1. Field of the Invention
The present invention relates to a fuel cell support and to a method for manufacturing such a support.
2. Discussion of the Related Art
Fuel cells using microelectronics techniques have been provided. Especially, US patent application N o2007/00072032 A1 published on Mar. 29, 2007, provides fuel cells formed on a silicon wafer comprising porous silicon pillars.
As illustrated in
To operate the fuel cell, hydrogen is injected on the lower surface side of the support, and air (carrying oxygen) is injected on the upper surface side of the support. The hydrogen is “broken down” at the level of catalyst layer 170 to form, on the one hand, protons H+ which travel towards electrolyte layer 171 and, on the other hand, electrodes which travel towards anode collector 160. The H+ protons cross electrolyte layer 171 to reach catalyst layer 172 where they recombine with oxygen, coming from outside of the cell through the openings formed in conductive cathode layer 180, and with electrons. Conventionally, with such a structure, a positive voltage is obtained on cathode collector 180 (on the oxygen side) and a negative voltage is obtained on anode collector 160 (on the hydrogen side).
It should be understood that
An embodiment of the present invention aims at a novel porous silicon fuel cell support, this support enabling improving, among others, the electrochemical efficiency per area unit of the cell.
Thus, an embodiment of the present invention provides a porous silicon wafer comprising, on its upper surface side, multiple recesses, this upper surface being coated with a porous silicon layer comprising pores smaller than those of the wafer bulk.
According to an embodiment of the present invention, the lower surface of the wafer is also coated with a porous silicon layer comprising pores smaller than those of the wafer bulk.
According to an embodiment of the present invention, the pores of the bulk of the wafer have dimensions greater than 50 nm and the pores of the porous silicon layers have dimensions ranging between 2 and 50 nm.
According to an embodiment of the present invention, the porous silicon layers have a thickness ranging between 1 and 20 μm.
An embodiment of the present invention provides a fuel cell formed on the upper surface of a porous silicon wafer such as described hereabove.
According to an embodiment of the present invention, the fuel cell comprises, on the upper porous silicon wafer, a superposition of a first conductive layer intended to be connected to an anode collector and having through openings, of a first catalyst layer, of an electrolyte layer, of a second catalyst layer, and of a second conductive layer intended to be connected to a cathode collector and having through openings.
An embodiment of the present invention provides a method for forming a porous silicon support wafer, comprising the steps of:
forming multiple recesses on the side of the upper surface of a lightly-doped N-type silicon wafer;
forming, on the raised areas of the upper surface of the silicon wafer, a layer more heavily N-type doped than the silicon wafer; and
performing an electrolysis of the silicon wafer, so that the wafer bulk is turned into porous silicon, and the heavily-doped layer is turned into porous silicon, the pores of the porous silicon layer being smaller than the pores of the bulk of the porous silicon wafer.
According to an embodiment of the present invention, before electrolysis, a silicon layer more heavily N-type doped than the silicon wafer is also formed on the side of the lower surface of the silicon wafer.
According to an embodiment of the present invention, the pores of the porous silicon wafer bulk have dimensions greater than 50 nm and the pores of the porous silicon layers have dimensions ranging between 2 and 50 nm.
An embodiment of the present invention provides a method for forming a fuel cell on a porous silicon wafer such as that described hereabove, further comprising the steps of:
depositing a first conductive layer intended to be connected to an anode collector on the recesses;
forming through openings in the first conductive layer;
successively performing, on the first conductive layer, depositions of a first catalyst layer, of an electrolyte layer, of a second catalyst layer, and of a second conductive layer intended to be connected to an anode collector; and
forming through openings in the second conductive layer.
The foregoing and other objects, features, and advantages of the present invention will be discussed in detail in the following non-limiting description of specific embodiments in connection with the accompanying drawings.
For clarity, the same elements have been designated with the same references in the different drawings and, further, as is usual in the representation of semiconductor structures, the various drawings are not to scale.
Layers forming a fuel cell are formed above mesoporous silicon layer 7, in the same way as previously described in relation with
Thick solid silicon portions 19 may be kept all around support 1 to form a solid frame around it. This results in solidifying the support structure, the porous silicon forming the support comprising very thin regions, which may be fragile.
To operate the fuel cell, the upper surface of substrate 3 is put in contact with a source of hydrogen under pressure and the upper surface of the fuel cell is put in contact with an oxygen source, for example, ambient air. The hydrogen crosses macroporous silicon substrate 3 and mesoporous silicon layer 7 to reach catalyst layer 170 via the openings formed in anode collector layer 160. When the thin optional mesoporous silicon layer 17 is formed, hydrogen first passes through the pores of this layer before reaching macroporous silicon substrate 3. The air, as for itself, passes through the openings formed in cathode collector layer 180 to reach catalyst layer 172.
The structure of the support illustrated in
In
At the step illustrated in
At the step of
At the next step, an electrolysis of the previously-obtained structure is performed, frame 21 being protected on both sides by appropriate masks.
In this example, upper surface 1s of the wafer is in contact with bath 37 connected to the negative terminal and the other surface 1i of the wafer is in contact with bath 39 connected to the positive terminal.
As a non-limiting example, for a wafer having a 300-μm thickness, baths with a 30% hydrofluoric acid concentration and a 60-mA/cm2 electrolysis current density may be used. The mesoporous and macroporous silicon may be formed with different current densities to improve the interface between the different layers.
As illustrated in
An advantage of having provided a heavily-doped N-type bulk and a heavily-doped N-type external layer is that, after electrolysis, a strong adherence between the macroporous silicon bulk and the external mesoporous layer is obtained.
The fuel cell support shown in
Specific embodiments of the present invention have been described. Various alterations and modifications will occur to those skilled in the art. In particular, it is possible to form the porous silicon support of
Further, the previously-described drawings only show a fuel cell. In practice, on the same wafer, a large number of cells which can then be assembled in series or in parallel, according to the desired use, may be formed.
Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and the scope of the present invention. Accordingly, the foregoing description is by way of example only and is not intended to be limiting. The present invention is limited only as defined in the following claims and the equivalents thereto.
| Number | Date | Country | Kind |
|---|---|---|---|
| 0757703 | Sep 2007 | FR | national |
This application is a U.S. National Stage patent application of PCT application number PCT/FR2008/015675, entitled “Cell Holder for Fuel Cell”, filed on Sep. 18, 2007 which application claims priority to French patent application Ser. No. 07/57703, filed on Sep. 20, 2007, entitled “Fuel Cell Support,” which applications are hereby incorporated by reference to the maximum extent allowable by law.
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/FR2008/051675 | 9/18/2008 | WO | 00 | 8/10/2010 |