The present invention relates to circuit layouts generally and, more particularly, to a cell builder for different layer stacks.
Digital logic and mixed signal hardmacros are normally developed for backend implementation in a lowest possible layer stack. A layer stack defines either a particular subset of physical layers or all of the physical layers in a technology available to a circuit designer. However, looking at a number of different possible layer stacks available for conventional technologies, a lot of unsupported layer stacks exist. In most cases, unsupported layer stacks have no rules available for handling by automatic place-and-route software tools.
All of the layers not used in a hardmacro are commonly completely blocked for top level automatic network routing. Route guides can prevent a network of a circuit, not included as an inherent part of the hardmacro, from being routed across any portion of the hardmacro. The completely blocked layers cause network paths to go around the hardmacro adding significant wire delay. A lot of routing space in the circuit is also lost and a lot of pseudo routing violations can appear. As such, automatic routing routines are negatively influenced by the blockages. Furthermore, conventional automated routing tools do not always pay attention to the route guides. Therefore, a high number of routing violations can be caused which slow down both the routing process and a search-and-repair process. Manually adjusting routes to pass over the hardmacros is time consuming and susceptible to human mistakes.
Referring to
The present invention concerns a library cell, a method and/or a system for adding the cell to a circuit. The method generally comprises a first step for generating a final layout of the cell having an area of interest in at least one upper layer within a first layer stack used for the circuit, the first layer stack including at most all of a plurality of physical layers available for fabrication. A second step may include placing the final layout in the circuit. A third step may route a network of the circuit through the cell using the at least one upper layer and avoiding the area of interest according to at least one of a plurality of rules.
The objects, features and advantages of the present invention include providing a cell builder for different layer stacks that may (i) handle core designs in a single layout, (ii) handle mixed signal designs in a single layout, (iii) reduce congestion as compared to conventional approaches, (iv) remove human error, (v) reduce pseudo routing violations as compared with conventional approaches, (vi) provide faster routing than conventional approaches and/or (vii) provide shorter turn-around times than conventional approaches.
These and other objects, features and advantages of the present invention will be apparent from the following detailed description and the appended claims and drawings in which:
Referring to
The method 100 generally comprises a step (or block) 102, a step (or block) 104, a step (or block) 106 and a step (or block) 108. A design engineer generally develops a layout for a hardmacro (or cell) in an initial layer stack and generates an extra rule file or set of rule files including a routing rules for one or more upper layers (e.g., step 102). The initial layer stack generally comprises a smallest number of physical layers available for fabrication in a given technology. For example, the physical layers may include, but are not limited to n-type diffusion layers, p-type diffusion layers, gate layers, polysilicon layers and one or more metal layers. In some cases, the initial layer stack may include up to all of the physical layers. Upon design completion, the cell may be stored in a physical library for hardmacros.
The rule (or information) file generally includes all information about shielding of sensitive parts, such as analog circuitry and other areas of interest, inside the hardmacro. The rule file may also include information regarding metal utilization for blocking areas within a boundary of the cell where appropriate. Some rule files may be associated with the individual layers of the layer stacks. For example, a particular layer may be dedicated to filling deep vias and thus includes a rule prohibiting the routing of signal traces on the particular layer.
The design engineer may deliver the normal layout libraries for the newly designed cell plus the rule files for post design checking (PDC). Another engineer may use a software place-and-route tool to build a frame view of the normal cell layout (e.g., step 104). A frame view is generally an abstract layout view of a cell or circuit showing blockages, pins and contacts in the various layers. The resulting frame view may be referred to as a final layout for the cell.
Generation of the final cell layout may include information from the rule files generated specifically for the cell and one or more rule files generated for the different physical layers for different layer stacks (e.g., step 106). The build process may also include a file (e.g., a “.tf” file) defining the physical layers in a specific layer stack used to build up a chip or circuit (e.g., step 108). The resulting frame view of the hardmacro may include layers that coordinate with the actual layers to be used during fabrication. The final cell layout may be stored back into the physical library of hardmacros for future use.
The method 100 generally permits the same hardmacro cell layout to be adapted for use in different circuits created with different technologies. For example, the step 104 may generate a first final cell layout using a first layer stack having two routable metal layers. The step 104 may also generate a second final cell layout using a second layer stack having three routable metal layers. Both final cell layouts may be derived from the same normal cell layout, but may utilize different routing tracks across and near the cell due to the difference in available metal layers.
Referring to
The frame view of the cell 112 may be generated by the method 100. A rule file for one or more upper layers (e.g., a layer 5 and a layer 6) may be generated as part of the step 102. In the example shown, the rule file includes a first area of interest 120 and a second area of interest 122, both completely within an outer boundary 124 of the cell 112. Another rule file may be associated with another upper layer (e.g., layer 8) of the layer stack in use and may be applicable over the entire area of the circuit 110.
A rule for the first area of interest 120 may define a shielding rule. Generally, a shielding rule may establish an electromagnetic isolation criteria for the associated area. For example, the shielding rule for the area 120 may limit a distance between the area 120 and a closest routed network in the metal layer 5. The shielding rule may extend in three-dimensions to avoid cross coupling signals from other layers into the area of interest. A rule for the second area of interest 122 may define a blocking rule. Generally, a blocking rule may prohibit any traces from being routed through the associated area. For example, the second rule may provide metal blockage for both the metal layer 5 and the metal layer 6. A third rule 126 for the metal layer 8 may prohibit automatic signal routing anywhere in the layer 8.
Referring to
Routing of the network NET 1 may be accomplished completely in the metal layer 5 according to the shielding rule for area 120. In the example shown, the network NET 1 may be automatically routed through the cell boundary 124, but no closer than a predetermined distance (e.g., D) from the area 120. Routing of the network NET 2 may be accomplished completely in the metal layer 6 according to the blocking rule for area 122. In the example shown, the network NET 2 may be automatically routed across the cell 112 while avoiding the area 122. Routing of the network NET 3 may be accomplished using both the metal layer 6 and a metal layer 7 according to the block rule for the area 122. In particular, the network NET 3 may enter (e.g., section 130) and exit (e.g., section 132) the cell boundary 124 in the metal layer 6. However, due to the blockage rule of the area 122, the NET 3 may pass over the area 122 in the metal layer 7 (e.g., section 134) where no blocking rule exists.
Comparing
Referring to
Referring to
The function performed by the flow diagram of
The present invention may also be implemented by the preparation of ASICs, Platform ASICs, or by interconnecting an appropriate network of conventional component circuits, as is described herein, modifications of which will be readily apparent to those skilled in the art(s).
The present invention thus may also include a computer product which may be a storage medium including instructions which can be used to program a computer to perform a process in accordance with the present invention. The storage medium can include, but is not limited to, any type of disk including floppy disk, optical disk, CD-ROM, magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, Flash memory, magnetic or optical cards, or any type of media suitable for storing electronic instructions.
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
6414852 | Mizuno | Jul 2002 | B1 |
6421816 | Ishikura | Jul 2002 | B1 |
6430734 | Zahar | Aug 2002 | B1 |
6516456 | Garnett et al. | Feb 2003 | B1 |
6523159 | Bernstein et al. | Feb 2003 | B2 |
6553544 | Tanaka et al. | Apr 2003 | B2 |
6574786 | Pohlenz et al. | Jun 2003 | B1 |
6606735 | Richardson et al. | Aug 2003 | B1 |
6611946 | Richardson et al. | Aug 2003 | B1 |
6629291 | Houghton et al. | Sep 2003 | B1 |
6691290 | Wu | Feb 2004 | B1 |
6785875 | Beerel et al. | Aug 2004 | B2 |
6892368 | Li et al. | May 2005 | B2 |
6910200 | Aubel et al. | Jun 2005 | B1 |
6925627 | Longway et al. | Aug 2005 | B1 |
6951007 | Kaida | Sep 2005 | B2 |
7032207 | Kurose et al. | Apr 2006 | B2 |
7051309 | Crosetto | May 2006 | B1 |
7076410 | Kerzman et al. | Jul 2006 | B1 |
7076757 | Hirata | Jul 2006 | B2 |
7078936 | Catalasan et al. | Jul 2006 | B2 |
7096436 | Bednar et al. | Aug 2006 | B2 |
7174520 | White et al. | Feb 2007 | B2 |
20060129962 | Dinter et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
06069339 | Mar 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20060129962 A1 | Jun 2006 | US |