T.A. Ferguson, et al., “Two Integrin-binding Peptides Abrogate T Cell-Mediated Immune Responses in Vivo,” Proc. Natl. Acad. Sci. USA, 88, pp. 8072-8075 (1991). |
T.A. Ferguson and T.S. Kupper, “Antigen-Independent Processes in Antigen-Specific Immunity,” J. Immunol., 150, pp. 1172-1182 (1993). |
R.R. Lobb and M.E. Hemler, “The Pathophysiologic Role of α4 Integrins In Vivo,” J. Clin. Invest., 94, pp. 1722-1728 (1994). |
A. Komoriya, et al., “The Minimal Essential Sequence for a Major Cell Type-specific Adhesion Site (CS1) within the Alternatively Spliced Type III Connecting Segment Domain of Fibronectin is Leucine-Aspartic Acid-Valine,” J. Biol. Chem., 266, pp. 10575-15079 (1991). |
E.A., Wayner and N.L. Kovach, “Activation-dependent Recognition by Hematopoietic Cells of the LDV Sequence in the V Region of Fibronectin,” J. Cell. Biol., 116, pp. 489-497 (1992). |
D.M. Nowlin, “A Novel Cyclic Peptide Inhibits α4β1 and α5β1 Integrin-mediated Cell Adhesion,” J. Biol. Chem., 268, pp.20352-20359 (1993). |
P.L. Chisholm, et al., “Monoclonal Antibodies to the Integrin α-4 Subunit Inhibit the Murine Contact Hypersensitivity Response,” Eur. J. Immunol., 23, PP. 682-688 (1993). |
W.M. Abraham, et al., “α-4 Integrins Mediate Antigen-induced Late Bronchial Responses and Prolonged Airway Hyperresponsiveness in Sheep,” J. Clin. Invest., 93, pp. 776-787 (1994). |
M.J. Elices, et al., “Expression and Functional Significance of Alternatively Spliced CS1 Fibronectin in Rheumatoid Arthritis Microvasculature,” J. Clin. Invest., 93, pp. 405-416 (1994). |
J. Morales-Ducret, et al., “α4/β1 Integrin (VLA-4) Ligands in Arthritis,” J. Immunol., 149, pp. 1424-1431 (1992). |
T.A. Yednock, et al., “Prevention of Experimental Autoimmune Encephalomyelitis by Antibodies Against α4β1 Integrin,” Nature, 356, pp. 63-66 (1992). |
M.E. Hemler, “VLA Proteins in the Integrin Family: Structures, Functions, and their Role on Leukocytes,” Ann. Rev. Immunol., 8, pp. 365-400 (1990). |
S. Molossi, et al., “Blockade of Very Late Antigen-4 Binding to Fribronectin with Connecting Segment-1 Peptide Reduces Accerlerated Coronary Arteriopathy in Rabbit Cardiac Allografts,” J. Clin. Invest., 95, pp. 2601-2610 (1995). |
Goodman, Gilman “The Pharmacological Basis of Therapeutics” 6th Ed. MacMillan Publishing Inc. 1980 Appdx 3 pp 1738-1740.* |
Narumiya Et Al., Intl Immun. vol. 6 No. 1 pp 137-147 (1/94).* |
Bajusc Et Al., Folia Haematol. Leirzlg. vol. 109 (1982) pp 16-21.* |
Sawyer, “Peptidomimetic Design and Chemical Approaches to Peptide Metabolism,” Peptide-Based Drug Design, American Chemical Society, Washington, DC 1995, Chapter 17. pp. 387-410. |
Baldwin et al., CA 108: 127408t (1988). |
Chen et al., AAPP 115: 159756r (1991). |
Goodman et al., “Synthesis and Conformation of Sequential Polypeptides of L-alanine and beta-Aminobutyric Acid”, Macromolecules, vol. 9, 1-6 (1976). |
Greenstein et al., “Chemistry of the Amino Acids”, John Wiley and Sons, Inc., vol. 2, pp. 1162-1186. |
Gruszecki et al., “Diacylamine-perfekte Acylierungsmittel für die Peptidsynthese”, Liebigs Ann. Chem., pp. 331-336 (1988). |
Jiang et al., “Approaches Toward the Total Synthesis of Astins A, B, and C”, Tetrahedron Letters, 35:2121-4, (1994). |
Ki-Hwan Kim et al., “Inhibition of 125I-Labeled Ristocetin Binding to Micrococcus Luteus Cells by the Peptides Related to Bacterial Cell Wall Mucopeptide Precursors: Quantitative Structure-Activity Relationships”, Journal Medical Chemistry, vol. 32, pp. 85-93 (1989). |
Lampi et al., CA 118: 73614t, 1993. |
Subasinghe et al., “Synthesis and Acyclic and Dehydroaspartic Acid Analogues of Ac-Asp-Glu-OH and Their Inhibition of Rat Brain N-Acetylated alpha-Linked Acidic Dipeptidase (NAALA Dipeptidase)”, Journal of Medicinal Chemistry, 33:2734-44 (1990). |
Thierry et al., Synthesis and Activity of NAcSerAspLysPro Analogues on Cellular Interactions between T-Cell and Erythrocytes in Rosette Formation, Journal of Medical Chemistry, vol. 33, pp. 2122-2127 (1990). |