The present invention relates generally to medical devices and methods, and more particularly to catheters, catheter positioning/aiming systems, and related methods for forming interstitial passageways (e.g., interstitial tunnels) between two or more adjacently situated blood vessels or other anatomical structures.
Applicant has invented novel methods for bypassing obstructions in arteries and for performing other transvascular medical procedures, wherein a catheter device is inserted transluminally into the blood vessel or other luminal anatomical structure and a tissue-penetrating element (e.g., a puncturing member or a flow of energy) is passed out of the catheter, through the wall of the blood vessel or other anatomical structure in which the catheter is positioned, and into a second blood vessel or other target anatomical structure. In this manner one or more interstitial passageways is/are formed from the blood vessel or other luminal structure in which the catheter is positioned, to a second blood vessel or other target tissue. These transvascular procedures, and certain passageway forming catheters which are useable to perform these procedures, have previously been described in U.S. patent application Ser. No. 08/730,327 entitled METHODS AND APPARATUS FOR BYPASSING ARTERIAL OBSTRUCTIONS AND/OR PERFORMING OTHER TRANSVASCULAR PROCEDURES, filed on Oct. 11, 1996 and Ser. No. 08/730,496 entitled, A DEVICE, SYSTEM AND METHOD FOR INTERSTITIAL TRANSVASCULAR INTERVENTION, filed Oct. 11, 1996.
In performing the above-summarized transvascular procedures, it is important that the passageway-forming catheter be properly positioned and oriented within the body in the order to ensure that the tissue-penetrating element will form the desired interstitial passageway, at the desired location. If the catheter is improperly positioned or improperly oriented, the resultant passageway(s) may fail to perform their intended function (e.g., to channel blood from one location to another) or the tissue penetrating element of the catheter may perforate or traumatize tissue(s) other than those intended to be canalized.
In many of the passageway-forming catheters devised by applicant, it is necessary to precisely control the rotational orientation of the catheter in order to accomplish the desired aiming of the tissue-penetrating element. However, when the passageway-forming catheter is formed of relatively small diameter, thin-walled polymeric material capable of navigating small, tortuous blood vessels, the catheter shaft may lack sufficient structural integrity to efficiently transfer torque from the proximal end of the catheter to the distal end thereof. Such diminished torque transfer of the catheter shaft can prevent or interfere with the precise rotational orientation and positioning of the distal portion of the catheter prior to formation of the extravascular passageway.
Additionally, to facilitate the use of any on-board imaging system (e.g., an intravascular ultrasound system inserted or built into the passageway-forming catheter) or any separate intracorporeal or extracorporeal imaging services intended to assist in the precise aiming of the tissue-penetrating element, it is desirable for the tissue-penetrating catheter to be provided with appropriate markers or other indicia to enable the operator to utilize to discern the present rotational orientation and position of the catheter and the projected path of the tissue-penetrating element.
Thus, there remains a need in the art for further development and modification of applicant's previously described passageway-forming catheter devices so as to provide for i) improved torque transfer to the distal portion of the catheter and ii) precise rotational orientation and aiming of the catheter prior to deployment of the tissue penetrating element.
The inventions described in this patent application include i) a torqueable introducer sheath which is useable in conjunction with a transvascular passageway forming catheter to effect precise rotational control of the catheter; ii) an anchorable guide catheter which is useable in conjunction with an intravascular imaging catheter and a transvascular passageway-forming catheter to effect precise positioning and aiming of the passageway-forming catheter; iii) a passageway forming catheter having a torqueable proximal portion to facilitate precise rotational positioning of the distal portion of the catheter; iv) a deflectable-tipped passageway forming catheter, v) various markers and other apparatus useable in conjunction with any of the passageway-forming catheters to facilitate precise positioning and aiming of the catheter, and vi) an apparatus which may be formed within a catheter to prevent a member, apparatus of flow of material from being inadvertently advanced through a lumen of the catheter.
Additional details and objects of each of the above-summarized inventions will become apparent to those skilled in the art upon reading and understanding of the following detailed descriptions of preferred embodiments and the accompanying drawings.
The following detailed description and the accompanying drawings are provided for the purpose of describing and illustrating presently preferred embodiments of the invention only, and are not intended to limit the scope of the invention in any way.
It is to be appreciated that the individual elements and components of each of the embodiments described herebelow may be individually or collectively incorporated into each of the other embodiments capable of receiving or incorporating such element(s) or component(s), and no effort has been made to exhaustively describe all possible permutations and combinations of the inventive elements and components described herein.
i. Torgueable Introducer Sheath
Referring specifically to
A tubular catheter engaging member 28 is formed or mounted within the lumen 20 of the distal segment 18 of the tubular sheath body 12. Such tubular catheter engaging member 28 has a lumen 30 which extends longitudinally therethrough. The lumen 30 may be of any non-cylindrical or nonuniform configuration, such as “pair shape” or “egg-shape,” whereby the luminal surface or a portion thereof will engage and prevent rotation of the catheter inserted through the sheath. An example of a generally oval shaped lumen is shown in
A plurality of elongate reinforcement members 32, formed of wire, fibers or other suitable material, are disposed within the proximal and medial segments 14, 16 of the tubular sheath body 12. These reinforcement members 32 may be helically wound about the lumen 20 of the sheath body 12 to form an overlapping braid structure 34. Other structures, such as a coil structure, may also be used. In particular, such overlapping braid structure 34 may comprise two groups of individual elongate members 32 helically wound in opposite phase about the longitudinal axis LA of the tubular introducer sheath body 12, and at cross over points of such groups of elongate members 32, the individual elongate members 32 of one group will be alternately passed over and under the individual elongate members 32 of the other group, so as to provide a braid structure 34 which will impart enhanced structural integrity and torque transfer to the proximal 14 and medial 16 segments of the tubular sheath body 12. In some embodiments, the distal segment 18 may also be provided with the elongate members 32 and/or braided structure.
In embodiment of this sheath intended for coronary application, the individual elongate members 32 may preferably be formed of stainless steel of 0.001-0.005 inch diameter. Each group of elongate members 32 may consist of eight such stainless steel wire members in substantially parallel side-by-side relation to one another. The first and second groups of elongate members 32 will be helically wound about a tubular inner liner 36, in opposite phase such that the first and second groups of elongate members will repeatedly cross over each other. At locations whereat the groups of elongate members 32 cross over each other, each individual elongate member 32 of each group may be alternately threaded over and under the individual elongate members 32 of the other group, so as to provide an interwoven, braided structure 34 which will impart enhanced torqueability to the tubular sheath body 12. A tubular outer skin 15 is then formed over the wire braid structure 34 such that the wire braid structure 34 is captured or located between the tubular outer skin 15 and the tubular core member 36, as shown.
In at least some applications it may desirable to impart regionalized differences in rigidity or hardness to the proximal and medial segments 14, 16 of the tubular sheath body 12. In this manner, the outer skin 15 of the proximal portion 14 may be formed of material which is more rigid or greater in hardness than that of the outer skin 15 of the medial portion 16. For example, the outer skin 15 of the proximal portion 14 may be formed of thermoplastic, elastin (e.g., Pebax, polyurethane, silicone, polyester) or thermoset elastomer (e.g., polyurethane or flexibly epoxy) (e.g., Pebax) having a Shore D hardness of 60-72 while the outer skin 15 of the medial portion 16 may be formed of polymeric material (e.g., pebax) having a lesser hardness, such as a 40-60 Shore D hardness on the shore D scale. The outer skin 15 of the distal portion 18 may preferably have a Shore D hardness in the range of 30-40. The relative lengths and hardness of the inner liner 36 and outer skin 15 may be varied to adjust the overall stiffness of the catheter and the locations of the transition areas between the proximal 14, medial 16 and distal 18 segments of the sheath 10.
In the preferred embodiment, shown in the drawings, the inner liner is formed of polytetrafluoroethylene (PTFE) of consistent hardness from the proximal end PE to the distal end DE of the tubular sheath body 12.
With reference to
A tissue-penetrating element 46 of the type previously described in U.S. patent application Ser. No. 08/730,327 is advanceable out of the distal end DE of the upper catheter portion 42 such that the tissue penetrating element 46 will diverge laterally from the longitudinal axis LA of the catheter device 40. In this manner, the tissue-penetrating element 46 will pass through the wall of a blood vessel wherein the distal portion of the catheter device 40 is positioned so as to create an extravascular passageway extending from the blood vessel to another blood vessel or other extravascular target location.
As shown in
ii. Anchorable Guide Catheter
Referring to
The anchorable guide catheter 50, comprises a pliable tubular catheter body 52 having a proximal end PE and a distal end DE. First and second lumens 54, 56 extend longitudinally through the catheter body 52. An opening 58 is formed in one side of the catheter body 52, so as to provide an opening into the first lumen 54. A pressure exertive member such as a balloon 59 or other projectable apparatus such as a moveable foot, is mounted on the catheter body 52 at a location laterally opposite the location of the opening 58. An inflation fluid aperture 60 is formed in the sidewall of the catheter body 52 between the balloon 58 and the second lumen 56 such that balloon inflation fluid may pass into and out of the balloon 59, through the second lumen 56.
A proximal connector assembly 62 is mounted on the proximal end PE of the catheter body 52. Such proximal connector assembly 62 has a side arm port 64 in communication with the second lumen 56 such that balloon inflation fluid may be injected or withdrawn through the side arm port 64 to cause alternate inflation and deflation of the balloon 59. Also, the proximal connector assembly 62 has a proximal port 66 through which any elongate member of suitable size and configuration, such as the imaging (IVUS) catheter, a passageway forming catheter 40, or other catheters equipped for introducing channel connectors, channel sizers, lumen blockers, etc. as described in Applicant's earlier-filed U.S. patent application Ser. Nos. 08/730,327 and 08/730,496, may be advanced through the first lumen 54 of the catheter body 52. The first lumen 54 of the catheter body 52 may be of a shape or configuration which is analogous to one or both of the catheters which are to be inserted through the first lumen 54 such that when such IVUS catheter, passageway forming catheter 70 or other elongate member 15 inserted into the first lumen 54, the outer surface(s) thereof will engage the inner surface of the first lumen 54 such that the IVUS catheter, passageway forming catheter 70 or other elongate member will be prevented from rotatably moving relative to the body of the catheter 52, and the operator will thereby maintain precise control over the rotational orientation of these apparatus. In particular, as shown in
Referring to
Referring back to
After the opening 58 of the balloon anchorable guide catheter 50 has been precisely rotationally positioned so that a passageway forming catheter 70 subsequently inserted through the guide catheter 50 will be appropriately aimed at the target anatomical location, the balloon 59 of the guide catheter 50 will be inflated (or the other pressure exertive member will be actuated) to engage the surrounding luminal anatomical wall and to hold the distal portion of the guide catheter 50 in substantially fixed longitudinal and rotational position/orientation. In this regard, the material in which the balloon 59 is formed may be frictionally textured or coated with adhesive or otherwise modified with a friction producing outer surface to enhance its friction against the luminal wall. In this manner the balloon 59 will soundly engage the surrounding luminal wall to hold the distal portion of the guide catheter 50 in fixed position.
Thereafter, the imaging catheter 80 will be extracted from the first lumen 54, and a passageway-forming catheter such as that shown in
Because the anchoring balloon 59 has been inflated, the guide catheter body 52 will be prevented from rotating within the vasculature and will be held in a substantially fixed rotational orientation such that the side opening 58 is in direct alignment with the other blood vessel or target location to which the extravascular passageway is to extend. Thus, after the passageway-forming catheter 70 has been inserted into the first lumen 54 in the above-described manner, the triggering member 80 may be actuated to cause the tissue penetrating element 78 to pass out of the passageway forming catheter body 72, through the side opening 58 of the guide catheter, through the wall of the blood vessel in which the guide catheter 50 is located, and into another blood vessel or other extravascular target location. In some embodiments, the tissue penetrating element 78 may comprise a tubular member having a guidewire lumen 81 extending longitudinally therethrough. When such guidewire lumen 81 is present, a guidewire 79 may optionally be advanced through the tissue penetrating element 78 and into the other blood vessel or extravascular target location, after the tissue-penetrating element 78 has been advanced thereinto. After such guidewire 79 has been advanced into the other blood vessel or extravascular target location, the tissue penetrating element 78 may be retracted into the body of the passageway forming catheter 70, and the passageway forming catheter 70 and balloon anchorable guide catheter 50 may be extracted from the body, leaving the guidewire 79 in place to guide other devices or operative instruments through the newly created extravascular passageway.
iii. Passageway-Forming Catheter Device Having Torqueable Proximal Portion
The proximal segment 104 and medial segment 106 of the catheter body 102 incorporate reinforcement members, such as a reinforcement member braid 110, which will impart structural integrity to the proximal segment 104 and medial segment 106, and will enhance the ability of the proximal segment 104 and medial segment 106 to transmit torque from the proximal end of the catheter body 102. In some embodiments, the distal segment 108 may also incorporate such reinforcement members and/or braid 110. The reinforcement members and braid may be similar to or the same as that described in detail hereabove in reference to
As shown in
The mid-portion 106 comprises a cylindrical core member 140b of diameter D.sub.2, about which the reinforcement members or wire braid 110 are wrapped. A cylindrical outer jacket 142b is also formed about the mid-portion 106 of the catheter body 102, and is continuous with the outer surface of the distal portion 108, as shown in
It would be appreciated that the individual portions or members which make up each segment of 104, 106, 108 of the catheter body 102 may be formed of materials which have different physical properties (e.g., hardness, flexural properties, etc.) so as to bring about the desired regionalized variations in pliability and torque strength the catheter body 102. For example, in a presently preferred embodiment, the cylindrical core member 140a of the proximal portion 104 is formed of a polymer material of a first hardness (e.g., Pebax of 63E Shore Hardness) and the cylindrical core member 140b of the mid-portion 106 is formed of a polymer material having a different hardness (e.g., Pebax of 40D Shore Hardness). The outer jacket 142 a of the proximal portion 104 is formed of another polymeric material having yet a different hardness (e.g., Pebax 70D Shore Hardness) and the outer jacket 142d of the mid-portion 106 is formed of polymeric material having the same or similar hardness of that of the mid-portion 106 (e.g., Pebax of 40D Shore Hardness) other polymeric materials which may be used to form portions or members of the catheter body 102 include nylon, polyurethane, polyester, polyvinyl chloride (PVC) etc.
The catheter body 102 has a bottom portion BP and an upper portion UP. A curved or slanted frontal surface is formed on the distal end of the upper portion UP.
A first lumen 130 extends longitudinally through the catheter body from the proximal end to the distal end of the upper portion of the catheter body, and terminates distally at the distal outlet aperture 134.
A second lumen 132 also extends longitudinally through the catheter body from the proximal end thereof to a closed end wall or plug at the distal end of the lower portion LP of the catheter body 102. A proximal connector 136 is mounted on the proximal end of the catheter body. A proximal connector 136 has a proximal end port 134 and a side arm port 138. The proximal end port 134 is in communication with the first lumen 130 of the catheter body 102, and the side arm port 138 is in communication with the second lumen 132 of the catheter body 102. A tissue-penetrating element 150 extends through the first lumen 130. This tissue penetrating element 150 may be any suitable type of tissue penetrating element member, device, or flow of energy, as previously described in U.S. patent application Ser. No. 08/730,324, of which this application is a continuation-in-part. In embodiments wherein the tissue penetrating element 150 is an advanceable member or device, a handpiece of the type shown in
An imaging catheter, such as an intravascular ultrasound (IVUS) catheter may be inserted through one of the ports 134, 138 of the proximal connector 136 connected to the second lumen 132. In this manner the imaging catheter (IVUS) may be advanced through the second lumen 132 such that a distal portion of the imaging catheter extends into or out of and beyond the distal extent of the second lumen 132, thereby placing the imaging transducer or image receiving apparatus at a vantage point which is distal to the outlet aperture 134. Such imaging catheter may then be utilized to image anatomical structures which are situated adjacent to in the vicinity of the outlet aperture 134, and to view the passage of the tissue-penetrating element 150 out of the outlet aperture 134 and through/into the adjacent anatomical structure.
iv. A Deflectable Catheter System for Forming Extraluminal Passageways
b show another type of catheter system which may be utilized to form interstitial passageways between a luminal anatomical structure (e.g., a blood vessel) within which the catheter is positioned and another target anatomical location (e.g., another blood vessel, chamber of the heart, organ, tumor, etc.).
As shown in
The deflectable tip catheter 110 comprises an elongate pliable catheter body 1016 having a deflectable distal end DE and a proximal end PE which is connected to a handpiece 1018.
A presently preferred construction of the handpiece 1118 is shown in
A working lumen 1020 extends longitudinally through the catheter body 1016 and through an opening 1022 in the distal end DE of the catheter body 1016. A secondary lumen 1026 extends longitudinally through the catheter body 1016, at an off center location along one side of the catheter body. Such secondary lumen 1026 terminates within the catheter body near the distal end thereof, and is thus a blind lumen. A pull wire 1024 extends longitudinally through the secondary lumen 1026 and the distal end 1028 of the pull wire 1024 is anchored or attached to the catheter body at a location within the catheter body, near the distal end thereof. The pull wire 1024 is axially moveable within the secondary lumen 1026 such that, when the pull wire 1024 is retracted in the proximal direction, it will cause the distal end DE of the catheter body 1016 to deflect in lateral direction, toward the side on which the secondary lumen 1026 is formed, as shown in
The handpiece 1018 comprises a rear body portion 1030 and a forward body portion 1032 a knob 1034 is formed on the forward body portion 1032. The proximal end of the forward body portion 1032 is received within an inner bore 1036 of the rear body portion 1030 and is slidably retractable and advanceable within such bore 1036. A tubular member 1038 is positioned axially within the bore 136 of the rear body portion 1030 and extends through a portion of the forward body portion 132 as shown. This tube member 1038 is attached and anchored within the handpiece 1018 by way of a nut 1039. The catheter body 1016 extends through the tubular member 1038 and the proximal end PE of the catheter body 1016 is anchored within the rear body portion 1030, as shown. A slot 1040 is formed in the side of the tube member 1038. The pull wire 1014 extends through a small hole formed in the side of the catheter body 1016 within the forward body portion 1032 and through the slot 1040. The proximal end of the pull wire 1024 is attached to a set screw 1042 mounted in the side of the forward body portion 1032. An 0-ring 1046 is mounted within an annular groove formed in the proximal portion of the forward body portion 1032 such that the 0ring will ride against the inner surface of the bore 1036 of the rear body portion 130 as the forward body portion 1032 is advanced and retracted therewithin.
In operation, when it is desired to cause the distal end DE of the catheter body 1016 to deflect laterally, the operator will grasp the knob 1034 of the forward body portion 1032 and will proximally retract the forward body portion 1032 into the bore 1036 of the rear body portion 1030, while the catheter body 1016 remains axially stationary due to its affixation to the proximal body portion 1030. In this manner, the pull wire 1024 will be proximally retracted within the secondary lumen 1026 and will cause the distal end DE of the catheter body 1016 to deflect in the desired lateral direction, as shown. Such deflection of the distal end DE of the catheter body 1016 may be utilized to cause the distal end outlet aperture 1022 to be specifically directed or aimed at the luminal wall of a luminal anatomical structure within which the catheter body 1016 is inserted.
A first frusto conical bore 1050 is formed within an insert member 1052 located in the rear body portion 1030, and within which the proximal end PE of the catheter body 116 is extended. This frusto conical bore 1050 leads directly into the proximal end of the working lumen 1020 of the catheter body 1016 and will facilitate distally directed advancement of a guidewire, imaging catheter 1012, tissue penetrating element 1014, or other elongate apparatus through the main lumen 1020 of the catheter body 1016.
Another insert member 1054 having an opposite redirected frusto conical bore 1056 is also mounted within the bore 1036 of the rear body portion 1030, proximal to the first insert member 1052. This oppositely directed frusto conical bore 1056 will serve to guide and center the proximal end of a guidewire or similar elongate apparatus over which the catheter body 116 may be advanced such that it passes out of the proximal end PE of the catheter body 116.
Optionally, a hemostasis valve and/or gripping apparatus 1060 may be mounted on the proximal end of the rear body portion 130, immediately adjacent the proximal end opening 1062 of the bore 136 through which the guidewire(s), imaging catheter 1012, tissue penetrating element 1014 or other elongate apparatus may be passed.
In a preferred mode of operation, the catheter body 1016 is initially inserted into a luminal anatomical structure such that the distal end DE of the catheter body 1016 is located generally adjacent a site at which an interstitial passageway is to be formed through the wall of the luminal anatomical structure within which the catheter body 1016 is positioned. The imaging catheter 1012 (e.g., an IVUS catheter) is advanced through the proximal opening 1062, through the frusto conical bore 1050, and through the working lumen 1020 of the catheter body 1016 until the transducer or image-receiving element of the imaging catheter 1012 is appropriately positioned to image the side wall of the luminal anatomical structure within which the catheter body 1016 is inserted and/or the target anatomical location to which the interstitial passageway is desired to extend. In many instanced, this will require that a distal portion of the imaging catheter 1012 protrudes slightly out of and beyond the distal end opening 1022 of the working lumen 1020. With the image catheter 1012 in its operative position, it may be utilized to precisely locate the distal end DE of the catheter body 1016 in the desired longitudinal location and rotational orientation which will cause the distal end opening 1022 to be in alignment with the specific site on the wall of the luminal anatomical structure through which the passageway is to be formed. In this manner, one or more imageable markers or other aiming/positioning systems as described in this patent application or in applicant's related patent applications may be incorporated into the system 1000 to facilitate precise aiming and positioning of the distal end DE of the catheter body 1016.
After the distal end DE of the catheter body 1016 has been longitudinally and rotationally positioned/oriented, the imaging catheter 1012 will be extracted and removed, and the tissue-penetrating element 1014 will then be advanced through the proximal opening 1062, through the frusto conical bore 1050, and through the working lumen 1020 until the tissue-penetrating element is near the distal end opening 1022 but still contained within the working lumen 1020. Thereafter, the operator will grasp the knob 1034 of the handpiece 1018 and will retract the forward body portion 1032 of the handpiece rearwardly, into the rear body portion 1030. This will cause the pull wire 1024 to retract and will cause the distal end DE of the catheter to become laterally deflected such that the distal end opening 1022 is positioned in direct alignment with the site on the wall of the luminal anatomical structure through which the passageway is to be formed. Thereafter, the tissue-penetrating element 1014 will be further advanced out of the distal end opening 1022 of the catheter body 1016, through the wall of the luminal anatomical structure, and through any intervening tissue, until the tissue-penetrating element 1012 emerges into the intended target anatomical location.
Thereafter, the tissue-penetrating element 1014 may be retracted through the working lumen 1020 and removed.
Thereafter, one or more secondary apparatus (e.g., channel connector delivery catheters, channel enlarging/modifying catheters, blocker catheters, etc.), may be advanced through the working lumen 1020 of the catheter to perform any desired modifications of the interstitial passageway or delivery of ancillary devices to facilitate flow of blood or biological fluids through the passageway, as desired.
Thereafter, when the procedure has been completed, the operator may again grasp the knob 1034 of the forward body portion 1032 and may distally advance the forward body portion to its original position, thereby allowing the distal end DE of the catheter body 1016 to return to its substantially straight, non-deflected configuration.
Those skilled in the art will appreciate that various modifications or changes may be made to the above-described system 1000 without departing from the intended spirit and scope of the invention. For example, although the preferred embodiment has been shown with a single working lumen 1020 extending through the deflectable catheter 1010, a plurality of such lumens may be formed to allow multiple components (e.g., the imaging catheter 112 and the tissue penetrating element 1014 and/or a guidewire (not shown)) to extend through the catheter body 1016 simultaneously. However, in many applications it will be desirably to minimize the diameter of the catheter body 1016 and to maximize its pliability or flexibility, thereby rendering it desirable to utilize a single lumen 1020 in such applications.
Optionally, a side port 1057 may be formed in the rear body portion 1030 to permit infusion/withdrawal of fluid through the working lumen 1020 of the catheter 1000.
V. Markers and Related Apparatus for Positioning/Aiming the Passageway Forming Catheters
In particular,
Referring to
In the particular embodiment shown in
In the alternative embodiment shown in
The showing of
One example of an electrical system which may be utilized to electronically mark a desired location L on the image received from the phased array transducer 376 is shown, in schematic fashion, in
The signal receiving apparatus 502 is preferably formed within the wall of the passageway forming catheter 100a laterally outboard of the working lumen 302 through which the tissue penetrating element is passed, and in direct alignment with the tissue penetrating element outlet aperture 134 formed in the side of the catheter 100a. Optionally, the catheter 100a may also include an imaging lumen 300 through which and imaging catheter (e.g., an IVUS catheter) may be passed. However, those skilled in the art will appreciate that in many applications the signal emitting apparatus 500 and signal receiving apparatus 502 will be operable to control the precise positioning and rotational orientation of the catheter 100a, and such imaging lumen 300 may be unnecessary.
The signal receiving apparatus 502 formed in the passageway-forming catheter 100a comprises a signal receiving wire 510 having a tubular shielding apparatus 512 formed therearound. The tubular shielding apparatus 512 surrounds the shaft of the receiving wire 510 and a short distal portion 514 of the receiving wire 510 extends out of and beyond the distal end of the tubular shield 512. The tubular shield 512 may be formed in the same manner as the above-described tubular shield 506 of signal emitting apparatus 500. The exposed distal portion 514 of the signal receiving wire 510 is located immediately adjacent, and in longitudinal alignment with the side outlet aperture 134. In this manner, an electro magnetic signal may be emitted through the signal emitting apparatus 500 after it has been positioned within the second blood vessel BV.sub.2 or other target tissue. The longitudinal positioning and rotational orientation of the passageway-forming catheter 100a inserted within the first blood vessel BV.sub.1 may then be adjusted until the signal received by the signal receiving apparatus 502 of the catheter 100a is at its peak intensity, thereby indicating that the exposed distal portion 514 of the receiving wire 510 has been positioned at its closest possible point to the exposed distal portion 508 of the signal emitting wire 504. This will ensure that the passageway forming catheter 100a is longitudinally positioned at the closest straight-lined point from the signal emitting apparatus 500 located within the second blood vessel BV.sub.2 or other target tissue, and that the catheter 100a has been rotated to a rotational orientation wherein the outlet aperture 134 is directly aimed at the signal emitting apparatus 500 located within the second blood vessel BV.sub.2 or other target tissue. It will be further appreciated by those skilled in the art that various types of energy-emitting signals may be utilized into, such that the signal emitting apparatus 500 located within the second blood vessel BV.sub.2 or target tissue is an “active” element and the signal receiving apparatus 502 associated with the passageway forming catheter 100a is a “passive” or receiving element. The types of signals which may be utilized include, but are not necessarily limited to, electromagnetic signals (as specifically described hereabove), sonic signals (e.g., doppler), ultrasonic signals, high intensity light, laser, radiofrequency, etc.
Further referring to
In this manner, the system 790 shown in
c show other catheter marking schemes which may be used in conjunction with an extracorporeal imaging apparatus 118, such as a fluoroscope, positioned adjacent a mammalian body MB. In the showing of
Referring to
Similarly, as shown in
vi. Apparatus for Preventing Inadvertent Deployment of Tissue Penetrating Element
Materials, construction and treatments of the balloon, 544′ may be made to prevent undesired movement or dislodgment in the vessel during its inflated state. Treatment may include surface modification, Dacron, or other means.
It should be appreciated that the general concept of combining an anchoring device which is deployed after confirmation of proper orientation of the tissue penetrating element which simultaneously or nearly thereafter, removes a safety device previously in place to prevent inadvertent advancement of the tissue penetrating element, can be accomplished in other ways not completely described above.
It will be appreciated by those skilled in the art that the invention has been described hereabove with reference to certain presently preferred embodiments and examples only, and no effort has been made to exhaustively describe all possible embodiments and examples in which the invention may take physical form. Furthermore, it will be appreciated that each of the specific components and elements of the above-described embodiments and examples may be combined or used in conjunction with any of the other components shown in relation to other embodiments or examples, to the extent such recombination of elements or components may be accomplished without rendering the device, apparatus, or system unusable for its intended purpose. Furthermore, various additions, deletions, modifications, and alterations may be made to the above-described embodiments and examples without departing from the intended spirit and scope of the invention. Accordingly it is intended that all such variations, recombination, additions, deletions and modifications be included within the scope of the following claims.
This patent application is a continuation of U.S. patent application Ser. No. 12/634,850 filed Dec. 9, 2009 and issued as U.S. Pat. No. 7,648,517, which is a division of Ser. No. 09/912,122 filed Jul. 24, 2001 and issued as U.S. Pat. No. 7,648,517, which is a division of Ser. No. 08/837,294 filed Apr. 11, 1997 and issued as U.S. Pat. No. 6,302,875, the entire disclosures of which are expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3752162 | Newash | Aug 1973 | A |
4602624 | Naples et al. | Jul 1986 | A |
4649936 | Ungar et al. | Mar 1987 | A |
4709698 | Johnston et al. | Dec 1987 | A |
4764504 | Johnson et al. | Aug 1988 | A |
4824436 | Wolinsky | Apr 1989 | A |
4890623 | Cook et al. | Jan 1990 | A |
4905667 | Foerster et al. | Mar 1990 | A |
4976711 | Parins et al. | Dec 1990 | A |
5087244 | Wolinsky et al. | Feb 1992 | A |
5102402 | Dror et al. | Apr 1992 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5306250 | March et al. | Apr 1994 | A |
5326341 | Lew et al. | Jul 1994 | A |
5331947 | Shturman | Jul 1994 | A |
5344395 | Whalen et al. | Sep 1994 | A |
5345940 | Seward et al. | Sep 1994 | A |
5358514 | Schulman et al. | Oct 1994 | A |
5366490 | Edwards et al. | Nov 1994 | A |
5368591 | Lennox et al. | Nov 1994 | A |
5419767 | Eggers et al. | May 1995 | A |
5419777 | Hofling | May 1995 | A |
5423744 | Gencheff et al. | Jun 1995 | A |
5429136 | Milo et al. | Jul 1995 | A |
5464395 | Faxon et al. | Nov 1995 | A |
5484400 | Edwards et al. | Jan 1996 | A |
5538504 | Linden et al. | Jul 1996 | A |
5571147 | Sluijter et al. | Nov 1996 | A |
5588960 | Edwards et al. | Dec 1996 | A |
5588962 | Nicholas et al. | Dec 1996 | A |
5588964 | Imran et al. | Dec 1996 | A |
5590654 | Prince | Jan 1997 | A |
5599345 | Edwards et al. | Feb 1997 | A |
5626576 | Janssen | May 1997 | A |
5667490 | Keith et al. | Sep 1997 | A |
5672174 | Gough et al. | Sep 1997 | A |
5688266 | Edwards et al. | Nov 1997 | A |
5693014 | Abele et al. | Dec 1997 | A |
5700282 | Zabara | Dec 1997 | A |
5707400 | Terry, Jr. et al. | Jan 1998 | A |
5709874 | Hanson et al. | Jan 1998 | A |
5749848 | Jang et al. | May 1998 | A |
5772590 | Webster, Jr. | Jun 1998 | A |
5800450 | Lary et al. | Sep 1998 | A |
5817144 | Gregory | Oct 1998 | A |
5843016 | Lugnani et al. | Dec 1998 | A |
5860974 | Abele | Jan 1999 | A |
5865787 | Shapland et al. | Feb 1999 | A |
5865801 | Houser | Feb 1999 | A |
5876374 | Alba et al. | Mar 1999 | A |
5891133 | Murphy-Chutorian | Apr 1999 | A |
5893885 | Webster et al. | Apr 1999 | A |
5916227 | Keith et al. | Jun 1999 | A |
5924424 | Stevens et al. | Jul 1999 | A |
5938670 | Keith et al. | Aug 1999 | A |
5944710 | Dev et al. | Aug 1999 | A |
5954719 | Chen et al. | Sep 1999 | A |
5983141 | Sluijter et al. | Nov 1999 | A |
5989208 | Nita | Nov 1999 | A |
5997497 | Nita et al. | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6009877 | Edwards | Jan 2000 | A |
6010480 | Abele et al. | Jan 2000 | A |
6024740 | Lesh et al. | Feb 2000 | A |
6036687 | Laufer et al. | Mar 2000 | A |
6066134 | Eggers et al. | May 2000 | A |
6091995 | Ingle et al. | Jul 2000 | A |
6099524 | Lipson et al. | Aug 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6117128 | Gregory | Sep 2000 | A |
6135999 | Fanton et al. | Oct 2000 | A |
6149620 | Baker et al. | Nov 2000 | A |
6161048 | Sluijter et al. | Dec 2000 | A |
6190353 | Makower et al. | Feb 2001 | B1 |
6211247 | Goodman | Apr 2001 | B1 |
6219577 | Brown, III et al. | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6231516 | Keilman et al. | May 2001 | B1 |
6245045 | Stratienko | Jun 2001 | B1 |
6246912 | Sluijter et al. | Jun 2001 | B1 |
6273886 | Edwards et al. | Aug 2001 | B1 |
6283947 | Mirzaee | Sep 2001 | B1 |
6283951 | Flaherty et al. | Sep 2001 | B1 |
6292695 | Webster, Jr. et al. | Sep 2001 | B1 |
6296619 | Brisken et al. | Oct 2001 | B1 |
6302870 | Jacobsen et al. | Oct 2001 | B1 |
6302875 | Makower et al. | Oct 2001 | B1 |
6309379 | Willard et al. | Oct 2001 | B1 |
6314325 | Fitz | Nov 2001 | B1 |
6322558 | Taylor et al. | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6379373 | Sawhney et al. | Apr 2002 | B1 |
6389314 | Feiring | May 2002 | B2 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6413255 | Stern | Jul 2002 | B1 |
6484052 | Visuri et al. | Nov 2002 | B1 |
6488679 | Swanson et al. | Dec 2002 | B1 |
6506189 | Rittman, III et al. | Jan 2003 | B1 |
6514226 | Levin et al. | Feb 2003 | B1 |
6514236 | Stratienko | Feb 2003 | B1 |
6522926 | Kieval et al. | Feb 2003 | B1 |
6524274 | Rosenthal et al. | Feb 2003 | B1 |
6542781 | Koblish et al. | Apr 2003 | B1 |
6558382 | Jahns et al. | May 2003 | B2 |
6562034 | Edwards et al. | May 2003 | B2 |
6595959 | Stratienko | Jul 2003 | B1 |
6616624 | Kieval | Sep 2003 | B1 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6623452 | Chien et al. | Sep 2003 | B2 |
6623453 | Guibert et al. | Sep 2003 | B1 |
6635054 | Fjield et al. | Oct 2003 | B2 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6689086 | Nita et al. | Feb 2004 | B1 |
6689148 | Sawhney et al. | Feb 2004 | B2 |
6692738 | MacLaughlin et al. | Feb 2004 | B2 |
6695830 | Vigil et al. | Feb 2004 | B2 |
6706011 | Murphy-Chutorian et al. | Mar 2004 | B1 |
6711444 | Koblish | Mar 2004 | B2 |
6714822 | King et al. | Mar 2004 | B2 |
6723064 | Babaev | Apr 2004 | B2 |
6736835 | Pellegrino et al. | May 2004 | B2 |
6752805 | Maguire et al. | Jun 2004 | B2 |
6767544 | Brooks et al. | Jul 2004 | B2 |
6788977 | Fenn et al. | Sep 2004 | B2 |
6830568 | Kesten et al. | Dec 2004 | B1 |
6845267 | Harrison et al. | Jan 2005 | B2 |
6849075 | Bertolero et al. | Feb 2005 | B2 |
6850801 | Kieval et al. | Feb 2005 | B2 |
6869431 | Maguire et al. | Mar 2005 | B2 |
6885888 | Rezai | Apr 2005 | B2 |
6893414 | Goble et al. | May 2005 | B2 |
6893436 | Woodard et al. | May 2005 | B2 |
6917834 | Koblish et al. | Jul 2005 | B2 |
6923808 | Taimisto | Aug 2005 | B2 |
6939346 | Kannenberg et al. | Sep 2005 | B2 |
6949097 | Stewart et al. | Sep 2005 | B2 |
6978174 | Gelfand et al. | Dec 2005 | B2 |
6991617 | Hektner et al. | Jan 2006 | B2 |
7066904 | Rosenthal et al. | Jun 2006 | B2 |
7127284 | Seward | Oct 2006 | B2 |
7141041 | Seward | Nov 2006 | B2 |
7149574 | Yun et al. | Dec 2006 | B2 |
7162303 | Levin et al. | Jan 2007 | B2 |
7197354 | Sobe | Mar 2007 | B2 |
7221979 | Zhou et al. | May 2007 | B2 |
7241273 | Maguire et al. | Jul 2007 | B2 |
7241736 | Hunter et al. | Jul 2007 | B2 |
7273469 | Chan et al. | Sep 2007 | B1 |
7297475 | Koiwai et al. | Nov 2007 | B2 |
7326235 | Edwards | Feb 2008 | B2 |
7329236 | Kesten et al. | Feb 2008 | B2 |
7335192 | Keren et al. | Feb 2008 | B2 |
7364566 | Elkins et al. | Apr 2008 | B2 |
7381200 | Katoh et al. | Jun 2008 | B2 |
7390894 | Weinshilboum et al. | Jun 2008 | B2 |
7407671 | McBride et al. | Aug 2008 | B2 |
7413556 | Zhang et al. | Aug 2008 | B2 |
7465298 | Seward et al. | Dec 2008 | B2 |
7481803 | Kesten et al. | Jan 2009 | B2 |
7485104 | Kieval | Feb 2009 | B2 |
7507235 | Keogh et al. | Mar 2009 | B2 |
7529589 | Williams et al. | May 2009 | B2 |
7540870 | Babaev | Jun 2009 | B2 |
7558625 | Levin et al. | Jul 2009 | B2 |
7563247 | Maguire et al. | Jul 2009 | B2 |
7599730 | Hunter et al. | Oct 2009 | B2 |
7617005 | Demarais et al. | Nov 2009 | B2 |
7620451 | Demarais et al. | Nov 2009 | B2 |
7640046 | Pastore et al. | Dec 2009 | B2 |
7647115 | Levin et al. | Jan 2010 | B2 |
7648517 | Makower et al. | Jan 2010 | B2 |
7653438 | Deem et al. | Jan 2010 | B2 |
7666163 | Seward et al. | Feb 2010 | B2 |
7691080 | Seward et al. | Apr 2010 | B2 |
7706882 | Francischelli et al. | Apr 2010 | B2 |
7717948 | Demarais et al. | May 2010 | B2 |
7744584 | Seward et al. | Jun 2010 | B2 |
7766892 | Keren et al. | Aug 2010 | B2 |
7778703 | Gross et al. | Aug 2010 | B2 |
7837720 | Mon | Nov 2010 | B2 |
7905862 | Sampson | Mar 2011 | B2 |
7917208 | Yomtov et al. | Mar 2011 | B2 |
1010406 | Seward | May 2011 | A1 |
1018291 | Evans et al. | Jul 2011 | A1 |
1018433 | Evans et al. | Jul 2011 | A1 |
8016786 | Seward et al. | Sep 2011 | B2 |
8027740 | Altman et al. | Sep 2011 | B2 |
8119183 | O'Donoghue et al. | Feb 2012 | B2 |
8131371 | Demarals et al. | Mar 2012 | B2 |
8131372 | Levin et al. | Mar 2012 | B2 |
8140170 | Rezai et al. | Mar 2012 | B2 |
8145317 | Demarais et al. | Mar 2012 | B2 |
8150518 | Levin et al. | Apr 2012 | B2 |
8150519 | Demarais et al. | Apr 2012 | B2 |
8150520 | Demarais et al. | Apr 2012 | B2 |
8162933 | Francischelli et al. | Apr 2012 | B2 |
8175711 | Demarais et al. | May 2012 | B2 |
8257724 | Cromack et al. | Sep 2012 | B2 |
8257725 | Cromack et al. | Sep 2012 | B2 |
8263104 | Ho et al. | Sep 2012 | B2 |
8317776 | Ferren et al. | Nov 2012 | B2 |
8388680 | Starksen et al. | Mar 2013 | B2 |
8396548 | Perry et al. | Mar 2013 | B2 |
8399443 | Seward | Mar 2013 | B2 |
8403881 | Ferren et al. | Mar 2013 | B2 |
8465752 | Seward | Jun 2013 | B2 |
8562573 | Fischell | Oct 2013 | B1 |
8663190 | Fischell et al. | Mar 2014 | B2 |
8708995 | Seward et al. | Apr 2014 | B2 |
8721590 | Seward et al. | May 2014 | B2 |
8740849 | Fischell et al. | Jun 2014 | B1 |
8753366 | Makower et al. | Jun 2014 | B2 |
8975233 | Stein et al. | Mar 2015 | B2 |
9055956 | McRae et al. | Jun 2015 | B2 |
20010039419 | Francischelli et al. | Nov 2001 | A1 |
20020077592 | Barry | Jun 2002 | A1 |
20020082552 | Ding et al. | Jun 2002 | A1 |
20020103445 | Rahdert et al. | Aug 2002 | A1 |
20020139379 | Edwards et al. | Oct 2002 | A1 |
20020165532 | Hill et al. | Nov 2002 | A1 |
20020183682 | Darvish et al. | Dec 2002 | A1 |
20030050635 | Truckai et al. | Mar 2003 | A1 |
20030050681 | Pianca et al. | Mar 2003 | A1 |
20030060858 | Kieval et al. | Mar 2003 | A1 |
20030069619 | Fenn et al. | Apr 2003 | A1 |
20030074039 | Puskas | Apr 2003 | A1 |
20030082225 | Mason | May 2003 | A1 |
20030114791 | Rosenthal et al. | Jun 2003 | A1 |
20030125790 | Fastovsky et al. | Jul 2003 | A1 |
20030181897 | Thomas et al. | Sep 2003 | A1 |
20030199863 | Swanson et al. | Oct 2003 | A1 |
20030216792 | Levin et al. | Nov 2003 | A1 |
20030233099 | Danaek et al. | Dec 2003 | A1 |
20040010289 | Biggs et al. | Jan 2004 | A1 |
20040043030 | Griffiths et al. | Mar 2004 | A1 |
20040062852 | Schroeder et al. | Apr 2004 | A1 |
20040064090 | Keren et al. | Apr 2004 | A1 |
20040064093 | Hektner et al. | Apr 2004 | A1 |
20040186468 | Edwards | Sep 2004 | A1 |
20040215186 | Cornelius et al. | Oct 2004 | A1 |
20040253304 | Gross et al. | Dec 2004 | A1 |
20050080409 | Young et al. | Apr 2005 | A1 |
20050149173 | Hunter et al. | Jul 2005 | A1 |
20050149175 | Hunter et al. | Jul 2005 | A1 |
20050154445 | Hunter et al. | Jul 2005 | A1 |
20050154453 | Hunter et al. | Jul 2005 | A1 |
20050154454 | Hunter et al. | Jul 2005 | A1 |
20050165467 | Hunter et al. | Jul 2005 | A1 |
20050175661 | Hunter et al. | Aug 2005 | A1 |
20050175662 | Hunter et al. | Aug 2005 | A1 |
20050177103 | Hunter et al. | Aug 2005 | A1 |
20050181004 | Hunter et al. | Aug 2005 | A1 |
20050182479 | Bonsignore et al. | Aug 2005 | A1 |
20050186242 | Hunter et al. | Aug 2005 | A1 |
20050186243 | Hunter et al. | Aug 2005 | A1 |
20050187579 | Danek et al. | Aug 2005 | A1 |
20050192638 | Gelfand et al. | Sep 2005 | A1 |
20050228286 | Messerly et al. | Oct 2005 | A1 |
20050228460 | Levin et al. | Oct 2005 | A1 |
20050267556 | Shuros et al. | Dec 2005 | A1 |
20050283195 | Pastore et al. | Dec 2005 | A1 |
20060018949 | Ammon et al. | Jan 2006 | A1 |
20060025821 | Gelfand et al. | Feb 2006 | A1 |
20060041277 | Deem et al. | Feb 2006 | A1 |
20060085054 | Zikorus et al. | Apr 2006 | A1 |
20060095029 | Young et al. | May 2006 | A1 |
20060111672 | Seward | May 2006 | A1 |
20060189941 | Seward et al. | Aug 2006 | A1 |
20060206150 | Demarais et al. | Sep 2006 | A1 |
20060212076 | Demarais et al. | Sep 2006 | A1 |
20060240070 | Cromack et al. | Oct 2006 | A1 |
20060263393 | Demopulos et al. | Nov 2006 | A1 |
20060271111 | Demarais et al. | Nov 2006 | A1 |
20060280858 | Kokish | Dec 2006 | A1 |
20070066959 | Seward | Mar 2007 | A1 |
20070078620 | Seward et al. | Apr 2007 | A1 |
20070100318 | Seward et al. | May 2007 | A1 |
20070106249 | Seward et al. | May 2007 | A1 |
20070106250 | Seward et al. | May 2007 | A1 |
20070106251 | Seward et al. | May 2007 | A1 |
20070106255 | Seward et al. | May 2007 | A1 |
20070106256 | Seward et al. | May 2007 | A1 |
20070106257 | Seward et al. | May 2007 | A1 |
20070118107 | Francischelli et al. | May 2007 | A1 |
20070129720 | Demarais et al. | Jun 2007 | A1 |
20070207186 | Scanlon et al. | Sep 2007 | A1 |
20070208134 | Hunter et al. | Sep 2007 | A1 |
20070219576 | Cangialosi | Sep 2007 | A1 |
20070248639 | Demopulos et al. | Oct 2007 | A1 |
20070254833 | Hunter et al. | Nov 2007 | A1 |
20070265687 | Deem et al. | Nov 2007 | A1 |
20070278103 | Hoerr et al. | Dec 2007 | A1 |
20070299043 | Hunter et al. | Dec 2007 | A1 |
20080004596 | Yun et al. | Jan 2008 | A1 |
20080039746 | Hissong et al. | Feb 2008 | A1 |
20080045890 | Seward et al. | Feb 2008 | A1 |
20080086072 | Bonutti et al. | Apr 2008 | A1 |
20080208162 | Joshi | Aug 2008 | A1 |
20080213331 | Gelfand et al. | Sep 2008 | A1 |
20080245371 | Gruber | Oct 2008 | A1 |
20080317818 | Griffith et al. | Dec 2008 | A1 |
20080319513 | Pu et al. | Dec 2008 | A1 |
20090036948 | Levin et al. | Feb 2009 | A1 |
20090074828 | Alexis et al. | Mar 2009 | A1 |
20090105631 | Kieval | Apr 2009 | A1 |
20090142306 | Seward et al. | Jun 2009 | A1 |
20090156988 | Ferren et al. | Jun 2009 | A1 |
20090157057 | Ferren et al. | Jun 2009 | A1 |
20090216317 | Cromack et al. | Aug 2009 | A1 |
20090221955 | Babaev | Sep 2009 | A1 |
20100069837 | Rassat et al. | Mar 2010 | A1 |
20100087782 | Ghaffari et al. | Apr 2010 | A1 |
20100137860 | Demarais et al. | Jun 2010 | A1 |
20100137952 | Demarais et al. | Jun 2010 | A1 |
20100191112 | Demarais et al. | Jul 2010 | A1 |
20100217162 | Hissong et al. | Aug 2010 | A1 |
20100222851 | Deem et al. | Sep 2010 | A1 |
20100222854 | Demarais et al. | Sep 2010 | A1 |
20100228122 | Keenan et al. | Sep 2010 | A1 |
20100249702 | Magana et al. | Sep 2010 | A1 |
20100324472 | Wulfman | Dec 2010 | A1 |
20110137155 | Weber et al. | Jun 2011 | A1 |
20110257622 | Salahieh et al. | Oct 2011 | A1 |
20120130289 | Demarais et al. | May 2012 | A1 |
20120130345 | Levin et al. | May 2012 | A1 |
20120172837 | Demarais et al. | Jul 2012 | A1 |
20120259269 | Meyer | Oct 2012 | A1 |
20120271277 | Fischell et al. | Oct 2012 | A1 |
20120271301 | Fischell et al. | Oct 2012 | A1 |
20130053792 | Fischell et al. | Feb 2013 | A1 |
20130053821 | Fischell et al. | Feb 2013 | A1 |
20130053822 | Fischell et al. | Feb 2013 | A1 |
20130096604 | Hanson et al. | Apr 2013 | A1 |
20130172815 | Perry et al. | Jul 2013 | A1 |
20130204131 | Seward | Aug 2013 | A1 |
20130252932 | Seward | Sep 2013 | A1 |
20130274673 | Fischell et al. | Oct 2013 | A1 |
20130274674 | Fischell et al. | Oct 2013 | A1 |
20130287698 | Seward | Oct 2013 | A1 |
20130296853 | Sugimoto et al. | Nov 2013 | A1 |
20140012231 | Fischell | Jan 2014 | A1 |
20140046298 | Fischell et al. | Feb 2014 | A1 |
20140107478 | Seward et al. | Apr 2014 | A1 |
20140121641 | Fischell et al. | May 2014 | A1 |
20140121644 | Fischell et al. | May 2014 | A1 |
20140135661 | Garrison et al. | May 2014 | A1 |
20140236103 | Fischell et al. | Aug 2014 | A1 |
20140271717 | Goshayeshgar et al. | Sep 2014 | A1 |
20140276621 | Braga | Sep 2014 | A1 |
20140296279 | Seward et al. | Oct 2014 | A1 |
20140303569 | Seward et al. | Oct 2014 | A1 |
20140316351 | Fischell et al. | Oct 2014 | A1 |
20140358079 | Fischell et al. | Dec 2014 | A1 |
20140378906 | Fischell et al. | Dec 2014 | A1 |
20150005719 | Fischell et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
2384866 | Apr 2001 | CA |
2575458 | Mar 2006 | CA |
0233100 | Aug 1987 | EP |
0497041 | Jan 1997 | EP |
0774991 | May 1997 | EP |
1782852 | May 2007 | EP |
2352542 | Aug 2011 | EP |
2429641 | Mar 2012 | EP |
2528649 | Dec 2012 | EP |
2656807 | Oct 2013 | EP |
2675458 | Dec 2013 | EP |
2694150 | Feb 2014 | EP |
2747688 | Jul 2014 | EP |
49009882 | Jan 1974 | JP |
62181225 | Aug 1987 | JP |
3041967 | Oct 1997 | JP |
2003510126 | Mar 2003 | JP |
2004016333 | Jan 2004 | JP |
WO-9315664 | Aug 1993 | WO |
WO-9407446 | Apr 1994 | WO |
WO-9525472 | Sep 1995 | WO |
WO-9531142 | Nov 1995 | WO |
WO-9703604 | Feb 1997 | WO |
WO-9736548 | Oct 1997 | WO |
WO-9742990 | Nov 1997 | WO |
WO-9900060 | Jan 1999 | WO |
WO-0122897 | Apr 2001 | WO |
WO-0170114 | Sep 2001 | WO |
WO-02058549 | Aug 2002 | WO |
WO-03022167 | Sep 2002 | WO |
WO-03024311 | Mar 2003 | WO |
WO-03082080 | Oct 2003 | WO |
WO-2004011055 | Feb 2004 | WO |
WO-2004028583 | Apr 2004 | WO |
WO-2004049976 | Jun 2004 | WO |
WO-2005007000 | Jan 2005 | WO |
WO-2005030072 | Apr 2005 | WO |
WO-2005041748 | May 2005 | WO |
WO-2005110528 | Nov 2005 | WO |
WO-2006022790 | Mar 2006 | WO |
WO-2006041881 | Apr 2006 | WO |
WO-2007008954 | Jan 2007 | WO |
WO-2007078997 | Jul 2007 | WO |
WO-2008049084 | Apr 2008 | WO |
WO-2009088678 | Jul 2009 | WO |
WO-2010042653 | Apr 2010 | WO |
WO-2011094367 | Aug 2011 | WO |
WO-2011133724 | Oct 2011 | WO |
WO-2012161875 | Nov 2012 | WO |
WO-2013028781 | Feb 2013 | WO |
WO-2013059735 | Apr 2013 | WO |
WO-2013063331 | May 2013 | WO |
WO-2013112844 | Aug 2013 | WO |
WO-2013169741 | Nov 2013 | WO |
WO-2013188689 | Dec 2013 | WO |
WO-2014031167 | Feb 2014 | WO |
WO-2014070820 | May 2014 | WO |
WO-2014070999 | May 2014 | WO |
WO-2014078301 | May 2014 | WO |
WO-2014189887 | Nov 2014 | WO |
Entry |
---|
Allen, E.V., Sympathectomy for essential hypertension, Circulation, 1952, 6:131-140. |
Bello-Reuss, E. et al., “Effects of Acute Unilateral Renal Denervation in the Rat,” Journal of Clinical Investigation, vol. 56, Jul. 1975, pp. 208-217. |
Bello-Reuss, E. et al., “Effects of Renal Sympathetic Nerve Stimulation on Proximal Water and Sodium Reabsorption,” Journal of Clinical Investigation, vol. 57, Apr. 1976, pp. 1104-1107. |
Bhandari, A. and Ellias, M., “Loin Pain Hemaluria Syndrome: Pain Control with RFA to the Splanchanic Plexus,” The Pain Clinc, 2000, vol. 12, No. 4, pp. 323-327. |
Curtis, John J. et al., “Surgical Therapy for Persistent Hypertension After Renal Transplantation” Transplantation, 31:125-128 (1981). |
Dibona, Gerald F. et al., “Neural Control of Renal Function,” Physiological Reviews, vol. 77, No. 1, Jan. 1997, The American Physiological Society 1997, pp. 75-197. |
Dibona, Gerald F., “Neural Control of the Kidney—Past, Present and Future,” Nov. 4, 2002, Novartis Lecture, Hypertension 2003, 41 part 2, 2002 American Heart Association, Inc., pp. 621-624. |
Janssen, Ben J.A. et al., “Effects of Complete Renal Denervation and Selective Afferent Renal Denervation on the Hypertension Induced by Intrenal Norepinephrine Infusion in Conscious Rats”, Journal of Hypertension 1989, 7: 447-455. |
Katholi, Richard E., “Renal Nerves in the Pathogenesis of Hypertension in Experimental Animals and Humans,” Am J. Physiol. vol. 245, 1983, the American Physiological Society 1983, pp. F1-F14. |
Krum, Henry et al., “Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension: A Mulitcentre Safety and Proof-of Principle Cohort Study,” Lancet 2009; 373:1275-81. |
Krum, et al., “Renal Sympathetic-Nerve Ablation for Uncontrolled Hypertension.” New England Journal of Med, Aug. 2009, 361;9. |
Luippold, Gerd et al., “Chronic Renal Denervation Prevents Glomerular Hyperfiltration in Diabetic Rats”, Nephrol Dial Transplant, vol. 19, No. 2, 2004, pp. 342-347. |
Mahfoud et al. “Treatment strategies for resistant arterial hypertension” Dtsch Arztebl Int. 2011;108:725-731. |
Osborn, et al., “Effect of Renal Nerve Stimulation on Renal Blood Flow Autoregulation and Antinatriuresis During Reductions in Renal Perfusion Pressure,” Proceedings of the Society for Experimentla Biology and Medicine, vol. 168, 77-81, 1981. |
Page, I.H. et al., “The Effect of Renal Denervation on Patients Suffering From Nephritis,” Feb. 27, 1935;443-458. |
Page, I.H. et al., “The Effect of Renal Denervation on the Level of Arterial Blood Pressure and Renal Function in Essential Hypertension,” J. Clin Invest. 1934;14:27-30. |
Rocha-Singh, “Catheter-Based Sympathetic Renal Denervation,” Endovascular Today, Aug. 2009. |
Schlaich, M.P. et al., “Renal Denervation as a Therapeutic Approach for Hypertension: Novel Implictions for an Old Concept,” Hypertension, 2009; 54:1195-1201. |
Schlaich, M.P. et al., “Renal Sympathetic-Nerve Ablation for Uncontrolled Hypertension,” N Engl J Med 2009; 361(9): 932-934. |
Smithwick, R.H. et al., “Splanchnicectomy for Essential Hypertension,” Journal Am Med Assn, 1953; 152:1501-1504. |
Symplicity HTN-1 Investigators; Krum H, Barman N, Schlaich M, et al. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension. 2011 ;57(5):911-917. |
Symplicity HTN-2 Investigators, “Renal Sympathetic Denervation in Patients with Treatment-Resistant Hypertension (The Symplicity HTN-2 Trial): A Randomised Controlled Trial”; Lancet, Dec. 4, 2010, vol. 376, pp. 1903-1909. |
United States Renal Data System, USRDS 2003 Annual Data Report: Atlas of End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2003, 593 pages. |
Valente, John F. et al., “Laparoscopic Renal Denervation for Intractable ADPKD-Related Pain”, Nephrol Dial Transplant (2001) 16:160. |
Wagner, C.D. et al., “Very Low Frequency Oscillations in Arterial Blood Pressure After Autonomic Blockade in Conscious Dogs,” Feb. 5, 1997, Am J Physiol Regul Integr Comp Physiol 1997, vol. 272, 1997 the American Physiological Society, pp. 2034-2039. |
U.S. Appl. No. 95/002,110, filed Aug. 29, 2012, Demarais et al. |
U.S. Appl. No. 95/002,209, filed Sep. 13, 2012, Levin et al. |
U.S. Appl. No. 95/002,233, filed Sep. 13, 2012, Levin et al. |
U.S. Appl. No. 95/002,243, filed Sep. 13, 2012, Levin et al. |
U.S. Appl. No. 95/002,253, filed Sep. 13, 2012, Demarais et al. |
U.S. Appl. No. 95/002,255, filed Sep. 13, 2012, Demarais et al. |
U.S. Appl. No. 95/002,292, filed Sep. 14, 2012, Demarais et al. |
U.S. Appl. No. 95/002,327, filed Sep. 14, 2012, Demarais et al. |
U.S. Appl. No. 95/002,335, filed Sep. 14, 2012, Demarais et al. |
U.S. Appl. No. 95/002,336, filed Sep. 14, 2012, Levin et al. |
U.S. Appl. No. 95/002,356, filed Sep. 14, 2012, Demarais et al. |
“2011 Edison Award Winners.” Edison Awards: Honoring Innovations & Innovators, 2011, 6 pages, <http://www.edisonawards.com/BestNewProduct—2011.php>. |
“2012 top 10 advances in heart disease and stroke research: American Heart Association/America Stroke Association Top 10 Research Report.” American Heart Association, Dec. 17, 2012, 5 pages, <http://newsroom.heart.org/news/2012-top-10-advances-in-heart-241901>. |
“Ardian(R) Receives 2010 EuroPCR Innovation Award and Demonstrates Further Durability of Renal Denervation Treatment for Hypertension.” PR Newswire, Jun. 3, 2010, 2 pages, <http://www.prnewswire.com/news-releases/ardianr-receives-2010-europer-innovation-award-and-demonstrates-further-durability-of-renal-denervation-treatment-for-hypertension-95545014.html>. |
“Boston Scientific to Acquire Vessix Vascular, Inc.: Company to Strengthen Hypertension Program with Acquisition of Renal Denervation Technology.” Boston Scientific: Advancing science for life—Investor Relations, Nov. 8, 2012, 2 pages, <http://phx.corporate-ir.net/phoenix.zhtml?c=62272&p=irol-newsArticle&id=1756108>. |
“Cleveland Clinic Unveils Top 10 Medical Innovations for 2012: Experts Predict Ten Emerging Technologies that will Shape Health Care Next Year.” Cleveland Clinic, Oct. 6, 2011, 2 pages. <http://my.clevelandclinic.org/media—relations/library/2011/2011-10-6-cleveland-clinic-unveils-top-10-medical-innovations-for-2012.aspx>. |
“Does renal denervation represent a new treatment option for resistant hypertension?” Interventional News, Aug. 3, 2010, 2 pages. <http://www.cxvascular.com/in-latest-news/interventional-news---latest-news/does-renal-denervation-represent-a-new-treatment-option-for-resistant-hypertension>. |
“Iberis—Renal Sympathetic Denervation System: Turning innovation into quality care.” [Brochure], Terumo Europe N.V., 2013, Europe, 3 pages. |
“Neurotech Reports Announces Winners of Gold Electrode Awards.” Neurotech business report, 2009. 1 page. <http://www.neurotechreports.com/pages/goldelectrodes09.html>. |
“Quick. Consistent. Controlled. OneShot renal Denervation System” [Brochure], Covidien: positive results for life, 2013, (n.l.), 4 pages. |
“Renal Denervation Technology of Vessix Vascular, Inc. been acquired by Boston Scientific Corporation (BSX) to pay up to $425 Million.” Vessix Vascular Pharmaceutical Intelligence: A blog specializing in Pharmaceutical Intelligence and Analytics, Nov. 8, 2012, 21 pages, <http://pharmaceuticalintelligence.com/tag/vessix-vascular/>. |
“The Edison Awards™” Edison Awards: Honoring Innovations & Innovators, 2013, 2 pages, <http://www.edisonawards.com/Awards.php>. |
“The Future of Renal denervation for the Treatment of Resistant Hypertension.” St. Jude Medical, Inc., 2012, 12 pages. |
“Vessix Renal Denervation System: So Advanced Its Simple.” [Brochure], Boston Scientific: Advancing science for life, 2013, 6 pages. |
Asbell, Penny, “Conductive Keratoplasty for the Correction of Hyperopia.” Tr Am Ophth Soc, 2001, vol. 99, 10 pages. |
Badoer, Emilio, “Cardiac afferents play the dominant role in renal nerve inhibition elicited by volume expansion in the rabbit.” Am J Physiol Regul lntegr Comp Physiol, vol. 274, 1998, 7 pages. |
Bengel, Frank, “Serial Assessment of Sympathetic Reinnervation After Orthotopic Heart Transplantation: A longitudinal Study Using PET and C-11 Hydroxyephedrine.” Circulation, vol. 99, 1999,7 pages. |
Benito, F., et al. “Radiofrequency catheter ablation of accessory pathways in infants.” Heart, 78:160-162 (1997). |
Bettmann, Michael, Carotid Stenting and Angioplasty: A Statement for Healthcare Professionals From the Councils on Cardiovascular Radiology, Stroke, Cardio-Thoracic and Vascular Surgery, Epidemiology and Prevention, and Clinical Cardiology, American Heart Association, Circulation, vol. 97, 1998, 4 pages. |
Bohm, Michael et al., “Rationale and design of a large registry on renal denervation: the Global Symplicity registry.” EuroIntervention, vol. 9, 2013, 9 pages. |
Brosky, John, “EuroPCR 2013: CE-approved devices line up for renal denervation approval.” Medical Device Daily, May 28, 2013, 3 pages, <http://www.medicaldevicedaily.com/servlet/com.accumedia.web.Dispatcher?next=bioWorldHeadlines—article&forceid=83002>. |
Davis, Mark et al., “Effectiveness of Renal Denervation Therapy for Resistant Hypertension.” Journal of the American College of Cardiology, vol. 62, No. 3, 2013, 11 pages. |
Dibona, G.F. “Sympathetic nervous system and kidney in hypertension.” Nephrol and Hypertension, 11: 197-200 (2002). |
Dubuc, M., et al., “Feasibility of cardiac cryoablation using a transvenous steerable electrode catheter.” J Interv Cardiac Electrophysiol, 2:285-292 (1998). |
Final Office Action; U.S. Appl. No. 12/827,700; Mailed on Feb. 5, 2013, 61 pages. |
Geisler, Benjamin et al., “Cost-Effectiveness and Clinical Effectiveness of Catheter-Based Renal Denervation for Resistant Hypertension.” Journal of the American College of Cardiology, Col. 60, No. 14, 2012, 7 pages. |
Gelfand, M., et al., “Treatment of renal failure and hypertension.” Provisional U.S. Appl. No. 60/442,970, filed Jan. 29, 2003, 23 pages. |
Gertner, Jon, “Meet the Tech Duo That's Revitalizing The Medical Device Industry.” Fast Company, Apr. 15, 2013, 6:00 AM, 17 pages, <http://www.fastcompany.com/3007845/meet-tech-duo-thats-revitalizing-medical-device-industry>. |
Golwyn, D. H., Jr., et al. “Percutaneous Transcatheter Renal Ablation with Absolute Ethanol for Uncontrolled Hypertension or Nephrotic Syndrome: Results in 11 Patients with End-Stage Renal Disease.” JVIR, 8: 527-533 (1997). |
Hall, W. H., et al. “Combined embolization and percutaneous radiofrequency ablation of a solid renal tumor.” Am. J. Roentgenol,174: 1592-1594 (2000). |
Han, Y.-M, et al., “Renal artery embolization with diluted hot contrast medium: An experimental study.” J Vasc Intery Radiol, 12: 862-868 (2001). |
Hansen, J. M., et al. “The transplanted human kidney does not achieve functional reinnervation.” Clin. Sci, 87: 13-19 (1994). |
Hendee, W. R. et al. “Use of Animals in Biomedical Research: The Challenge and Response.” American Medical Association White Paper (1988) 39 pages. |
Hering, Dagmara et al., “Chronic kidney disease: role of sympathetic nervous system activation and potential benefits of renal denervation.” EuroIntervention, vol. 9, 2013, 9 pages. |
Huang et al., “Renal denervation prevents and reverses hyperinsulinemia-induced hypertension in rats.” Hypertension 32 (1998) pp. 249-254. |
Imimdtanz, “Medtronic awarded industry's highest honour for renal denervation system.” The official blog of Medtronic Australasia, Nov. 12, 2012, 2 pages, <http://97waterlooroad.wordpress.com/2012/11/12/medtronic-awarded-industrys-highest-honour-for-renal-denervation-system/>. |
Kaiser, Chris, AHA Lists Year's Big Advances in CV Research, medpage Today, Dec. 18, 2012, 4 pages, <http://www.medpagetoday.com/Cardiology/PCI/36509>. |
Kompanowska, E., et al., “Early Effects of renal denervation in the anaesthetised rat: Natriuresis and increased cortical blood flow.” J Physiol, 531. 2:527-534 (2001). |
Lee, S.J., et al. “Ultrasonic energy in endoscopic surgery.” Yonsei Med J, 40:545-549 (1999). |
Linz, Dominik et al., “Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs.” Heart Rhythm, vol. 0, No. 0, 2013, 6 pages. |
Lustgarten, D.L.,et al., “Cryothermal ablation: Mechanism of tissue injury and current experience in the treatment of tachyarrhythmias.” Progr Cardiovasc Dis, 41:481-498 (1999). |
Mabin, Tom et al., “First experience with endovascular ultrasound renal denervation for the treatment of resistant hypertension.” EuroIntervention, vol. 8, 2012, 5 pages. |
Mahfoud, Felix et al., “Ambulatory Blood Pressure Changes after Renal Sympathetic Denervation in Patients with Resistant Hypertension.” Circulation, 2013, 25 pages. |
Mahfoud, Felix et al., “Expert consensus document from the European Society of Cardiology on catheter-based renal denervation.” European Heart Journal, 2013, 9 pages. |
Mahfoud, Felix et al., “Renal Hemodynamics and Renal Function After Catheter-Based Renal Sympathetic Denervation in Patients With Resistant Hypertension.” Hypertension, 2012, 6 pages. |
Medical-Dictionary.com, Definition of “Animal Model,” http://medical-dictionary.com (search “Animal Model”), 2005, 1 page. |
Medtronic, Inc., Annual Report (Form 10-K) (Jun. 28, 2011) 44 pages. |
Millard, F. C., et al, “Renal Embolization for ablation of function in renal failure and hypertension.” Postgraduate Medical Journal, 65, 729-734, (1989). |
Oliveira, V., et al., “Renal denervation normalizes pressure and baroreceptor reflex in high renin hypertension in conscious rats.” Hypertension, 19:II-17-II-21 (1992). |
Ong, K. L., et al. “Prevalence, Awareness, Treatment, and Control of Hypertension Among United States Adults 1999-2004.” Hypertension, 49: 69-75 (2007) (originally published online Dec. 11, 2006). |
Ormiston, John et al., “First-in-human use of the OneShot™ renal denervation system from Covidien.” EuroIntervention, vol. 8, 2013, 4 pages. |
Ormiston, John et al., “Renal denervation for resistant hypertension using an irrigated radiofrequency balloon: 12-month results from the Renal Hypertension Ablation System (RHAS) trial.” EuroIntervention, vol. 9, 2013, 5 pages. |
Pedersen, Amanda, “TCT 2012: Renal denervation device makers play show and tell.” Medical Device Daily, Oct. 26, 2012, 2 pages, <http://www.medicaldevicedaily.com/servlet/com.accumedia.web.Dispatcher?next=bioWorldHeadlines—article&forceid=80880>. |
Peet, M., “Hypertension and its Surgical Treatment by bilateral supradiaphragmatic splanchnicectomy” Am J Surgery (1948) pp. 48-68. |
Renal Denervation (RDN), Symplicity RDN System Common Q&A (2011), 4 pages, http://www.medtronic.com/rdn/mediakit/RDN/%20FAQ.pdf. |
Schauerte, P., et al. “Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation.” Circulation, 102:2774-2780 (2000). |
Schlaich, Markus et al., “Renal Denervation in Human Hypertension: Mechanisms, Current Findings, and Future Prospects.” Curr Hypertens Rep, vol. 14, 2012, 7 pages. |
Schmid, Axel et al., “Does Renal Artery Supply Indicate Treatment Success of Renal Denervation.” Cardiovasc Intervent Radiol, vol. 36, 2013, 5 pages. |
Schmieder, Roland E. et al., “Updated ESH position paper on interventional therapy of resistant hypertension.” Eurolntervention, vol. 9, 2013, 9 pages. |
Sievert, Horst, “Novelty Award EuroPCR 2010.” Euro PCR, 2010, 15 pages. |
Solis-Herruzo et al., “Effects of lumbar sympathetic block on kidney function in cirrhotic patients with hepatorenal syndrome,” J. Hepatol. 5 (1987), pp. 167-173. |
Stella, A., et al., “Effects of reversible renal denervation on haemodynamic and excretory functions on the ipsilateral and contralateral kidney in the cat.” Hypertension, 4:181-188 (1986). |
Stouffer, G. A. et al., “Catheter-based renal denervation in the treatment of resistant hypertension.” Journal of Molecular and Cellular Cardiology, vol. 62, 2013, 6 pages. |
Swartz, J. F., et al., “Radiofrequency endocardial catheter ablation of accessory atrioventricular pathway atrial insertion sites.” Circulation, 87: 487-499 (1993). |
Uchida, F., et al., “Effect of radiofrequency catheter ablation on parasympathetic denervation: A comparison of three different ablation sites.” PACE, 21:2517-2521 (1998). |
Verloop, W. L. et al., “Renal denervation: a new treatment option in resistant arterial hypertension.” Neth Heart J., Nov. 30, 2012, 6 pages, <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547427/>. |
Weinstock, M., et al., “Renal denervation prevents sodium retention and hypertension in salt sensitive rabbits with genetic baroreflex impairment.” Clinical Science, 90:287-293 (1996). |
Wilcox, Josiah N., Scientific Basis Behind Renal Denervation for the Control of Hypertension, ICI 2012, Dec. 5-6, 2012. 38 pages. |
Worthley, Stephen et al., “Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial.” European Heart Journal, vol. 34, 2013, 9 pages. |
Worthley, Stephen, “The St. Jude Renal Denervation System Technology and Clinical Review.” The University of Adelaide Australia, 2012, 24 pages. |
Zuern, Christine S., “Impaired Cardiac Baroflex Sensitivity Predicts Response to Renal Sympathetic Denervation in Patients with Resistant Hypertension.” Journal of the American College of Cardiology, 2013, doi: 10.1016/j.jacc.2013.07.046, 24 pages. |
Miller, Reed, “Finding A Future for Renal Denervation With Better Controlled Trials.” Pharma & Medtech Business Intelligence, Article # 01141006003, Oct. 6, 2014, 4 pages. |
Papademetriou, Vasilios, “Renal Denervation and Symplicity HTN-3: “Dubium Sapientiae Initium” (Doubt Is the Beginning of Wisdom)”, Circulation Research, 2014; 115: 211-214. |
Papademetriou, Vasilios et al., “Renal Nerve Ablation for Resistant Hypertension: How Did We Get Here, Present Status, and Future Directions.” Circulation. 2014; 129: 1440-1450. |
Papademetriou, Vasilios et al., “Catheter-Based Renal Denervation for Resistant Hypertension: 12-Month Results of the EnligHTN I First-in-Human Study Using a Multielectrode Ablation System.” Hypertension. 2014; 64: 565-572. |
Doumas, Michael et al., “Renal Nerve Ablation for Resistant Hypertension: The Dust Has Not Yet Settled.” The Journal of Clinical Hypertension. 2014; vol. 16, No. 6, 2 pages. |
Messerli, Franz H. et al. “Renal Denervation for Resistant Hypertension: Dead or Alive?” Healio: Cardiology today's Intervention, May/Jun. 2014, 2 pages. |
Ahmed, Humera et al., Renal Sympathetic Denervation Using an Irrigated Radiofrequency Ablation Catheter for the Management of Drug-Resistant Hypertension, JACC Cardiovascular Interventions, vol. 5, No. 7, 2012, pp. 758-765. |
Avitall et al., “The creation of linear contiguous lesions in the atria with an expandable loop catheter,”Journal of the American College of Cardiology, 1999; 33; pp. 972-984. |
Blessing, Erwin et al., Cardiac Ablation and Renal Denervation Systems Have Distinct Purposes and Different Technical Requirements, JACC Cardiovascular Interventions, vol. 6, No. 3, 2013, 1 page. |
ClinicalTrials.gov, Renal Denervation in Patients with uncontrolled Hypertension in Chinese (2011), 6pages. www.clinicaltrials.gov/ct2/show/NCT01390831. |
Excerpt of Operator's Manual of Boston Scientific's EPT-1000 XP Cardiac Ablation Controller & Accessories, Version of Apr. 2003, (6 pages). |
Excerpt of Operator's Manual of Boston Scientific's Maestro 30000 Cardiac Ablation System, Version of Oct. 17, 2005 , (4 pages). |
Holmes et al., Pulmonary Vein Stenosis Complicating Ablation for Atrial Fibrillation: Clinical Spectrum and Interventional Considerations, JACC: Cardiovascular Interventions, 2: 4, 2009, 10 pages. |
Kandarpa, Krishna et al., “Handbook of Interventional Radiologic Procedures”, Third Edition, pp. 194-210 (2002). |
Mount Sinai School of Medicine clinical trial for Impact of Renal Sympathetic Denervation of Chronic Hypertension, Mar. 2013, 11 pages. http://clinicaltrials.gov/ct2/show/NCT01628198. |
Opposition to European Patent No. EP1802370, Granted Jan. 5, 2011, Date of Opposition Oct. 5, 2011, 20 pages. |
Opposition to European Patent No. EP2037840, Granted Dec. 7, 2011, Date of Opposition Sep. 7, 2012, 25 pages. |
Opposition to European Patent No. EP2092957, Granted Jan. 5, 2011, Date of Opposition Oct. 5, 2011, 26 pages. |
Oz, Mehmet, Pressure Relief, Time, Jan. 9, 2012, 2 pages. <www.time.come/time/printout/0,8816,2103278,00.html>. |
Papademetriou, Vasilios, Renal Sympathetic Denervation for the Treatment of Difficult-to-Control or Resistant Hypertension, Int. Journal of Hypertension, 2011, 8 pages. |
Prochnau, Dirk et al., Catheter-based renal denervation for drug-resistant hypertension by using a standard electrophysiology catheter; Euro Intervention 2012, vol. 7, pp. 1077-1080. |
Purerfellner, Helmut et al., Incidence, Management, and Outcome in Significant Pulmonary Vein Stenosis Complicating Ablation for Atrial Fibrillation, Am. J. Cardiol , 93, Jun. 1, 2004, 4 pages. |
Purerfellner, Helmut et al., Pulmonary Vein Stenosis Following Catheter Ablation of Atrial Fibrillation, Curr. Opin. Cardio. 20 :484-490, 2005. |
Schneider, Peter A., “Endovascular Skills—Guidewire and Catheter Skills for Endovascular Surgery,” Second Edition Revised and Expanded, 10 pages, (2003). |
ThermoCool Irrigated Catheter and Integrated Ablation System, Biosense Webster (2006), 6 pages. |
Tsao, Hsuan-Ming, Evaluation of Pulmonary Vein Stenosis after Catheter Ablation of Atrial Fibrillation, Cardiac Electrophysiology Review, 6, 2002, 4 pages. |
Wittkampf et al., “Control of radiofrequency lesion size by power regulation,” Journal of the American Heart Associate, 1989, 80: pp. 962-968. |
Zheng et al., “Comparison of the temperature profile and pathological effect at unipolar, bipolar and phased radiofrequency current configurations,” Journal of Interventional Cardiac Electrophysiology, 2001, pp. 401-410. |
Gonschior, P., Comparison of Local Intravascular Drug-Delivery Catheter Systems, Am. Heart J., Dec. 1995, 130:6, 1174-81. |
Pieper et al., “Design and Implementation of a New Computerized System for Intraoperative Cardiac Mapping.” Journal of Applied Physiology, 1991, vol. 71, No. 4, pp. 1529-1539. |
Remo, Benjamin F. et al., “Safety and Efficacy of Renal Denervation as a Novel Treatment of Ventricular Tachycardia Storm in Patients with Cardiomyopathy.” Heart Rhythm, 2014, 11(4), 541-6. |
U.S. Appl. No. 60/852,787, filed Oct. 18, 2006, 112 pages. |
Beale et al., “Minimally Invasive Treatment for Varicose Veins: a Review of Endovenous Laser Treatment and Radiofrequency Ablation”. Lower Extremity Wounds 3(4), 2004, 10 pages. |
Stella, A., et al., “Effects of reversable renal denervation on haemodynamic and excretory functions on the ipsilateral and contralateral kidney in the cat.” Hypertension, 4: 181-188 (1986). |
Number | Date | Country | |
---|---|---|---|
20140236207 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09912122 | Jul 2001 | US |
Child | 12634850 | US | |
Parent | 08837294 | Apr 1997 | US |
Child | 09912122 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12634850 | Dec 2009 | US |
Child | 14199901 | US |