented.



FIG. 18 further depicts a continuous blood flash indicator 80 according to one embodiment, wherein an elongate channel 134 is defined on a surface portion of the advancement member 48 so as to be in fluid communication with the lumen of the needle 16 of the insertion device 10. The channel 134 is shaped as to define a pathway 136, such as a tortuous pathway for instance, along which blood present in the lumen of the needle 16 can travel after exiting the needle. The pathway 136 shown in FIG. 18 defines a back-and-forth pattern along a top portion of a cylindrical segment of the advancement member 48, though a variety of different pathway designs can be employed. A user can observe the blood within the pathway 136 defined by the channel 134 to confirm that the distal tip of the needle 16 is disposed in the vein or other desired blood-carrying vessel of the patient. As the pathway 136 is relatively lengthy, the progress of the blood as it proceeds in the channel enables the flash indicator 80 to function as a continuous flash indicator. It is appreciated that the channel and pathway can be formed with one of a variety of processes, including molding, machining, etc.


In light of the above, FIG. 19 depicts the continuous blood flash indicator 80 according to another embodiment, wherein the channel 134 defines a wavy, back-and-forth pathway 136 on a surface of the advancement member. As before a distal end of the channel 134 is in fluid communication with the lumen of the needle of the insertion device (or other medical device) so that blood may exit the needle lumen and enter the pathway 136 defined by the channel. Though shown here as being defined on the advancement member 48 of the catheter insertion device, the channel 134 can be included on other structures, including the hub or other portion of the catheter, the housing of the catheter insertion device/medical device/component, a valve assembly, etc. Further, though shown here as defined on a surface of the advancement member, the channel in other embodiments can include at least a portion of a tunnel or pathway defined below the surface of the advancement member/medical device/component. The pathway can be covered by a translucent or other cover, in another embodiment.



FIG. 20 depicts the continuous blood flash indicator 80 according to another embodiment, wherein the channel 134 defines a trunk-and-branch pathway 136. In FIGS. 21 and 22, the advancement member 48 includes the channel 134 defining a back-and-forth pathway 136 on a relatively thin distal portion (FIG. 21) and a relatively thick portion (FIG. 22) of the advancement member. FIG. 23 depicts the channel 134 as defining a tooth-like pathway 136 about a circumference of a distal portion of the advancement member 48, while FIG. 24 shows the channel defining an angled zig-zag pattern thereon. And in FIG. 25, the channel 134 defines a converging back-and-forth pathway. Thus, these and other pathway designs, including circular, helix, etc., are contemplated.


It is appreciated that various other configurations are contemplated for the continuous blood flash indicator 80 and its shaped pathway. For instance, the flash indicator can be included on/with the catheter hub 46 such that blood travels through the lumen 17 of the needle 16 to the catheter hub and into the flash indicator. In yet another embodiment, the flash indicator 80 is included as a removable piece temporarily attached to the catheter hub 46 or other component of the insertion device 10. It is further appreciated that the flash indicators described herein can also be used to indicate the presence of other fluids in the needle, including other bodily fluids, for instance. These and other modifications are contemplated.



FIGS. 26A-26D depict details of the catheter insertion device 10 according to another embodiment, wherein the housing 12 has been removed from the views in FIGS. 26A-26C for clarity. The insertion device 10 here includes the needle 16 distally extending from the housing 12, with the catheter 42 removably disposed over the needle such that the needle passes through the hub 46 and catheter tube 44. The guidewire 22 is initially disposed within the housing and the lumen of the needle 16, and is selectively advanceable.


The insertion device 10 includes the advancement assembly 120 for selectively advancing the guidewire 22 and the catheter 42. The advancement assembly 120 includes an advancement slide 140, which in turn includes a finger pad 148 that is slidably connected with the housing 12. A guidewire carriage 124 is also included, from which distally extends the guidewire 22 to enter the needle 16. An end piece 158 is also included at the distal end of the housing 12 and serves to push the catheter 42 distally, as will be discussed.


The initial position of the catheter insertion device 10 is shown in FIG. 26A (excluding the omitted housing 12, for clarity), wherein the advancement slide 140 and the guidewire carriage 124 are coupled together, as shown in FIG. 26C. In detail, an arm 152 distally extending from the guidewire carriage 124 couples with an angled tab 150 of the advancement slide 140 via a notch 154 defined by the arm. Note that the arm 154 is downwardly biased, which would cause the arm to disengage the notch 154 from the angled tab 150; however, the housing 12 is shaped in the position shown in 26A to constrain the arm to maintain engagement with the angled tab.


The above configuration enables joint distal movement of the advancement slide 120 and the guidewire carriage 124 when the uses manually engages the finger pad 148 and slides the advancement slide distally to the position shown in FIG. 26B. This movement causes the guidewire 22 to fully extend out the distal end 16B of the needle 16, as with other embodiments. At this point, the notch 154 of the downwardly-biased arm 152 disengages with the angled tab 150 due to the arm 152 no longer being constrained by the housing 12 (or other suitable structure) to maintain the engagement with the angled tab. Thus, further distal movement of the guidewire 22 by the guidewire carriage 124 is prevented. A locking mechanism can be included to lock the guidewire carriage 124 in place, in one embodiment. Reversing the process by proximally sliding the advancement slide 120 causes the guidewire carriage 124 to re-couple with the advancement slide via re-coupling of the notch 154 of the arm 152 with the angled tab 150.


Next, further distal sliding of the advancement slide 120 via the finger pad 148 causes the advancement slide to engage the end piece 158, which in turn distally advances the catheter 42 off the needle 16 and into the patient, as desired. Once fully distally extended, the advancement slide 140 shields the distal tip 16B of the needle 16, thus protecting the user. This embodiment thus shows an example of an insertion device that enables full guidewire and catheter advancement using a single advancement assembly.



FIGS. 27A-27E depict details of the catheter insertion device 10 according to another embodiment, wherein a top portion of the housing 12 has been removed for clarity. The insertion device 10 here includes the needle 16 distally extending from the housing 12, with the catheter 42 removably disposed over the needle such that the needle passes through the hub 46 and catheter tube 44. The guidewire 22 is initially disposed within the housing and the lumen of the needle 16, and is selectively advanceable.


The insertion device 10 includes the advancement assembly 120 for selectively advancing the guidewire 22 and the catheter 42. The advancement assembly 120 includes a guidewire lever, which in turn includes the finger pad 148 that is slidable along a portion of the length of the insertion device housing 12. Two grips 162 are disposed proximate the distal end of the insertion device 10 to assist with user grasping of the insertion device.


The insertion device 10 further includes a catheter slide 168 that is distally slidable within the housing 12 to distally advance the catheter 42 during use of the insertion device for catheter insertion procedures. The catheter slide 168 includes a pair of wings 166 that interact with the guidewire lever 144 to enable catheter advancement after the guidewire 22 has been fully advanced.


The initial position of the catheter insertion device 10 is shown in FIG. 27A (excluding the omitted top housing portion of the housing 12, for clarity), wherein the guidewire lever 144 and its finger pad 148 have not yet been distally advanced. Distal sliding of the finger pad 148 manually by the user causes the guidewire lever 144 to distally advance the guidewire 22 out the distal end 16B of the needle 16, as with other embodiments. Once the guidewire 22 has been fully extended, a thinned portion 164 of the guidewire lever 144 is now positioned adjacent the wings 166 of the catheter slide 168, as seen in FIG. 27B. So positioned, the thinned portion 164 of the guidewire lever 144 enables the wings 166—which until this point were forced radially outward by the guidewire lever (FIG. 27C)—to contract radially inward (FIG. 27D) so as to enable the catheter slide 168 to be distally advanced by further distal sliding movement by the finger pad 148 of the guidewire lever, as seen in FIG. 27E. This distal advancement of the catheter slide 168 causes the catheter 42 to be distally advanced off the needle 16 and into the patient, as desired. This embodiment thus shows another example of an insertion device that enables full guidewire and catheter advancement using a single advancement assembly.



FIG. 28 depicts the continuous blood flash indicator 80 of the catheter insertion device 10 shown in FIGS. 27A-27E, including the channel 134 defining the pathway 136 implemented as a spiral disposed within the housing 12 about a distal portion of the advancement assembly 120.



FIG. 29 depicts details of the catheter insertion device 10 according to another embodiment, including separately deployable assemblies, i.e., the guidewire advancement assembly 20 including the guidewire lever 24, and the catheter advancement assembly 40 including a tab 172 and a plurality of telescoping segments 170. During use of the insertion device 10, the guidewire 22 is distally extended manually via the guidewire lever 24, after which the catheter 42 is distally extended manually via the catheter advancement assembly 40 and the included tab 172. The telescoping segments 170 maintain attachment of the catheter advancement assembly 40 with the housing 12 and also help shield the needle from unintended user contact. Note that, though two are shown here, one, three or more telescoping segments 170 can be employed. This embodiment thus shows an example of an insertion device that enables full guidewire and catheter advancement using a separate advancement assembly for the guidewire and the catheter.


It is noted generally that, in one embodiment, the advancement assembly/assemblies can be configured to prevent distal advancement of the catheter until full distal advancement of the guidewire has been achieved. In other embodiments, a single advancement assembly is employed to advance both the guidewire and the catheter. For instance, the finger pad of an advancement assembly can be moved a first distance to distally advance the guidewire, after which further guidewire advancement is automatically or otherwise disengaged/prevented and the catheter distal advancement is commenced as the finger pad is moved a second distance, as in FIGS. 26A-26D. In another embodiment, a single finger pad is moved a first distance to distally advance the guidewire, then moved a second distance to continue moving the guidewire distally while also now moving the catheter distally as well, such as in FIGS. 27A-27E. These and other possible configurations are contemplated.


Embodiments of the invention may be embodied in other specific forms without departing from the spirit of the present disclosure. The described embodiments are to be considered in all respects only as illustrative, not restrictive. The scope of the embodiments is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. An insertion device for inserting a catheter into a body of a patient, the catheter including a catheter hub, the insertion device comprising: a housing;an at least partially hollow needle distally extending from the housing, at least a portion of the catheter pre-disposed over the needle such that the catheter hub is disposed substantially external to the housing;a guidewire including a distal end pre-disposed in a lumen of the needle; andan advancement assembly configured to selectively advance the distal end of the guidewire out a distal opening of the needle and to selectively advance the catheter and catheter hub over the needle, wherein: the insertion device is configured to be operated by a single hand of a user,the advancement assembly is configured to be operated without removing the single hand from the insertion device; andthe advancement assembly includes a portion configured for insertion in the catheter hub to engage the catheter.
  • 2. The insertion device as defined in claim 1, wherein the advancement assembly includes a finger pad movable by the user to advance at least one of the guidewire and the catheter.
  • 3. The insertion device as defined in claim 2, wherein the finger pad is slidably disposed with the housing.
  • 4. The insertion device as defined in claim 3, wherein the finger pad is moved a first distance to extend the guidewire out the distal opening of the needle, and wherein the finger pad is moved a second distance, subsequent to moving the first distance, to extend the catheter in a distal direction.
  • 5. The insertion device as defined in claim 4, wherein an advancement member is moved by the finger pad when the finger pad is moved the second distance, the catheter removably attached to the advancement member.
  • 6. The insertion device as defined in claim 1, wherein the advancement assembly includes a first member used to advance the guidewire and a second member used to advance the catheter, and wherein the user is readily able to move from the first member to the second member without substantial repositioning of the single hand.
  • 7. The insertion device as defined in claim 6, wherein the first member is distally slidable to a distal termination point that is proximate a proximal commencement point of the second member.
  • 8. The insertion device as defined in claim 1, wherein the advancement assembly is moved a first distance to extend the guidewire out the distal opening of the needle, and wherein the advancement assembly is moved a second distance, subsequent to moving the first distance, to extend the catheter in a distal direction.
  • 9. The insertion device as defined in claim 8, wherein movement of the advancement assembly the second distance moves the catheter into an initial position, and subsequent action by the user moves the catheter into a final position.
  • 10. The insertion device as defined in claim 8, wherein further advancement of the guidewire is prevented after movement of the advancement assembly the first distance.
  • 11. The insertion device as defined in claim 8, wherein movement of the advancement assembly the second distance results in full distal advancement of the catheter.
  • 12. The insertion device as defined in claim 1, wherein the advancement assembly includes a guidewire advancement assembly and a catheter advancement assembly.
  • 13. The insertion device as defined in claim 12, wherein the guidewire advancement assembly is configured to distally advance only the guidewire.
  • 14. The insertion device as defined in claim 1, wherein the advancement assembly includes a telescoping portion that extends from the housing when the catheter is advanced in a distal direction.
  • 15. The insertion device as defined in claim 1, wherein the advancement assembly further includes a needle safety component configured to shield a distal tip of the needle after use of the insertion device.
  • 16. The insertion device as defined in claim 1, wherein at least a portion of the guidewire includes a generally rounded rectangular cross-sectional profile.
  • 17. The insertion device as defined in claim 1, wherein the guidewire includes a cross-sectional profile defining first and second notches that are longitudinally defined along at least a portion of a length of the guidewire.
  • 18. The insertion device as defined in claim 1, wherein the guidewire includes a cross-sectional profile defining first, second, and third notches that are longitudinally defined along at least a portion of a length of the guidewire.
  • 19. The insertion device as defined in claim 1, further including a continuous blood flash indicator configured to alert the user when blood is present in the lumen of the needle.
  • 20. An insertion device for inserting a catheter into a body of a patient, the catheter including a catheter hub, the insertion device comprising: a housing;a hollow needle distally extending from the housing, at least a portion of the catheter pre-disposed over the needle such that the catheter hub is disposed substantially external to the housing;a guidewire including a distal end pre-disposed in a lumen of the needle;a guidewire advancement assembly including a guidewire lever configured to selectively advance the distal end of the guidewire out a distal end of the needle; anda catheter advancement assembly configured to selectively advance the catheter over the needle, wherein: the catheter advancement assembly and the guidewire advancement assembly are operable by a single hand of a user without removing the single hand from the insertion device, andthe catheter advancement assembly covers the distal end of the needle following detachment of the catheter from the catheter advancement assembly.
  • 21. The insertion device as defined in claim 20, wherein the guidewire lever of the guidewire advancement assembly includes a finger pad movable by the user to advance the guidewire.
  • 22. The insertion device as defined in claim 21, wherein the finger pad is slidably disposed with the housing.
  • 23. The insertion device as defined in claim 22, wherein the finger pad is moved a first distance to cause the guidewire lever to extend the guidewire out a distal opening of the needle, and wherein the finger pad is moved a second distance, subsequent to moving the first distance, to cause the guidewire lever to extend the catheter in a distal direction.
  • 24. The insertion device as defined in claim 23, wherein an advancement member is moved distally by the guidewire lever when the finger pad is moved the second distance, the advancement member initially substantially disposed within the housing prior to movement, the catheter removably attached to the advancement member.
  • 25. The insertion device as defined in claim 24, wherein distal movement of the advancement member moves the catheter into an initial position, and subsequent action by the user moves the catheter into a final position.
  • 26. The insertion device as defined in claim 25, wherein at least one tab is included on the advancement member to enable manual advancement by the user of the advancement member.
  • 27. The insertion device as defined in claim 26, wherein the advancement member includes a distal portion, the distal portion including first and second engagement tabs configured to releasably constrain the catheter in place over the needle before advancement of the advancement member, the needle initially disposed between the engagement tabs to cause the engagement tabs to engage the catheter, wherein the engagement tabs release from engagement with the catheter after the advancement member has been distally advanced past the distal end of the needle such that the needle is no longer disposed between the engagement tabs.
  • 28. The insertion device as defined in claim 27, wherein the advancement member is configured to shield the distal end of the needle after the advancement member has been fully distally advanced.
  • 29. The insertion device as defined in claim 28, wherein the advancement member includes one or more locking tabs that engage with a portion of the housing after full distal advancement of the advancement member to prevent re-entry of the advancement member into the housing.
  • 30. The insertion device as defined in claim 29, further including a continuous blood flash indicator configured to alert the user when blood is present in the lumen of the needle, comprising: a first notch defined in a side wall of the needle to enable blood to pass therethrough from a lumen of the needle when the distal end of the needle is disposed in a blood-carrying vessel of the patient; anda flash indicator configured to indicate the presence of blood within the lumen of the needle, the flash indicator including a translucent flash chamber disposed about the needle so as to enclose the first notch and configured such that blood present in the lumen of the needle passes from the lumen of the needle via the first notch to the flash chamber so as to be observable to a user of the insertion device.
  • 31. The insertion device as defined in claim 30, wherein the flash chamber is sealed about the needle.
  • 32. The insertion device as defined in claim 31, further comprising a second notch enclosed by the flash chamber, the second notch configured to enable blood present in the flash chamber to re-enter the lumen of the needle.
  • 33. The insertion device as defined in claim 32, wherein the insertion device includes indicia configured to meter a quantity of blood disposed in the flash chamber.
  • 34. The insertion device as defined in claim 33, wherein the indicia include a plurality of ribs that span a distal portion of the advancement member in proximity to the flash chamber, the blood disposed in the flash chamber observable by the user through the plurality of ribs.
  • 35. The insertion device as defined in claim 34, wherein the guidewire includes a proximal end secured to a portion of the housing, a distal end pre-disposed within the needle, and an intermediate portion substantially defining a U-shaped bend.
  • 36. The insertion device as defined in claim 35, wherein the distal end of the guidewire includes an atraumatic feature including at least one of a J-tip, an attached ball, a whisk structure, and a curled configuration.
  • 37. The insertion device as defined in claim 20, wherein the guidewire advancement assembly is configured to prevent advancement of the catheter until distal advancement of the guidewire is performed.
  • 38. The insertion device as defined in claim 20, wherein the needle is secured within the housing by a needle hub, the needle hub integrally formed with the housing, the needle hub including a pocket configured to received therein an adhesive so as to secure the needle in the needle hub.
  • 39. The insertion device as defined in claim 20, wherein the catheter advancement assembly includes a plurality of outwardly extending wings configured to prevent re-entry of the catheter advancement member into the housing after distal advancement of the catheter.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 62/162,548, filed May 15, 2015, and titled “Catheter Placement Device Including an End-Mounted Advancement Component,” which is incorporated herein by reference in its entirety.

US Referenced Citations (1106)
Number Name Date Kind
2211975 Hendrickson Aug 1940 A
2259488 Raiche Oct 1941 A
2330400 Winder Sep 1943 A
D138589 Brandenburg Aug 1944 S
3185151 Czomy May 1965 A
3297030 Czomy et al. Jan 1967 A
3416567 von Dardel et al. Dec 1968 A
3469579 Hubert Sep 1969 A
3500828 Podhora Mar 1970 A
3552384 Pierie et al. Jan 1971 A
3572334 Petterson Mar 1971 A
3585996 Reynolds et al. Jun 1971 A
3589361 Loper et al. Jun 1971 A
3592192 Harautuneian Jul 1971 A
3595230 Suyeoka et al. Jul 1971 A
3610240 Harautuneian Oct 1971 A
3682173 Center Aug 1972 A
3884242 Bazell et al. May 1975 A
3921631 Thompson Nov 1975 A
3995628 Gula et al. Dec 1976 A
4027668 Dunn Jun 1977 A
4037600 Poncy et al. Jul 1977 A
4079738 Dunn et al. Mar 1978 A
4106506 Koehn et al. Aug 1978 A
4177809 Moorehead Dec 1979 A
4292970 Hession, Jr. Oct 1981 A
4317445 Robinson Mar 1982 A
4345602 Yoshimura et al. Aug 1982 A
4354491 Marbry Oct 1982 A
4368730 Sharrock Jan 1983 A
4387879 Tauschinski Jun 1983 A
4417886 Frankhouser et al. Nov 1983 A
4449693 Gereg May 1984 A
4456017 Miles Jun 1984 A
4464171 Garwin Aug 1984 A
4509534 Tassin, Jr. Apr 1985 A
4509945 Kramann et al. Apr 1985 A
4511359 Vaillancourt Apr 1985 A
4512766 Vailancourt Apr 1985 A
4525157 Vaillancourt Jun 1985 A
4581019 Curelaru et al. Apr 1986 A
4585440 Tchervenkov et al. Apr 1986 A
D287877 Holewinski et al. Jan 1987 S
4728322 Walker et al. Mar 1988 A
4738659 Sleiman Apr 1988 A
4747831 Kulli May 1988 A
4767407 Foran Aug 1988 A
4772264 Cragg Sep 1988 A
4772267 Brown Sep 1988 A
4781703 Walker et al. Nov 1988 A
4792531 Kakihana Dec 1988 A
4798193 Giesy et al. Jan 1989 A
4813934 Engelson et al. Mar 1989 A
4826070 Kakihana May 1989 A
4828547 Sahi et al. May 1989 A
4834708 Pillari May 1989 A
4834718 McDonald May 1989 A
4840613 Balbierz Jun 1989 A
4840622 Hardy Jun 1989 A
4842591 Luther Jun 1989 A
4846812 Walker et al. Jul 1989 A
4850961 Wanderer et al. Jul 1989 A
4860757 Lynch et al. Aug 1989 A
4869259 Elkins Sep 1989 A
D304079 McFarlane Oct 1989 S
4871358 Gold Oct 1989 A
4874377 Newgard et al. Oct 1989 A
4883461 Sawyer Nov 1989 A
4883699 Aniuk et al. Nov 1989 A
4894052 Crawford Jan 1990 A
4895346 Steigerwald Jan 1990 A
4900307 Kulli Feb 1990 A
4906956 Kakihana Mar 1990 A
4908021 McFarlane Mar 1990 A
4909793 Vining et al. Mar 1990 A
4911691 Aniuk et al. Mar 1990 A
4913704 Kurimoto Apr 1990 A
4917102 Miller et al. Apr 1990 A
4917668 Haindl et al. Apr 1990 A
4917671 Chang Apr 1990 A
4929235 Merry et al. May 1990 A
4935010 Cox et al. Jun 1990 A
4944725 McDonald Jul 1990 A
4944728 Carrell et al. Jul 1990 A
4955863 Walker et al. Sep 1990 A
4961729 Vaillancourt Oct 1990 A
4966586 Vaillancourt Oct 1990 A
4966589 Kaufman Oct 1990 A
4994042 Vadher Feb 1991 A
4994047 Walker et al. Feb 1991 A
4995866 Amplatz et al. Feb 1991 A
5007901 Shields Apr 1991 A
5009642 Sahi Apr 1991 A
5019048 Margolin May 1991 A
5019049 Raining May 1991 A
D318733 Wyzgala Jul 1991 S
5034347 Kakihana Jul 1991 A
5047013 Rossdeutscher Sep 1991 A
D321250 Jepson et al. Oct 1991 S
5053014 Van Heugten Oct 1991 A
5054501 Chuttani et al. Oct 1991 A
5061254 Karakelle et al. Oct 1991 A
5064416 Newgard et al. Nov 1991 A
5078694 Wallace Jan 1992 A
5078696 Nedbaluk Jan 1992 A
5078702 Pomeranz Jan 1992 A
5084023 Lemieux Jan 1992 A
5085645 Purdy et al. Feb 1992 A
5088984 Fields Feb 1992 A
5093692 Su et al. Mar 1992 A
5098392 Fleischhacker et al. Mar 1992 A
5098395 Fields Mar 1992 A
5098396 Taylor et al. Mar 1992 A
5098405 Peterson et al. Mar 1992 A
5108375 Harrison et al. Apr 1992 A
5108376 Bonaldo Apr 1992 A
5112312 Luther May 1992 A
5116323 Kreuzer et al. May 1992 A
5120317 Luther Jun 1992 A
5125906 Fleck Jun 1992 A
5135487 Morrill et al. Aug 1992 A
5137515 Hogan Aug 1992 A
5149326 Woodgrift et al. Sep 1992 A
5154703 Bonaldo Oct 1992 A
5156590 Vilmar Oct 1992 A
5156596 Balbierz et al. Oct 1992 A
5158544 Weinstein Oct 1992 A
5167637 Okada Dec 1992 A
5176650 Haining Jan 1993 A
5186168 Spofford et al. Feb 1993 A
5186712 Kelso et al. Feb 1993 A
5188607 Wu Feb 1993 A
5190528 Fonger et al. Mar 1993 A
5192301 Kamiya et al. Mar 1993 A
5195974 Hardy Mar 1993 A
5195980 Catlin Mar 1993 A
5195985 Hall Mar 1993 A
5205830 Dassa et al. Apr 1993 A
5215527 Beck et al. Jun 1993 A
5215528 Purdy et al. Jun 1993 A
5217435 Kring Jun 1993 A
5219335 Willard et al. Jun 1993 A
5221255 Mahurkar et al. Jun 1993 A
5222944 Harris Jun 1993 A
5225369 Su et al. Jul 1993 A
5226899 Lee et al. Jul 1993 A
D338955 Gresl et al. Aug 1993 S
5234410 Graham et al. Aug 1993 A
5242411 Yamamoto et al. Sep 1993 A
5246426 Lewis et al. Sep 1993 A
5246430 MacFarlane Sep 1993 A
5254107 Soltesz Oct 1993 A
5257980 Van Antwerp et al. Nov 1993 A
5267982 Sylvanowicz Dec 1993 A
5269771 Thomas et al. Dec 1993 A
D345419 Horrigan et al. Mar 1994 S
5290310 Makower et al. Mar 1994 A
5297546 Spofford et al. Mar 1994 A
5312359 Wallace May 1994 A
5312361 Zadini et al. May 1994 A
5312363 Ryan et al. May 1994 A
5320608 Gerrone Jun 1994 A
5322517 Sircom et al. Jun 1994 A
5330435 Vaillancourt Jul 1994 A
5334159 Turkel Aug 1994 A
5338311 Mahurkar Aug 1994 A
5352205 Dales et al. Oct 1994 A
5358796 Nakamura et al. Oct 1994 A
5366441 Crawford Nov 1994 A
5368661 Nakamura et al. Nov 1994 A
D353668 Banks et al. Dec 1994 S
5376082 Phelps Dec 1994 A
5376094 Kline Dec 1994 A
5380290 Makower et al. Jan 1995 A
5380292 Wilson Jan 1995 A
5395341 Slater Mar 1995 A
5397311 Walker et al. Mar 1995 A
5405323 Rogers et al. Apr 1995 A
5415177 Zadini et al. May 1995 A
5415645 Friend et al. May 1995 A
5419766 Chang et al. May 1995 A
5419777 Honing May 1995 A
5423760 Yoon Jun 1995 A
5425718 Tay et al. Jun 1995 A
5431506 Masunaga Jul 1995 A
5445625 Voda Aug 1995 A
5454785 Smith Oct 1995 A
5454790 Dubrul Oct 1995 A
5456258 Kondo et al. Oct 1995 A
5456668 Ogle, II Oct 1995 A
5458658 Sircom Oct 1995 A
5466230 Davila Nov 1995 A
5480389 McWha et al. Jan 1996 A
5482395 Gasparini Jan 1996 A
5484419 Fleck Jan 1996 A
5487734 Thorne et al. Jan 1996 A
5489273 Whitney et al. Feb 1996 A
5496281 Krebs Mar 1996 A
5501675 Erskine Mar 1996 A
5507300 Mukai et al. Apr 1996 A
5512052 Jesch Apr 1996 A
5514108 Stevens May 1996 A
5520655 Davila et al. May 1996 A
5520657 Sellers et al. May 1996 A
D371195 Krebs Jun 1996 S
5522807 Luther Jun 1996 A
5527290 Zadini et al. Jun 1996 A
5527291 Zadini et al. Jun 1996 A
5531701 Luther Jul 1996 A
5531713 Mastronardi et al. Jul 1996 A
5533988 Dickerson et al. Jul 1996 A
5535785 Werge et al. Jul 1996 A
5542933 Marks Aug 1996 A
5554136 Luther Sep 1996 A
5562629 Naughton et al. Oct 1996 A
5562630 Nichols Oct 1996 A
5562631 Bogert Oct 1996 A
5562633 Wozencroft Oct 1996 A
5562634 Flumene et al. Oct 1996 A
5569202 Kovalic et al. Oct 1996 A
5569217 Luther Oct 1996 A
5571073 Castillo Nov 1996 A
5573510 Isaacson Nov 1996 A
5575777 Cover et al. Nov 1996 A
5591194 Berthiaume Jan 1997 A
5599291 Balbierz et al. Feb 1997 A
5599327 Sugahara et al. Feb 1997 A
5609583 Hakki et al. Mar 1997 A
5613663 Schmidt et al. Mar 1997 A
5613954 Nelson et al. Mar 1997 A
5630802 Moellmann et al. May 1997 A
5630823 Schmitz-Rode et al. May 1997 A
5634475 Wolvek Jun 1997 A
5634913 Stinger Jun 1997 A
5637091 Klakky et al. Jun 1997 A
5645076 Yoon Jul 1997 A
5651772 Arnett Jul 1997 A
D383538 Erskine et al. Sep 1997 S
5662622 Gore et al. Sep 1997 A
5674241 Bley et al. Oct 1997 A
5676658 Erskine Oct 1997 A
5683368 Schmidt Nov 1997 A
5683370 Luther et al. Nov 1997 A
5685855 Erskine Nov 1997 A
5685858 Kawand Nov 1997 A
5685860 Chang et al. Nov 1997 A
5688249 Chang et al. Nov 1997 A
5693025 Stevens Dec 1997 A
5695474 Daugherty Dec 1997 A
5700250 Erskine Dec 1997 A
5702367 Cover et al. Dec 1997 A
5702369 Mercereau Dec 1997 A
5704914 Stocking et al. Jan 1998 A
5722425 Bostrom Mar 1998 A
5725503 Arnett Mar 1998 A
5730150 Peppel et al. Mar 1998 A
5730733 Mortier et al. Mar 1998 A
5730741 Horzewski et al. Mar 1998 A
5738144 Rogers Apr 1998 A
5738660 Luther Apr 1998 A
5743882 Luther Apr 1998 A
5743888 Wilkes Apr 1998 A
5749371 Zadini et al. May 1998 A
5749857 Cuppy May 1998 A
5749861 Guala et al. May 1998 A
5750741 Crocker et al. May 1998 A
5755693 Walker et al. May 1998 A
5755709 Cuppy May 1998 A
5762630 Bley et al. Jun 1998 A
5762636 Rupp et al. Jun 1998 A
5765682 Bley et al. Jun 1998 A
5779679 Shaw Jul 1998 A
5779680 Yoon Jul 1998 A
5779681 Bonn Jul 1998 A
5782807 Falvai et al. Jul 1998 A
D397434 Pike Aug 1998 S
5792124 Horrigan et al. Aug 1998 A
5800395 Botich et al. Sep 1998 A
5807339 Bostrom et al. Sep 1998 A
5807342 Musgrave et al. Sep 1998 A
5807350 Diaz Sep 1998 A
5810835 Ryan et al. Sep 1998 A
5813411 Van Bladel et al. Sep 1998 A
5817058 Shaw Oct 1998 A
5817069 Arnett Oct 1998 A
5824001 Erskine Oct 1998 A
5827202 Miraki et al. Oct 1998 A
5827221 Phelps Oct 1998 A
5827227 DeLago Oct 1998 A
5830190 Howell Nov 1998 A
5830224 Cohn et al. Nov 1998 A
5839470 Repine et al. Nov 1998 A
5843002 Pecor et al. Dec 1998 A
5843038 Bailey Dec 1998 A
5846259 Berthiaume Dec 1998 A
5851196 Arnett Dec 1998 A
5853393 Bogert Dec 1998 A
5855615 Bley et al. Jan 1999 A
5858002 Jesch Jan 1999 A
5865806 Howell Feb 1999 A
5873864 Luther Feb 1999 A
5879332 Schwemberger et al. Mar 1999 A
5879337 Kuracina et al. Mar 1999 A
5885217 Gisselberg et al. Mar 1999 A
5885251 Luther Mar 1999 A
5891098 Huang Apr 1999 A
5891105 Mahurkar Apr 1999 A
5895398 Wensel et al. Apr 1999 A
5902274 Yamamoto et al. May 1999 A
5902832 Van Bladel et al. May 1999 A
5911705 Howell Jun 1999 A
5911710 Barry et al. Jun 1999 A
5913848 Luther et al. Jun 1999 A
5916208 Luther et al. Jun 1999 A
5928199 Nakagami Jul 1999 A
D413382 Maissami Aug 1999 S
5935110 Brimhall Aug 1999 A
5941854 Bhitiyakul Aug 1999 A
5944690 Falwell et al. Aug 1999 A
5947930 Schwemberger et al. Sep 1999 A
5951520 Burzynski et al. Sep 1999 A
5954698 Pike Sep 1999 A
5957893 Luther et al. Sep 1999 A
5964744 Balbierz et al. Oct 1999 A
5967490 Pike Oct 1999 A
5984895 Padilla et al. Nov 1999 A
5984903 Nadal Nov 1999 A
5989220 Shaw et al. Nov 1999 A
5989271 Bonnette et al. Nov 1999 A
5997507 Dysarz Dec 1999 A
5997510 Schwemberger Dec 1999 A
6001080 Kuracina et al. Dec 1999 A
6004278 Botich et al. Dec 1999 A
6004294 Brimhall et al. Dec 1999 A
6004295 Langer et al. Dec 1999 A
6011988 Lynch et al. Jan 2000 A
6019736 Avellanet et al. Feb 2000 A
6022319 Willard et al. Feb 2000 A
6024727 Thorne et al. Feb 2000 A
6024729 Dehdashtian et al. Feb 2000 A
6045734 Luther Apr 2000 A
6056726 Isaacson May 2000 A
6059484 Greive May 2000 A
6066100 Willard et al. May 2000 A
6074378 Mouri et al. Jun 2000 A
6077244 Botich et al. Jun 2000 A
6080137 Pike Jun 2000 A
6083237 Huitema et al. Jul 2000 A
6096004 Meglan et al. Aug 2000 A
6096005 Botich et al. Aug 2000 A
6109264 Sauer Aug 2000 A
6117108 Woehr et al. Sep 2000 A
6120494 Jonkman Sep 2000 A
6126633 Kaji et al. Oct 2000 A
6126641 Shields Oct 2000 A
6139532 Howell et al. Oct 2000 A
6139557 Passafaro et al. Oct 2000 A
6159179 Simonson Dec 2000 A
6171234 White et al. Jan 2001 B1
6171287 Lynn et al. Jan 2001 B1
6176842 Tachibana et al. Jan 2001 B1
6193690 Dysarz Feb 2001 B1
6197001 Wilson et al. Mar 2001 B1
6197007 Thorne et al. Mar 2001 B1
6197041 Shichman et al. Mar 2001 B1
6203527 Zadini et al. Mar 2001 B1
6213978 Voyten Apr 2001 B1
6217558 Zadini et al. Apr 2001 B1
6221047 Green et al. Apr 2001 B1
6221048 Phelps Apr 2001 B1
6221049 Selmon et al. Apr 2001 B1
6224569 Brimhall May 2001 B1
6228060 Howell May 2001 B1
6228062 Howell et al. May 2001 B1
6228073 Noone et al. May 2001 B1
6245045 Stratienko Jun 2001 B1
6251092 Qin et al. Jun 2001 B1
6268399 Hultine et al. Jul 2001 B1
6270480 Dorr et al. Aug 2001 B1
6273871 Davis et al. Aug 2001 B1
6280419 Vojtasek Aug 2001 B1
6287278 Woehr et al. Sep 2001 B1
6309379 Willard et al. Oct 2001 B1
6319244 Suresh et al. Nov 2001 B2
6322537 Chang Nov 2001 B1
D452003 Niermann Dec 2001 S
6325781 Takagi et al. Dec 2001 B1
6325797 Stewart et al. Dec 2001 B1
6336914 Gillespie, III Jan 2002 B1
6352520 Miyazaki et al. Mar 2002 B1
6368337 Kieturakis et al. Apr 2002 B1
6379333 Brimhall et al. Apr 2002 B1
6379372 Dehdashtian et al. Apr 2002 B1
D457955 Bilitz May 2002 S
6406442 McFann et al. Jun 2002 B1
D460179 Isoda et al. Jul 2002 S
6422989 Hektner Jul 2002 B1
6436070 Botich et al. Aug 2002 B1
6436112 Wensel et al. Aug 2002 B2
6443929 Kuracina et al. Sep 2002 B1
6451052 Burmeister et al. Sep 2002 B1
6461362 Halseth et al. Oct 2002 B1
6475217 Platt Nov 2002 B1
6478779 Hu Nov 2002 B1
6485473 Lynn Nov 2002 B1
6485497 Wensel et al. Nov 2002 B2
6497681 Brenner Dec 2002 B1
6506181 Meng et al. Jan 2003 B2
6514236 Stratienko Feb 2003 B1
6524276 Halseth et al. Feb 2003 B1
D471980 Caizza Mar 2003 S
6527759 Tachibana et al. Mar 2003 B1
6530913 Giba et al. Mar 2003 B1
6530935 Wensel et al. Mar 2003 B2
6540725 Ponzi Apr 2003 B1
6540732 Botich et al. Apr 2003 B1
6544239 Kinsey et al. Apr 2003 B2
6547762 Botich et al. Apr 2003 B1
6558355 Metzger et al. May 2003 B1
6582402 Erskine Jun 2003 B1
6582440 Brumbach Jun 2003 B1
6585703 Kassel et al. Jul 2003 B1
6589262 Honebrink et al. Jul 2003 B1
6595955 Ferguson et al. Jul 2003 B2
6595959 Stratienko Jul 2003 B1
6607511 Halseth et al. Aug 2003 B2
6616630 Woehr Sep 2003 B1
6620136 Pressly, Sr. et al. Sep 2003 B1
6623449 Paskar Sep 2003 B2
6626868 Prestidge et al. Sep 2003 B1
6626869 Bint Sep 2003 B1
6629959 Kuracina et al. Oct 2003 B2
6632201 Mathias et al. Oct 2003 B1
6638252 Moulton et al. Oct 2003 B2
6641564 Kraus Nov 2003 B1
6645178 Junker et al. Nov 2003 B1
6652486 Bialecki et al. Nov 2003 B2
6652490 Howell Nov 2003 B2
6663577 Jen Dec 2003 B2
6663592 Rhad et al. Dec 2003 B2
6666865 Platt Dec 2003 B2
6679900 Kieturakis et al. Jan 2004 B2
6689102 Greene Feb 2004 B2
6692508 Wensel et al. Feb 2004 B2
6692509 Wensel et al. Feb 2004 B2
6695814 Greene et al. Feb 2004 B2
6695856 Kieturakis et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6699221 Vaillancourt Mar 2004 B2
6702811 Stewart et al. Mar 2004 B2
6706018 Westlund et al. Mar 2004 B2
6711444 Koblish Mar 2004 B2
6712790 Prestidge et al. Mar 2004 B1
6712797 Southern, Jr. Mar 2004 B1
6716197 Svendsen Apr 2004 B2
6730062 Hoffman et al. May 2004 B2
6740063 Lynn May 2004 B2
6740096 Teague et al. May 2004 B2
6745080 Koblish Jun 2004 B2
6749588 Howell et al. Jun 2004 B1
6764468 East Jul 2004 B1
D494270 Reschke Aug 2004 S
6776788 Klint et al. Aug 2004 B1
6796962 Ferguson et al. Sep 2004 B2
6824545 Sepetka et al. Nov 2004 B2
6832715 Eungard et al. Dec 2004 B2
6835190 Nguyen Dec 2004 B2
6837867 Kortelling Jan 2005 B2
6860871 Kuracina et al. Mar 2005 B2
6872193 Shaw et al. Mar 2005 B2
6887220 Hogendijk May 2005 B2
6902546 Ferguson Jun 2005 B2
6905483 Newby et al. Jun 2005 B2
6913595 Mastorakis Jul 2005 B2
6916311 Vojtasek Jul 2005 B2
6921386 Shue et al. Jul 2005 B2
6921391 Barker et al. Jul 2005 B1
6929624 Del Castillo Aug 2005 B1
6939325 Haining Sep 2005 B2
6942652 Pressly, Sr. et al. Sep 2005 B1
6953448 Moulton et al. Oct 2005 B2
6958054 Fitzgerald Oct 2005 B2
6958055 Donnan et al. Oct 2005 B2
6960191 Howlett et al. Nov 2005 B2
6972002 Thorne Dec 2005 B2
6974438 Shekalim Dec 2005 B2
6994693 Tal Feb 2006 B2
7001396 Glazier et al. Feb 2006 B2
7004927 Ferguson et al. Feb 2006 B2
7008404 Nakajima Mar 2006 B2
7018372 Casey et al. Mar 2006 B2
7018390 Turovskiy et al. Mar 2006 B2
7025746 Tal Apr 2006 B2
7029467 Currier et al. Apr 2006 B2
7033335 Haarala et al. Apr 2006 B2
7044935 Shue et al. May 2006 B2
7060055 Wilkinson et al. Jun 2006 B2
7090656 Botich et al. Aug 2006 B1
7094243 Mulholland et al. Aug 2006 B2
7097633 Botich et al. Aug 2006 B2
7125396 Leinsing et al. Oct 2006 B2
7125397 Woehr et al. Oct 2006 B2
7141040 Lichtenberg Nov 2006 B2
7153276 Barker et al. Dec 2006 B2
7163520 Bernard et al. Jan 2007 B2
7169159 Green et al. Jan 2007 B2
7179244 Smith et al. Feb 2007 B2
7186239 Woehr Mar 2007 B2
7191900 Opie et al. Mar 2007 B2
7192433 Osypka et al. Mar 2007 B2
7204813 Shue et al. Apr 2007 B2
7214211 Woehr et al. May 2007 B2
7264613 Woehr et al. Sep 2007 B2
7291130 McGurk Nov 2007 B2
7303547 Pressly, Sr. et al. Dec 2007 B2
7303548 Rhad et al. Dec 2007 B2
7314462 O'Reagan et al. Jan 2008 B2
7331966 Soma et al. Feb 2008 B2
7344516 Erskine Mar 2008 B2
7354422 Riesenberger et al. Apr 2008 B2
7374554 Menzi et al. May 2008 B2
7381205 Thommen Jun 2008 B2
7396346 Nakajima Jul 2008 B2
7413562 Ferguson et al. Aug 2008 B2
7422572 Popov et al. Sep 2008 B2
7458954 Ferguson et al. Dec 2008 B2
7465294 Vladimirsky Dec 2008 B1
7468057 Ponzi Dec 2008 B2
7470254 Basta et al. Dec 2008 B2
7491176 Mann Feb 2009 B2
7494010 Opie et al. Feb 2009 B2
7500965 Menzi et al. Mar 2009 B2
7507222 Cindrich et al. Mar 2009 B2
7513887 Halseth et al. Apr 2009 B2
7513888 Sircom et al. Apr 2009 B2
7524306 Botich et al. Apr 2009 B2
7530965 Villa et al. May 2009 B2
7534227 Kulli May 2009 B2
7534231 Kuracina et al. May 2009 B2
7544170 Williams et al. Jun 2009 B2
7556617 Voorhees, Jr. et al. Jul 2009 B2
7566323 Chang Jul 2009 B2
D601243 Bierman et al. Sep 2009 S
7597681 Sutton et al. Oct 2009 B2
7608057 Woehr et al. Oct 2009 B2
D604839 Crawford et al. Nov 2009 S
7611485 Ferguson Nov 2009 B2
7611487 Woehr et al. Nov 2009 B2
7611499 Woehr et al. Nov 2009 B2
7618395 Ferguson Nov 2009 B2
7625360 Woehr et al. Dec 2009 B2
7628769 Grandt et al. Dec 2009 B2
7632243 Bialecki et al. Dec 2009 B2
7645263 Angel et al. Jan 2010 B2
7654988 Moulton et al. Feb 2010 B2
7658725 Bialecki et al. Feb 2010 B2
D612043 Young et al. Mar 2010 S
7678080 Shue et al. Mar 2010 B2
7682358 Gullickson et al. Mar 2010 B2
7691088 Howell Apr 2010 B2
7691090 Belley et al. Apr 2010 B2
7691093 Brimhall Apr 2010 B2
7695458 Belley et al. Apr 2010 B2
7699807 Faust et al. Apr 2010 B2
D615197 Koh et al. May 2010 S
7708721 Khaw May 2010 B2
7713243 Hillman May 2010 B2
7717875 Knudson et al. May 2010 B2
7722567 Tal May 2010 B2
7722569 Soderholm et al. May 2010 B2
D617893 Bierman et al. Jun 2010 S
7731687 Menzi et al. Jun 2010 B2
7731691 Cote et al. Jun 2010 B2
7736332 Carlyon et al. Jun 2010 B2
7736337 Diep et al. Jun 2010 B2
7736339 Woehr et al. Jun 2010 B2
7736342 Abriles et al. Jun 2010 B2
7740615 Shaw et al. Jun 2010 B2
7744574 Pederson et al. Jun 2010 B2
7753877 Bialecki et al. Jul 2010 B2
7753887 Botich et al. Jul 2010 B2
7762984 Kumoyama et al. Jul 2010 B2
7762993 Perez Jul 2010 B2
7766879 Tan et al. Aug 2010 B2
7776052 Greenberg et al. Aug 2010 B2
7785296 Muskatello et al. Aug 2010 B2
7794424 Paskar Sep 2010 B2
7798994 Brimhall Sep 2010 B2
7803142 Longson et al. Sep 2010 B2
7828773 Swisher et al. Nov 2010 B2
7828774 Harding et al. Nov 2010 B2
7850644 Gonzalez et al. Dec 2010 B2
7857770 Raulerson et al. Dec 2010 B2
D634843 Kim et al. Mar 2011 S
7896862 Long et al. Mar 2011 B2
7905857 Swisher Mar 2011 B2
7914488 Dickerson Mar 2011 B2
7914492 Heuser Mar 2011 B2
7922696 Tal et al. Apr 2011 B2
7922698 Riesenberger et al. Apr 2011 B2
7927314 Kuracina et al. Apr 2011 B2
7935080 Howell et al. May 2011 B2
7959613 Rhad et al. Jun 2011 B2
7972313 Woehr et al. Jul 2011 B2
7972324 Quint Jul 2011 B2
D643531 van der Weiden Aug 2011 S
8029470 Whiting et al. Oct 2011 B2
8029472 Leinsing et al. Oct 2011 B2
8048031 Shaw et al. Nov 2011 B2
8048039 Carlyon et al. Nov 2011 B2
8057404 Fujiwara et al. Nov 2011 B2
8062261 Adams Nov 2011 B2
8075529 Nakajima et al. Dec 2011 B2
8079979 Moorehead Dec 2011 B2
D653329 Lee-Sepsick Jan 2012 S
8100858 Woehr et al. Jan 2012 B2
8105286 Anderson et al. Jan 2012 B2
8105315 Johnson et al. Jan 2012 B2
8123727 Luther et al. Feb 2012 B2
8152758 Chan et al. Apr 2012 B2
8162881 Lilley, Jr. et al. Apr 2012 B2
8167851 Sen May 2012 B2
8177753 Vitullo et al. May 2012 B2
RE43473 Newby et al. Jun 2012 E
8192402 Anderson et al. Jun 2012 B2
8202251 Bierman et al. Jun 2012 B2
8202253 Wexler Jun 2012 B1
8206343 Racz Jun 2012 B2
8211070 Woehr et al. Jul 2012 B2
8221387 Shelso et al. Jul 2012 B2
8226612 Nakajima Jul 2012 B2
8235945 Baid Aug 2012 B2
8251923 Carrez et al. Aug 2012 B2
8251950 Albert et al. Aug 2012 B2
D667111 Robinson Sep 2012 S
8257322 Koehler et al. Sep 2012 B2
8273054 St. Germain et al. Sep 2012 B2
8286657 Belley et al. Oct 2012 B2
8298186 Popov Oct 2012 B2
8303543 Abulhaj Nov 2012 B2
8308685 Botich et al. Nov 2012 B2
8308691 Woehr et al. Nov 2012 B2
D672456 Lee-Sepsick Dec 2012 S
8328762 Woehr et al. Dec 2012 B2
8328837 Binmoeller Dec 2012 B2
8333735 Woehr et al. Dec 2012 B2
8337424 Palmer et al. Dec 2012 B2
8337463 Woehr et al. Dec 2012 B2
8337471 Baid Dec 2012 B2
D675318 Luk et al. Jan 2013 S
8361020 Stout Jan 2013 B2
8361038 McKinnon et al. Jan 2013 B2
8376994 Woehr et al. Feb 2013 B2
8377006 Tal et al. Feb 2013 B2
8382721 Woehr et al. Feb 2013 B2
8388583 Stout et al. Mar 2013 B2
8403886 Bialecki et al. Mar 2013 B2
8412300 Sonderegger Apr 2013 B2
8414539 Kuracina et al. Apr 2013 B1
8419688 Woehr et al. Apr 2013 B2
8444605 Kuracina et al. May 2013 B2
8454536 Raulerson et al. Jun 2013 B2
8460247 Woehr et al. Jun 2013 B2
8469928 Stout et al. Jun 2013 B2
8496628 Erskine Jul 2013 B2
D687548 Hayashi Aug 2013 S
8506533 Carlyon et al. Aug 2013 B2
8509340 Michelitsch Aug 2013 B2
8517959 Kurosawa et al. Aug 2013 B2
8529515 Woehr et al. Sep 2013 B2
8535271 Fuchs et al. Sep 2013 B2
8540728 Woehr et al. Sep 2013 B2
8545454 Kuracina et al. Oct 2013 B2
8568372 Woehr et al. Oct 2013 B2
8574203 Stout et al. Nov 2013 B2
8579881 Agro et al. Nov 2013 B2
8585651 Asai Nov 2013 B2
8585660 Murphy Nov 2013 B2
8591467 Walker et al. Nov 2013 B2
8591468 Woehr et al. Nov 2013 B2
8597249 Woehr et al. Dec 2013 B2
8622931 Teague et al. Jan 2014 B2
8622972 Nystrom et al. Jan 2014 B2
D700318 Amoah et al. Feb 2014 S
8647301 Bialecki et al. Feb 2014 B2
8647313 Woehr et al. Feb 2014 B2
8647324 DeLegge et al. Feb 2014 B2
8652104 Goral et al. Feb 2014 B2
8657790 Tal et al. Feb 2014 B2
8672888 Tal Mar 2014 B2
8679063 Stout et al. Mar 2014 B2
8690833 Belson Apr 2014 B2
8715242 Helm, Jr. May 2014 B2
8721546 Belson May 2014 B2
8728030 Woehr May 2014 B2
8728035 Warring et al. May 2014 B2
8740859 McKinnon et al. Jun 2014 B2
8740964 Hartley Jun 2014 B2
8747387 Belley et al. Jun 2014 B2
8753317 Osborne et al. Jun 2014 B2
8764711 Kuracina et al. Jul 2014 B2
D710495 Wu et al. Aug 2014 S
8814833 Farrell et al. Aug 2014 B2
D713957 Woehr et al. Sep 2014 S
D714436 Lee-Sepsick Sep 2014 S
8827965 Woehr et al. Sep 2014 B2
8845584 Ferguson et al. Sep 2014 B2
D715931 Watanabe et al. Oct 2014 S
8864714 Harding et al. Oct 2014 B2
8900192 Anderson et al. Dec 2014 B2
8932257 Woehr Jan 2015 B2
8932258 Blanchard et al. Jan 2015 B2
8932259 Stout et al. Jan 2015 B2
8945011 Sheldon et al. Feb 2015 B2
8951230 Tanabe et al. Feb 2015 B2
8956327 Bierman et al. Feb 2015 B2
8974426 Corcoran et al. Mar 2015 B2
8979802 Woehr Mar 2015 B2
8986227 Belson Mar 2015 B2
D726908 Yu et al. Apr 2015 S
8998852 Blanchard et al. Apr 2015 B2
9005169 Gravesen et al. Apr 2015 B2
9011351 Hoshinouchi Apr 2015 B2
9011381 Yamada et al. Apr 2015 B2
D728781 Pierson et al. May 2015 S
9022979 Woehr May 2015 B2
9033927 Maan et al. May 2015 B2
D733289 Blanchard et al. Jun 2015 S
9044583 Vaillancourt Jun 2015 B2
D735321 Blanchard Jul 2015 S
9089671 Stout et al. Jul 2015 B2
9089674 Ginn et al. Jul 2015 B2
9095683 Hall et al. Aug 2015 B2
9101746 Stout et al. Aug 2015 B2
9108021 Flyer et al. Aug 2015 B2
9114231 Woehr et al. Aug 2015 B2
9114241 Stout et al. Aug 2015 B2
9126012 McKinnon et al. Sep 2015 B2
9138252 Bierman et al. Sep 2015 B2
9138545 Shaw et al. Sep 2015 B2
9138559 Odland et al. Sep 2015 B2
RE45776 Root et al. Oct 2015 E
D740410 Korkuch et al. Oct 2015 S
9149625 Woehr et al. Oct 2015 B2
9149626 Woehr et al. Oct 2015 B2
9155863 Isaacson et al. Oct 2015 B2
9162036 Caples et al. Oct 2015 B2
9162037 Belson et al. Oct 2015 B2
9180275 Helm Nov 2015 B2
D746445 Lazarus Dec 2015 S
9205231 Call et al. Dec 2015 B2
9216109 Badawi et al. Dec 2015 B2
9220531 Datta et al. Dec 2015 B2
9220871 Thorne et al. Dec 2015 B2
9220882 Belley et al. Dec 2015 B2
D748254 Freigang et al. Jan 2016 S
9227038 Woehr Jan 2016 B2
9242071 Morgan et al. Jan 2016 B2
9242072 Morgan et al. Jan 2016 B2
RE45896 Stout et al. Feb 2016 E
D748774 Caron Feb 2016 S
D748777 Uenishi et al. Feb 2016 S
D749214 Uenishi et al. Feb 2016 S
D749727 Wapler et al. Feb 2016 S
D751194 Yu et al. Mar 2016 S
D752737 Ohashi Mar 2016 S
9289237 Woehr et al. Mar 2016 B2
9308352 Teoh et al. Apr 2016 B2
9308354 Farrell et al. Apr 2016 B2
9320870 Woehr Apr 2016 B2
D755368 Efinger et al. May 2016 S
9352119 Burkholz et al. May 2016 B2
9352127 Yeh et al. May 2016 B2
9352129 Nardeo et al. May 2016 B2
9358364 Isaacson et al. Jun 2016 B2
9370641 Woehr et al. Jun 2016 B2
9381324 Fuchs et al. Jul 2016 B2
9399116 Goral et al. Jul 2016 B2
9408569 Andreae et al. Aug 2016 B2
9421345 Woehr et al. Aug 2016 B2
9427549 Woehr et al. Aug 2016 B2
D775330 Blennow et al. Dec 2016 S
9522254 Belson Dec 2016 B2
D776259 Eldredge Jan 2017 S
9545495 Goral et al. Jan 2017 B2
9554817 Goldfarb et al. Jan 2017 B2
D779059 Nino et al. Feb 2017 S
D779661 McKnight et al. Feb 2017 S
9579486 Burkholz et al. Feb 2017 B2
9586027 Tisci et al. Mar 2017 B2
9592367 Harding et al. Mar 2017 B2
9616201 Belson Apr 2017 B2
9623210 Woehr Apr 2017 B2
9675784 Belson Jun 2017 B2
9687633 Teoh Jun 2017 B2
D791311 Yantz Jul 2017 S
9707378 Leinsing et al. Jul 2017 B2
9717523 Feng et al. Aug 2017 B2
9717887 Tan Aug 2017 B2
9737252 Teoh et al. Aug 2017 B2
9750532 Toomey et al. Sep 2017 B2
9750928 Burkholz et al. Sep 2017 B2
9757540 Belson Sep 2017 B2
9764085 Teoh Sep 2017 B2
9764117 Bierman et al. Sep 2017 B2
9775972 Christensen et al. Oct 2017 B2
9782568 Belson Oct 2017 B2
9789279 Burkholz et al. Oct 2017 B2
9795766 Teoh Oct 2017 B2
9844646 Knutsson Dec 2017 B2
9861792 Hall et al. Jan 2018 B2
9872971 Blanchard Jan 2018 B2
D810282 Ratjen Feb 2018 S
D815737 Bergstrom et al. Apr 2018 S
9950139 Blanchard et al. Apr 2018 B2
9962525 Woehr May 2018 B2
10004878 Ishida Jun 2018 B2
10086171 Belson Oct 2018 B2
10232146 Braithwaite et al. Mar 2019 B2
10328239 Belson Jun 2019 B2
10384039 Ribelin et al. Aug 2019 B2
10426931 Blanchard et al. Oct 2019 B2
D870271 Kheradpir et al. Dec 2019 S
D870883 Harding et al. Dec 2019 S
10493262 Tran et al. Dec 2019 B2
10525236 Belson Jan 2020 B2
10688280 Blanchard et al. Jun 2020 B2
10688281 Blanchard et al. Jun 2020 B2
10722685 Blanchard et al. Jul 2020 B2
10806906 Warring et al. Oct 2020 B2
20010014786 Greene et al. Aug 2001 A1
20010020153 Howell Sep 2001 A1
20020052576 Massengale May 2002 A1
20020077595 Hundertmark et al. Jun 2002 A1
20020103446 McFann et al. Aug 2002 A1
20020107526 Greenberg et al. Aug 2002 A1
20020128604 Nakajima Sep 2002 A1
20020165497 Greene Nov 2002 A1
20020177812 Moulton et al. Nov 2002 A1
20030032922 Moorehead Feb 2003 A1
20030032936 Lederman Feb 2003 A1
20030060760 Botich et al. Mar 2003 A1
20030073956 Hoffman et al. Apr 2003 A1
20030120214 Howell Jun 2003 A1
20030153874 Tal Aug 2003 A1
20030187396 Ponzi Oct 2003 A1
20030204186 Geistert Oct 2003 A1
20040019329 Erskine Jan 2004 A1
20040034383 Belson Feb 2004 A1
20040044302 Bernard et al. Mar 2004 A1
20040044313 Nakajima Mar 2004 A1
20040092879 Kraus et al. May 2004 A1
20040106903 Shue et al. Jun 2004 A1
20040111059 Howlett et al. Jun 2004 A1
20040122373 Botich et al. Jun 2004 A1
20040176758 Yassinzadeh Sep 2004 A1
20040193118 Bergeron Sep 2004 A1
20040215146 Lampropoulos et al. Oct 2004 A1
20040236288 Howell et al. Nov 2004 A1
20040243061 McGurk Dec 2004 A1
20040267204 Brustowicz Dec 2004 A1
20050004524 Newby et al. Jan 2005 A1
20050010095 Stewart et al. Jan 2005 A1
20050020940 Opie et al. Jan 2005 A1
20050021002 Deckman et al. Jan 2005 A1
20050027256 Barker et al. Feb 2005 A1
20050033137 Oral et al. Feb 2005 A1
20050040061 Opie et al. Feb 2005 A1
20050075606 Botich et al. Apr 2005 A1
20050107769 Thommen May 2005 A1
20050119619 Raining Jun 2005 A1
20050131350 Shaw et al. Jun 2005 A1
20050165355 Fitzgerald Jul 2005 A1
20050197623 Leeflang et al. Sep 2005 A1
20050245847 Schaeffer Nov 2005 A1
20050256505 Long et al. Nov 2005 A1
20050273057 Popov Dec 2005 A1
20060025721 Duffy et al. Feb 2006 A1
20060079787 Whiting et al. Apr 2006 A1
20060084964 Knudson et al. Apr 2006 A1
20060155245 Woehr Jul 2006 A1
20060161115 Fangrow Jul 2006 A1
20060167405 King et al. Jul 2006 A1
20060200080 Abulhaj Sep 2006 A1
20060229563 O'Reagan et al. Oct 2006 A1
20060264834 Vaillancourt Nov 2006 A1
20070043422 Shmulewitz et al. Feb 2007 A1
20070060999 Randall et al. Mar 2007 A1
20070083162 O'Reagan et al. Apr 2007 A1
20070083188 Grandt et al. Apr 2007 A1
20070100284 Leinsing et al. May 2007 A1
20070123803 Fujiwara et al. May 2007 A1
20070142779 Duane et al. Jun 2007 A1
20070179446 Carrez et al. Aug 2007 A1
20070191777 King Aug 2007 A1
20070193903 Opie et al. Aug 2007 A1
20070225647 Luther et al. Sep 2007 A1
20070233007 Adams Oct 2007 A1
20070244438 Perez Oct 2007 A1
20070255221 Nakajima Nov 2007 A1
20070276288 Khaw Nov 2007 A1
20080039796 Nakajima Feb 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080082082 Carlyon et al. Apr 2008 A1
20080097330 King et al. Apr 2008 A1
20080108911 Palmer May 2008 A1
20080108944 Woehr et al. May 2008 A1
20080108974 Yee Roth May 2008 A1
20080125709 Chang et al. May 2008 A1
20080131300 Junod et al. Jun 2008 A1
20080132846 Shue et al. Jun 2008 A1
20080147010 Nakajima et al. Jun 2008 A1
20080243165 Mauch et al. Oct 2008 A1
20080262430 Anderson et al. Oct 2008 A1
20080262431 Anderson et al. Oct 2008 A1
20080294111 Tal et al. Nov 2008 A1
20080300574 Belson et al. Dec 2008 A1
20090018567 Escudero et al. Jan 2009 A1
20090030380 Binmoeller Jan 2009 A1
20090036836 Nystrom et al. Feb 2009 A1
20090048566 Ferguson et al. Feb 2009 A1
20090131872 Popov May 2009 A1
20090157006 Nardeo et al. Jun 2009 A1
20090221961 Tal et al. Sep 2009 A1
20090292243 Harding et al. Nov 2009 A1
20090299291 Baid Dec 2009 A1
20100010441 Belson Jan 2010 A1
20100010447 Luther et al. Jan 2010 A1
20100016838 Butts et al. Jan 2010 A1
20100036331 Sen Feb 2010 A1
20100056910 Yanuma Mar 2010 A1
20100057183 Mangiardi et al. Mar 2010 A1
20100087787 Woehr et al. Apr 2010 A1
20100094116 Silverstein Apr 2010 A1
20100094310 Warring et al. Apr 2010 A1
20100137815 Kuracina et al. Jun 2010 A1
20100168674 Shaw et al. Jul 2010 A1
20100204654 Mulholland et al. Aug 2010 A1
20100204660 McKinnon et al. Aug 2010 A1
20100204675 Woehr et al. Aug 2010 A1
20100210934 Belson Aug 2010 A1
20100238705 Kim et al. Sep 2010 A1
20100246707 Michelitsch Sep 2010 A1
20100331732 Raulerson et al. Dec 2010 A1
20110009827 Bierman et al. Jan 2011 A1
20110015573 Maan et al. Jan 2011 A1
20110021994 Anderson et al. Jan 2011 A1
20110125097 Shaw et al. May 2011 A1
20110137252 Oster et al. Jun 2011 A1
20110196315 Chappel Aug 2011 A1
20110207157 Gautier et al. Aug 2011 A1
20110218496 Bierman Sep 2011 A1
20110251559 Tal et al. Oct 2011 A1
20110276002 Bierman Nov 2011 A1
20110282285 Blanchard et al. Nov 2011 A1
20110288482 Farrell et al. Nov 2011 A1
20110306933 Djordjevic et al. Dec 2011 A1
20110319838 Goral et al. Dec 2011 A1
20120053523 Harding Mar 2012 A1
20120071857 Goldfarb et al. Mar 2012 A1
20120078231 Hoshinouchi Mar 2012 A1
20120101440 Kamen et al. Apr 2012 A1
20120123332 Erskine May 2012 A1
20120123354 Woehr May 2012 A1
20120157854 Kurrus et al. Jun 2012 A1
20120179104 Woehr et al. Jul 2012 A1
20120184896 DeLegge et al. Jul 2012 A1
20120197200 Belson Aug 2012 A1
20120220942 Hall et al. Aug 2012 A1
20120220956 Kuracina et al. Aug 2012 A1
20120259293 Bialecki et al. Oct 2012 A1
20120271232 Katsurada et al. Oct 2012 A1
20120296282 Koehler et al. Nov 2012 A1
20120316500 Bierman et al. Dec 2012 A1
20120323181 Shaw et al. Dec 2012 A1
20130030391 Baid Jan 2013 A1
20130158506 Harris et al. Jun 2013 A1
20130184645 Baid Jul 2013 A1
20130204206 Morgan et al. Aug 2013 A1
20130204226 Keyser Aug 2013 A1
20130218082 Hyer et al. Aug 2013 A1
20130304030 Gray et al. Nov 2013 A1
20130310764 Burkholz et al. Nov 2013 A1
20130324930 Fuchs et al. Dec 2013 A1
20140012203 Woehr et al. Jan 2014 A1
20140031752 Blanchard et al. Jan 2014 A1
20140039461 Anderson et al. Feb 2014 A1
20140058329 Walker et al. Feb 2014 A1
20140058336 Burkholz et al. Feb 2014 A1
20140058357 Keyser et al. Feb 2014 A1
20140073928 Yamashita et al. Mar 2014 A1
20140074034 Tanabe et al. Mar 2014 A1
20140088509 Sonderegger et al. Mar 2014 A1
20140094774 Blanchard Apr 2014 A1
20140094836 Feng et al. Apr 2014 A1
20140114239 Dib et al. Apr 2014 A1
20140128775 Andreae et al. May 2014 A1
20140135702 Woehr et al. May 2014 A1
20140135703 Yeh et al. May 2014 A1
20140143999 Goral et al. May 2014 A1
20140180250 Belson Jun 2014 A1
20140188003 Belson Jul 2014 A1
20140194853 Morgan et al. Jul 2014 A1
20140214005 Belson Jul 2014 A1
20140221977 Belson Aug 2014 A1
20140236099 Nakagami et al. Aug 2014 A1
20140243734 Eubanks et al. Aug 2014 A1
20140249488 Woehr Sep 2014 A1
20140257359 Tegels et al. Sep 2014 A1
20140276224 Ranganathan et al. Sep 2014 A1
20140276432 Bierman et al. Sep 2014 A1
20140276434 Woehr et al. Sep 2014 A1
20140303561 Li Oct 2014 A1
20140323988 Magnani et al. Oct 2014 A1
20140336582 Tisci et al. Nov 2014 A1
20140357983 Toomey et al. Dec 2014 A1
20140358123 Ueda et al. Dec 2014 A1
20140364809 Isaacson et al. Dec 2014 A1
20140371715 Farrell et al. Dec 2014 A1
20140371720 Urmey Dec 2014 A1
20140378867 Belson Dec 2014 A1
20150025467 Woehr Jan 2015 A1
20150038909 Christensen et al. Feb 2015 A1
20150038910 Harding et al. Feb 2015 A1
20150038943 Warring et al. Feb 2015 A1
20150051584 Korkuch Feb 2015 A1
20150080801 Tanabe et al. Mar 2015 A1
20150080810 Henderson et al. Mar 2015 A1
20150088095 Luther et al. Mar 2015 A1
20150119806 Blanchard et al. Apr 2015 A1
20150119852 Wexler Apr 2015 A1
20150126932 Knutsson May 2015 A1
20150151086 Teoh Jun 2015 A1
20150151088 Lim et al. Jun 2015 A1
20150190168 Bierman et al. Jul 2015 A1
20150190570 Teoh Jul 2015 A1
20150190617 Anderson et al. Jul 2015 A1
20150202414 Hwang Jul 2015 A1
20150202421 Ma et al. Jul 2015 A1
20150224267 Farrell et al. Aug 2015 A1
20150231364 Blanchard et al. Aug 2015 A1
20150238705 Gravesen et al. Aug 2015 A1
20150290431 Hall et al. Oct 2015 A1
20150306347 Yagi Oct 2015 A1
20150306356 Gill Oct 2015 A1
20150328434 Gaur Nov 2015 A1
20150328438 Baid Nov 2015 A1
20150335858 Woehr et al. Nov 2015 A1
20150359473 Garrett et al. Dec 2015 A1
20160008580 Woehr et al. Jan 2016 A1
20160015943 Belson et al. Jan 2016 A1
20160015945 Warring et al. Jan 2016 A1
20160022312 Tang et al. Jan 2016 A1
20160022963 Belson Jan 2016 A1
20160030716 Mallin et al. Feb 2016 A1
20160045715 Galgano et al. Feb 2016 A1
20160106959 Woehr Apr 2016 A1
20160114136 Woehr Apr 2016 A1
20160114137 Woehr et al. Apr 2016 A1
20160158503 Woehr Jun 2016 A1
20160158526 Woehr Jun 2016 A1
20160175563 Woehr et al. Jun 2016 A1
20160184557 Call et al. Jun 2016 A1
20160199575 Belley et al. Jul 2016 A1
20160206852 Morgan et al. Jul 2016 A1
20160206858 Ishida Jul 2016 A1
20160220161 Goral et al. Aug 2016 A1
20160220786 Mitchell et al. Aug 2016 A1
20160256667 Ribelin et al. Sep 2016 A1
20160296729 Fuchs et al. Oct 2016 A1
20160310704 Ng et al. Oct 2016 A1
20160331937 Teoh Nov 2016 A1
20160354580 Teoh et al. Dec 2016 A1
20160361490 Phang et al. Dec 2016 A1
20160361519 Teoh et al. Dec 2016 A1
20170000982 Ishida Jan 2017 A1
20170035992 Harding et al. Feb 2017 A1
20170043132 Ishida Feb 2017 A1
20170087338 Belson Mar 2017 A1
20170136217 Riesenberger et al. May 2017 A1
20170203050 Bauer et al. Jul 2017 A1
20170209668 Belson Jul 2017 A1
20170246429 Tan et al. Aug 2017 A1
20170259036 Belson Sep 2017 A1
20170361071 Belson Dec 2017 A1
20180028780 Blanchard et al. Feb 2018 A1
20180071509 Tran et al. Mar 2018 A1
20180099123 Woehr Apr 2018 A1
20180126125 Hall et al. May 2018 A1
20180133437 Blanchard May 2018 A1
20180229003 Blanchard et al. Aug 2018 A1
20180229004 Blanchard et al. Aug 2018 A1
20190022358 Belson Jan 2019 A1
20190192829 Belson et al. Jun 2019 A1
20190201667 Braithwaite et al. Jul 2019 A1
20190240459 Belson Aug 2019 A1
20190275303 Tran et al. Sep 2019 A1
20190307986 Belson Oct 2019 A1
20190351193 Hall Nov 2019 A1
20190351196 Ribelin et al. Nov 2019 A1
20200001051 Huang et al. Jan 2020 A1
20200094037 Tran et al. Mar 2020 A1
20200261696 Blanchard Aug 2020 A1
20200261703 Belson et al. Aug 2020 A1
20200316347 Belson Oct 2020 A1
20210052858 Isaacson et al. Feb 2021 A1
Foreign Referenced Citations (141)
Number Date Country
691141 May 1998 AU
710967 Sep 1999 AU
1178707 Apr 1998 CN
1319023 Oct 2001 CN
1523970 Aug 2004 CN
1871043 Nov 2006 CN
101242868 Aug 2008 CN
101293122 Oct 2008 CN
101417159 Apr 2009 CN
101784300 Jul 2010 CN
102099075 Jun 2011 CN
102939129 Feb 2013 CN
104689456 Jun 2015 CN
105073174 Nov 2015 CN
105188826 Dec 2015 CN
105705191 Jun 2016 CN
20210394 Sep 2002 DE
0314470 May 1989 EP
417764 Mar 1991 EP
475857 Mar 1992 EP
515710 Dec 1992 EP
567321 Oct 1993 EP
652020 May 1995 EP
747075 Dec 1996 EP
750916 Jan 1997 EP
778043 Jun 1997 EP
800790 Oct 1997 EP
832663 Apr 1998 EP
910988 Apr 1999 EP
942761 Sep 1999 EP
1075850 Feb 2001 EP
1378263 Jan 2004 EP
1418971 May 2004 EP
1457229 Sep 2004 EP
1611916 Jan 2006 EP
1907042 Apr 2008 EP
2150304 Feb 2010 EP
2272432 Jan 2011 EP
2569046 Mar 2013 EP
2003-159334 Jun 2003 JP
2004-130074 Apr 2004 JP
2004-223252 Aug 2004 JP
2005-137888 Jun 2005 JP
2009-500129 Jan 2009 JP
2010-088521 Apr 2010 JP
2013-529111 Jul 2013 JP
2018-118079 Aug 2018 JP
8301575 May 1983 WO
1983001575 May 1983 WO
1992013584 Aug 1992 WO
9222344 Dec 1992 WO
1992022344 Dec 1992 WO
1995011710 May 1995 WO
9519193 Jul 1995 WO
1995019193 Jul 1995 WO
9523003 Aug 1995 WO
1995023003 Aug 1995 WO
9632981 Oct 1996 WO
1996032981 Oct 1996 WO
1996040359 Dec 1996 WO
9705912 Feb 1997 WO
1997005912 Feb 1997 WO
9721458 Jun 1997 WO
1997021458 Jun 1997 WO
1997045151 Dec 1997 WO
9824494 Jun 1998 WO
1998024494 Jun 1998 WO
1998030268 Jul 1998 WO
1998053875 Dec 1998 WO
1999008742 Feb 1999 WO
1999026682 Jun 1999 WO
0006226 Feb 2000 WO
0012160 Mar 2000 WO
2000012167 Mar 2000 WO
0047256 Aug 2000 WO
2001007103 Feb 2001 WO
0126725 Apr 2001 WO
2002041932 May 2002 WO
02066093 Aug 2002 WO
0311381 Feb 2003 WO
0343686 May 2003 WO
03043686 May 2003 WO
0347675 Jun 2003 WO
03047675 Jun 2003 WO
2004018031 Mar 2004 WO
2004106203 Dec 2004 WO
2005002659 Jan 2005 WO
2005074412 Aug 2005 WO
2005087306 Sep 2005 WO
2006062996 Jun 2006 WO
2007006055 Jan 2007 WO
2007032343 Mar 2007 WO
2007094841 Aug 2007 WO
2007098355 Aug 2007 WO
2007098359 Aug 2007 WO
2008005618 Jan 2008 WO
2008030999 Mar 2008 WO
2008131300 Oct 2008 WO
2008137956 Nov 2008 WO
2009001309 Dec 2008 WO
2008147600 Dec 2008 WO
2009031161 Mar 2009 WO
2009114837 Sep 2009 WO
2009124990 Oct 2009 WO
2010015676 Feb 2010 WO
2010048449 Apr 2010 WO
2010132608 Nov 2010 WO
2011036574 Mar 2011 WO
2011143621 Nov 2011 WO
2012106266 Aug 2012 WO
2012154277 Nov 2012 WO
2012174109 Dec 2012 WO
2013119557 Aug 2013 WO
2013126446 Aug 2013 WO
2013187827 Dec 2013 WO
2014006403 Jan 2014 WO
2014029424 Feb 2014 WO
2014074417 May 2014 WO
2014081942 May 2014 WO
2014123848 Aug 2014 WO
2014120741 Aug 2014 WO
2014133617 Sep 2014 WO
2014140257 Sep 2014 WO
2014140265 Sep 2014 WO
2014165783 Oct 2014 WO
2014158908 Oct 2014 WO
2014182421 Nov 2014 WO
2014197656 Dec 2014 WO
2014204593 Dec 2014 WO
2015017136 Feb 2015 WO
2015024904 Feb 2015 WO
2015035393 Mar 2015 WO
2015058136 Apr 2015 WO
15108913 Jul 2015 WO
2015168655 Nov 2015 WO
15164912 Nov 2015 WO
2016037127 Mar 2016 WO
16178974 Nov 2016 WO
2018049413 Mar 2018 WO
2018170349 Sep 2018 WO
2019173641 Sep 2019 WO
Non-Patent Literature Citations (207)
Entry
EP 12782187.4 filed Sep. 10, 2013 Office Action dated Nov. 28, 2018.
SG 11201709185X filed Nov. 8, 2017 Office Action dated Oct. 5, 2018.
SG 11201709193S filed Nov. 8, 2017 Office Action dated Oct. 5, 2018.
U.S. Appl. No. 14/846,387, filed Sep. 4, 2015 Notice of Allowance dated Oct. 29, 2018.
U.S. Appl. No. 14/866,441, filed Sep. 25, 2015 Notice of Allowance dated Oct. 17, 2018.
U.S. Appl. No. 15/154,808, filed May 13, 2016 Advisory Action dated Oct. 26, 2018.
U.S. Appl. No. 15/377,880, filed Dec. 13, 2016 Final Office Action dated Oct. 19, 2018.
U.S. Appl. No. 15/481,773, filed Apr. 7, 2017 Final Office Action dated Jan. 10, 2019.
U.S. Appl. No. 15/702,537, filed Sep. 12, 2017 Non-Final Office Action dated Nov. 29, 2018.
PCT/US2015/048676 filed Sep. 4, 2015 International search report and written opinion dated Dec. 4, 2015.
PCT/US2016/032449 filed May 13, 2016 International Search Report and Written Opinion dated Oct. 5, 2016.
PCT/US2016/032534 filed May 13, 2016 International Search Report and Written Opinion dated Oct. 5, 2016.
PR Newswire, Luther Medical Products, Inc. Receives Approval to Supply Improved Neonatal Product to Japan, Aug. 20, 1998.
Rasor, Julia S, Review of Catheter-related infection rates: comparison of conventional catheter materials with Aquavene®, JVAN vol. 1, No. 3, Spring 1991.
U.S. Appl. No. 12/598,053, filed Apr. 20, 2010 Notice of allowance dated Jan. 16, 2014.
U.S. Appl. No. 12/598,053, filed Apr. 20, 2010 Office action dated Aug. 28, 2013.
U.S. Appl. No. 12/598,053, filed Apr. 20, 2010 Office action dated Dec. 4, 2012.
U.S. Appl. No. 12/598,053, filed Apr. 20, 2010 Office action dated May 8, 2013.
U.S. Appl. No. 12/598,053, filed Apr. 20, 2010 Office action dated Oct. 24, 2013.
U.S. Appl. No. 13/107,781, filed May 13, 2011 Final Office Action dated Jul. 18, 2014.
U.S. Appl. No. 13/107,781, filed May 13, 2011 Non-Final Office Action dated Dec. 30, 2013.
U.S. Appl. No. 13/405,096, filed Feb. 24, 2012 Advisory Action dated Apr. 18, 2014.
U.S. Appl. No. 13/405,096, filed Feb. 24, 2012 Final Office Action dated Jan. 31, 2014.
U.S. Appl. No. 13/405,096, filed Feb. 24, 2012 Non-Final Office Action dated Aug. 20, 2013.
U.S. Appl. No. 13/405,096, filed Feb. 24, 2012 Non-Final Office Action dated Nov. 18, 2014.
U.S. Appl. No. 13/405,096, filed Feb. 24, 2012 Notice of Allowance dated Mar. 11, 2015.
U.S. Appl. No. 14/044,623, filed Oct. 2, 2013 Notice of Allowance dated Nov. 6, 2014.
U.S. Appl. No. 14/099,050, filed Dec. 6, 2013 Non-Final Office Action dated Dec. 22, 2015.
U.S. Appl. No. 14/099,050, filed Dec. 6, 2013 Non-Final Office Action dated Jul. 19, 2016.
U.S. Appl. No. 14/167,149, filed Jan. 29, 2014 Non-Final Office Action dated Oct. 21, 2015.
U.S. Appl. No. 14/167,149, filed Jan. 29, 2014 Notice of Allowance dated Jul. 6, 2016.
U.S. Appl. No. 14/174,071, filed Feb. 6, 2014 Non-Final Office Action dated Jul. 29, 2016.
U.S. Appl. No. 14/174,071, filed Feb. 6, 2014 Non-Final Office Action dated Mar. 31, 2016.
U.S. Appl. No. 14/192,541, filed Feb. 27, 2014 Non-Final Office Action dated Jul. 20, 2016.
U.S. Appl. No. 14/477,717, filed Sep. 4, 2014, Notice of allowance dated Feb. 17, 2015.
U.S. Appl. No. 14/477,717, filed Sep. 4, 2014, Office action dated Dec. 18, 2014.
U.S. Appl. No. 14/585,800, filed Dec. 30, 2014 Non-Final Office Action dated May 16, 2016.
U.S. Appl. No. 14/585,800, filed Dec. 30, 2014 Non-Final Office Action dated Oct. 8, 2015.
U.S. Appl. No. 14/866,441, filed Sep. 25, 2015 Final Office Action dated Sep. 23, 2016.
U.S. Appl. No. 14/866,441, filed Sep. 25, 2015 Non-Final Office Action dated Mar. 14, 2016.
U.S. Appl. No. 14/866,738, filed Sep. 25, 2015 Non-Final Office Action dated Oct. 31, 2016.
Waltimire, B. and Rasor, J.S., Midline catheter: Virtually bloodless insertion technique and needle safety tube minimize potential for transmission of bloodborne disease. Sponsored by national Foundation for Infectious Diseases. 5th National forum on AIDS, Hepatitis, and other blood-borne diseases. Atlanta, GA, Mar. 1992.
EP 16797047.4 filed Dec. 6, 2017 Supplemental European Search Report dated Jan. 9, 2019.
JP 2016-563441 filed Oct. 19, 2016 Office Action dated Jan. 25, 2019.
U.S. Appl. No. 14/585,800, filed Dec. 30, 2014 Notice of Allowance dated Feb. 25, 2019.
U.S. Appl. No. 15/154,808, filed May 13, 2016 Notice of Allowance dated Apr. 16, 2019.
U.S. Appl. No. 151/02,537, filed Sep. 12, 2017 Final Office Action dated Mar. 8, 2019.
CA 2,799,360 filed May 13, 2011 Office Action dated Jun. 7, 2017.
CN 201380073657.4 filed Aug. 21, 2015 Office Action dated Jun. 28, 2017.
CN 201480019467.9 filed Sep. 29, 2015 Office Action dated Apr. 6, 2017.
CN 201510079782.7 filed Feb. 13, 2015 Office Action dated Dec. 30, 2016.
JP 2013-510353 filed Oct. 31, 2012 Office Action dated Dec. 15, 2016.
JP 2016-107046 filed May 30, 2016 Office Action dated Apr. 26, 2017.
U.S. Appl. No. 14/099,050, filed Dec. 6, 2013 Advisory Action dated Jun. 1, 2017.
U.S. Appl. No. 14/099,050, filed Dec. 6, 2013 Final Office Action dated Jan. 30, 2017.
U.S. Appl. No. 14/099,050, filed Dec. 6, 2013 Notice of Allowance dated Sep. 14, 2017.
U.S. Appl. No. 14/099,050, filed Dec. 6, 2013 Notice of Panel Decision dated Aug. 1, 2017.
U.S. Appl. No. 14/174,071, filed Feb. 6, 2014 Final Office Action dated Dec. 2, 2016.
U.S. Appl. No. 14/192,541, filed Feb. 27, 2014 Notice of Allowance dated Dec. 6, 2016.
U.S. Appl. No. 14/192,541, filed Feb. 27, 2014 Notice of Corrected Allowability dated Mar. 8, 2017.
U.S. Appl. No. 14/250,093, filed Apr. 10, 2014 Advisory Action dated May 19, 2017.
U.S. Appl. No. 14/250,093, filed Apr. 10, 2014 Final Office Action dated Mar. 9, 2017.
U.S. Appl. No. 14/250,093, filed Apr. 10, 2014 Non-Final Office Action dated Nov. 16, 2016.
U.S. Appl. No. 14/250,093, filed Apr. 10, 2014 Panel Decision dated Jul. 14, 2017.
U.S. Appl. No. 14/585,800, filed Dec. 30, 2014 Non-Final Office Action dated Nov. 29, 2016.
U.S. Appl. No. 14/585,800, filed Dec. 30, 2014 Notice of Allowance dated Jul. 3, 2017.
U.S. Appl. No. 14/702,580, filed May 1, 2015 Final Office Action dated Sep. 1, 2017.
U.S. Appl. No. 14/702,580, filed May 1, 2015 Non-Final Office Action dated May 3, 2017.
U.S. Appl. No. 14/750,658, filed Jun. 25, 2016 Non-Final Office Action dated Mar. 9, 2017.
U.S. Appl. No. 14/750,658, filed Jun. 25, 2016 Notice of Allowance dated Jul. 20, 2017.
U.S. Appl. No. 14/846,387, filed Sep. 4, 2015 Non-Final Office Action dated Sep. 22, 2017.
U.S. Appl. No. 14/866,441, filed Sep. 25, 2015 Advisory Action dated Dec. 22, 2016.
U.S. Appl. No. 14/866,441, filed Sep. 25, 2015 Non-Final Office Action dated Apr. 7, 2017.
U.S. Appl. No. 14/866,738, filed Sep. 25, 2015 Final Office Action dated Feb. 24, 2017.
U.S. Appl. No. 14/866,738, filed Sep. 25, 2015 Notice of Panel Decision dated Jun. 23, 2017.
U.S. Appl. No. 14/876,735, filed Oct. 6, 2015 Non-Final Office Action dated Mar. 30, 2017.
U.S. Appl. No. 29/536,043, filed Aug. 12, 2015 Non-Final Office Action dated Aug. 31, 2017.
U.S. Appl. No. 29/545,436, filed Nov. 12, 2015 Non-Final Office Action dated Sep. 12, 2017.
JP 2015-560173 filed Aug. 28, 2015 Office Action dated Aug. 2, 2018.
PCT/US2017/051214 filed Sep. 12, 2017 International Search Report and Written Opinion dated Nov. 13, 2017.
U.S. Appl. No. 15/154,808, filed May 13, 2016 Final Office Action dated Aug. 16, 2018.
U.S. Appl. No. 15/481,773, filed Apr. 7, 2017 Non-Final Office Action dated Jun. 29, 2018.
Access Scientific, The PICC Wand® Product Data Sheet, Revision F, May 22, 2012.
Access Scientific, The Powerwand® Extended Dwell Catheter Brochure (http://accessscientific.com/media/4Fr-POWERWAND-Brochure.pdf) last accessed Sep. 25, 2015.
BD Angiocath™ Autoguard™ Shielded IV Catheter Brochure, © 2001.
BD Medical Systems, I.V. Catheter Family Brochure (2006).
BD Saf-T-Intima™ Integrated Safety IV Catheter Brochure, © 2001.
Becton Dickinson, Insyte® AutoGuard™ Shielded I.V. Catheter Brochure, 1998.
CN 201180029526.7 filed Dec. 14, 2012 First Office Action dated Apr. 21, 2014.
CN 2012800008866.6 filed Aug. 14, 2013 Second Office Action dated Aug. 17, 2015.
CN 201280008866.6 filed Aug. 14, 2013 First Office Action dated Dec. 31, 2014.
CN 201280008866.6 filed Aug. 14, 2013 Third Office Action dated Jan. 25, 2016.
Cook Medical “Lunderquist Extra-Stiff wire guide” (2012).
Endovascular Today “Coiled Stainless Steel Guidewires” Buyer's Guide pp. 13-20, (2012).
EP 10075422.5 filed Jul. 5, 2008 European search report and written opinion dated Dec. 1, 2010.
EP 12782187.4 filed Sep. 10, 2013 European search report and written opinion dated Aug. 30, 2016.
EP 12782187.4 filed Sep. 10, 2013 European search report and written opinion dated Dec. 17, 2015.
EP 13876666.2 filed Sep. 7, 2015 Extended European Search Report dated Sep. 20, 2016.
European office action dated Apr. 21, 2008 for EP Application No. 06800027.2.
European office action dated Aug. 6, 2012 for EP Application No. 07783404.2.
European office action dated Oct. 5, 2010 for EP Application No. 07783404.2.
European search report and opinion dated Jul. 10, 2009 for EP Application No. 07783404.2.
Hadaway, Lynn C., A Midline Alternative to Central and Peripheral Venous Access, Caring Magazine, May 1990, pp. 45-50.
International search report and written opinion dated Apr. 2, 2012 for PCT/US2012/023192.
International search report and written opinion dated Jun. 1, 2007 for PCT/US2006/026671.
International search report and written opinion dated Oct. 23, 2008 for PCT/US2007/068393.
JP 2013-510353 filed Oct. 31, 2012 First Office Action dated Feb. 19, 2015.
JP 2013-510353 filed Oct. 31, 2012 Second Office Action dated Jan. 28, 2016.
JP 2016-107046 filed May 30, 2016 Office Action dated Jul. 28, 2016.
Menlo Care, Landmark™ Aquavene® Catheters Brochure, 1992.
Menlo Care, Landmark® Midline Catheter Maintenance and Reference Guide (1993).
Menlo Care, Landmark® Midline Catheters Brochure, 1991.
Menlo Care, Landmark® Venous Access Device Insertion Instructions (1992).
Menlo Care, Publications on Aquavene® Technology, Aug. 1992.
Notice of allowance dated Jan. 29, 2014 for U.S. Appl. No. 12/307,519.
Notice of allowance dated Jun. 10, 2015 for U.S. Appl. No. 11/577,491.
Office action dated Mar. 10, 2011 for U.S. Appl. No. 12/307,519.
Office action dated Mar. 15, 2011 for U.S. Appl. No. 11/577,491.
Office action dated Mar. 27, 2013 for U.S. Appl. No. 13/358,099.
Office action dated Aug. 2, 2010 for U.S. Appl. No. 11/577,491.
Office action dated Aug. 18, 2014 for U.S. Appl. No. 11/577,491.
Office action dated Oct. 25, 2010 for U.S. Appl. No. 12/307,519.
Office action dated Nov. 4, 2013 for U.S. Appl. No. 12/307,519.
Office action dated Mar. 12, 2015 for U.S. Appl. No. 11/577,491.
PCT/US15/28950 filed May 1, 2015 International Search Report and Written Opinion dated Oct. 19, 2015.
PCT/US2008/062954 filed May 7, 2008 International search report and written opinion dated Jan. 16, 2009.
PCT/US2011/036530 filed May 13, 2011 International Search Report dated Oct. 6, 2011.
PCT/US2011/036530 filed May 13, 2011 Written Opinion of the International Searching Authority dated Oct. 6, 2011.
PCT/US2012/026618 International Preliminary Report on Patentability dated Aug. 27, 2013.
PCT/US2012/026618 International Search Report and Written Opinion dated Jun. 25, 2012.
PCT/US2013/073577 filed Dec. 6, 2013 International Search Report and Written Opinion dated Feb. 24, 2014.
PCT/US2014/013557 filed Jan. 29, 2014 International search report and written opinion dated Apr. 14, 2014.
CN 201380073657.4 filed Aug. 21, 2015 Office Action dated Mar. 2, 2018.
CN 201510079782.7 filed Feb. 13, 2015 Office Action dated Feb. 5, 2018.
CN 201510079782.7 filed Feb. 13, 2015 Office Action dated Sep. 19, 2017.
EP 07783404.2 filed Jan. 19, 2009 Office Action dated Mar. 7, 2018.
EP 11781384.0 filed Sep. 21, 2012 Extended European Search Report dated Oct. 31, 2017.
EP 12782187.4 filed Sep. 10, 2013 Office Action dated Apr. 24, 2018.
EP 15785819.2 filed Dec. 2, 2016 Extended European Search Report dated Dec. 4, 2017.
EP 16797029.2 filed Nov. 21, 2017 Extended European Search Report dated May 3, 2018.
JP 2015-560173 filed Aug. 28, 2015 Office Action dated Sep. 19, 2017.
JP 2016-107046 filed May 30, 2016 Office Action dated Nov. 7, 2017.
PCT/CN2017/075370 filed Mar. 1, 2017 International Search Report and Written Opinion dated Nov. 30, 2017.
RU 2017141812 filed Nov. 30, 2017 Office Action dated Jan. 31, 2018.
U.S. Appl. No. 14/250,093, filed Apr. 10, 2014 Examiner's Answer dated Jun. 20, 2018.
U.S. Appl. No. 14/250,093, filed Apr. 10, 2014 Final Office Action dated Nov. 6, 2017.
U.S. Appl. No. 14/585,800, filed Dec. 30, 2014 Final Office Action dated May 11, 2018.
U.S. Appl. No. 14/585,800, filed Dec. 30, 2014 Non-Final Office Action dated Nov. 3, 2017.
U.S. Appl. No. 14/702,580, filed May 1, 2015 Advisory Action dated Nov. 13, 2017.
U.S. Appl. No. 14/702,580, filed May 1, 2015 Notice of Allowance dated Dec. 8, 2017.
U.S. Appl. No. 14/846,387, filed Sep. 4, 2015 Advisory Action dated May 10, 2018.
U.S. Appl. No. 14/846,387, filed Sep. 4, 2015 Final Office Action dated Mar. 22, 2018.
U.S. Appl. No. 14/866,441, filed Sep. 25, 2015 Final Office Action dated Jun. 5, 2018.
U.S. Appl. No. 14/866,738, filed Sep. 25, 2015 Non-Final Office Action dated Nov. 6, 2017.
U.S. Appl. No. 15/154,808, filed May 13, 2016 Non-Final Office Action dated Apr. 6, 2018.
U.S. Appl. No. 15/154,808, filed May 13, 2016 Restriction Requirement dated Jan. 3, 2018.
U.S. Appl. No. 15/377,880, filed Dec. 13, 2016 Non-Final Office Action dated May 14, 2018.
U.S. Appl. No. 15/692,915, filed Aug. 31, 2017 Non-Final Office Action dated Jan. 29, 2018.
U.S. Appl. No. 29/536,043, filed Aug. 12, 2015 Final Office Action dated Mar. 26, 2018.
U.S. Appl. No. 29/545,436, filed Nov. 12, 2015 Final Office Action dated Mar. 26, 2018.
CN 201580022407.7 filed Nov. 2, 2016 Office Action dated Jan. 31, 2019.
EP 07783404.2 filed Jan. 19, 2009 Office Action dated Apr. 16, 2019.
JP 2018-039302 filed Mar. 6, 2018 Office Action dated Feb. 20, 2019.
U.S. Appl. No. 15/608,802, filed May 30, 2017 Non-Final Office Action dated Jun. 6, 2019.
U.S. Appl. No. 15/702,537, filed Sep. 12, 2017 Notice of Allowance dated Jul. 31, 2019.
U.S. Appl. No. 15/727,528, filed Oct. 6, 2017 Restriction Requirement dated Aug. 7, 2019.
CN 201580022407.7 filed Nov. 2, 2016 Office Action dated Sep. 16, 2019.
U.S. Appl. No. 15/727,528, filed Oct. 6, 2017 Non-Final Office Action dated Sep. 20, 2019.
U.S. Appl. No. 15/951,931, filed Apr. 12, 2018 Non-Final Office Action dated Nov. 19, 2019.
U.S. Appl. No. 15/951,954, filed Apr. 12, 2018 Non-Final Office Action dated Nov. 4, 2019.
U.S. Appl. No. 15/727,528, filed Oct. 6, 2017 Final Office Action dated Jan. 28, 2020.
U.S. Appl. No. 15/862,380, filed Jan. 4, 2018 Restriction Requirement dated Dec. 23, 2019.
U.S. Appl. No. 15/951,931, filed Apr. 12, 2018 Notice of Allowance dated Feb. 20, 2020.
U.S. Appl. No. 15/951,954, filed Apr. 12, 2018 Notice of Allowance dated Feb. 23, 2020.
U.S. Appl. No. 29/654,527, filed Jun. 25, 2018 Restriction Requirement dated Mar. 10, 2020.
EP 16797029.2 filed Nov. 21, 2017 Office Action dated Mar. 27, 2020.
EP17849786.3 filed Apr. 12, 2019 Extended European Search Report dated May 13, 2020.
U.S. Appl. No. 14/250,093, filed Apr. 10, 2014 Patent Board Decision dated Jun. 8, 2020.
U.S. Appl. No. 15/727,528, filed Oct. 6, 2017 Notice of Allowance dated Mar. 27, 2020.
U.S. Appl. No. 15/869,872, filed Jan. 12, 2018 Non-Final Office Action dated Apr. 10, 2020.
U.S. Appl. No. 15/951,931, filed Apr. 12, 2018 Notice of Allowability dated Apr. 16, 2020.
U.S. Appl. No. 15/951,954, filed Apr. 12, 2018 Notice of Allowability dated Apr. 7, 2020.
U.S. Appl. No. 16/138,523, filed Sep. 21, 2018 Notice of Allowance dated Mar. 26, 2020.
U.S. Appl. No. 29/654,521, filed Jun. 25, 2018 Restriction Requirement dated Apr. 8, 2020.
U.S. Appl. No. 29/658,136, filed Jul. 27, 2018 Restriction Requirement dated May 11, 2020.
U.S. Appl. No. 14/250,093, filed Apr. 10, 2014 Notice of Allowance dated Aug. 19, 2020.
U.S. Appl. No. 14/866,738, filed Sep. 25, 2015 Patent Board Decision dated Jul. 13, 2020.
U.S. Appl. No. 15/862,380, filed Jan. 4, 2018 Non-Final Office Action dated Jul. 9, 2020.
U.S. Appl. No. 15/869,872, filed Jan. 12, 2018 Final Office Action dated Jun. 25, 2020.
U.S. Appl. No. 16/292,076, filed Mar. 4, 2019 Non-Final Office Action dated Aug. 10, 2020.
U.S. Appl. No. 16/295,906, filed Mar. 7, 2019 Non-Final Office Action dated Sep. 4, 2020.
U.S. Appl. No. 29/654,521, filed Jun. 25, 2018 Notice of Allowance dated Aug. 17, 2020.
U.S. Appl. No. 29/654,527, filed Jun. 25, 2018 Notice of Allowance dated Aug. 18, 2020.
U.S. Appl. No. 29/658,136, filed Jul. 27, 2018 Non-Final Office Action dated Sep. 9, 2020.
EP 19181963.0 filed Jun. 24, 2019 Extended European Search Report dated Jul. 16, 2019.
PCT/US2019/021231 filed Mar. 7, 2019 International Search Report and Written Opinion, dated Jun. 27, 2019.
U.S. Appl. No. 14/866,738, filed Sep. 25, 2015 Notice of Allowance dated Sep. 24, 2020.
U.S. Appl. No. 15/862,380, filed Jan. 4, 2018 Final Office Action dated Oct. 26, 2020.
U.S. Appl. No. 15/869,872, filed Jan. 12, 2018 Advisory Action dated Sep. 23, 2020.
U.S. Appl. No. 29/654,521, filed Jun. 25, 2018 Notice of Allowability dated Sep. 30, 2020.
U.S. Appl. No. 29/654,527, filed Jun. 25, 2018 Notice of Allowability dated Sep. 30, 2020.
U.S. Appl. No. 16/292,076, filed Mar. 4, 2019 Corrected Notice of Allowance dated Feb. 25, 2021.
U.S. Appl. No. 16/292,076, filed Mar. 4, 2019 Notice of Allowance dated Feb. 4, 2021.
U.S. Appl. No. 16/295,906, filed Mar. 7, 2019 Final Office Action dated Dec. 22, 2020.
U.S. Appl. No. 16/295,906, filed Mar. 7, 2019 Notice of Allowance dated Mar. 4, 2021.
U.S. Appl. No. 16/296,087, filed Mar. 7, 2019 Restriction Requirement dated Feb. 8, 2021.
U.S. Appl. No. 16/529,602, filed Aug. 1, 2019 Notice of Allowance dated Jan. 19, 2021.
Related Publications (1)
Number Date Country
20160331938 A1 Nov 2016 US
Provisional Applications (1)
Number Date Country
62162548 May 2015 US