CELL-PERMEABLE (ICP)-SOCS3 RECOMBINANT PROTEIN AND USES THEREOF

Information

  • Patent Application
  • 20190359669
  • Publication Number
    20190359669
  • Date Filed
    May 30, 2019
    4 years ago
  • Date Published
    November 28, 2019
    4 years ago
Abstract
Provided are an improved cell-permeable (iCP)-SOCS3 recombinant protein and uses thereof. Suppressor of cytokine signaling-3 (SOCS3) is an endogenous protein inhibitor of JAK/STAT pathway, and an aberrant expression of SOCS3 protein was observed in human solid tumors including gastric, colorectal and breast cancer, and glioblastoma. Thus, the iCP-SOCS3 recombinant protein may be used as protein-based anti-solid tumor agent by utilizing the platform technology for macromolecule intracellular transduction.
Description
TECHNICAL FIELD

The present invention relates to providing improved cell-permeable (iCP)-SOCS3 recombinant protein and uses thereof. Preferably, the iCP-SOCS3 recombinant protein may be used as protein-based anti-solid tumor agent by utilizing the platform technology for macromolecule intracellular transduction.


BACKGROUND ART

The Janus kinase signal transducers and activators of transcription signaling (JAK/STAT) plays important roles in immune responses, including oncogenesis. So many investigations demonstrated that STAT-3, an important member of STAT proteins, was considered as a proto-oncogene in various types of disorder. STAT-3 is phosphorylated and dimerizes by the Janus kinase (JAK), and its overexpression and constitutive activation can significantly induce cell proliferation, tumor angiogenesis, invasion. Meanwhile, inhibition of JAK-STAT signaling led to suppress the cancer cell growth and induce apoptosis. Suppressor of cytokine signaling-3 (SOCS3), a kind of endogenous protein inhibitor of JAK/STAT pathway, was identified to be inversely associated with the STAT3 expression and phosphorylation in vivo and in vitro and aberrant expression of SOCS3 protein was observed in human solid tumors including gastric, colorectal and breast cancer, and glioblastoma.


Gastric cancer remains the second leading cause of cancer-related death in the world. Advances in early detection and decreased chronic Helicobacter pylori infection rates have led to a substantial reduction in gastric cancer rates worldwide. However, effective treatment regimens for gastric cancers, especially advanced gastric cancer, are still lacking; therefore, the prognosis of patients with this disease remains poor. SOCS3 mRNA levels are higher in adjacent normal mucosal tissues, however, gastric cancer patients with high simultaneous expression of SOCS3 have a better overall survival than those with low simultaneous expression. Based on this, SOCS3 may represent new therapeutic target to treat gastric cancer.


Colorectal cancer is one of the most fatal neoplastic diseases worldwide and a serious global health problem, with over one million new cases and half million mortalities worldwide each year. It has been reported as being relevant to some inflammatory bowel diseases, such as Crohn's disease and ulcerative colitis. The pathogenesis of colorectal carcinoma is complex, with the involvement of multiple cellular transduction pathways including IL-6/STAT3 signaling. Reduced or silenced SOCS3 has been found in many human types of cancer including colorectal cancer, and restoring SOCS3 expression in the cancer cells inhibits IL-6-mediated STAT3 activation, induces tumor cell apoptosis and decreases cell proliferation. Therefore, suppression of the IL-6/STAT3 pathway via modulation of SOCS3 has been a promising strategy for anti-colon/colorectal cancer therapy.


Glioblastoma, the most common neoplasm among diffuse infiltrating astrocytomas, is notorious for its ability to evade immune-surveillance as well as for its invasive and angiogenic properties. Gliomas are the most common type of primary brain tumors are highly malignant and are associated with a very poor prognosis. Glioblastoma is a very aggressive subtype of glioma with very short life expectancy and limited treatment options. A hallmark of this lethal disorder is the presence of activated STAT3. Because SOCS3 is a negative regulator of STAT-3 activation, it hypothesized that SOCS3 may function as a tumor suppressor in glioblastoma tissues.


Breast cancer is a disease that arises from the accumulation of alterations in the genome of cells that make up the mammary gland. Breast cancer is the most common type of cancer among women, with an estimated 1.38 million new cases of cancer diagnosed in 2008 (23% of all cancers), and the second most common type of cancer overall (10.9% of all cancers). Expression of SOCS3 protein is significantly down-regulated in breast cancer specimens and replacing of SOCS3 protein may directly influence the treatment of breast cancer.


Cytokine signaling is strictly regulated by the SOCS family proteins induced by different classes of agonists, including cytokines, hormones and infectious agents. Among them, SOCS1 and SOCS3 are relatively specific to STAT1 and STAT3, respectively. SOCS1 inhibits JAK activation through its N-terminal kinase inhibitory region (KIR) by the direct binding to the activation loop of JAKs, while SOCS3 binds to janus kinases (JAKs)-proximal sites on the receptor through its SH2 domain and inhibits JAK activity that blocks recruitment of STAT3. Both promote anti-inflammatory effects due to the suppression of inflammation-inducing cytokine signaling. Furthermore, the SOCS box, another domain in SOCS proteins, interacts with E3 ubiquitin ligases and/or couples the SH2 domain-binding proteins to the ubiquitin-proteasome pathway. Therefore, SOCSs inhibit cytokine signaling by suppressing JAK kinase activity and degrading the activated cytokine receptor complex.


In connection with SOCSs and various solid tumors including gastric, colorectal and breast cancer, and glioblastoma, the SOCS1 gene has been implicated as an anti-oncogene in the tumor development. Previous studies have reported that aberrant methylation in the CpG island of SOCS1 induces its transcriptional silencing in cancer cell lines, and SOCS1 heterozygous mice are hypersensitive to various cancers. In addition, abnormalities of SOCS3 are also associated with the solid tumors. Hypermethylation of CpG islands in the SOCS3 promoter is correlated with its transcriptional silencing in tumors cell lines. SOCS3 overexpression down-regulates active STAT3, induces apoptosis, and suppresses growth in cancer cells. The importance of STAT3 to inflammation-associated carcinogenesis is underlined by the previous study that cancer-specific deletion of SOCS3 in a mouse carcinoma model results in larger and more numerous tumors. This means that SOCS3 plays a major role in the negative regulation of the JAK/STAT pathway in carcinogenesis and contributes to the suppression of tumor development by protecting the tissue cells.


REFERENCES



  • 1. Fischer P M., Cellular uptake mechanisms and potential therapeutic utility of peptidic cell delivery vectors: progress 2001-2006, Med Res Rev. 2007; 27:755-95.

  • 2. Heitz F, Morris M C, Divita G., Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics, Br J Pharmacol. 2009; 157:195-206.

  • 3. Lapenna S, Giordano A., Cell cycle kinases as therapeutic targets for cancer, Nat Rev Drug Discov. 2009; 8:547-66.

  • 4. Lim J, Kim J, Duong T, Lee G, Kim J, Yoon J. et al., Antitumor activity of cell-permeable p18(INK4c) with enhanced membrane and tissue penetration, Mol Ther. 2012; 20:1540-9.

  • 5. Jo D, Liu D, Yao S, Collins R D, Hawiger J., Intracellular protein therapy with SOCS3 inhibits inflammation and apoptosis, Nat Med. 2005; 11:892-8.

  • 6. Jo D, Nashabi A, Doxsee C, Lin Q, Unutmaz D, Chen J. et al., Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase, Nat Biotechnol. 2001; 19:929-33.

  • 7. Liu D, Li C, Chen Y, Burnett C, Liu X Y, Downs S. et al., Nuclear import of proinflammatory transcription factors is required for massive liver apoptosis induced by bacterial lipopolysaccharide, J Biol Chem. 2004; 279:48434-42.

  • 8. Liu D, Liu X Y, Robinson D, Burnett C, Jackson C, Seele L. et al., Suppression of Staphylococcal Enterotoxin B-induced Toxicity by a Nuclear Import Inhibitor, J Biol Chem. 2004; 279:19239-46.

  • 9. Liu D, Zienkiewicz J, DiGiandomenico A, Hawiger J., Suppression of acute lung inflammation by intracellular peptide delivery of a nuclear import inhibitor, Mol Ther. 2009; 17:796-802.

  • 10. Moore D J, Zienkiewicz J, Kendall P L, Liu D, Liu X, Veach R A. et al., In vivo islet protection by a nuclear import inhibitor in a mouse model of type 1 diabetes, PLoS One. 2010; 5:e13235.

  • 11. Lim J, Jang G, Kang S, Lee G, Nga do T T, Phuong do T L. et al., Cell-.permeable NM23 blocks the maintenance and progression of established pulmonary metastasis, Cancer Res. 2011; 71:7216-25.

  • 12. Duong T, Kim J, Ruley H E, Jo D., Cell-permeable parkin proteins suppress Parkinson disease-associated phenotypes in cultured cells and animals, PLoS One. 2014; 9:e102517.

  • 13. Lim J, Duong T, Do N, Do P, Kim J, Kim H. et al., Antitumor activity of cell-permeable RUNX3 protein in gastric cancer cells. Clin Cancer Res. 2013; 19:680-90.

  • 14. Lim J, Duong T, Lee G, Seong B L, El-Rifai W, Ruley H E et al. The effect of intracellular protein delivery on the anti-tumor activity of recombinant human endostatin, Biomaterials. 2013; 34:6261-71.

  • 15. Lim J, Kim J, Kang J, Jo D., Partial somatic to stem cell transformations induced by cell-permeable reprogramming factors, Scientific Reports. 2014; 4:4361.



DISCLOSURE
Technical Problem

To negatively control JAK/STAT signaling, recombinant SOCS3 proteins that contain a cell-penetrating peptide (CPP)-membrane-translocating motif (MTM) from fibroblast growth factor (FGF)-4 has been reported. These recombinant SOCS3 proteins inhibited STAT phosphorylation, inflammatory cytokines production and MHC-II expression in cultured and primary macrophages. In addition, SOCS3 fused to MTM protected mice challenged with a lethal dose of the SEB super-antigen, by suppressing apoptosis and hemorrhagic necrosis in multiple organs. However, the SOCS3 proteins fused to FGF4-derived MTM displayed extremely low solubility, poor yields and relatively low cell- and tissue-permeability. Therefore, the MTM-fused SOCS3 proteins were not suitable for further clinical development as therapeutic agents.


Technical Solution

For MITT, six critical factors (length, bending potential, instability index, aliphatic index, GRAVY, amino acid composition) have been determined through analysis of baseline hydrophobic CPPs. Advanced macromolecule transduction domain (aMTD), newly designed based on these six critical factors, could optimize cell-/tissue-permeability of SOCS3 proteins that have a therapeutic effects and develop them as protein-based drugs. Further, in order to increase solubility and yield of recombinant protein, solubilization domains (SDs) additionally fused to the aMTD-SOCS3 recombinant protein, thereby notably increased the solubility and manufacturing yield of the recombinant protein.


In this application, aMTD/SD-fused iCP-SOCS3 recombinant proteins (iCP-SOCS3), much improved physicochemical characteristics (solubility and yield) and functional activity (cell-/tissue-permeability) compared with the protein fused only to FGF-4-derived MTM. In addition, the newly developed iCP-SOCS3 proteins have now been demonstrated to have therapeutic application in treating solid tumor, exploiting the ability of SOCS3 to suppress JAK/STAT signaling. The present application represents that macromolecule intracellular transduction technology (MITT) enabled by the new hydrophobic CPPs that are aMTD may provide novel protein therapy through SOCS3-intracellular protein replacement against the solid tumor. These findings suggest that restoration of SOCS3 by replenishing the intracellular SOCS3 with iCP-SOCS3 protein creates a new paradigm for anti-cancer therapy, and the intracellular protein replacement therapy with the SOCS3 recombinant protein fused to the combination of aMTD and SD pair may be useful to treat the solid tumor.


One aspect disclosed in the present application provides an improved Cell-Permeable (iCP)-SOCS3 recombinant protein, which comprises a SOCS3 protein; and an advanced macromolecule transduction domain (aMTD) being composed of 9-13 amino acid sequences and having improved cell and/or tissue permeability, wherein the aMTD is fused to one end or both ends of the SOCS3 protein and has the following features of:


(a) being composed of 3 or more amino acid sequences selected from the group consisting of Ala, Val, Ile, Leu, and Pro;


(b) having proline as amino acid sequences corresponding to any one or more of positions 5 to 8, and 12 of its amino acid sequence; and


(c) having an instability index of 40-60; an aliphatic index of 180-220; and a grand average of hydropathy (GRAVY) of 2.1-2.6, as measured by Protparam.


According to one embodiment, one or more solubilization domain (SD)(s) are further fused to the end(s) of one or more of the SOCS3 protein and the aMTD.


According to another embodiment, the aMTD may form α-Helix structure. According to still another embodiment, the aMTD may be composed of 12 amino acid sequences and represented by the following general formula:




embedded image


wherein X(s) independently refer to Alanine (A), Valine (V), Leucine (L) or Isoleucine (I); and Proline (P) can be positioned in one of U(s) (either 5′, 6′, 7′ or 8′). The remaining U(s) are independently composed of A, V, L or I, P at the 12′ is Proline.


Another aspect disclosed in the present application provides an iCP-SOCS3 recombinant protein which is represented by any one of the following structural formulae:





A-B-C,A-C-B,B-A-C,B-C-A,C-A-B,C-B-A and A-C-B-C


wherein A is an advanced macromolecule transduction domain (aMTD) having improved cell and/or tissue permeability, B is a SOCS3 protein, and C is a solubilization domain (SD); and


the aMTD is composed of 9-13 amino acid sequences and has the following features of:


(a) being composed of 3 or more amino acids selected from the group consisting of Ala, Val, Ile, Leu, and Pro;


(b) having proline as amino acid sequences corresponding to any one or more of positions 5 to 8, and 12 of its amino acid sequence;


(c) having an instability index of 40-60; an aliphatic index of 180-220; and a grand average of hydropathy (GRAVY) of 2.1-2.6, as measured by Protparam; and


(d) forming α-Helix structure.


According to one embodiment disclosed in the present application, the SOCS3 protein may have an amino acid sequence of SEQ ID NO: 814.


According to another embodiment disclosed in the present application, the SOCS3 protein may be encoded by a polynucleotide sequence of SEQ ID NO: 815.


According to still another embodiment disclosed in the present application, the SOCS3 protein may further include a ligand selectively binding to a receptor of a cell, a tissue, or an organ.


According to still another embodiment disclosed in the present application, the aMTD may have an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-240 and 822.


According to still another embodiment disclosed in the present application, the aMTD may be encoded by a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 241-480 and 823.


According to still another embodiment disclosed in the present application, the SD(s) may have an amino acid sequence independently selected from the group consisting of SEQ ID NOs: 798, 799, 800, 801, 802, 803, and 804.


According to still another embodiment disclosed in the present application, the SD(s) may be encoded by a polynucleotide sequence independently selected from the group consisting of SEQ ID NOs: 805, 806, 807, 808, 809, 810, and 811.


According to still another embodiment disclosed in the present application, the iCP-SOCS3 recombinant protein may have a histidine-tag affinity domain additionally fused to one end thereof.


According to still another embodiment disclosed in the present application, the histidine-tag affinity domain may have an amino acid sequence of SEQ ID NO: 812.


According to still another embodiment disclosed in the present application, the histidine-tag affinity domain may be encoded by a polynucleotide sequence of SEQ ID NO: 813.


According to still another embodiment disclosed in the present application, the fusion may be formed via a peptide bond or a chemical bond.


According to still another embodiment disclosed in the present application, the iCP-SOCS3 recombinant protein may be used for the treating, preventing, or delaying the onset of, solid tumor.


Still another aspect disclosed in the present application provides a polynucleotide sequence encoding the iCP-SOCS3 recombinant protein.


According to one embodiment disclosed in the present application, the polynucleotide sequence may be a polynucleotide sequence represented by SEQ ID NO: 825.


Still another aspect disclosed in the present application provides a recombinant expression vector including the polynucleotide sequence.


Still another aspect disclosed in the present application provides a transformant transformed with the recombinant expression vector.


Still another aspect disclosed in the present application provides a preparing method of the iCP-SOCS3 recombinant protein including preparing the recombinant expression vector; preparing the transformant using the recombinant expression vector; culturing the transformant; and recovering the recombinant protein expressed by the culturing.


Still another aspect disclosed in the present application provides a composition including the iCP-SOCS3 recombinant protein as an active ingredient.


Still another aspect disclosed in the present application provides a pharmaceutical composition for the treating, preventing, or delaying the onset of, solid tumor including the iCP-SOCS3 recombinant protein as an active ingredient; and a pharmaceutically acceptable carrier.


Still another aspect disclosed in the present application provides use of the iCP-SOCS3 recombinant protein as a medicament for the treating, preventing, or delaying the onset of, solid tumor.


Still another aspect disclosed in the present application provides a medicament including the iCP-SOCS3 recombinant protein.


Still another aspect disclosed in the present application provides use of the iCP-SOCS3 recombinant protein in the preparation of a medicament for the treating, preventing, or delaying the onset of, solid tumor.


Still another aspect disclosed in the present application provides a method of treating, preventing, or delaying the onset of, solid tumor in a subject, the method including identifying a subject in need of the treating, preventing, or delaying the onset of, solid tumor; and administering to the subject a therapeutically effective amount of the iCP-SOCS3 recombinant protein.


According to one embodiment disclosed in the present application, the subject may be a mammal.


Unless defined otherwise, all terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Although a certain method and a material is described herein, it should not be construed as being limited thereto, any similar or equivalent method and material to those may also be used in the practice or testing of the present invention. All publications mentioned herein are incorporated herein by reference in their entirety to disclose and describe the methods and/or materials in connection with which the publications are cited. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.


A “peptide,” as used herein, refers to a chain-type polymer formed by amino acid residues which are linked to each other via peptide bonds, and used interchangeably with “polypeptide.” Further, a “polypeptide” includes a peptide and a protein.


Further, the term “peptide” includes amino acid sequences that are conservative variations of those peptides specifically exemplified herein. The term “conservative variation,” as used herein, denotes the replacement of an amino acid residue by another, biologically similar residue. Examples of conservative variations include substitution of one hydrophobic residue, such as isoleucine, valine, leucine, alanine, cysteine, glycine, phenylalanine, proline, tryptophan, tyrosine, norleucine, or methionine for another, or substitution of one polar residue for another, for example, substitution of arginine for lysine, glutamic acid for aspartic acid, or glutamine for asparagine, and the like. Neutral hydrophilic amino acids which may be substituted for one another include asparagine, glutamine, serine, and threonine.


The term “conservative variation” also includes use of a substituted amino acid in place of an unsubstituted parent amino acid, provided that antibodies raised to the substituted polypeptide also immunoreact with the unsubstituted polypeptide. Such conservative substitutions are within the definition of the classes of the peptides disclosed in the present application.


A person having ordinary skill in the art may make similar substitutions to obtain peptides having higher cell permeability and a broader host range. For example, one aspect disclosed in the present application provides peptides corresponding to amino acid sequences (e.g. SEQ ID NOs: 1 to 240 and 822) provided herein, as well as analogues, homologs, isomers, derivatives, amidated variations, and conservative variations thereof, as long as the cell permeability of the peptide remains.


Minor modifications to primary amino acid sequence disclosed in the present application may result in peptides which have substantially equivalent or enhanced cell permeability, as compared to the specific peptides described herein. Such modifications may be deliberate, as by site-directed mutagenesis, or may be spontaneous.


All peptides may be synthesized using L-amino acids, but D forms of all of the peptides may be synthetically produced. In addition, C-terminal derivatives, such as C-terminal methyl esters and C-terminal amidates, may be produced in order to increase the cell permeability of the peptide according to one embodiment disclosed in the present application.


All of the peptides produced by these modifications are included herein, as long as in the case of amidated versions of the peptide, the cell permeability of the original peptide is altered or enhanced such that the amidated peptide is therapeutically useful. It is envisioned that such modifications are useful for altering or enhancing cell permeability of a particular peptide.


Furthermore, deletion of one or more amino acids may also result in a modification to the structure of the resultant molecule without any significant change in its cell permeability. This may lead to the development of a smaller active molecule which may also have utility. For example, amino- or carboxyl-terminal amino acids which may not be required for the cell permeability of a particular peptide may be removed.


The term “gene” refers to an arbitrary nucleic acid sequence or a part thereof having a functional role in protein coding or transcription, or regulation of other gene expression. The gene may be composed of all nucleic acids encoding a functional protein or a part of the nucleic acid encoding or expressing the protein. The nucleic acid sequence may include a gene mutation in exon, intron, initiation or termination region, promoter sequence, other regulatory sequence, or a unique sequence adjacent to the gene.


The term “primer” refers to an oligonucleotide sequence that hybridizes to a complementary RNA or DNA target polynucleotide and serves as the starting points for the stepwise synthesis of a polynucleotide from mononucleotides by the action of a nucleotidyltransferase as occurs, for example, in a polymerase chain reaction.


The term “coding region” or “coding sequence” refers to a nucleic acid sequence, a complement thereof, or a part thereof which encodes a particular gene product or a fragment thereof for which expression is desired, according to the normal base pairing and codon usage relationships. Coding sequences include exons in genomic DNA or immature primary RNA transcripts, which are joined together by the cellular biochemical machinery to provide a mature mRNA. The anti-sense strand is the complement of the nucleic acid, and the coding sequence may be deduced therefrom.


One aspect disclosed in the present application provides an iCP-SOCS3 recombinant protein, which comprises a SOCS3 protein and an advanced macromolecule transduction domain (aMTD) being composed of 9-13 amino acid sequences, preferably 10-12 amino acid sequences, and having improved cell and/or tissue permeability, wherein the aMTD is fused to one end or both ends of the SOCS3 protein and has the following features of:


(a) being preferably composed of 3 or more amino acid sequences selected from the group consisting of Ala, Val, Ile, Leu, and Pro;


(b) having proline as amino acid sequences corresponding to any one or more of positions 5 to 8, and 12 of its amino acid sequence, and preferably one or more of positions 5 to 8 and position 12 of its amino acid sequence; and


(c) having an instability index of preferably 40-60 and more preferably 41-58; an aliphatic index of preferably 180-220 and more preferably 185-225; and a grand average of hydropathy (GRAVY) of preferably 2.1-2.6 and more preferably 2.2-2.6 as measured by Protparam (see http://web.expasy.org/protparam/).


These critical factors that facilitate the cell permeable ability of aMTD sequences were analyzed, identified, and determined according to one embodiment disclosed in the present application. These aMTD sequences are artificially assembled based on the critical factors (CFs) determined from in-depth analysis of previously published hydrophobic CPPs.


The aMTD sequences according to one aspect disclosed in the present application are the first artificially developed cell permeable polypeptides capable of mediating the transduction of biologically active macromolecules—including peptides, polypeptides, protein domains, or full-length proteins—through the plasma membrane of cells.


According to one embodiment, one or more solubilization domain (SD)(s) are further fused to one or more of the SOCS3 protein and the aMTD, preferably one end or both ends of the SOCS3 protein, and more preferably the C-terminus of the SOCS3 protein.


According to another embodiment, the aMTD may form α-Helix structure.


According to still another embodiment, the aMTD may be preferably composed of 12 amino acid sequences and represented by the following general formula:




embedded image


Here, X(s) independently refer to Alanine (A), Valine (V), Leucine (L) or Isoleucine (I); and Proline (P) can be positioned in one of U(s) (either 5′, 6′, 7′ or 8′). The remaining U(s) are independently composed of A, V, L or I, P at the 12′ is Proline.


Still another aspect disclosed in the present application provides an iCP-SOCS3 recombinant protein which is represented by any one of structural formulae A-B-C, A-C-B, B-A-C, B-C-A, C-A-B, C-B-A and A-C-B-C, and preferably by A-B-C or C-B-A:


wherein A is an advanced macromolecule transduction domain (aMTD) having improved cell and/or tissue permeability, B is a SOCS3 protein, and C is a solubilization domain (SD); and


the aMTD is composed of 9-13, preferably 10-12 amino acid sequences and has the following features of:


(a) being composed of 3 or more amino acid sequences selected from the group consisting of Ala, Val, Ile, Leu, and Pro;


(b) having proline as amino acid sequences corresponding to any one or more of positions 5 to 8, and 12 of its amino acid sequence, and preferably, one or more of positions 5 to 8 and position 12 of its amino acid sequence;


(c) having an instability index of 40-60, preferably 41-58 and more preferably 50-58; an aliphatic index of 180-220. preferably 185-225 and more preferably 195-205; and a grand average of hydropathy (GRAVY) of 2.1-2.6 and preferably 2.2-2.6, as measured by Protparam (see http://web.expasy.org/protparam/); and


(d) preferably forming α-Helix structure.


In one embodiment disclosed in the present application, the SOCS3 protein may have an amino acid sequence of SEQ ID NO: 814.


In another embodiment disclosed in the present application, the SOCS3 protein may be encoded by a polynucleotide sequence of SEQ ID NO: 815.


When the iCP-SOCS3 recombinant protein is intended to be delivered to a particular cell, tissue, or organ, the SOCS3 protein may form a fusion product, together with an extracellular domain of a ligand capable of selectively binding to a receptor which is specifically expressed on the particular cell, tissue, or organ, or monoclonal antibody (mAb) capable of specifically binding to the receptor or the ligand and a modified form thereof.


The binding of the peptide and a biologically active substance may be formed either by indirect linkage by a cloning technique using an expression vector at a nucleotide level or by direct linkage via chemical or physical covalent or non-covalent bond of the peptide and the biologically active substance.


In still another embodiment disclosed in the present application, the SOCS3 protein may preferably further include a ligand selectively binding to a receptor of a cell, a tissue, or an organ.


In one embodiment disclosed in the present application, the aMTD may have an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-240 and 822, preferably SEQ ID NOs: 2, 16, 22, 32, 40, 43, 63, 65, 77, 84, 85, 86, 110, 131, 142, 143, 177, 228, 229, 233, 237, 239 and 822, more preferably SEQ ID NO: 43.


In still another embodiment disclosed in the present application, the aMTD may be encoded by a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 241-480 and 823, preferably SEQ ID NOs: 242, 256, 262, 272, 280, 283, 303, 305, 317, 324, 325, 326, 350, 371, 382, 383, 417, 468, 469 473, 477, 479 and 823, more preferably SEQ ID NO: 283.


In still another embodiment disclosed in the present application, the SD(s) may have an amino acid sequence independently selected from the group consisting of SEQ ID NOs: 798, 799, 800, 801, 802, 803, and 804. The SD may be preferably SDA of SEQ ID NO: 798, SDB of SEQ ID NO: 799, or SDB′ of SEQ ID NO: 804, and more preferably, SDB of SEQ ID NO: 799 which has superior structural stability, or SDB′ of SEQ ID NO: 804 which has a modified amino acid sequence of SDB to avoid immune responses upon in vivo application. The modification of the amino acid sequence in SDB may be replacement of an amino acid residue, Valine, corresponding to position 28 of the amino acid sequence of SDB (SEQ ID NO: 799) by Leucine.


In still another embodiment disclosed in the present application, the SDs may be encoded by a polynucleotide sequence independently selected from the group consisting of SEQ ID NOs: 805, 806, 807, 808, 809, 810, and 811. The SD may be preferably SDA encoded by a polynucleotide sequence of SEQ ID NO: 805, SDB encoded by a polynucleotide sequence of SEQ ID NO: 806, or SDB′ for deimmunization (or humanization) encoded by a polynucleotide sequence of SEQ ID NO: 811, and more preferably, SDB having superior structural stability, which is encoded by a polynucleotide sequence of SEQ ID NO: 806, or SDB′ having a modified polynucleotide sequence of SDB to avoid immune responses upon in vivo application, which is encoded by a polynucleotide sequence of SEQ ID NO: 811.


In still another embodiment disclosed in the present application, the iCP-SOCS3 recombinant protein may be preferably selected from the group consisting of:


1) a recombinant protein, in which SOCS3 having an amino acid sequence of SEQ ID NO: 814 is fused to the N-terminus or the C-terminus of aMTD having any one amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 240 and 822, 2, 16, 22, 32, 40, 43, 63, 65, 77, 84, 85, 86, 110, 131, 142, 143, 177, 228, 229, 233, 237, 239 and 822, more preferably SEQ ID NO: 43;


2) a recombinant protein, in which SD having any one amino acid sequence selected from the group consisting of SEQ ID NOs: 798 to 804 is further fused to one or more of the N-terminus or the C-terminus of the SOCS3 and aMTD in the recombinant protein of 1); and


3) a recombinant protein, in which a Histidine tag having an amino acid sequence of 812 is further fused to the N-terminus of the recombinant protein of 1) or 2).


According to one embodiment, the iCP-SOCS3 recombinant protein may be composed of an amino acid sequence selected from the group consisting of SEQ ID NO: 825.


The SOCS3 protein may exhibit a physiological phenomenon-related activity or a therapeutic purpose-related activity by intracellular or in-vivo delivery. The recombinant expression vector may include a tag sequence which makes it easy to purify the recombinant protein, for example, consecutive histidine codon, maltose binding protein codon, Myc codon, etc., and further include a fusion partner to enhance solubility of the recombinant protein, etc. Further, for the overall structural and functional stability of the recombinant protein or flexibility of the proteins encoded by respective genes, the recombinant expression vector may further include one or more glycine, proline, and spacer amino acid or polynucleotide sequences including AAY amino acids. Furthermore, the recombinant expression vector may include a sequence specifically digested by an enzyme in order to remove an unnecessary region of the recombinant protein, an expression regulatory sequence, and a marker or reporter gene sequence to verify intracellular delivery, but is not limited thereto.


In still another embodiment disclosed in the present application, the iCP-SOCS3 recombinant protein may preferably have a histidine-tag affinity domain additionally fused to one end thereof.


In still another embodiment disclosed in the present application, the histidine-tag affinity domain may have an amino acid sequence of SEQ ID NO: 812.


In still another embodiment disclosed in the present application, the histidine-tag affinity domain may be encoded by a polynucleotide sequence of SEQ ID NO: 813.


In still another embodiment disclosed in the present application, the fusion may be formed via a peptide bond or a chemical bond.


The chemical bond may be preferably selected from the group consisting of disulfide bonds, diamine bonds, sulfide-amine bonds, carboxyl-amine bonds, ester bonds, and covalent bonds.


In still another embodiment disclosed in the present application, the iCP-SOCS3 recombinant protein may be used for the treating, preventing, or delaying the onset of, solid tumor.


Still another aspect disclosed in the present application provides a polynucleotide sequence encoding the iCP-SOCS3.


According to still another embodiment disclosed in the present application, the polynucleotide sequence may be fused with a histidine-tag affinity domain.


Still another aspect disclosed in the present application provides a recombinant expression vector including the polynucleotide sequence.


Preferably, the vector may be inserted in a host cell and recombined with the host cell genome, or refers to any nucleic acid including a nucleotide sequence competent to replicate spontaneously as an episome. Such a vector may include a linear nucleic acid, a plasmid, a phagemid, a cosmid, an RNA vector, a viral vector, etc.


Preferably, the vector may be genetically engineered to incorporate the nucleic acid sequence encoding the recombinant protein in an orientation either N-terminal and/or C-terminal to a nucleic acid sequence encoding a peptide, a polypeptide, a protein domain, or a full-length protein of interest, and in the correct reading frame so that the recombinant protein consisting of aMTD, SOCS3 protein, and preferably SD may be expressed. Expression vectors may be selected from those readily available for use in prokaryotic or eukaryotic expression systems.


Standard recombinant nucleic acid methods may be used to express a genetically engineered recombinant protein. The nucleic acid sequence encoding the recombinant protein according to one embodiment disclosed in the present application may be cloned into a nucleic acid expression vector, e.g., with appropriate signal and processing sequences and regulatory sequences for transcription and translation, and the protein may be synthesized using automated organic synthetic methods. Synthetic methods of producing proteins are described in, for example, the literature [Methods in Enzymology, Volume 289: Solid-Phase Peptide Synthesis by Gregg B. Fields (Editor), Sidney P. Colowick, Melvin I. Simon (Editor), Academic Press (1997)].


In order to obtain high level expression of a cloned gene or nucleic acid, for example, a cDNA encoding the recombinant protein according to one embodiment disclosed in the present application, the recombinant protein sequence may be typically subcloned into an expression vector that includes a strong promoter for directing transcription, a transcription/translation terminator, and in the case of a nucleic acid encoding a protein, a ribosome binding site for translational initiation. Suitable bacterial promoters are well known in the art and are described, e.g., in the literatures [Sambrook & Russell, Molecular Cloning: A Laboratory Manual, 3d Edition, Cold Spring Harbor Laboratory, N.Y. (2001); and Ausubel, et al., Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, N. Y. (1989)]. Bacterial expression systems for expression of the recombinant protein are available in, e.g., E. coli, Bacillus sp., and Salmonella (Palva et al., Gene 22: 229-235 (1983); Mosbach et al., Nature 302: 543-545 (1983)). Kits for such expression systems are commercially available. Eukaryotic expression systems for mammalian cells, yeast, and insect cells are well known in the art and are also commercially available. The eukaryotic expression vector may be preferably an adenoviral vector, an adeno-associated vector, or a retroviral vector.


Generally, the expression vector for expressing the cell permeable recombinant protein according to one embodiment disclosed in the present application in which the cargo protein, i.e. ASOCS3 protein, is attached to the N-terminus, C-terminus, or both termini of aMTD may include regulatory sequences including, for example, a promoter, operably attached to a sequence encoding the advanced macromolecule transduction domain. Non-limiting examples of inducible promoters that may be used include steroid-hormone responsive promoters (e.g., ecdysone-responsive, estrogen-responsive, and glutacorticoid-responsive promoters), tetracycline “Tet-On” and “Tet-Off” systems, and metal-responsive promoters.


The polynucleotide sequence according to one embodiment disclosed in the present application may be present in a vector in which the polynucleotide sequence is operably linked to regulatory sequences capable of providing for the expression of the polynucleotide sequence by a suitable host cell.


According to one embodiment disclosed in the present application, the polynucleotide sequence may be selected from the following groups:


1) a polynucleotide sequence, in which any one polynucleotide sequence selected from the group consisting of SEQ ID NOs: 241-480 and 823, preferably SEQ ID NOs: 242, 252, 274, 279, 322, 331, 338, 345, 347, 361, 365, 370, 371, 383, 387, 417, 462, 468, 469, 473, 477, 479 and 823, more preferably SEQ ID NO: 283, is operably linked with a polynucleotide sequence of SEQ ID NO: 815; and


2) a polynucleotide sequence, in which any one polynucleotide sequence selected from the group consisting of SEQ ID NOs: 805 to 811 is further operably linked to the polynucleotide sequence of 1), or further operably linked to between: any one polynucleotide sequence selected from the group consisting of SEQ ID NOs: 241-480 and 823, preferably SEQ ID NOs: 242, 256, 262, 272, 280, 283, 303, 305, 317, 324, 325, 326, 350, 371, 382, 383, 417, 468, 469, 473, 477, 479 and 823, more preferably SEQ ID NO: 283; and a polynucleotide sequence of SEQ ID NO: 815.


Within an expression vector, the term “operably linked” is intended to mean that the polynucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the polynucleotide sequence. The term “regulatory sequence” is intended to include promoters, enhancers, and other expression control elements. Such operable linkage with the expression vector can be achieved by conventional gene recombination techniques known in the art, while site-directed DNA cleavage and linkage are carried out by using conventional enzymes known in the art.


The expression vectors may contain a signal sequence or a leader sequence for membrane targeting or secretion, as well as regulatory sequences such as a promoter, an operator, an initiation codon, a termination codon, a polyadenylation signal, an enhancer and the like. The promoter may be a constitutive or an inducible promoter. Further, the expression vector may include one or more selectable marker genes for selecting the host cell containing the expression vector, and may further include a polynucleotide sequence that enables the vector to replicate in the host cell in question.


The expression vector constructed according to one embodiment disclosed in the present application may be the vector where the polynucleotide encoding the iCP-SOCS3 recombinant protein (where an aMTD is fused to the N-terminus or C-terminus of a SOCS3 protein) is inserted within the multiple cloning sites (MCS), preferably within the Nde1/Sal1 site or BamH1/Sal1 site of a pET-28a(+)(Novagen, Darmstadt, Germany) or pET-26b(+) vector(Novagen, Darmstadt, Germany).


In still another embodiment disclosed in the present application, the polynucleotide encoding the SD being additionally fused to the N-terminus or C-terminus of a SOCS3 protein or an aMTD may be inserted into a cleavage site of restriction enzyme (Nde1, BamH1 and Sal1, etc.) within the multiple cloning sites (MCS) of a pET-28a(+)(Novagen, Darmstadt, Germany) or pET-26b(+) vector(Novagen, Darmstadt, Germany).


In still another embodiment disclosed in the present application, the polynucleotide encoding the iCP-SOCS3 recombinant protein may be cloned into a pET-28a(+) vector bearing a His-tag sequence so as to fuse six histidine residues to the N-terminus of the iCP-SOCS3 recombinant protein to allow easy purification.


According to one embodiment disclosed in the present application, the polynucleotide sequence may be a polynucleotide sequence selected from the group consisting of SEQ ID NOS: 824, 826, 828 and 830.


The recombinant protein may be introduced into an appropriate host cell, e.g., a bacterial cell, a yeast cell, an insect cell, or a tissue culture cell. The recombinant protein may also be introduced into embryonic stem cells in order to generate a transgenic organism. Large numbers of suitable vectors and promoters are known to those skilled in the art and are commercially available for generating the recombinant protein.


Known methods may be used to construct vectors including the polynucleotide sequence according to one embodiment disclosed in the present application and appropriate transcriptional/translational control signals. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo recombination/genetic recombination. For example, these techniques are described in the literatures [Sambrook & Russell, Molecular Cloning: A Laboratory Manual, 3d Edition, Cold Spring Harbor Laboratory, N. Y. (2001); and Ausubel et al., Current Protocols in Molecular Biology Greene Publishing Associates and Wiley Interscience, N.Y. (1989)].


Still another aspect disclosed in the present application provides a transformant transformed with the recombinant expression vector.


The transformation includes transfection, and refers to a process whereby a foreign (extracellular) DNA, with or without an accompanying material, enters into a host cell. The “transfected cell” refers to a cell into which the foreign DNA is introduced into the cell, and thus the cell harbors the foreign DNA. The DNA may be introduced into the cell so that a nucleic acid thereof may be integrated into the chromosome or replicable as an extrachromosomal element. The cell introduced with the foreign DNA, etc. is called a transformant.


As used herein, ‘introducing’ of a protein, a peptide, an organic compound into a cell may be used interchangeably with the expression of ‘carrying,’ ‘penetrating,’ ‘transporting,’ ‘delivering,’ ‘permeating’ or ‘passing.’


It is understood that the host cell refers to a eukaryotic or prokaryotic cell into which one or more DNAs or vectors are introduced, and refers not only to the particular subject cell but also to the progeny or potential progeny thereof. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.


The host cells may be preferably bacterial cells, and as the bacterial cells, there are, in principle, no limitations. They may be eubacteria (gram-positive or gram-negative) or archaebacteria, as long as they allow genetic manipulation for insertion of a gene of interest, preferably for site-specific integration, and they may be cultured on a manufacturing scale. Preferably, the host cells may have the property to allow cultivation to high cell densities.


Examples of bacterial host cells that may be used in the preparation of the recombinant protein are E. coli (Lee, 1996; Hannig and Makrides, 1998), Bacillus subtilis, Pseudomonas fluorescens (Squires et al., 2004; Retallack et al., 2006) as well as various Corynebacterium (US 2006/0003404 A1) and Lactococcus lactis (Mierau et al., 2005) strains. Preferably, the host cells are Escherichia coli cells.


More preferably, the host cell may include an RNA polymerase capable of binding to a promoter regulating the gene of interest. The RNA polymerase may be endogenous or exogenous to the host cell.


Preferably, host cells with a foreign strong RNA polymerase may be used. For example, Escherichia coli strains engineered to carry a foreign RNA polymerase (e.g. like in the case of using a T7 promoter a T7-like RNA polymerase in the so-called “T7 strains”) integrated in their genome may be used. Examples of T7 strains, e.g. BL21(DE3), HMS174(DE3), and their derivatives or relatives (see Novagen, pET System manual, 11th edition), may be widely used and commercially available. Preferably, BL21-CodonPlus (DE3)-RIL or BL21-CodonPlus (DE3)-RIPL (Agilent Technologies) may be used. These strains are DE3 lysogens containing the T7 RNA polymerase gene under control of the lacUV5 promoter. Induction with IPTG allows production of T7 RNA polymerase which then directs the expression of the gene of interest under the control of the T7 promoter.


The host cell strains, E. coli BL21(DE3) or HMS174(DE3), which have received their genome-based T7 RNA polymerase via the phage DE3, are lysogenic. It is preferred that the T7 RNA polymerase contained in the host cell has been integrated by a method which avoids, or preferably excludes, the insertion of residual phage sequences in the host cell genome since lysogenic strains have the disadvantage to potentially exhibit lytic properties, leading to undesirable phage release and cell lysis.


Still another aspect disclosed in the present application provides a preparing method of the iCP-SOCS3 recombinant protein including preparing the recombinant expression vector; preparing the transformant using the recombinant expression vector; culturing the transformant; and recovering the recombinant protein expressed by culturing.


Culturing may be preferably in a mode that employs the addition of a feed medium, this mode being selected from the fed-batch mode, semi-continuous mode, or continuous mode, and the bacterial expression host cells may include a DNA construct, integrated in their genome, carrying the DNA sequence encoding the protein of interest under the control of a promoter that enables expression of said protein.


There are no limitations in the type of the culture medium. The culture medium may be semi-defined, i.e. containing complex media compounds (e.g. yeast extract, soy peptone, casamino acids), or it may be chemically defined, without any complex compounds. Preferably, a defined medium may be used. The defined media (also called minimal or synthetic media) are exclusively composed of chemically defined substances, i.e. carbon sources such as glucose or glycerol, salts, vitamins, and, in view of a possible strain auxotrophy, specific amino acids or other substances such as thiamine. Most preferably, glucose may be used as a carbon source. Usually, the carbon source of the feed medium serves as the growth-limiting component which controls the specific growth rate.


Host cells may be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or the use of cell lysing agents. The literature [Scopes, Protein Purification: Principles and Practice, New York: Springer-Verlag (1994)] describes a number of general methods for purifying recombinant (and non-recombinant) proteins. The methods may include, e.g., ion-exchange chromatography, size-exclusion chromatography, affinity chromatography, selective precipitation, dialysis, and hydrophobic interaction chromatography. These methods may be adapted to devise a purification strategy for the cell permeable recombinant protein. If the cell permeable recombinant protein includes a purification handle, such as an epitope tag or a metal chelating sequence, affinity chromatography may be used to easily purify the protein.


The amount of the protein produced may be evaluated by detecting the advanced macromolecule transduction domain directly (e.g., using Western analysis) or indirectly (e.g., by assaying materials derived from the cells for specific DNA binding activity, such as by electrophoretic mobility shift assay). Proteins may be detected prior to purification, during any stage of purification, or after purification. In some implementations, purification or complete purification may not be necessary.


The iCP-SOCS3 recombinant proteins according to one embodiment disclosed in the present application are cell permeable proteins, and may be used as protein-based vaccines, particularly in the case where killed or attenuated whole organism vaccines are impractical.


The iCP-SOCS3 recombinant proteins according to one embodiment disclosed in the present application may be preferably used for the treating, preventing, or delaying the onset of, solid tumor. The cell permeable recombinant proteins may be delivered to the interior of the cell, eliminating the need to transfect or transform the cell with a recombinant vector. The cell permeable recombinant proteins may be used in vitro to investigate protein function or may be used to maintain cells in a desired state.


Still another aspect disclosed in the present application provides a composition including the iCP-SOCS3 Recombinant Protein as an active ingredient.


Still another aspect disclosed in the present application provides a pharmaceutical composition for treating, preventing, or delaying the onset of, solid tumor including the iCP-SOCS3 Recombinant Protein as an active ingredient; and a pharmaceutically acceptable carrier.


According to one embodiment disclosed in the present application, the iCP-SOCS3 Recombinant Protein may be used in a single agent, or in combination with one or more other anti-cancer agents.


Solid tumor described herein include, but are not limited to, described herein include, but are not limited to, prostate cancer, renal cancer, hepatic cancer, colon cancer, rectal cancer, colorectal cancer, brain cancer, renal cancer, colorectal cancer, pancreatic cancer, gastric cancer, breast cancer, lung cancer, cancers of the head and neck, thyroid cancer, glioblastoma, Kaposi's sarcoma, melanoma, oesophageal cancer, gastro-oesophageal cancer, cervical cancer, hepatocellular carcinoma, endometrial cancer, urothelial cancer, or ovarian cancer.


According to one embodiment disclosed in the present invention, the tumor may be early stage tumor, metastatic tumor, non-metastatic tumor, primary tumor, resected tumor, advanced tumor, locally advanced tumor, unresectable tumor, tumor in remission, or recurrent tumor.


Preferably, the composition may be for injectable (e.g. intraperitoneal, intravenous, and intra-arterial, etc.) and may include the active ingredient in an amount of 0.001 mg/kg to 1000 mg/kg, preferably 0.01 mg/kg to 100 mg/kg, more preferably 0.1 mg/kg to 50 mg/kg for human.


For examples, dosages per day normally fall within the range of about 0.001 to about 1000 mg/kg of body weight. In the treatment of adult humans, the range of about 0.1 to about 50 mg/kg/day, in single or divided dose, is especially preferred. However, it will be understood that the concentration of the iCP-SOCS3 recombinant protein actually administered will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the age, weight, and response of the individual patient, and the severity of the patient's symptoms, and therefore the above dosage ranges are not intended to limit the scope of the invention in any way. In some instances dosage levels below the lower limit of the aforesaid range may be more than adequate, while in other cases still larger doses may be employed without causing any harmful side effect, provided that such larger doses are first divided into several smaller doses for administration throughout the day.


Still another aspect disclosed in the present application provides use of the iCP-SOCS3 recombinant protein as a medicament for treating, preventing, or delaying the onset of, solid tumor.


Still another aspect disclosed in the present application provides a medicament including the iCP-SOCS3 recombinant protein.


Still another aspect disclosed in the present application provides use of the iCP-SOCS3 recombinant protein for the preparation of a medicament for treating, preventing, or delaying the onset of, solid tumor.


Still another aspect disclosed in the present application provides a method of treating, preventing, or delaying the onset of, solid tumor in a subject including identifying a subject in need of treating, preventing, or delaying the onset of, solid tumor; and administering to the subject a therapeutically effective amount of the iCP-SOCS3 recombinant protein.


In one embodiment disclosed in the present application, the subject may be preferably a mammal.


Preferably, the subject in need of treating, preventing, or delaying the onset of, solid tumor may be identified by any conventional diagnostic methods known in the art including ultrasound, CT scan, MRI, alpha-fetoprotein testing, and biopsy, etc.


The pharmaceutical composition according to one embodiment disloced in the present application may be prepared by using pharmaceutically suitable and physiologically acceptable additives, in addition to the active ingredient, and the additives may include excipients, disintegrants, sweeteners, binders, coating agents, blowing agents, lubricants, glidants, flavoring agents, etc.


For administration, the pharmaceutical composition may be preferably formulated by further including one or more pharmaceutically acceptable carriers in addition to the above-described active ingredient.


Dosage forms of the pharmaceutical composition may include granules, powders, tablets, coated tablets, capsules, suppositories, liquid formulations, syrups, juice, suspensions, emulsions, drops, injectable liquid formulations, etc. For formulation of the composition into a tablet or capsule, for example, the active ingredient may be combined with any oral, non-toxic pharmaceutically acceptable inert carrier, such as ethanol, glycerol, water, etc. If desired or necessary, suitable binders, lubricants, disintegrants, and colorants may be additionally included as a mixture.


Examples of the suitable binder may include, but are not limited to, starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth, or sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, etc. Examples of the disintegrant may include, but are not limited to, starch, methyl cellulose, agar, bentonite, xanthan gum, etc. For formulation of the composition into a liquid preparation, a pharmaceutically acceptable carrier which is sterile and biocompatible may be used, such as saline, sterile water, a Ringer's solution, buffered saline, an albumin infusion solution, a dextrose solution, a maltodextrin solution, glycerol, and ethanol, and these materials may be used alone or in any combination thereof. If necessary, other common additives, such as antioxidants, buffers, bacteriostatic agents, etc., may be added. Further, diluents, dispersants, surfactants, binders, and lubricants may be additionally added to prepare injectable formulations such as aqueous solutions, suspensions, and emulsions, or pills, capsules, granules, or tablets. Furthermore, the composition may be preferably formulated, depending upon diseases and ingredients, using any appropriate method known in the art, as disclosed in Remington's Pharmaceutical Science, Mack Publishing Company, Easton Pa.


Preferably, the treatment or treating mean improving or stabilizing the subject's condition or disease; or preventing or relieving the development or worsening of symptoms associated with the subject's condition or disease. The prevention, prophylaxis and preventive treatment are used herein as synonyms.


Preferably, the treating, preventing, or delaying the onset of, solid tumor may be any one or more of the following: alleviating one or more symptoms of tumor, delaying progressing of tumor, shrinking tumor size in patient, inhibiting tumor growth, prolonging overall survival, prolonging disease-free survival, prolonging time to disease progression, preventing or delaying tumor metastasis, reducing or eradiating preexisting tumor metastasis, reducing incidence or burden of preexisting tumor metastasis, preventing recurrence of tumor.


The subject and patient are used herein interchangeably. They refer to a human or another mammal (e.g., mouse, rat, rabbit, dog, cat, cattle, swine, sheep, horse or primate) that can be afflicted with or is susceptible to a disease or disorder but may or may not have the disease or disorder. In certain embodiments, the subject is a human being.


Preferably, the amount effective or effective amount is the amount of an active ingredient or a pharmaceutical composition disclosed herein that when administered to a subject for treating a disease, is sufficient to effect such treatment of the disease. Any improvement in the patient is considered sufficient to achieve treatment. An effective amount of an active ingredient or a pharmaceutical composition disclosed herein, used for the preventing, or delaying the onset of, solid tumor may vary depending upon the manner of administration, the age, body weight, and general health of the patient. Ultimately, the prescribers or researchers will decide the appropriate amount and dosage regimen.


In the treatment or prevention method according to one embodiment disclosed in the present application, the composition including the iCP-SOCS3 recombinant protein as an active ingredient may be administered in a common manner via oral, buccal, rectal, intravenous, intra-arterial, intraperitoneal, intramuscular, intrasternal, percutaneous, topical, intraocular or subcutaneous route, more preferably via intraperitoneal, intravenous, or intra-arterial injection route.


Advantageous Effects

According to one aspect disclosed in the present application, development and establishment of improved cell-permeable SOCS3 recombinant protein, as therapeutics of solid tumor are provided. Because iCP-SOCS3 was designed based on endogenous proteins, it would be a safety anti-solid tumor drug without side-effect.


However, the effects of the disclosures in the present application are not limited to the above-mentioned effects, and another effects not mentioned will be clearly understood by those skilled in the art from the following description.





DESCRIPTION OF DRAWINGS


FIG. 1 shows Structure of aMTD- or rPeptide-Fused Recombinant Proteins. A schematic diagram of the His-tagged CRA recombinant proteins is illustrated and constructed according to the present invention. The his-tag for affinity purification (white), aMTD or rPeptide (gray) and cargo A (CRA, black) are shown.



FIG. 2a shows Construction of Expression Vectors for aMTDs- or rPeptide-Fused Recombinant Proteins. FIGS. 2b and 2c show the agarose gel electrophoresis analysis showing plasmid DNA fragments at 645 bp insert encoding aMTDs or rPeptide-fused CRA cloned into the pET28a(+) vector according to the present invention.



FIGS. 3a to 3d show Inducible Expression of aMTD- or rPeptide-Fused Recombinant Proteins. Expressed recombinant aMTD- or random peptide-fused CRA recombinant proteins were transformed in E. coli BL21 (DE3) strain. Expression of recombinant proteins in E. coli before (−) and after (+) induction with IPTG was monitored by SDS-PAGE, and stained with Coomassie blue.



FIGS. 4a and 4b show Purification of aMTD- or rPeptide-Fused Recombinant Proteins. Expressed recombinant proteins were purified by Ni2+affinity chromatography under the natural condition. Purification of recombinant proteins displayed through SDS-PAGE analysis.



FIGS. 5a to 5u show Determination of aMTD-Mediated Cell-Permeability. Cell-permeability of a negative control (A: rP38) and reference hydrophobic CPPs (MTM12 and MTD85) are shown. The cell-permeability of each aMTD and/or rPeptide is visually compared to that of the cargo protein lacking peptide sequence (HCA). Gray shaded area represents untreated RAW 264.7 cells (vehicle); thin light gray line represents the cells treated with equal molar concentration of FITC (FITC only); dark thick line indicates the cells treated with FITC-his-tagged CRA protein (HCA); and the cells treated with the FITC-proteins (HMCA) fused to negative control (rP38), reference CPP (MTM12 or MTD85) or new hydrophobic CPP (aMTD) are shown with light thick line and indicated by arrows.



FIGS. 6a to 6c show Determination of rPeptide-Mediated Cell-Permeability. The cell-permeability of each aMTD and/or rPeptide was visually compared to that of the cargo protein lacking peptide sequence (HCA). Gray shaded area represents untreated RAW 264.7 cells (vehicle); thin light gray line represents the cells treated with equal molar concentration of FITC (FITC only); dark thick line indicates the cells treated with FITC-his-tagged CRA protein (HCA); and the cells treated with the FITC-proteins fused to rPeptides are shown with light thick line and indicated by arrows.



FIGS. 7a to 7k shows Visualized Cell-Permeability of aMTD-Fused Recombinant Proteins. NIH3T3 clls were treated with FITC-labeled protein (10 μM) fused to aMTD for 1 hour at 37. Cell-permeability of the proteins was visualized by laser scanning confocal microscopy (LSM700 version).



FIG. 8 shows Visualized Cell-Permeability of rPeptide-Fused Recombinant Proteins. Cell-permeability of rPeptide-fused recombinant proteins was visualized by laser scanning confocal microscopy (LSM700 version).



FIGS. 9a to 9c show Relative Cell-Permeability of aMTD-Fused Recombinant Proteins Compared to Negative Control (rP38). The FIG shows graphs comparing the cell-permeability of the recombinant proteins fused to aMTDs and a negative control (A: rP38).



FIGS. 10a to 10c show Relative Cell-Permeability of aMTD-Fused Recombinant Proteins Compared to Reference CPP (MTM12). The FIG shows graphs comparing the cell-permeability of the recombinant proteins fused to aMTDs and a reference CPP (MTM12).



FIGS. 11a to 11c show Relative Cell-Permeability of aMTD-Fused Recombinant Proteins Compared to Reference CPP (MTD85). The FIG shows graphs comparing the cell-permeability of the recombinant proteins fused to aMTDs and a reference CPP (MTD85).



FIG. 12 shows Relative Cell-Permeability of rPeptide-Mediated Recombinant Proteins Compared to Average that of aMTDs. The FIG shows graphs comparing the cell-permeability of the recombinant proteins fused to rPeptides and that (average value: aMTD AVE) of aMTDs.



FIGS. 13a and 13b show Association of Cell-Permeability with Amino Acid Composition in aMTD Sequences. These graphs display delivery potential (Geometric Mean) of aMTDs influenced with amino acid composition (A, I, V and L).



FIGS. 14a and 14b show Association of Cell-Permeability with Critical Factors in aMTDs. These graphs show the association of cell-permeability with critical factors [bending potential: proline position (PP), rigidity/flexibility: instability index (II), structural feature: aliphatic index (AI) and hydropathy: grand average of hydropathy (GRAVY)].



FIGS. 15a and 15b show Relative Relevance of aMTD-Mediated Cell-Permeability with Critical Factors. Cell-permeability of 10 high and 10 low ranked aMTDs in their delivery potential were examined for their association with the critical factors [bending potential: proline position (PP), rigidity/flexibility: instability index (II), structural feature: aliphatic index (AI) and hydropathy: grand average of hydropathy (GRAVY)].



FIG. 16 shows Relative Relevance of rPeptide-Mediated Cell-Permeability with Hydropathy Range (GRAVY). This graph and a chart illustrate relative relevance of rPeptide-mediated cell-permeability with its hydropathy range (GRAVY).



FIG. 17 shows a structure of iCP-SOCS3 recombinant protein designed according to example 6-1.



FIG. 18 shows the agarose gel electrophoresis analysis showing plasmid DNA fragments insert encoding His-SOCS3-SDB (HS3B), His-aMTD165-SOCS3-SDB (HM165S3B), His-aMTD165-SOC53-SDC (HM165S3C), His-aMTD165-SOC53-SDD (HM165S3D), His-aMTD165-SOC53-SDE (HM165S3E) cloned into the pET28a (+) vector according to example 6-1.



FIG. 19 shows inducible expression and purification of iCP-SOCS3 recombinant protein in E. coli according to example 6-2 and improvement of solubility/yield of iCP-SOCS3 recombinant protein by fusing aMTD/SD according to example 6-3.



FIG. 20 shows aMTD-Mediated cell-permeability of SOCS3 recombinant proteins in RAW 264.7 cells according to example 7-1.



FIG. 21 shows aMTD-Mediated intracellular delivery and localization of SOCS3 Recombinant Proteins in NIH3T3 cells cells according to example 7-1.



FIG. 22 shows systemic delivery of aMTD/SD-fused SOCS3 recombinant proteins in vivo according to example 7-2.



FIG. 23 shows inhibition of IFN-γ-induced STAT phosphorylation by iCP-SOCS3 recombinant protein according to example 8-1.



FIG. 24 shows inhibition of LPS-induced cytokines secretion by iCP-SOCS3 recombinant protein according to example 8-2.



FIG. 25 shows the structures of SOCS3 recombinant protein lacking aMTD prepared as a negative control according to example 9.



FIG. 26 shows expression, purification, and solubility/yield of HS3 (lacking aMTD and SD) and HS3B (lacking aMTD) determined according to example 6-3.



FIG. 27 shows the agarose gel electrophoresis analysis showing plasmid DNA fragments insert encoding His-aMTD#-SOCS3-SDB (HM#S3B) and His-rP#-SOCS3-SDB cloned into the pET28a (+) vector according to example 10.



FIGS. 28a and 28b show expression, purification, and solubility/yield of His-aMTD#-SOCS3-SDB (HM#S3B) determined according to example 10.



FIG. 29 shows expression, purification, and solubility/yield of His-rP#-SOCS3-SDB (HrP#S3B) determined according to example 10.



FIG. 30 shows solubility/yield of His-aMTD#-SOCS3-SDB (HM#SDB) determined according to example 10.



FIGS. 31 show aMTD-mediated cell-permeability. The cell-permeability of each SOCS3 recombinant protein fused with SD and various aMTD is visually compared to that of the cargo protein lacking CPP (HS3B) or lacking CPP and SD (HS3). Gray shaded area represents untreated E. coli cells (diluent); green line represents the cells treated with equal molar concentration of FITC (FITC only); black line indicates the cells treated with FITC-his-SOCS protein (FITC-HS3); blue line indicates the cells treated with FITC-his-SOCS-SDB protein (FITC-HS3B) purple line indicates the cells treated with FITC-his-aMTD#-SOCS-SDB protein (FITC-HM#S3B).



FIG. 32 shows relative cell-permeability of His-aMTD#-SOCS3-SDB-Fused recombinant proteins Compared to control (Vehicle, FITC only, HS3 and HS3B).



FIG. 33 shows random Peptide-Mediated cell-permeability. The cell-permeability of each SOCS3 recombinant protein fused with SDB and aMTD165 or various rP is visually compared to that of the cargo protein lacking CPP (HS3B) or lacking CPP and SD (HS3). Gray shaded area represents untreated E. coli cells (diluent); green line represents the cells treated with equal molar concentration of FITC (FITC only); black line indicates the cells treated with FITC-his-SOCS protein (FITC-HS3); blue line indicates the cells treated with FITC-his-SOCS-SDB protein (FITC-HS3B) and purple line indicates the cells treated with FITC-his-rPeptide#-SOCS-SDB protein (FITC-HrP#S3B).



FIG. 34 shows relative cell-permeability of His-rP#-SOCS3-SDB-Fused recombinant proteins Compared to control (Vehicle, FITC only, HS3 and HS3B).



FIG. 35 shows apoptotic cells analysis according to example 11-1.



FIG. 36 shows induction of apoptosis by iCP-SOCS3 recombinant proteins according to example 11-2.



FIG. 37 shows cell migration inhibition by iCP-SOCS3 recombinant protein according to example 11-3.



FIG. 38 shows solubility/yield, permeability and biological activity of His-aMTD#-SOCS3-SDB (HM#S3B) determined according to example 10 to 11-3.



FIG. 39 shows expression, purification, and solubility/yield of M165S3SB (lacking his-tag) determined according to example 12-1.



FIG. 40 shows cell-permeability of SOCS3 recombinant proteins (lacking his-tag) in RAW 264.7 cells according to example 12-2.



FIG. 41 shows Annexin V analysis according to example 12-3.



FIG. 42 shows cell migration inhibition (bottom) by iCP-SOCS3 recombinant protein according to example 12-3.



FIG. 43 shows a structure of iCP-SOCS3 recombinant protein (His-aMTD165-SOCS3-SDB′) constructed according to example 12-4.



FIG. 44 shows expression, purification, and solubility/yield of HM165S3SB and HM165S3SB′ determined according to example 12-4.



FIG. 45 shows aMTD-Mediated cell-permeability of iCP-SOCS3 recombinant proteins (HM165S3B and HM165S3B′(V28L)) in RAW 264.7 cells according to example 12-5.



FIG. 46 shows antiproliferative activity of iCP-SOCS3 recombinant proteins (HM165S3B and HM165S3B′(V28L)) according to example 12-6.



FIG. 47 shows induction of apoptosis by iCP-SOCS3 recombinant proteins (HM165S3B and HM165S3B′(V28L)) according to example 12-6.



FIG. 48 shows cell migration inhibition by SOCS3 recombinant proteins (HM165S3B and HM165S3B′(V28L)) according to example 12-6.



FIG. 49
a shows a structure of iCP-SOCS3 recombinant proteins (top) and agarose gel electrophoresis analysis (bottom) according to example 12-7 and FIG. 49b shows inducible expressions and purifications of iCP-SOCS3 recombinant protein in E. coli (bottom) according to example 12-7.



FIG. 50 shows inhibition of IFN-γ-induced STAT phosphorylation by iCP-SOCS3 recombinant protein according to example 13.



FIG. 51 shows effect of treating EDTA (FIG. 51A) and proteinase K (FIG. 51B) on aMTD-mediated SOCS3 protein uptake into cells according to example 14.



FIG. 52 shows effect of treating taxol (FIG. 52 A) and antimycin (FIG. 52 B) on aMTD-mediated SOCS3 protein uptake into cells according to example 14.



FIG. 53 shows effect of temperature on aMTD-mediated SOCS3 protein uptake into cells according to example 14.



FIG. 54 shows aMTD-mediated cell-to-cell delivery assessed according to example 14.



FIG. 55 shows bioavailability of iCP-SOCS3 recombinant protein in PBMC, splenocytes and hepatocytes analyzed by fluorescence microscopy according to example 15.



FIG. 56 shows biodistribution of iCP-SOCS3 recombinant protein in pancreas tissues analyzed by confocal microscope according to example 15.



FIG. 57 shows aMTD-Mediated cell-permeability of SOCS3 recombinant proteins in various cancer cells according to example 16.



FIG. 58 shows systemic delivery of aMTD/SD-fused SOCS3 recombinant proteins into Various Tissues according to example 16.



FIG. 59 shows expression level of endogenous SOCS3 mRNA in gastric cell line analyzed by the agarose gel electrophoresis according to example 17-1-2.



FIG. 60 shows expression level of SOCS3 gene, and phosphorylation of JAK1 and JAK2 in gastric cancer cell line analyzed by western blot analysis according to example 17-1-3.



FIG. 61 shows expression level of endogenous SOCS3 mRNA in colon cancer cell line analyzed by the agarose gel electrophoresis according to example 17-2-2.



FIG. 62 shows expression level of SOCS3 gene, and phosphorylation of JAK1 and JAK2 in colon cancer cell line analyzed by western blot analysis according to example 17-2-3.



FIG. 63 shows methylation and unmethylation level of endogenous SOCS3 in glioblastoma cell line analyzed by the agarose gel electrophoresis according to example 17-3-1.



FIG. 64 shows expression level of SOCS3 gene, and phosphorylation of JAK1 and JAK2 in glioblastoma cancer cell line analyzed by western blot analysis according to example 17-3-2.



FIG. 65 shows expression level of endogenous SOCS3 mRNA in breast cancer cell line analyzed by the agarose gel electrophoresis according to example 17-4-1.



FIG. 66 shows methylation and unmethylation level of endogenous SOCS3 in breast cancer cell line analyzed by the agarose gel electrophoresis according to example 17-4-2.



FIG. 67 shows expression level of SOCS3 gene, and phosphorylation of JAK1 and JAK2 in breast cancer cell line analyzed by western blot analysis according to example 17-4-3.



FIG. 68 shows antiproliferative activity of iCP-SOCS3 recombinant protein in gastric cancer cell line according to example 18-1.



FIG. 69 shows antiproliferative activity of iCP-SOCS3 recombinant protein in colorectal cancer cell line according to example 18-1.



FIG. 70 shows antiproliferative activity of iCP-SOCS3 recombinant protein in glioblastoma cell line according to example 18-1.



FIG. 71 shows antiproliferative activity of iCP-SOCS3 recombinant protein in breast cancer cell line according to example 18-1.



FIG. 72 shows cell migration inhibition activity by iCP-SOCS3 recombinant protein in gastric cancer cell line (AGS) according to example 18-2.



FIG. 73 shows cell migration inhibition activity by iCP-SOCS3 recombinant protein in colorectal cancer cell line (HCT116) according to example 18-2.



FIG. 74 shows cell migration inhibition activity by iCP-SOCS3 recombinant protein in glioblastoma cell line (U-87 MG) according to example 18-2.



FIG. 75 shows cell migration inhibition activity by iCP-SOCS3 recombinant protein in breast cancer cell line (MDA-MB-231) according to example 18-2.



FIG. 76 show transwell migration inhibition activity by iCP-SOCS3 recombinant protein in gastric cancer cell line (AGS) (FIG. 76, left), and decrease in invasion by iCP-SOCS3 recombinant protein in gastric cancer cell line (AGS) (FIG. 76, right) analyzed according to example 18-2.



FIG. 77 show transwell migration inhibition activity by iCP-SOCS3 recombinant protein in glioblstoma cell line (U-87 MG) analyzed according to example 18-2.



FIGS. 78 to 82 show induction of apoptosis in normal cells (FIG. 78), in gastric cancer cells (FIG. 79), in colorectal cancer cells (HCT116, FIG. 80), in glioblastoma cells (U-87 MG, FIG. 81), and in breast cancer cells (MDA-MB-231, FIG. 82) by iCP-SOCS3 recombinant proteins assessed by Annexin V staining according to example 18-3.



FIG. 83 show induction of apoptosis in colon cancer cells (HCT116) by iCP-SOCS3 recombinant proteins analyzed by TUNEL assay according to example 18-4.



FIGS. 84 to 88 show inhibition of cell cycle progression in normal cells (FIG. 84), in gastric cancer cells (AGS, FIG. 85), in colon cancer cells (HCT116, FIG. 86), in glioblastoma cells (U-87 MG, FIG. 87), and in breast cancer cells (MDA-MB-231, FIG. 88) by iCP-SOCS3 recombinant proteins assessed by flow cytometric analysis according to example 18-5.



FIG. 89 shows down regulation of expression of apoptosis by iCP-SOCS3 recombinant proteins in breast cancer cells (MDA-MB-231) determined by immunoblotting according to example 18-6.



FIG. 90 shows suppression of the tumor growth by iCP-SOCS3 recombinant proteins in gastric cancer cells (NCI-N87) assessed according to example 19-1.



FIG. 91 shows suppression of the tumor growth by iCP-SOCS3 recombinant proteins in colorectal cancer cells (HCT116) assessed according to example 19-2.



FIG. 92 shows suppression of the tumor growth by iCP-SOCS3 recombinant proteins in glioblastoma cells (U-87 MG) assessed according to example 19-3.



FIG. 93 shows suppression of the tumor growth by iCP-SOCS3 recombinant proteins in breast cancer cells (MDA-MB-231) assessed according to example 19-4.



FIG. 94 shows humanized SDB domain according to example 12-4.



FIG. 95 shows methylation and unmethylation level of endogenous SOCS3 in gastric cancer cell line analyzed by the agarose gel electrophoresis according to example 17-1-1.



FIG. 96 shows methylation and unmethylation level of endogenous SOCS3 in colon cancer cell line analyzed by the agarose gel electrophoresis according to example 17-2-1.



FIG. 97 shows sequences of amino acid and nucleotide of basic CPP, and primers used in example 6-4.



FIG. 98 shows structure, expression, purification and solubility/yield of aMTD/SD-fused SOCS3 recombinant protein and basic CPP/SD-fused SOCS3 recombinant protein according to example 6-4.



FIG. 99 shows comparison of cell-permeability between aMTD/SD fused SOCS3 recombinant proteins and basic/SD-fused in RAW 264.7 cells according to example 7-1-2.



FIG. 100 shows comparison of tissue-permeability between aMTD/SD fused SOCS3 recombinant proteins and basic/SD-fused in various tissues of ICR mice according to example 7-2-2.



FIG. 101 shows effect of treating protein K (FIG. 101 A) and Taxol (FIG. 101 B) on aMTD (or basic CPP)-mediated SOCS3 protein uptake into cells according to example 14-2.



FIGS. 102 and 103 show aMTD (or basic CPP)-mediated cell-to-cell delivery (FIG. 102) and cell-to-cell function assessed according to example 14-2.





MODE FOR INVENTION
1. Analysis of Reference Hydrophobic CPPs to Identify ‘Critical Factors’ for Development of Advanced MTDs

Previously reported MTDs were selected from a screen of more than 1,500 signal peptide sequences. Although the MTDs that have been developed did not have a common sequence or sequence motif, they were all derived from the hydrophobic (H) regions of signal sequences (HRSSs) that also lack common sequences or motifs except their hydrophobicity and the tendency to adopt alpha-helical conformations. The wide variation in H-region sequences may reflect prior evolution for proteins with membrane translocating activity and subsequent adaptation to the SRP/Sec61 machinery, which utilizes a methionine-rich signal peptide binding pocket in SRP to accommodate a wide-variety of signal peptide sequences.


Previously described hydrophobic CPPs (e.g. MTS/MTM and MTD) were derived from the hydrophobic regions present in the signal peptides of secreted and cell surface proteins. The prior art consists first, of ad hoc use of H-region sequences (MTS/MTM), and second, of H-region sequences (with and without modification) with highest CPP activity selected from a screen of 1,500 signal sequences (MTM). Second prior art, the modified H-region derived hydrophobic CPP sequences had advanced in diversity with multiple number of available sequences apart from MTS/MTM derived from fibroblast growth factor (FGF) 4. However, the number of MTDs that could be modified from naturally occurring secreted proteins are somewhat limited. Because there is no set of rules in determining their cell-permeability, no prediction for the cell-permeability of modified MTD sequences can be made before testing them.


The hydrophobic CPPs, like the signal peptides from which they originated, did not conform to a consensus sequence, and they had adverse effects on protein solubility when incorporated into protein cargo. We therefore set out to identify optimal sequence and structural determinants, namely critical factors (CFs), to design new hydrophobic CPPs with enhanced ability to deliver macromolecule cargoes including proteins into the cells and tissues while maintaining protein solubility. These newly developed CPPs, advanced macromolecule transduction domains (aMTDs) allowed almost infinite number of possible designs that could be designed and developed based on the critical factors. Also, their cell-permeability could be predicted by their character analysis before conducting any in vitro and/or in vivo experiments. These critical factors below have been developed by analyzing all published reference hydrophobic CPPs.


1-1. Analysis of Hydrophobic CPPs


Seventeen different hydrophobic CPPs (Table 1) published from 1995 to 2014 (Table 2) were selected. After physiological and chemical properties of selected hydrophobic CPPs were analyzed, 11 different characteristics that may be associated with cell-permeability have been chosen for further analysis. These 11 characteristics are as follows: sequence, amino acid length, molecular weight, pI value, bending potential, rigidity/flexibility, structural feature, hydropathy, residue structure, amino acid composition and secondary structure of the sequences (Table 3).


Table 1 shows the summary of published hydrophobic Cell-Penetrating Peptides which were chosen.













TABLE 1





#
Peptide
Origin
Protein
Ref.



















1
MTM

Homo sapiens

NP_001998 Kaposi fibroblast growth factor (K-FGF)
1


2
MTS

Homo sapiens

NP_001998 Kaposi fibroblast growth factor (K-FGF)
2


3
MTD10

Streptomyces coelicolor

NP_625021 Glycosyl hydrolase
8


4
MTD13

Streptomyces coelicolor

NP_639877 Putative secreted protein
5


5
MTD47

Streptomyces coelicolor

NP_627512 Secreted protein
7


6
MTD56

Homo sapiens

P23274 Peptidyl-prolyl cis-trans isomerase B precursor
6


7
MTD73

Drosophila

AAA17887 Spatzle (spz) protein
6





melanogaster





8
MTD77

Homo sapiens

NP_003231 Kaposi fibroblast growth factor (K-FGF)
3


9
MTD84
Phytophthora cactorum
AAK63068 Phytotoxic protein PcF precusor
7


10
MTD85

Streptomyces coelicolor

NP_629842 Peptide transport system peptide binding protein
5


11
MTD86

Streptomyces coelicolor

NP_629842 Peptide transport system secreted peptide
7





binding protein



12
MTD103

Homo sapiens

TMBV19 domain family member B
4


13
MTD132

Streptomyces coelicolor

NP_62377 P60-family secreted protein
7


14
MTD151

Streptomyces coelicolor

NP_630126 Secreted chitinase
8


15
MTD173

Streptomyces coelicolor

NP_624384 Secreted protein
7


16
MTD174

Streptomyces coelicolor

NP_733505 Large, multifunctional secreted protein
8


17
MTD181

Neisseria meningitidis

CAB84257.1 Putative secreted protein
7




Z2491











Table 2 summarizes reference information










TABLE 2








References













#
Title
Journal
Year
Vol
Issue
Page
















1
Inhibition of Nuclear Translocation of Transcription Factor
JOURNAL OF
1995
270
24
14255



NF-kB by a Synthetic peptide Containing a Cell Membrane-
BIOLOGICAL







permeable Motif and Nuclear Localization Sequence
CHEMISTRY






2
Epigenetic Regulation of Gene Structure and Function with
NATURE
2001
19
10
929



a Cell-Permeable Cre Recombinase
BIOTECHNOLOGY






3
Cell-Permeable NM23 Blocks the Maintenance and
CANCER
2011
71
23
7216



Progression of Established Pulmonary Metastasis
RESEARCH






4
Antitumor Activity Of Cell-Permeable p18INK4c With
MOLECULAR
2012
20
8
1540



Enhanced Membrane and Tissue Penetration
THERAPY






5
Antitumor Activity of Cell-Permeable RUNX3 Protein in
CLINICAL
2012
19
3
680



Gastric Cancer Cells
CANCER








RESEARCH






6
The Effect of Intracellular Protein Delivery on the Anti-
BIOMATERIALS
2013
34
26
6261



Tumor Activity of Recombinant Human Endostatin







7
Partial Somatic to Stem Cell Transformations Induced By
SCIENTIFIC
2014
4
10
4361



Cell-Permeable Reprogramming Factors
REPORTS






8
Cell-Permeable Parkin Proteins Suppress Parkinson
PLOS ONE
2014
9
7
17



Disease-Associated Phenotypes in Cultured Cells and








Animals









Table 3 shows characteristics of published hydrophobic Cell-Penetrating Peptides (A) which were analyzed.




























TABLE 3














Rigidity/
Structural













SEQ






Flexibility
Feature
































ID



Molecular

Bending
(Instablility
(Aliphatic
Hydropathy
Residue
A/a Composition
Secondary




























NOS
Peptide
Sequence
Length
Weight
pl
Potential
Index: II)
Index: AI)
(GRAVY)
Structure
A
V
L
I
P
G
Structure
Cargo
Ref.





























865
MTM
AAVALLPAVLLALLAP
16
1,515.9
5.6
Bending
45.5
220.0
2.4
Aliphatic
6
2
6
0
2
0
Helix
p50
1












Ring











866
MTS
AAVLLPVLLAAP
12
1,147.4
5.6
Bending
57.3
211.7
2.3
Aliphatic
4
2
4
0
2
0
No-Helix
CRE
2












Ring











867
MTD10
LGGAVVAAPVAAAVAP
16
1,333.5
5.5
Bending
47.9
140.6
1.8
Aliphatic
7
4
1
0
2
2
Helix
Parkin
8












Ring











868
MTD13
LAAAALAVLPL
11
1,022.3
5.5
Bending
26.6
213.6
2.4
Aliphatic
5
1
4
0
1
0
No-Helix
RUNX3
5












Ring











869
MTD47
AAAVPVLVAA
10
881.0
5.6
Bending
47.5
176.0
2.4
Aliphatic
5
3
1
0
1
0
No-Helix
CMYC
7












Ring











870
MTD56
VLLAAALIA
9
854.1
5.5
No-
8.9
250.0
3.0
Aliphatic
4
1
3
1
0
0
Helix
ES
6








Bending



Ring











871
MTD73
PVLLLLA
7
737.9
6.0
No-
36.1
278.6
2.8
Aliphatic
1
1
4
0
1
0
Helix
ES
6








Bending



Ring











872
MTD77
AVALLILAV
9
882.0
5.6
No-
30.3
271.1
3.3
Aliphatic
3
2
3
1
0
0
Helix
NM23
3








Bending



Ring











873
MTD84
AVALVAVVAVA
11
982.2
5.6
No-
9.1
212.7
3.1
Aliphatic
5
5
1
0
0
0
Helix
OCT4
7








Bending



Ring











874
MTD85
LLAAAAALLLA
11
1,010.2
5.5
No-
9.1
231.8
2.7
Aliphatic
6
0
5
0
0
0
No-Helix
RUNX3
5








Bending



Ring











875
MTD86
LLAAAAALLLA
11
1,010.2
5.5
No-
9.1
231.8
2.7
Aliphatic
6
0
5
0
0
0
No-Helix
SOX2
7








Bending



Ring











876
 MTD103
LALPVLLLA
9
922.2
5.5
Bending
51.7
271.1
2.8
Aliphatic
2
1
5
0
1
0
Helix
p18
4












Ring











877
 MTD132
AVVVPAIVLAAP
12
1,119.4
5.6
Bending
50.3
195.0
2.4
Aliphatic
4
4
1
1
2
0
No-Helix
LIN28
7












Ring











878
 MTD151
AAAPVAAVP
9
1,031.4
5.5
Bending
73.1
120.0
1.6
Aliphatic
5
2
0
0
2
0
No-Helix
Parkin
8












Ring











879
 MTD173
AVIPILAVP
9
892.1
5.6
Bending
48.5
216.7
2.4
Aliphatic
2
2
1
2
2
0
Helix
KLF4
7












Ring











880
 MTD174
LILLLPAVALP
11
1,011.8
5.5
Bending
79.1
257.3
2.6
Aliphatic
2
1
5
1
2
0
Helix
Parkin
8












Ring











881
 MTD181
AVLLLPAAA
9
838.0
5.6
Bending
51.7
206.7
2.4
Aliphatic
4
1
3
0
1
0
No-Helix
SOX2
7












Ring













AVE
10.8 ± 2.4
1,011 ± 189.6
5.6 ± 0.1
Proline
40.1 ± 21.9
217.9 ± 43.6
2.5 ± 0.4


















Presence






















Two peptide/protein analysis programs were used (ExPasy: SoSui: http://harrier.nagahama-i-bio.ac.jp/sosui/sosui_submit.html) to determine various indexes and structural features of the peptide sequences and to design new sequence. Followings are important factors analyzed.


1-2. Characteristics of Analyzed Peptides: Length, Molecular Weight and Pl Value


Average length, molecular weight and pl value of the peptides analyzed were 10.8±2.4, 1,011±189.6 and 5.6±0.1, respectively (Table 4)


Table 4 summarizes Critical Factors (CFs) of published hydrophobic Cell-Penetrating Peptides (A) which were analyzed.









TABLE 4







Length: 10.8 ± 2.4


Molecular Weight: 1,011 ± 189.6


pl: 5.6 ± 0.1


Bending Potential (BP): Proline presences in the middle and/or the end of


peptides, or No Proline.


Instability Index (II): 40.1 ± 21.9


Residue Structure & Aliphatic Index (AI): 217.9 ± 43.6


Hydropathy (GRAVY): 2.5 ± 0.4


Aliphatic Ring: Non polar hydrophobic & aliphatic amino acid


(A, V, L, I).


Secondary Structure: α-Helix is favored but not required.









1-3. Characteristics of Analyzed Peptides: Bending Potential—Proline Position (PP)


Bending potential (bending or no-bending) was determined based on the fact whether proline (P) exists and/or where the amino acid(s) providing bending potential to the peptide in recombinant protein is/are located. Proline differs from the other common amino acids in that its side chain is bonded to the backbone nitrogen atom as well as the alpha-carbon atom. The resulting cyclic structure markedly influences protein architecture which is often found in the bends of folded peptide/protein chain.


Eleven out of 17 were determined as ‘Bending’ peptide which means that proline is present in the middle of sequence for peptide bending and/or located at the end of the peptide for protein bending. As indicated above, peptide sequences could penetrate the plasma membrane in a “bent” configuration. Therefore, bending or no-bending potential is considered as one of the critical factors for the improvement of current hydrophobic CPPs.


1-4. Characteristics of Analyzed Peptides: Rigidity/Flexibility—Instability Index (II)


Since one of the crucial structural features of any peptide is based on the fact whether the motif is rigid or flexible, which is an intact physicochemical characteristic of the peptide sequence, instability index (II) of the sequence was determined. The index value representing rigidity/flexibility of the peptide was extremely varied (8.9-79.1), but average value was 40.1±21.9 which suggested that the peptide should be somehow flexible, but not too much rigid or flexible (Table 3).


1-5. Characteristics of Analyzed Peptides: Structural Features—Structural Feature (Aliphatic Index: AI) and hydropathy (Grand Average of Hydropathy: GRAVY)


Alanine (V), valine (V), leucine (L) and isoleucine (I) contain aliphatic side chain and are hydrophobic—that is, they have an aversion to water and like to cluster. These amino acids having hydrophobicity and aliphatic residue enable them to pack together to form compact structure with few holes. Analyzed peptide sequence showed that all composing amino acids were hydrophobic (A, V, L and I) except glycine (G) in only one out of 17 (MTD10—Table 3) and aliphatic (A, V, L, I, and P). Their hydropathic index (Grand Average of Hydropathy: GRAVY) and aliphatic index (AI) were 2.5±0.4 and 217.9±43.6, respectively. Their amino acid composition is also indicated in the Table 3.


1-6. Characteristics of Analyzed Peptides: Secondary Structure (Helicity)


As explained above, the CPP sequences may be supposed to penetrate the plasma membrane directly after inserting into the membranes in a “bent” configuration with hydrophobic sequences having α-helical conformation. In addition, our analysis strongly indicated that bending potential was crucial for membrane penetration. Therefore, structural analysis of the peptides was conducted to determine whether the sequences were to form helix or not. Nine peptides were helix and eight were not (Table 3). It seems to suggest that helix structure may not be required.


1-7. Determination of Critical Factors (CFs)


In the 11 characteristics analyzed, the following 6 are selected namely “Critical Factors” for the development of new hydrophobic CPPs—advanced MTDs: amino acid length, bending potential (proline presence and location), rigidity/flexibility (instability index: II), structural feature (aliphatic index: AI), hydropathy (GRAVY) and amino acid composition/residue structure (hydrophobic and aliphatic A/a) (Table 3 and Table 4).


2. Analysis of Selected Hydrophobic CPPs to Optimize ‘Critical Factors’

Since the analyzed data of the 17 different hydrophobic CPPs (analysis A, Table 3 and 4) previously developed during the past 2 decades showed high variation and were hard to make common- or consensus-features, analysis B (Table 5 and 6) and C (Table 7 and 8) were also conducted to optimize the critical factors for better design of improved CPPs-aMTDs. Therefore, 17 hydrophobic CPPs have been grouped into two groups and analyzed the groups for their characteristics in relation to the cell permeable property. The critical factors have been optimized by comparing and contrasting the analytical data of the groups and determining the common homologous features that may be critical for the cell permeable property.


2-1. Selective Analysis (B) of Peptides Used to Biologically Active Cargo Protein for In Vivo


In analysis B, eight CPPs were used with each biologically active cargo in vivo. Length was 11±3.2, but 3 out of 8 CPPs possessed little bending potential. Rigidity/Flexibility (instability index: II) was 41±15, but removing one [MTD85: rigid, with minimal II (9.1)] of the peptides increased the overall instability index to 45.6±9.3. This suggested that higher flexibility (40 or higher II) is potentially be better. All other characteristics of the 8 CPPs were similar to the analysis A, including structural feature and hydropathy (Table 5 and 6)


Table 5 shows characteristics of published hydrophobic Cell-Penetrating Peptides (B): selected CPPs that were used to each cargo in vivo.

















TABLE 5














Rigidity/
Structural


SEQ






Flexibility
Feature


ID



Molecular

Bending
(Instablility
(Aliphatic


NOS
Peptide
Sequence
Length
Weight
pl
Potential
Index: II)
Index: AI)





865
MTM
AAVALLPAVLLALLAP
16
1,515.9
5.6
Bending
45.5
220.0


866
MTS
AAVLLPVLLAAP
12
1,147.4
5.6
Bending
57.3
211.7


867
MTD10
LGGAVVAAPVAAAVAP
16
1,333.5
5.5
Bending
47.9
140.6


871
MTD73
PVLLLLA
7
737.9
6.0
No-
36.1
278.6








Bending




872
MTD77
AVALLILAV
9
882.1
5.6
No-
30.3
271.1








Bending




874
MTD85
LLAAAAALLLA
11
1,010.2
5.5
No-
9.1*
231.8








Bending




876
 MTD103
LALPVLLLA
9
922.2
5.5
Bending
51.7
271.1


877
 MTD132
AVVVPAIVLAAP
12
1,119.4
5.6
Bending
50.3
195.0




AVE
11 ± 3.2
1,083 ± 252
5.6 ± 0.1
Proline
41 ± 15
227 ± 47








Presence








SEQ






















ID
Hydropathy
Residue
A/a Composition
Secondary






















NOS
(GRAVY)
Structure
A
V
L
I
P
G
Structure
Cargo
Ref.






865
2.4
Aliphatic
6
2
6
0
2
0
Helix
p50
1





Ring












866
2.3

4
2
4
0
2
0
No-Helix
CRE
2



867
1.8

7
4
1
0
2
2
Helix
Parkin
8



871
2.8

1
1
4
0
1
0
Helix
ES
6



872
3.3

3
2
3
1
0
0
Helix
NM23
3



874
2.7

6
0
5
0
0
0
No-Helix
RUNX3
5



876
2.8

2
1
5
0
1
0
Helix
p18
4



877
2.4

4
4
1
1
2
0
No-Helix
LIN28
7




2.5 ± 0.4





*Removing the MTD85 increases II to 45.6 ± 9.3.






Table 6 shows summarized Critical Factors of published hydrophobic Cell-Penetrating Peptides (B).









TABLE 6







Length: 11 ± 3.2


Molecular Weight 1,083 ± 252


pl: 5.6 ± 0.1


Bending Potential (BP): Proline presences in the middle and/or the end of


peptides, or No Proline.


Instability Index (II): 41.0 ± 15 (′Removing the MTD85 increases


II to 45.6 ± 9.3)


Residue Structure & Aliphatic Index (AI): 227 ± 47


Hydropathy (GRAVY): 2.5 ± 0.4


Aliphatic Ring: Nonpolar hydrophobic & aliphatic amino acid (A, V, L, I).


Secondary Structure: α-Helix is favored but not required.









2-2. Selective Analysis (C) of Peptides that Provided Bending Potential and Higher Flexibility


To optimize the ‘Common Range and/or Consensus Feature of Critical Factor’ for the practical design of aMTDs and the random peptides (rPs or rPeptides), which were to prove that the ‘Critical Factors’ determined in the analysis A, B and C were correct to improve the current problems of hydrophobic CPPs—protein aggregation, low solubility/yield, and poor cell-/tissue-permeability of the recombinant proteins fused to the MTS/MTM or MTD, and non-common sequence and non-homologous structure of the peptides, empirically selected peptides were analyzed for their structural features and physicochemical factor indexes.


Hydrophobic CPPs which did not have a bending potential, rigid or too much flexible sequences (too much low or too much high Instability Index), or too low or too high hydrophobic CPPs were unselected, but secondary structure was not considered because helix structure of sequence was not required.


In analysis C, eight selected CPP sequences that could provide a bending potential and higher flexibility were finally analyzed (Table 7 and 8). Common amino acid length is 12 (11.6±3.0). Proline is presence in the middle of and/or the end of sequence. Rigidity/Flexibility (II) is 45.5-57.3 (Avg: 50.1±3.6). AI and GRAVY representing structural feature and hydrophobicity of the peptide are 204.7±37.5 and 2.4±0.3, respectively. All peptides are consisted with hydrophobic and aliphatic amino acids (A, V, L, I, and P). Therefore, analysis C was chosen as a standard for the new design of new hydrophobic CPPs—aMTDs.


Table 7 shows characteristics of published hydrophobic Cell-Penetrating Peptides (C): selected CPPs that provided bending potential and higher flexibility.

















TABLE 7














Rigidity/
Structural


SEQ






Flexibility
Feature


ID



Molecular

Bending
(Instablility
(Aliphatic


NOS
Peptide
Sequence
Length
Weight
pl
Potential
Index: II)
Index: AI)





865
MTM
AAVALLPAVLLALLAP
16
1,515.9
5.6
Bending
45.5
220.0


866
MTS
AAVLLPVLLAAP
12
1,147.4
5.6
Bending
57.3
211.7


867
MTD10 
LGGAVVAAPVAAAVAP
16
1,333.5
5.5
Bending
47.9
140.6


869
MTD47 
AAAVPVLVAA
10
881.0
5.6
Bending
47.5
176.0


876
MTD103
LALPVLLLA
9
922.2
5.5
Bending
51.7
271.1


877
MTD132
AVVVPAIVLAAP
12
1,119.4
5.6
Bending
50.3
195.0


879
MTD173
AVIPILAVP
9
892.1
5.6
Bending
48.5
216.7


881
MTD181
AVLLLPAAA
9
838.0
5.6
Bending
51.7
206.7




AVE
11.6 ± 3.0
1,081 ± 244.6
5.6 ± 0.1
Proline
50.1 ± 3.6
204.7 ± 37.5








Presence








SEQ






















ID
Hydropathy
Residue
A/a Composition
Secondary






















NOS
(GRAVY)
Structure
A
V
L
I
P
G
Structure
Cargo
Ref.






865
2.4
Aliphatic
6
2
6
0
2
0
Helix
p50
1





Ring












866
2.3
Aliphatic
4
2
4
0
2
0
No-Helix
CRE
2





Ring












867
1.8
Aliphatic
7
4
1
0
2
2
Helix
PARKIN
8





Ring












869
2.4
Aliphatic
5
3
1
0
1
0
No-Helix
CMYC
7





Ring












876
2.8
Aliphatic
2
1
5
0
1
0
Helix
p18
4





Ring







INK4C




877
2.4
Aliphatic
4
4
1
1
2
0
No-Helix
LIN28
7





Ring












879
2.4
Aliphatic
2
2
1
2
2
0
Helix
KLF4
7





Ring












881
2.4
Aliphatic
4
1
3
0
1
0
No-Helix
SOX2
7


















Ring









2.4 ± 0.3









Table 8 shows summarized Critical Factors of published hydrophobic Cell-Penetrating Peptides (C)









TABLE 8







Length: 11.6 ± 3.0


Molecular Weight: 1,081.2 ± 224.6


pl: 5.6 ± 0.1


Bending Potential (BP): Proline presences in the middle and/or the end of


peptides.


Instability Index (II): 50.1 ± 3.6


Residue Structure & Aliphatic Index (AI): 204.7 ± 37.5


Hydropathy (GRAVY): 2.4 ± 0.3


Aliphatic Ring: Non-polar hydrophobic & aliphatic amino acid (A, V,


L, I).


Secondary Structure: α-Helix is favored but not required.










3. New Design of Improved Hydrophobic CPPs—aMTDs Based on the Optimized Critical Factors


3-1. Determination of Common Sequence and/or Common Homologous Structure


As mentioned above, H-regions of signal sequence (HRSS)-derived CPPs (MTS/MTM and MTD) do not have a common sequence, sequence motif, and/or common-structural homologous feature. In this invention, the aim is to develop improved hydrophobic CPPs formatted in the common sequence- and structural-motif which satisfy newly determined ‘Critical Factors’ to have ‘Common Function,’ namely, to facilitate protein translocation across the membrane with similar mechanism to the analyzed reference CPPs. Based on the analysis A, B and C, the common homologous features have been analyzed to determine the critical factors that influence the cell-permeability. The range value of each critical factor has been determined to include the analyzed index of each critical factor from analysis A, B and C to design novel aMTDs (Table 9). These features have been confirmed experimentally with newly designed aMTDs in their cell-permeability.


Table 9 shows comparison the range/feature of each Critical Factor between the value of analyzed CPPs and the value determined for new design of novel aMTDs sequences









TABLE 9







Summarized Critical Factors of aMTD










Selected CPPs
Newly Designed CPPs


Critical Factor
Range
Range





Bending Potential
Proline presences in
Proline presences in the


(Proline Position: PP)
the middle and/or at
middle (5′, 6′, 7′ or 8′)



the end of peptides
and at the end of




peptides


Rigidity/Flexibility
45.5-57.3 (50.1 ± 3.6)
40-60


(Instability Index: II)




Structural Feature
140.6-220.0
180-220


(Aliphatic Index: AI)
(204.7 ± 37.5)



Hydropathy
 1.8-2.8 (2.4 ± 0.3)
2.1-2.6


(Grand Average of




Hydropathy GRAVY)




Length
11.6 ± 3.0
 9-13


(Number of Amino Acid)




Amino acid Composition
A, V, I, L, P
A, V, I, L, P









In Table 9, universal common features and sequence/structural motif are provided. Length is 9-13 amino acids, and bending potential is provided with the presence of proline in the middle of sequence (at 5′, 6′, 7′ or 8′ amino acid) for peptide bending and at the end of peptide for recombinant protein bending and Rigidity/Flexibility of aMTDs is II>40 are described in Table 9.


3-2. Critical Factors for Development of Advanced MTDs


Recombinant cell-permeable proteins fused to the hydrophobic CPPs to deliver therapeutically active cargo molecules including proteins into live cells had previously been reported, but the fusion proteins expressed in bacteria system were hard to be purified as a soluble form due to their low solubility and yield. To address the crucial weakness for further clinical development of the cell-permeable proteins as protein-based biotherapeutics, greatly improved form of the hydrophobic CPP, named as advanced MTD (aMTD) has newly been developed through critical factors-based peptide analysis. The critical factors used for the current invention of the aMTDs are herein (Table 9).


1. Amino Acid Length: 9-13


2. Bending Potential (Proline Position: PP)


: Proline presences in the middle (from 5′ to 8′ amino acid) and at the end of sequence


3. Rigidity/Flexibility (Instability Index: II): 40-60


4. Structural Feature (Aliphatic Index: AI): 180-220


5. Hydropathy (GRAVY): 2.1-2.6


6. Amino Acid Composition: Hydrophobic and Aliphatic amino acids—A, V, L, I and P


3-3. Design of Potentially Best aMTDs that all Critical Factors are Considered and Satisfied


After careful consideration of six critical factors derived from analysis of unique features of hydrophobic CPPs, advanced macromolecule transduction domains (aMTDs) have been designed and developed based on the common 12 amino acid platform which satisfies the critical factors including amino acid length (9-13) determined from the analysis.




embedded image


Unlike previously published hydrophobic CPPs that require numerous experiments to determine their cell-permeability, newly developed aMTD sequences could be designed by performing just few steps as follows using above mentioned platform to follow the determined range value/feature of each critical factor.


First, prepare the 12 amino acid sequence platform for aMTD. Second, place proline (P) in the end (12′) of sequence and determine where to place proline in one of four U(s) in 5′, 6′, 7′, and 8. Third, alanine (A), valine (V), leucine (L) or isoleucine (I) is placed in either X(s) and/or U(s), where proline is not placed. Lastly, determine whether the amino acid sequences designed based on the platform, satisfy the value or feature of six critical factors to assure the cell permeable property of aMTD sequences. Through these processes, numerous novel aMTD sequences have been constructed. The expression vectors for preparing non-functional cargo recombinant proteins fused to each aMTD, expression vectors have been constructed and forcedly expressed in bacterial cells. These aMTD-fused recombinant proteins have been purified in soluble form and determined their cell-permeability quantitatively. aMTD sequences have been newly designed, numbered from 1 to 240, as shown in Table 10-15. In Table 10-15, sequence ID Number is a sequence listings for reference, and aMTD numbers refer to amino acid listing numbers that actually have been used at the experiments. For further experiments, aMTD numbers have been used. In addition, polynucleotide sequences shown in the sequence lists have been numbered from SEQ ID NO: 241 to SEQ ID NO: 480.


Tables 10 to 15 shows 240 new hydrophobic aMTD sequences that were developed to satisfy all critical factors.
















TABLE 10





Sequence



Rigidity/
Structural
Hydro-



ID



Flexibility
Feature
pathy
Residue


Number
aMTD
Sequences
Length
(II)
(AI)
(GRAVY)
Structure







 1
 1
AAALAPVVLALP
12
57.3
187.5
2.1
Aliphatic





 2
 2
AAAVPLLAVVVP
12
41.3
195.0
2.4
Aliphatic





 3
 3
AALLVPAAVLAP
12
57.3
187.5
2.1
Aliphatic





 4
 4
ALALLPVAALAP
12
57.3
195.8
2.1
Aliphatic





 5
 5
AAALLPVALVAP
12
57.3
187.5
2.1
Aliphatic





 6
11
VVALAPALAALP
12
57.3
187.5
2.1
Aliphatic





 7
12
LLAAVPAVLLAP
12
57.3
211.7
2.3
Aliphatic





 8
13
AAALVPVVALLP
12
57.3
203.3
2.3
Aliphatic





 9
21
AVALLPALLAVP
12
57.3
211.7
2.3
Aliphatic





10
22
AVVLVPVLAAAP
12
57.3
195.0
2.4
Aliphatic





11
23
VVLVLPAAAAVP
12
57.3
195.0
2.4
Aliphatic





12
24
IALAAPALIVAP
12
50.2
195.8
2.2
Aliphatic





13
25
IVAVAPALVALP
12
50.2
203.3
2.4
Aliphatic





14
42
VAALPVVAVVAP
12
57.3
186.7
2.4
Aliphatic





15
43
LLAAPLVVAAVP
12
41.3
187.5
2.1
Aliphatic





16
44
ALAVPVALLVAP
12
57.3
203.3
2.3
Aliphatic





17
61
VAALPVLLAALP
12
57.3
211.7
2.3
Aliphatic





18
62
VALLAPVALAVP
12
57.3
203.3
2.3
Aliphatic





19
63
AALLVPALVAVP
12
57.3
203.3
2.3
Aliphatic























TABLE 11





Sequence



Rigidity/
Structural
Hydro-



ID



Flexibility
Feature
pathy
Residue


Number
aMTD
Sequences
Length
(II)
(AI)
(GRAVY)
Structure







20
64
AIVALPVAVLAP
12
50.2
203.3
2.4
Aliphatic





21
65
IAIVAPVVALAP
12
50.2
203.3
2.4
Aliphatic





22
81
AALLPALAALLP
12
57.3
204.2
2.1
Aliphatic





23
82
AVVLAPVAAVLP
12
57.3
195.0
2.4
Aliphatic





24
83
LAVAAPLALALP
12
41.3
195.8
2.1
Aliphatic





25
84
AAVAAPLLLALP
12
41.3
195.8
2.1
Aliphatic





26
85
LLVLPAAALAAP
12
57.3
195.8
2.1
Aliphatic





27
101
LVALAPVAAVLP
12
57.3
203.3
2.3
Aliphatic





28
102
LALAPAALALLP
12
57.3
204.2
2.1
Aliphatic





29
103
ALIAAPILALAP
12
57.3
204.2
2.2
Aliphatic





30
104
AVVAAPLVLALP
12
41.3
203.3
2.3
Aliphatic





31
105
LLALAPAALLAP
12
57.3
204.1
2.1
Aliphatic





32
121
AIVALPALALAP
12
50.2
195.8
2.2
Aliphatic





33
123
AAIIVPAALLAP
12
50.2
195.8
2.2
Aliphatic





34
124
IAVALPALIAAP
12
50.3
195.8
2.2
Aliphatic





35
141
AVIVLPALAVAP
12
50.2
203.3
2.4
Aliphatic





36
143
AVLAVPAVLVAP
12
57.3
195.0
2.4
Aliphatic





37
144
VLAIVPAVALAP
12
50.2
203.3
2.4
Aliphatic





38
145
LLAVVPAVALAP
12
57.3
203.3
2.3
Aliphatic





39
161
AVIALPALIAAP
12
57.3
195.8
2.2
Aliphatic





40
162
AVVALPAALIVP
12
50.2
203.3
2.4
Aliphatic





41
163
LALVLPAALAAP
12
57.3
195.8
2.1
Aliphatic





42
164
LAAVLPALLAAP
12
57.3
195.8
2.1
Aliphatic





43
165
ALAVPVALAIVP
12
50.2
203.3
2.4
Aliphatic





44
182
ALIAPVVALVAP
12
57.3
203.3
2.4
Aliphatic





45
183
LLAAPVVIALAP
12
57.3
211.6
2.4
Aliphatic





46
184
LAAIVPAIIAVP
12
50.2
211.6
2.4
Aliphatic





47
185
AALVLPLIIAAP
12
41.3
220.0
2.4
Aliphatic





48
201
LALAVPALAALP
12
57.3
195.8
2.1
Aliphatic





49
204
LIAALPAVAALP
12
57.3
195.8
2.2
Aliphatic





50
205
ALALVPAIAALP
12
57.3
195.8
2.2
Aliphatic





51
221
AAILAPIVALAP
12
50.2
195.8
2.2
Aliphatic





52
222
ALLIAPAAVIAP
12
57.3
195.8
2.2
Aliphatic





53
223
AILAVPIAVVAP
12
57.3
203.3
2.4
Aliphatic





54
224
ILAAVPIALAAP
12
57.3
195.8
2.2
Aliphatic





55
225
VAALLPAAAVLP
12
57.3
187.5
2.1
Aliphatic





56
241
AAAVVPVLLVAP
12
57.3
195.0
2.4
Aliphatic





57
242
AALLVPALVAAP
12
57.3
187.5
2.1
Aliphatic





58
243
AAVLLPVALAAP
12
57.3
187.5
2.1
Aliphatic





59
245
AAALAPVLALVP
12
57.3
187.5
2.1
Aliphatic





60
261
LVLVPLLAAAAP
12
41.3
211.6
2.3
Aliphatic





61
262
ALIAVPAIIVAP
12
50.2
211.6
2.4
Aliphatic





62
263
ALAVIPAAAILP
12
54.9
195.8
2.2
Aliphatic





63
264
LAAAPVVIVIAP
12
50.2
203.3
2.4
Aliphatic





64
265
VLAIAPLLAAVP
12
41.3
211.6
2.3
Aliphatic





65
281
ALIVLPAAVAVP
12
50.2
203.3
2.4
Aliphatic





66
282
VLAVAPALIVAP
12
50.2
203.3
2.4
Aliphatic





67
283
AALLAPALIVAP
12
50.2
195.8
2.2
Aliphatic





68
284
ALIAPAVALIVP
12
50.2
211.7
2.4
Aliphatic





69
285
AIVLLPAAVVAP
12
50.2
203.3
2.4
Aliphatic























TABLE 12





Sequence



Rigidity/
Structural
Hydro-



ID



Flexibility
Feature
pathy
Residue


Number
aMTD
Sequences
Length
(II)
(AI)
(GRAVY)
Structure







 70
301
VIAAPVLAVLAP
12
57.3
203.3
2.4
Aliphatic





 71
302
LALAPALALLAP
12
57.3
204.2
2.1
Aliphatic





 72
304
AIILAPIAAIAP
12
57.3
204.2
2.3
Aliphatic





 73
305
IALAAPILLAAP
12
57.3
204.2
2.2
Aliphatic





 74
321
IVAVALPALAVP
12
50.2
203.3
2.3
Aliphatic





 75
322
VVAIVLPALAAP
12
50.2
203.3
2.3
Aliphatic





 76
323
IVAVALPVALAP
12
50.2
203.3
2.3
Aliphatic





 77
324
IVAVALPAALVP
12
50.2
203.3
2.3
Aliphatic





 78
325
IVAVALPAVALP
12
50.2
203.3
2.3
Aliphatic





 79
341
IVAVALPAVLAP
12
50.2
203.3
2.3
Aliphatic





 80
342
VIVALAPAVLAP
12
50.2
203.3
2.3
Aliphatic





 81
343
IVAVALPALVAP
12
50.2
203.3
2.3
Aliphatic





 82
345
ALLIVAPVAVAP
12
50.2
203.3
2.3
Aliphatic





 83
361
AVVIVAPAVIAP
12
50.2
195.0
2.4
Aliphatic





 84
363
AVLAVAPALIVP
12
50.2
203.3
2.3
Aliphatic





 85
364
LVAAVAPALIVP
12
50.2
203.3
2.3
Aliphatic





 86
365
AVIVVAPALLAP
12
50.2
203.3
2.3
Aliphatic





 87
381
VVAIVLPAVAAP
12
50.2
195.0
2.4
Aliphatic





 88
382
AAALVIPAILAP
12
54.9
195.8
2.2
Aliphatic





 89
383
VIVALAPALLAP
12
50.2
211.6
2.3
Aliphatic





 90
384
VIVAIAPALLAP
12
50.2
211.6
2.4
Aliphatic





 91
385
IVAIAVPALVAP
12
50.2
203.3
2.4
Aliphatic





 92
401
AALAVIPAAILP
12
54.9
195.8
2.2
Aliphatic





 93
402
ALAAVIPAAILP
12
54.9
195.8
2.2
Aliphatic





 94
403
AAALVIPAAILP
12
54.9
195.8
2.2
Aliphatic





 95
404
LAAAVIPAAILP
12
54.9
195.8
2.2
Aliphatic





 96
405
LAAAVIPVAILP
12
54.9
211.7
2.4
Aliphatic





 97
421
AAILAAPLIAVP
12
57.3
195.8
2.2
Aliphatic





 98
422
VVAILAPLLAAP
12
57.3
211.7
2.4
Aliphatic





 99
424
AVVVAAPVLALP
12
57.3
195.0
2.4
Aliphatic





100
425
AVVAIAPVLALP
12
57.3
203.3
2.4
Aliphatic





101
442
ALAALVPAVLVP
12
57.3
203.3
2.3
Aliphatic





102
443
ALAALVPVALVP
12
57.3
203.3
2.3
Aliphatic





103
444
LAAALVPVALVP
12
57.3
203.3
2.3
Aliphatic





104
445
ALAALVPALVVP
12
57.3
203.3
2.3
Aliphatic





105
461
IAAVIVPAVALP
12
50.2
203.3
2.4
Aliphatic





106
462
IAAVLVPAVALP
12
57.3
203.3
2.4
Aliphatic





107
463
AVAILVPLLAAP
12
57.3
211.7
2.4
Aliphatic





108
464
AVVILVPLAAAP
12
57.3
203.3
2.4
Aliphatic





109
465
IAAVIVPVAALP
12
50.2
203.3
2.4
Aliphatic





110
481
AIAIAIVPVALP
12
50.2
211.6
2.4
Aliphatic





111
482
ILAVAAIPVAVP
12
54.9
203.3
2.4
Aliphatic





112
483
ILAAAIIPAALP
12
54.9
204.1
2.2
Aliphatic





113
484
LAVVLAAPAIVP
12
50.2
203.3
2.4
Aliphatic





114
485
AILAAIVPLAVP
12
50.2
211.6
2.4
Aliphatic





115
501
VIVALAVPALAP
12
50.2
203.3
2.4
Aliphatic





116
502
AIVALAVPVLAP
12
50.2
203.3
2.4
Aliphatic





117
503
AAIIIVLPAALP
12
50.2
220.0
2.4
Aliphatic





118
504
LIVALAVPALAP
12
50.2
211.7
2.4
Aliphatic





119
505
AIIIVIAPAAAP
12
50.2
195.8
2.3
Aliphatic























TABLE 13





Sequence



Rigidity/
Structural
Hydro-



ID



Flexibility
Feature
pathy
Residue


Number
aMTD
Sequences
Length
(II)
(AI)
(GRAVY)
Structure







120
521
LAALIVVPAVAP
12
50.2
203.3
2.4
Aliphatic





121
522
ALLVIAVPAVAP
12
57.3
203.3
2.4
Aliphatic





122
524
AVALIVVPALAP
12
50.2
203.3
2.4
Aliphatic





123
525
ALAIVVAPVAVP
12
50.2
195.0
2.4
Aliphatic





124
541
LLALIIAPAAAP
12
57.3
204.1
2.1
Aliphatic





125
542
ALALIIVPAVAP
12
50.2
211.6
2.4
Aliphatic





126
543
LLAAL1APAALP
12
57.3
204.1
2.1
Aliphatic





127
544
IVALIVAPAAVP
12
43.1
203.3
2.4
Aliphatic





128
545
VVLVLAAPAAVP
12
57.3
195.0
2.3
Aliphatic





129
561
AAVAIVLPAVVP
12
50.2
195.0
2.4
Aliphatic





130
562
ALIAAIVPALVP
12
50.2
211.7
2.4
Aliphatic





131
563
ALAVIVVPALAP
12
50.2
203.3
2.4
Aliphatic





132
564
VAIALIVPALAP
12
50.2
211.7
2.4
Aliphatic





133
565
VAIVLVAPAVAP
12
50.2
195.0
2.4
Aliphatic





134
582
VAVALIVPALAP
12
50.2
203.3
2.4
Aliphatic





135
583
AVILALAPIVAP
12
50.2
211.6
2.4
Aliphatic





136
585
ALIVAIAPALVP
12
50.2
211.6
2.4
Aliphatic





137
601
AAILIAVPIAAP
12
57.3
195.8
2.3
Aliphatic





138
602
VIVALAAPVLAP
12
50.2
203.3
2.4
Aliphatic





139
603
VLVALAAPVIAP
12
57.3
203.3
2.4
Aliphatic





140
604
VALIAVAPAVVP
12
57.3
195.0
2.4
AllPhatie





141
605
VIAAVLAPVAVP
12
57.3
195.0
2.4
Aliphatic





142
622
ALIVLAAPVAVP
12
50.2
203.3
2.4
Aliphatic





143
623
VAAAIALPAIVP
12
50.2
187.5
2.3
Aliphatic





144
625
ILAAAAAPLIVP
12
50.2
195.8
2.2
Aliphatic





145
643
LALVLAAPAIVP
12
50.2
211.6
2.4
Aliphatic





146
645
ALAVVALPAIVP
12
50.2
203.3
2.4
Aliphatic





147
661
AAILAPIVAALP
12
50.2
195.8
2.2
Aliphatic





148
664
ILIAIAIPAAAP
12
54.9
204.1
2.3
Aliphatic





149
665
LAIVLAAPVAVP
12
50.2
203.3
2.3
Aliphatic





150
666
AAIAIIAPAIVP
12
50.2
195.8
2.3
Aliphatic





151
667
LAVAIVAPALVP
12
50.2
203.3
2.3
Aliphatic





152
683
LAIVLAAPAVLP
12
50.2
211.7
2.4
Aliphatic





153
684
AAIVLALPAVLP
12
50.2
211.7
2.4
Aliphatic





154
685
ALLYAVLPAALP
12
57.3
211.7
2.3
Aliphatic





155
686
AALVAVLPVALP
12
57.3
203.3
2.3
Aliphatic





156
687
AILAVALPLLAP
12
57.3
220.0
2.3
Aliphatic





157
703
IVAVALVPALAP
12
50.2
203.3
2.4
Aliphatic





158
705
IVAVALLPALAP
12
50.2
211.7
2.4
Aliphatic





159
706
IVAVALLPAVAP
12
50.2
203.3
2.4
Aliphatic





160
707
IVALAVLPAVAP
12
50.2
203.3
2.4
Aliphatic





161
724
VAVLAVLPALAP
12
57.3
203.3
2.3
Aliphatic





162
725
IAVLAVAPAVLP
12
57.3
203.3
2.3
Aliphatic





163
726
LAVAIIAPAVAP
12
57.3
187.5
2.2
Aliphatic





164
727
VALAIALPAVLP
12
57.3
211.6
2.3
Aliphatic





165
743
AIAIALVPVALP
12
57.3
211.6
2.4
Aliphatic





166
744
AAVVIVAPVALP
12
50.2
195.0
2.4
Aliphatic





167
746
VAIIVVAPALAP
12
50.2
203.3
2.4
Aliphatic





168
747
VALLAIAPALAP
12
57.3
195.8
2.2
Aliphatic





169
763
VAVLIAVPALAP
12
57.3
203.3
2.3
Aliphatic























TABLE 14





Sequence



Rigidity/
Structural
Hydro-



ID



Flexibility
Feature
pathy
Residue


Number
aMTD
Sequences
Length
(II)
(AI)
(GRAVY)
Structure







170
764
AVALAVLPAVVP
12
57.3
195.0
2.3
Aliphatic





171
765
AVALAVVPAVLP
12
57.3
195.0
2.3
Aliphatic





172
766
IVVIAVAPAVAP
12
50.2
195.0
2.4
Aliphatic





173
767
IVVAAVVPALAP
12
50.2
195.0
2.4
Aliphatic





174
783
IVALVPAVAIAP
12
50.2
203.3
2.5
Aliphatic





175
784
VAALPAVALVVP
12
57.3
195.0
2.4
Aliphatic





176
786
LVAIAPLAVLAP
12
41.3
211.7
2.4
Aliphatic





177
787
AVALVPVIVAAP
12
50.2
195.0
2.4
Aliphatic





178
788
AIAVAIAPVALP
12
57.3
187.5
2.3
Aliphatic





179
803
AIALAVPVLALP
12
57.3
211.7
2.4
Aliphatic





180
805
LVLIAAAPIALP
12
41.3
220.0
2.4
Aliphatic





181
806
LVALAVPAAVLP
12
57.3
203.3
2.3
Aliphatic





182
807
AVALAVPALVLP
12
57.3
203.3
2.3
Aliphatic





183
808
LVVLAAAPLAVP
12
41.3
203.3
2.3
Aliphatic





184
809
LIVLAAPALAAP
12
50.2
195.8
2.2
Aliphatic





185
810
VIVLAAPALAAP
12
50.2
187.5
2.2
Aliphatic





186
811
AVVLAVPALAVP
12
57.3
195.0
2.3
Aliphatic





187
824
LIIVAAAPAVAP
12
50.2
187.5
2.3
Aliphatic





188
825
IVAVIVAPAVAP
12
43.2
195.0
2.5
Aliphatic





189
826
LVALAAPIIAVP
12
41.3
211,7
2.4
Aliphatic





190
827
IAAVLAAPALVP
12
57.3
187.5
2.2
Aliphatic





191
828
IALLAAPIIAVP
12
41.3
220.0
2.4
Aliphatic





192
829
AALALVAPVIVP
12
50.2
203.3
2.4
Aliphatic





193
830
IALVAAPVALVP
12
57.3
203.3
2.4
Aliphatic





194
831
IIVAVAPAAIVP
12
43.2
203.3
2.5
Aliphatic





195
832
AVAAIVPVIVAP
12
43.2
195.0
2.5
Aliphatic





196
843
AVLVLVAPAAAP
12
41.3
219.2
2.5
Aliphatic





197
844
VVALLAPLIAAP
12
41.3
211.8
2.4
Aliphatic





198
845
AAVVIAPLLAVP
12
41.3
203.3
2.4
Aliphatic





199
846
IAVAVAAPLLVP
12
41.3
200.3
2.4
Aliphatic





200
847
LVAIVVLPAVAP
12
50.2
219.2
2.6
Aliphatic





201
848
AVAIVVLPAVAP
12
50.2
195.0
2.4
Aliphatic





202
849
AVILLAPLIAAP
12
57.3
220.0
2.4
Aliphatic





203
850
LVIALAAPVALP
12
57.3
211.7
2.4
Aliphatic





204
851
VLAVVLPAVALP
12
57.3
219.2
2.5
Aliphatic





205
852
VLAVAAPAVLLP
12
57.3
203.3
2.3
Aliphatic





206
863
AAVVLLPIIAAP
12
41.3
211.7
2.4
Aliphatic





207
864
ALLVIAPAIAVP
12
57.3
211.7
2.4
Aliphatic





208
865
AVLVIAVPAIAP
12
57.3
203.3
2.5
Aliphatic





209
867
ALLVVIAPLAAP
12
41.3
211.7
2.4
Aliphatic





210
868
VLVAAILPAAIP
12
54.9
211.7
2.4
Aliphatic





211
870
VLVAAVLPIAAP
12
41.3
203.3
2.4
Aliphatic





212
872
VLAAAVLPLVVP
12
41.3
219.2
2.5
Aliphatic





213
875
AIAIVVPAVAVP
12
50.2
195.0
2.4
Aliphatic





214
877
VAIIAVPAVVAP
12
57.3
195.0
2.4
Aliphatic





215
878
IVALVAPAAVVP
12
50.2
195.0
2.4
Aliphatic





216
879
AAIVLLPAVVVP
12
50.2
219.1
2.5
Aliphatic





217
881
AALIVVPAVAVP
12
50.2
195.0
2.4
Aliphatic





218
882
AIALVVPAVAVP
12
57.3
195.0
2.4
Aliphatic





219
883
LAIVPAAIAALP
12
50.2
195.8
2.2
Aliphatic























TABLE 15





Sequence



Rigidity/
Structural
Hydro-



ID



Flexibility
Feature
pathy
Residue


Number
aMTD
Sequences
Length
(II)
(AI)
(GRAVY)
Structure







220
885
LVAIAPAVAVLP
12
57.3
203.3
2.4
Aliphatic





221
887
VLAVAPAVAVLP
12
57.3
195.0
2.4
Aliphatic





222
888
ILAVVAIPAAAP
12
54.9
187.5
2.3
Aliphatic





223
889
ILVAAAPIAALP
12
57.3
195.8
2.2
Aliphatic





224
891
ILAVAAIPAALP
12
54.9
195.8
2.2
Aliphatic





225
893
VIAIPAILAAAP
12
54.9
195.8
2.3
Aliphatic





226
895
AIIIVVPAIAAP
12
50.2
211.7
2.5
Aliphatic





227
896
AILIVVAPIAAP
12
50.2
211.7
2.5
Aliphatic





228
897
AVIVPVAIIAAP
12
50.2
203.3
2.5
Aliphatic





229
899
AVVIALPAVVAP
12
57.3
195.0
2.4
Aliphatic





230
900
ALVAVIAPVVAP
12
57.3
195.0
2.4
Aliphatic





231
901
ALVAVLPAVAVP
12
57.3
195.0
2.4
Aliphatic





232
902
ALVAPLLAVAVP
12
41.3
203.3
2.3
Aliphatic





233
904
AVLAVVAPVVAP
12
57.3
186.7
2.4
Aliphatic





234
905
AVIAVAPLVVAP
12
41.3
195.0
2.4
Aliphatic





235
906
AVIALAPVVVAP
12
57.3
195.0
2.4
Aliphatic





236
907
VAIALAPVVVAP
12
57.3
195.0
2.4
Aliphatic





237
908
VALALAPVVVAP
12
57.3
195.0
2.3
Aliphatic





238
910
VAALLPAVVVAP
12
57.3
195,0
2.3
Aliphatic





239
911
VALALPAVVVAP
12
57.3
195.0
2.3
Aliphatic





240
912
VALLAPAVVVAP
12
57.3
195.0
2.3
Aliphatic









52.6 ± 05.1
201.7 ± 7.8
2.3 ± 0.1









3-4. Design of the Peptides that Did not Satisfy at Least One Critical Factor


To demonstrate that this invention of new hydrophobic CPPs-aMTDs, which satisfy all critical factors described above, are correct and rationally designed, the peptides which do not satisfy at least one critical factor have also been designed. Total of 31 rPeptides (rPs) are designed, developed and categorized as follows: no bending peptides, either no proline in the middle as well at the end and/or no central proline; rigid peptides (II<40); too much flexible peptides; aromatic peptides (aromatic ring presences); hydrophobic, with non-aromatic peptides but have amino acids other than A, V, L, I, P or additional proline residues; hydrophilic, but non-aliphatic peptides.


3-4-1. Peptides that do not Satisfy the Bending Potential


Table 16 shows the peptides that do not have any proline in the middle (at 5′, 6′, 7′ or 8′) and at the end of the sequences. In addition, Table 16 describes the peptides that do not have proline in the middle of the sequences. All these peptides are supposed to have no-bending potential.
















TABLE 16






rPeptide


Proline
Rigidity/
Structural
Hydro-



ID (SEQ


Position
Flexibility
Feature
pathy


Group
ID NO)
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)







No-Bending
931 (882)
AVLIAPAILAAA
12
 6
57.3
204.2
 2.5


Peptides
936 (883)
ALLILAAAVAAP
12
12
41.3
204.2
 2.4


[No Proline
152 (884)
LAAAVAAVAALL
12
None
 9.2
204.2
 2.7


at 5, 6, 7
 27 (885)
LAIVAAAAALVA
12
None
 2.1
204.2
 2.8


or 8 and/or 12]
935 (886)
ALLILPAAAVAA
12
 6
57.3
204.2
 2.4



670 (887)
ALLILAAAVAAL
12
None
25.2
236.6
 2.8



934 (888)
LILAPAAVVAAA
12
5
57.3
195.8
 2.5



 37 (889)
TTCSQQQYCTNG
12
None
53.1
  0.0
-1.1



 16 (890)
NNSCTTYTNGSQ
12
None
47.4
  0.0
-1.4



113 (891)
PVAVALLIAVPP
12
1, 11, 12
57.3
195.0
 2.1









3-4-2. Peptides that do not Satisfy the Rigidity/Flexibility


To prove that rigidity/flexibility of the sequence is a crucial critical factor, rigid (Avg. II: 21.8±6.6) and too high flexible sequences (Avg. II: 82.3±21.0) were also designed. Rigid peptides that instability index is much lower than that of new aMTDs (II: 41.3-57.3, Avg. II: 53.3±5.7) are shown in Table 17. Bending, but too high flexible peptides that II is much higher than that of new aMTDs are also provided in Table 18.
















TABLE 17






rPeptide


Proline
Rigidity/
Structural
Hydro-



ID (SEQ


Position
Flexibility
Feature
pathy


Group
ID NO)
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)







Rigid
226 (892)
ALVAAIPALAIP
12
6
20.4
195.8
 2.2


Peptides
  6 (893)
VIAMIPAAFWVA
12
6
15.7
146.7
 2.2


[II < 50]
750 (894)
LAIAAIAPLAIP
12
8, 12
22.8
204.2
 2.2



 26 (895)
AAIALAAPLAIV
12
8
18.1
204.2
 2.5



527 (896)
LVLAAVAPIAIP
12
8, 12
22.8
211.7
 2.4



466 (897)
IIAAAAPLAIIP
12
7, 12
22.8
204.2
 2.3



167 (898)
VAIAIPAALAIP
12
6, 12
20.4
195.8
 2.3



246 (899)
VVAVPLLVAFAA
12
5
25.2
195.0
 2.7



426 (900)
AAALAIPLAIIP
12
7, 12
4.37
204.2
 2.2



606 (901)
AAAIAAIPIIIP
12
8, 12
 4.4
204.2
 2.4



 66 (902)
AGVLGGPIMGVP
12
7, 12
35.5
121.7
 1.3



248 (903)
VAAIVPIAALVP
12
6, 12
34.2
203.3
 2.5



227 (904)
LAAIVPIAAAVP
12
6, 12
34.2
187.5
 2.2



 17 (905)
GGCSAPQTTCSN
12
6
51.6
  8.3
-0.5



 67 (906)
LDAEVPLADDVP
12
6, 12
34.2
130.0
 0.3























TABLE 18






rPeptide


Proline
Rigidity/
Structural
Hydro-



ID (SEQ


Position
Flexibility
Feature
pathy


Group
ID NO)
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)







Bending
692 (907)
PAPLPPVVILAV
12
1, 3, 5,
105.5
186.7
1.8


Peptides,



6





but Too High
 69 (908)
PVAVLPPAALVP
12
1, 6, 7,
 89.4
162.5
1.6


Flexibility



12






390 (909)
VPLLVPVVPVVP
12
2, 6, 9,
105.4
210.0
2.2






12






350 (910)
VPILVPVVPVVP
12
2, 6, 9,
121.5
210.0
2.2






12






331 (911)
VPVLVPLVPVVP
12
2, 6, 9,
105.4
210.0
2.2






12






  9 (912)
VALVPAALILPP
12
5, 11, 12
 89.4
203.3
2.1



 68 (913)
VAPVLPAAPLVP
12
3, 6, 9,
105.5
162.5
1.6






12






349 (914)
VPVLVPVVPVVP
12
2, 6, 9,
121.5
201.6
2.2






12






937 (915)
VPVLVPLPVPVV
12
2, 6, 8,
121.5
210.0
2.2






10






938 (916)
VPVLLPVVVPVP
12
2, 6, 10,
121.5
210.0
2.2






12






329 (917)
LPVLVPVVPVVP
12
2, 6, 9,
121.5
210.0
2.2






12






 49 (918)
VVPAAPAVPVVP
12
3, 6, 9,
121.5
145.8
1.7






12






772 (919)
LPVAPVIPIIVP
12
2, 5, 8,
 79.9
210.8
2.1






12






210 (920)
ALIALPALPALP
12
6, 9, 12
 89.4
195.8
1.8



 28 (921)
AVPLLPLVPAVP
12
3, 6, 9,
 89.4
185.8
1.8






12






693 (922)
AAPVLPVAVPIV
12
3, 6, 10
 82.3
185.7
2.1



169 (923)
VALVAPALILAP
12
6, 12
 73.4
211.7
2.4



 29 (924)
VLPPLPVLPVLP
12
3, 4, 6,
121.5
202.5
1.7






9, 12






190 (925)
AAILAPAVIAPP
12
6, 11, 12
 89.4
163.3
1.8









3-4-3. Peptides that do not Satisfy the Structural Features


New hydrophobic CPPs-aMTDs are consisted with only hydrophobic and aliphatic amino acids (A, V, L, I and P) with average ranges of the indexes—AI: 180-220 and GRAVY: 2.1-2.6 (Table 9). Based on the structural indexes, the peptides which contain an aromatic residue (W, F or Y) are shown in Table 19 and the peptides which are hydrophobic with non-aromatic sequences but have amino acids residue other than A, V, L, I, P or additional proline residues are designed (Table 20). Finally, hydrophilic and/or bending peptides which are consisted with non-aliphatic amino acids are shown in Table 21.
















TABLE 19






rPeptide


Proline
Rigidity/
Structural
Hydro-



ID (SEQ


Position
Flexibility
Feature
pathy


Group
ID NO)
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)







Aromatic
 30 (926)
AMALLPAAVAVA
12
6
51.6
163.3
2.3


Peptides
 33 (927)
AAAILAPAFLAV
12
7
57.3
171.7
2.4


[Aromatic
131 (928)
WIIAPVWLAWIA
12
5
51.6
179.2
1.9


Ring
922 (929)
WYVIFVLPLVVP
12
8, 12
41.3
194.2
2.2


Presence]
 71 (930)
FMWMWFPFMWYP
12
7, 12
71.3
  0.0
0.6



921 (931)
IWWFVVLPLVVP
12
8, 12
41.3
194.2
2.2























TABLE 20






rPeptide


Proline
Rigidity/
Structural
Hydro-



ID (SEQ


Position
Flexibility
Feature
pathy


Group
ID NO)
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)







Hydrophobic
436 (932)
VVMLVVPAVMLP
12
7, 12
57.3
194.2
2.6


Peptides,
138 (933)
PPAALLAILAVA
12
1, 2
57.3
195.8
2.2


but Non
 77 (934)
PVALVLVALVAP
12
1, 12
41.3
219.2
2.5


Aromatic
577 (935)
MLMIALVPMIAV
12
8
18.9
195.0
2.7


Peptides
 97 (936)
ALLAAPPALLAL
12
6, 7
57.3
204.2
2.1



214 (937)
ALIVAPALMALP
12
6, 12
60.5
187.5
2.2



 59 (938)
AVLAAPVVAALA
12
6
41.3
187.5
2.5



 54 (939)
LAVAAPPVVALL
12
6, 7
57.3
203.3
2.3























TABLE 21






rPeptide


Proline
Rigidity/
Structural
Hydro-



ID (SEQ


Position
Flexibility
Feature
pathy


Group
ID NO)
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)







Hydrophilic
949 (940)
SGNSCQQCGNSS
12
None
41.7
0.0
-1.1


Peptides,
 39 (941)
CYNTSPCTGCCY
12
 6
52.5
0.0
 0.0


but Non
 19 (942)
YVSCCTYTNGSQ
12
None
47.7
0.0
-1.0


Aliphatic
947 (943)
CYYNQQSNNNNQ
12
None
59.6
0.0
-2.4



139 (944)
TGSTNSPTCTST
12
 7
53.4
0.0
-0.7



 18 (945)
NYCCTPTTNGQS
12
 6
47.9
0.0
-0.9



 20 (946)
NYCNTCPTYGQS
12
 7
47.4
0.0
-0.9



635 (947)
GSTGGSQQNNQY
12
None
31.9
0.0
-1.9



 40 (948)
TYNTSCTPGTCY
12
 8
49.4
0,0
-0.6



 57 (949)
QNNCNTSSQGGG
12
None
52.4
0.0
-1.6



159 (950)
CYSGSTSQNQPP
12
11, 12
51.0
0.0
-1.3



700 (951)
GTSNTCQSNQNS
12
None
19.1
0.0
-1.6



 38 (952)
YYNQSTCGGQCY
12
None
53.8
0.0
-1.0









3-5. Summary of Newly Designed Peptides


Total of 457 sequences have been designed based on the critical factors. Designed potentially best aMTDs (hydrophobic, flexible, bending, aliphatic and 12-A/a length peptides) that do satisfy all range/feature of critical factors are 316. Designed rPeptides that do not satisfy at least one of the critical factors are 141 that no bending peptide sequences are 26; rigid peptide (II<40) sequences are 23; too much flexible peptides are 24; aromatic peptides (aromatic ring presences) are 27; hydrophobic, but non-aromatic peptides are 23; and hydrophilic, but non-aliphatic peptides are 18.


4. Preparation of Recombinant Report Proteins Fused to aMTDs and rPeptides


Recombinant proteins fused to aMTDs and others [rPeptides, reference hydrophobic CPP sequences (MTM and MTD)] were expressed in a bacterial system, purified with single-step affinity chromatography and prepared as soluble proteins in physiological condition. These recombinant proteins have been tested for the ability of their cell-permeability by utilizing flow cytometry and laser scanning confocal microscopy.


4-1. Selection of Cargo Protein for Recombinant Proteins Fused to Peptide Sequences


For clinical/non-clinical application, aMTD-fused cargo materials would be biologically active molecules that could be one of the following: enzymes, transcription factors, toxic, antigenic peptides, antibodies and antibody fragments. Furthermore, biologically active molecules could be one of these following macromolecules: enzymes, hormones, carriers, immunoglobulin, membrane-bound proteins, transmembrane proteins, internal proteins, external proteins, secreted proteins, virus proteins, native proteins, glycoproteins, fragmented proteins, disulfide bonded proteins, recombinant proteins, chemically modified proteins and prions. In addition, these biologically active molecules could be one of the following: nucleic acid, coding nucleic acid sequence, mRNAs, antisense RNA molecule, carbohydrate, lipid and glycolipid.


According to these pre-required conditions, a non-functional cargo to evaluate aMTD-mediated protein uptake has been selected and called as Cargo A (CRA) that should be soluble and non-functional. The domain (A/a 289-840; 184 A/a length) is derived from protein S (Genbank ID: CP000113.1).


4-2. Construction of Expression Vector and Preparation of Recombinant Proteins


Coding sequences for recombinant proteins fused to each aMTD are cloned Nde1 (5′) and Sal1 (3′) in pET-28a(+) (Novagen, Darmstadt, Germany) from PCR-amplified DNA segments. PCR primers for the recombinant proteins fused to aMTD and rPeptides are SEQ ID NOs: 481˜797. Structure of the recombinant proteins is displayed in FIG. 1.


The recombinant proteins were forcedly expressed in E. coli BL21 (DE3) cells grown to an OD600 of 0.6 and induced for 2 hours with 0.7 mM isopropyl-β-D-thiogalactopyranoside (IPTG). The proteins were purified by Ni2+ affinity chromatography as directed by the supplier (Qiagen, Hilden, Germany) in natural condition. After the purification, purified proteins were dissolved in a physiological buffer such as DMEM medium.












TABLE 22









custom-character   Potentially Best aMTDs (Hydrophobic,
:240 



Flexible, Bending, Aliphatic & Helical)




custom-character   Random Peptides
:31



No Bending Peptides (No Praline at 5 or 6
:02



and/or 12)




No Bending Peptides (No Central Proline)
:01



Rigid Peptides (II < 50)
:09



Too Much Flexible Peptides
:09



Aromatic Peptides (Aromatic Ring Presences)
:01



Hydrophobic, But Non-Aromatic Peptides
:02



Hydrophilic, But Non-Aliphatic Peptides
:07










4-3. Expression of aMTD- or Random Peptide (rP)-Fused Recombinant Proteins


Using the standardized six critical factors, 316 aMTD sequences have been designed. In addition, 141 rPeptides are also developed that lack one of these critical factors: no bending peptides: i) absence of proline both in the middle and at the end of sequence or ii) absence of proline either in the middle or at the end of sequence, rigid peptides, too much flexible peptides, aromatic peptides (aromatic ring presence), hydrophobic but non-aromatic peptides, and hydrophilic but non-aliphatic peptides (Table 22).


These rPeptides are devised to be compared and contrasted with aMTDs in order to analyze structure/sequence activity relationship (SAR) of each critical factor with regard to the peptides' intracellular delivery potential. All peptide (aMTD or rPeptide)-containing recombinant proteins have been fused to the CRA to enhance the solubility of the recombinant proteins to be expressed, purified, prepared and analyzed.


These designed 316 aMTDs and 141 rPeptides fused to CRA were all cloned (FIG. 2) and tested for inducible expression in E. coli (FIG. 3). Out of these peptides, 240 aMTDs were inducibly expressed, purified and prepared in soluble form (FIG. 4). In addition, 31 rPeptides were also prepared as soluble form (FIG. 4).


To prepare the proteins fused to rPeptides, 60 proteins were expressed that were 10 out of 26 rPeptides in the category of no bending peptides (Table 16); 15 out of 23 in the category of rigid peptides [instability index (II)<40 [(Table 17); 19 out of 24 in the category of too much flexible peptides (Table 18); 6 out of 27 in the category of aromatic peptides (Table 19); 8 out of 23 in the category of hydrophobic but non-aromatic peptides (Table 20); and 12 out of 18 in the category of hydrophilic but non-aliphatic peptides (Table 21).


4-4. Quantitative Cell-Permeability of aMTD-Fused Recombinant Proteins


The aMTDs and rPeptides were fluorescently labeled and compared based on the critical factors for cell-permeability by using flow cytometry and confocal laser scanning microscopy (FIGS. 5 to 8). The cellular uptake of the peptide-fused non-functional cargo recombinant proteins could quantitatively be evaluated in flow cytometry, while confocal laser scanning microscopy allows intracellular uptake to be assessed visually. The analysis included recombinant proteins fused to a negative control [rP38] that has opposite characteristics (hydrophilic and aromatic sequence: YYNQSTCGGQCY) to the aMTDs (hydrophobic and aliphatic sequences). Relative cell-permeability (relative fold) of aMTDs to the negative control was also analyzed (Table 23 and FIG. 9).


Table 23 shows Comparison Analysis of Cell-Permeability of aMTDs with a Negative Control (A: rP38).












TABLE 23








Negative Control




rP38









aMTD
19.6 ± 1.6*



The Average of 240 aMTDs
(Best: 164.2)







*Relative Fold (aMTD in Geo Mean in its comparison to rP38)






Relative cell-permeability (relative fold) of aMTDs to the reference CPPs [B: MTM12 (AAVLLPVLLAAP) (SEQ ID NO: 953), C: MTD85 (AVALLILAV) (SEQ ID NO: 954)] was also analyzed (Tables 40 and 41)


Table 24 shows Comparison Analysis of Cell-Permeability of aMTDs with a Reference CPP (B: MTM12).












TABLE 24








MTM12









aMTD
13.1 ± 1.1*



The Average of 240 aMTDs
(Best: 109.9)







*Relative Fold (aMTD in Geo Mean in its comparison to MTM12)






Table 25 shows Comparison Analysis of Cell-Permeability of aMTDs with a Reference CPP (C: MTD85).












TABLE 25








MTD85









aMTD
6.6 ± 0.5*



The Average of 240 aMTDs
(Best: 55.5)







*Relative Fold (aMTD in Geo Mean in its comparison to MTD85)






Geometric means of negative control (histidine-tagged rP38-fused CRA recombinant protein) subtracted by that of naked protein (histidine-tagged CRA protein) lacking any peptide (rP38 or aMTD) was standardized as relative fold of 1. Relative cell-permeability of 240 aMTDs to the negative control (A type) was significantly increased by up to 164 fold, with average increase of 19.6±1.6 (Table 26-31).

















TABLE 26







Sequence



Proline
Rigidity/
Sturctural
Hydro-
Relative Ratio 


ID



Position
Flexibility
Feature
pathy
(Fold)

















Number
aMTD
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)
A
B
C





229
899
AVVIALPAVVAP
12
7
57.3
195.0
2.4
164.2
109.9
55.5





237
908
VALALAPVVVAP
12
7
57.3
195.0
2.3
150.6
100.8
50.9





238
910
VAALLPAVVVAP
12
6
57.3
195.0
2.3
148.5
 99.4
50.2





185
810
VIVLAAPALAAP
12
7
50.2
187.5
2.2
120.0
 80.3
40.6





233
904
AVLAVVAPVVAP
12
8
57.3
186.7
2.4
105.7
 70.8
35.8





 74
321
IVAVALPALAVP
12
7
50.2
203.3
2.3
 97.8
 65.2
32.9





204
851
VLAVVLPAVALP
12
7
57.3
219.2
2.5
 96.6
 64.7
32.7





239
911
VALALPAVVVAP
12
6
57.3
195.0
2.3
 84.8
 56.8
28.7





205
852
VLAVAAPAVLLP
12
7
57.3
203.3
2.3
 84.6
 56.6
28.6





179
803
AIALAVPVLALP
12
7
57.3
211.7
2.4
 74.7
 50.0
25.3





222
888
ILAVVAIPAAAP
12
8
54.9
187.5
2.3
 71.0
 47.5
24.0





188
825
IVAVIVAPAVAP
12
8
43.2
195.0
2.5
 69.7
 46.6
23.6





226
895
AIIIVVPAIAAP
12
7
50.2
211.7
2.5
 60.8
 40.7
20.6





227
896
AILIVVAPIAAP
12
8
50.2
211.7
2.5
 57.5
 38.5
19.4





164
727
VALAIALPAVLP
12
8
57.3
211.6
2.3
 54.7
 36.7
18.5





139
603
VLVALAAPVIAP
12
8
57.3
203.3
2.4
 54.1
 36.1
18.2





200
847
LVAIVVLPAVAP
12
8
50.2
219.2
2.6
 50.2
 33.4
16.9





189
826
LVALAAPIIAVP
12
7
41.3
211.7
2.4
 49.2
 32.9
16.6





161
724
VAVLAVLPALAP
12
8
57.3
203.3
2.3
 47.5
 31.8
16.1





131
563
ALAVIVVPALAP
12
8
50.2
203.3
2.4
 47.1
 31.4
15.9





186
811
AVVLAVPALAVP
12
7
57.3
195.0
2.3
 46.5
 31.1
15.7





194
831
IIVAVAPAAIVP
12
7
43.2
203.3
2.5
 46.3
 31.0
15.7





192
829
AALALVAPVIVP
12
8
50.2
203.3
2.4
 44.8
 30.0
15.2





224
891
ILAVAAIPAALP
12
8
54.9
195.8
2.2
 44.7
 29.9
15.1





234
905
AVIAVAPLVVAP
12
7
41.3
195.0
2.4
 44.0
 29.5
14.9





132
564
VAIALIVPALAP
12
8
50.2
211.7
2.4
 43.6
 29.1
14.7





 34
124
IAVALPALIAAP
12
6
50.3
195.8
2.2
 43.6
 29.0
14.7





190
827
IAAVLAAPALVP
12
8
57.3
187.5
2.2
 43.0
 28.8
14.6





  2
  2
AAAVPLLAVVVP
12
5
41.3
195.0
2.4
 40.9
 27.2
13.8





 91
385
IVAIAVPALVAP
12
7
50.2
203.3
2.4
 38.8
 25.9
13.1





191
828
IALLAAPIIAVP
12
7
41.3
220.0
2.4
 36.8
 24.6
12.4





181
806
LVALAVPAAVLP
12
7
57.3
203.3
2.3
 36.7
 24.6
12.4





198
845
AAVVIAPLLAVP
12
7
41.3
203.3
2.4
 35.8
 24.0
12.1





218
882
AIALVVPAVAVP
12
7
57.3
195.0
2.4
 35.0
 23.4
11.8





128
545
VVLVLAAPAAVP
12
8
57.3
195.0
2.3
 34.6
 23.1
11.7





 39
161
AVIALPALIAAP
12
6
57.3
195.8
2.2
 34.5
 23.0
11.6





110
481
AIAIAIVPVALP
12
8
50.2
211.6
2.4
 34.3
 23.0
11.6





230
900
ALVAVIAPVVAP
12
8
57.3
195.0
2.4
 34.3
 22.9
11.6





 53
223
AILAVPIAVVAP
12
6
57.3
203.3
2.4
 33.0
 22.1
11.2





187
824
LIIVAAAPAVAP
12
8
50.2
187.5
2.3
 32.8
 21.9
11.1





130
562
ALIAAIVPALVP
12
8
50.2
211.7
2.4
 32.7
 21.8
11.0





 52
222
ALLIAPAAVIAP
12
6
57.3
195.8
2.2
 32.6
 21.7
11.0





 17
 61
VAALPVLLAALP
12
5
57.3
211.7
2.3
 31.2
 20.8
10.5





134
582
VAVALIVPALAP
12
8
50.2
203.3
2.4
 30.6
 20.4
10.3





223
889
ILVAAAPIAALP
12
7
57.3
195.8
2.2
 30.3
 20.3
10.3





177
787
AVALVPVIVAAP
12
6
50.2
195.0
2.4
 29.3
 19.6
 9.9





157
703
IVAVALVPALAP
12
8
50.2
203.3
2.4
 29.2
 19.5
 9.9





158
705
IVAVALLPALAP
12
8
50.2
211.7
2.4
 28.6
 19.1
 9.7





220
885
LVAIAPAVAVLP
12
6
57.3
203.3
2.4
 28.3
 19.0
 9.6





  3
  3
AALLVPAAVLAP
12
6
57.3
187.5
2.1
 27.0
 18.0
 9.1





137
601
AAILIAVPIAAP
12
8
57.3
195.8
2.3
 26.8
 17.9
 9.0





196
843
AVLVLVAPAAAP
12
8
41.3
219.2
2.5
 26.4
 17.7
 8.9





 94
403
AAALVIPAAILP
12
7
54.9
195.8
2.2
 25.2
 16.8
 8.5





127
544
IVALIVAPAAVP
12
8
43.1
203.3
2.4
 23.4
 15.6
 7.9





121
522
ALLVIAVPAVAP
12
8
57.3
203.3
2.4
 22.7
 15.2
 7.7
























TABLE 27







Sequence



Proline
Rigidity/
Sturctural
Hydro-
Relative Ratio 


ID



Position
Flexibility
Feature
pathy
(Fold)

















Number
aMTD
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)
A
B
C





180
805
LVLIAAAPIALP
12
8
41.3
220.0
2.4
22.3
14.9
7.6





108
464
AVVILVPLAAAP
12
7
57.3
203.3
2.4
22.3
14.9
7.5





 96
405
LAAAVIPVAILP
12
7
54.9
211.7
2.4
22.2
14.8
7.5





168
747
VALLAIAPALAP
12
8
57.3
195.8
2.2
22.0
14.8
7.5





115
501
VIVALAVPALAP
12
8
50.2
203.3
2.4
21.5
14.4
7.3





147
661
AAILAPIVAALP
12
6
50.2
195.8
2.2
21.4
14.3
7.2





176
786
LVAIAPLAVLAP
12
6
41.3
211.7
2.4
21.2
14.2
7.2





144
625
ILAAAAAPLIVP
12
8
50.2
195.8
2.2
20.9
13.9
7.0





101
442
ALAALVPAVLVP
12
7
57.3
203.3
2.3
20.4
13.6
6.9





240
912
VALLAPAVVVAP
12
6
57.3
195.0
2.3
19.9
13.3
6.7





 43
165
ALAVPVALAIVP
12
5
50.2
203.3
2.4
19.8
13.2
6.7





 98
422
VVAILAPLLAAP
12
7
57.3
211.7
2.4
19.6
13.1
6.6





155
686
AALVAVLPVALP
12
8
57.3
203.3
2.3
19.5
13.1
6.6





 81
343
IVAVALPALVAP
12
7
50.2
203.3
2.3
19.4
12.9
6.5





 76
323
IVAVALPVALAP
12
7
50.2
203.3
2.3
19.1
12.8
6.4





105
461
IAAVIVPAVALP
12
7
50.2
203.3
2.4
19.0
12.7
6.4





  9
 21
AVALLPALLAVP
12
6
57.3
211.7
2.3
18.9
12.6
6.4





 95
404
LAAAVIPAAILP
12
7
54.9
195.8
2.2
18.9
12.6
6.4





 60
261
LVLVPLLAAAAP
12
5
41.3
211.6
2.3
18.5
12.3
6.2





122
524
AVALIVVPALAP
12
8
50.2
203.3
2.4
18.3
12.2
6.2





 55
225
VAALLPAAAVLP
12
6
57.3
187.5
2.1
18.3
12.2
6.2





 63
264
LAAAPVVIVIAP
12
5
50.2
203.3
2.4
18.2
12.1
6.1





  1
  1
AAALAPVVLALP
12
6
57.3
187.5
2.1
17.7
11.8
6.0





 88
382
AAALVIPAILAP
12
7
54.9
195.8
2.2
17.7
11.8
6.0





107
463
AVAILVPLLAAP
12
7
57.3
211.7
2.4
17.6
11.7
5.9





 75
322
VVAIVLPALAAP
12
7
50.2
203.3
2.3
17.6
11.7
5.9





117
503
AAIIIVLPAALP
12
8
50.2
220.0
2.4
17.6
11.8
5.9





211
870
VLVAAVLPIAAP
12
8
41.3
203.3
2.4
16.6
11.1
5.6





 56
241
AAAVVPVLLVAP
12
6
57.3
195.0
2.4
16.6
11.0
5.6





163
726
LAVAIIAPAVAP
12
8
57.3
187.5
2.2
16.5
11.0
5.6





 79
341
IVAVALPAVLAP
12
7
50.2
203.3
2.3
16.4
10.9
5.5





125
542
ALALIIVPAVAP
12
8
50.2
211.6
2.4
16.2
10.8
5.5





 83
361
AVVIVAPAVIAP
12
7
50.2
195.0
2.4
16.0
10.7
5.4





 54
224
ILAAVPIALAAP
12
6
57.3
195.8
2.2
15.8
10.6
5.3





 20
 64
AIVALPVAVLAP
12
6
50.2
203.3
2.4
15.8
10.6
5.3





111
482
ILAVAAIPVAVP
12
8
54.9
203.3
2.4
15.8
10.6
5.3





113
484
LAVVLAAPAIVP
12
8
50.2
203.3
2.4
15.6
10.4
5.3





210
868
VLVAAILPAAIP
12
8
54.9
211.7
2.4
14.9
10.0
5.0





124
541
LLALIIAPAAAP
12
8
57.3
204.1
2.1
14.8
 9.9
5.0





150
666
AAIAIIAPAIVP
12
8
50.2
195.8
2.3
14.7
 9.9
5.0





149
665
LAIVLAAPVAVP
12
8
50.2
203.3
2.3
14.7
 9.9
5.0





 84
363
AVLAVAPALIVP
12
7
50.2
203.3
2.3
14.7
 9.8
4.9





 57
242
AALLVPALVAAP
12
6
57.3
187.5
2.1
14.6
 9.7
4.9





 90
384
VIVAIAPALLAP
12
7
50.2
211.6
2.4
14.0
 9.4
4.7





214
877
VAIIAVPAVVAP
12
7
57.3
195.0
2.4
14.0
 9.4
4.7





206
863
AAVVLLPIIAAP
12
7
41.3
211.7
2.4
13.8
 9.3
4.7





123
525
ALAIVVAPVAVP
12
8
50.2
195.0
2.4
13.8
 9.2
4.7





213
875
AIAIVVPAVAVP
12
7
50.2
195.0
2.4
13.8
 9.2
4.7





 69
285
AIVLLPAAVVAP
12
6
50.2
203.3
2.4
13.3
 8.9
4.5





 65
281
ALIVLPAAVAVP
12
6
50.2
203.3
2.4
13.3
 8.9
4.5





209
867
ALLVVIAPLAAP
12
8
41.3
211.7
2.4
13.2
 8.8
4.4





172
766
IVVIAVAPAVAP
12
8
50.2
195.0
2.4
12.9
 8.6
4.4





 80
342
VIVALAPAVLAP
12
7
50.2
203.3
2.3
12.7
 8.5
4.3





217
881
AALIVVPAVAVP
12
7
50.2
195.0
2.4
12.7
 8.5
4.3





119
505
AIIIVIAPAAAP
12
8
50.2
195.8
2.3
12.4
 8.3
4.2
























TABLE 28







Sequence



Proline
Rigidity/
Sturctural
Hydro-
Relative Ratio 


ID



Position
Flexibility
Feature
pathy
(Fold)

















Number
aMTD
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)
A
B
C





169
763
VAVLIAVPALAP
12
8
57.3
203.3
2.3
12.3
7.2
4.2





159
706
IVAVALLPAVAP
12
8
50.2
203.3
2.4
12.0
7.0
4.1





156
687
AILAVALPLLAP
12
8
57.3
220.0
2.3
12.0
7.0
4.1





145
643
LALVLAAPAIVP
12
8
50.2
211.6
2.4
11.8
7.9
4.0





 66
282
VLAVAPALIVAP
12
6
50.2
203.3
2.4
11.8
7.9
4.0





126
543
LLAALIAPAALP
12
8
57.3
204.1
2.1
11.7
7.8
4.0





 78
325
IVAVALPAVALP
12
7
50.2
203.3
2.3
11.7
7.8
4.0





199
846
IAVAVAAPLLVP
12
8
41.3
203.3
2.4
11.7
6.8
4.0





 89
383
VIVALAPALLAP
12
7
50.2
211.6
2.3
11.6
7.7
3.9





 87
381
VVAIVLPAVAAP
12
7
50.2
195.0
2.4
11.5
7.7
3.9





183
808
LVVLAAAPLAVP
12
8
41.3
203.3
2.3
11.5
7.6
3.9





208
865
AVLVIAVPAIAP
12
8
57.3
203.3
2.5
11.3
7.5
3.8





162
725
IAVLAVAPAVLP
12
8
57.3
203.3
2.3
11.2
7.5
3.8





197
844
VVALLAPLIAAP
12
7
41.3
211.8
2.4
11.2
7.5
3.8





228
897
AVIVPVAIIAAP
12
5
50.2
203.3
2.5
11.2
7.5
3.8





141
605
VIAAVLAPVAVP
12
8
57.3
195.0
2.4
11.0
7.4
3.7





166
744
AAVVIVAPVALP
12
8
50.2
195.0
2.4
11.0
7.3
3.7





 51
221
AAILAPIVALAP
12
6
50.2
195.8
2.2
10.9
7.3
3.7





142
622
ALIVLAAPVAVP
12
8
50.2
203.3
2.4
10.6
7.1
3.6





 92
401
AALAVIPAAILP
12
7
54.9
195.8
2.2
10.6
7.1
3.6





 77
324
IVAVALPAALVP
12
7
50.2
203.3
2.3
10.3
6.9
3.5





215
878
IVALVAPAAVVP
12
7
50.2
195.0
2.4
10.3
6.9
3.5





 71
302
LALAPALALLAP
12
5
57.3
204.2
2.1
10.2
6.8
3.4





154
685
ALLVAVLPAALP
12
8
57.3
211.7
2.3
10.2
5.9
3.4





201
848
AVAIVVLPAVAP
12
8
50.2
195.0
2.4
10.0
6.7
3.4





138
602
VIVALAAPVLAP
12
8
50.2
203.3
2.4
 9.9
5.8
3.4





178
788
AIAVAIAPVALP
12
8
57.3
187.5
2.3
 9.8
6.6
3.3





 38
145
LLAVVPAVALAP
12
6
57.3
203.3
2.3
 9.5
6.3
3.2





  6
 11
VVALAPALAALP
12
6
57.3
187.5
2.1
 9.5
6.3
3.2





 35
141
AVIVLPALAVAP
12
6
50.2
203.3
2.4
 9.4
6.3
3.2





120
521
LAALIVVPAVAP
12
8
50.2
203.3
2.4
 9.4
6.3
3.2





100
425
AVVAIAPVLALP
12
7
57.3
203.3
2.4
 9.4
6.3
3.2





 86
365
AVIVVAPALLAP
12
7
50.2
203.3
2.3
 9.3
6.2
3.1





 62
263
ALAVIPAAAILP
12
6
54.9
195.8
2.2
 9.0
6.0
3.0





 82
345
ALLIVAPVAVAP
12
7
50.2
203.3
2.3
 8.9
5.9
3.0





203
850
LVIALAAPVALP
12
8
57.3
211.7
2.4
 8.8
5.9
3.0





 37
144
VLAIVPAVALAP
12
6
50.2
203.3
2.4
 8.8
5.9
3.0





173
767
IVVAAVVPALAP
12
8
50.2
195.0
2.4
 8.5
5.0
2.9





 47
185
AALVLPLIIAAP
12
6
41.3
220.0
2.4
 8.5
5.7
2.9





202
849
AVILLAPLIAAP
12
7
57.3
220.0
2.4
 8.3
4.8
2.8





207
864
ALLVIAPAIAVP
12
7
57.3
211.7
4.8
 8.2
2.4
2.8





 40
162
AVVALPAALIVP
12
6
50.2
203.3
2.4
 8.2
5.5
2.8





 42
164
LAAVLPALLAAP
12
6
57.3
195.8
2.1
 8.2
5.5
2.8





236
907
VAIALAPVVVAP
12
7
57.3
195.0
2.4
 8.1
5.4
2.8





103
444
LAAALVPVALVP
12
7
57.3
203.3
2.3
 8.1
5.4
2.7





102
443
ALAALVPVALVP
12
7
57.3
203.3
2.3
 8.0
5.3
2.7





231
901
ALVAVLPAVAVP
12
7
57.3
195.0
2.4
 7.7
5.1
2.6





221
887
VLAVAPAVAVLP
12
6
57.3
195.0
2.4
 7.7
5.1
2.6





167
746
VAIIVVAPALAP
12
8
50.2
203.3
2.4
 7.6
4.4
2.6





232
902
ALVAPLLAVAVP
12
5
41.3
203.3
2.3
 7.6
5.1
2.6





133
565
VAIVLVAPAVAP
12
8
50.2
195.0
2.4
 7.5
5.0
2.5





 59
245
AAALAPVLALVP
12
6
57.3
187.5
2.1
 7.5
5.0
5.2





165
743
AIAIALVPVALP
12
8
57.3
211.6
2.4
 7.4
4.9
2.5





109
465
AVVILVPLAAAP
12
7
57.3
203.3
2.4
 7.4
4.9
2.5





 30
104
AVVAAPLVLALP
12
6
41.3
203.3
2.3
 7.3
4.9
2.5
























TABLE 29







Sequence



Proline
Rigidity/
Sturctural
Hydro-
Relative Ratio 


ID



Position
Flexibility
Feature
pathy
(Fold)

















Number
aMTD
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)
A
B
C





160
707
IVALAVLPAVAP
12
8
50.2
203.3
2.4
7.3
4.9
2.5





212
872
VLAAAVLPLVVP
12
8
41.3
219.2
2.5
7.3
4.9
2.5





135
583
AVILALAPIVAP
12
8
50.2
211.6
2.4
7.3
4.8
2.4





216
879
AAIVLLPAVVVP
12
7
50.2
219.1
2.5
7.2
4.8
2.4





175
784
VAALPAVALVVP
12
5
57.3
195.0
2.4
7.1
4.7
2.4





225
893
VIAIPAILAAAP
12
5
54.9
195.8
2.3
7.0
4.7
2.4





  8
 13
AAALVPVVALLP
12
6
57.3
203.3
2.3
7.0
4.7
2.4





184
809
LIVLAAPALAAP
12
7
50.2
195.8
2.2
7.0
4.7
2.4





104
445
ALAALVPALVVP
12
7
57.3
203.3
2.3
6.9
4.6
2.3





 22
 81
AALLPALAALLP
12
5
57.3
204.2
2.1
6.9
4.6
2.3





151
667
LAVAIVAPALVP
12
8
50.2
203.3
2.3
6.9
4.6
2.3





235
906
AVIALAPVVVAP
12
7
57.3
195.0
2.4
6.8
4.6
2.3





112
483
ILAAAIIPAALP
12
8
54.9
204.1
2.2
6.8
4.5
2.3





114
485
AILAAIVPLAVP
12
8
50.2
211.6
2.4
6.8
4.5
2.3





 97
421
AAILAAPLIAVP
12
7
57.3
195.8
2.2
6.7
4.5
2.3





136
585
ALIVAIAPALVP
12
8
50.2
211.6
2.4
6.6
4.4
2.2





 99
424
AVVVAAPVLALP
12
7
57.3
195.0
2.4
6.6
4.4
2.2





 85
364
LVAAVAPALIVP
12
7
50.2
203.3
2.3
6.5
4.3
2.2





 93
402
ALAAVIPAAILP
12
7
54.9
195.8
2.2
6.4
4.3
2.2





106
462
IAAVLVPAVALP
12
7
57.3
203.3
2.4
6.3
4.2
2.1





 64
265
VLAIAPLLAAVP
12
6
41.3
211.6
2.3
6.0
4.0
2.0





 70
301
VIAAPVLAVLAP
12
6
57.3
203.3
2.4
6.0
4.0
2.0





 45
183
LLAAPVVIALAP
12
6
57.3
211.6
2.4
6.0
4.0
2.0





 58
243
AAVLLPVALAAP
12
6
57.3
187.5
2.1
5.9
3.9
2.0





148
664
ILIAIAIPAAAP
12
8
54.9
204.1
2.3
5.7
3.8
1.9





174
783
IVALVPAVAIAP
12
6
50.2
203.3
2.5
5.7
3.8
1.9





116
502
AIVALAVPVLAP
12
8
50.2
203.3
2.4
5.6
3.7
1.9





 61
262
ALIAVPAIIVAP
12
6
50.2
211.6
2.4
5.5
3.7
1.9





152
683
LAIVLAAPAVLP
12
8
50.2
211.7
2.4
5.5
3.2
1.9





193
830
IALVAAPVALVP
12
7
57.3
203.3
2.4
5.3
3.5
1.8





170
764
AVALAVLPAVVP
12
8
57.3
195.0
2.3
5.0
3.4
1.7





182
807
AVALAVPALVLP
12
7
57.3
203.3
2.3
5.0
3.3
1.7





 46
184
LAAIVPAIIAVP
12
6
50.2
211.6
2.4
4.8
3.2
1.6





 73
305
IALAAPILLAAP
12
6
57.3
204.2
2.2
4.8
3.2
1.6





 27
101
LVALAPVAAVLP
12
6
57.3
203.3
2.3
4.5
3.0
1.5





 72
304
AIILAPIAAIAP
12
6
57.3
204.2
2.3
4.4
3.0
1.5





140
604
VALIAVAPAVVP
12
8
57.3
195.0
2.4
4.3
2.5
1.5





146
645
ALAVVALPAIVP
12
8
50.2
203.3
2.4
4.3
2.9
1.5





 48
201
LALAVPALAALP
12
6
57.3
195.8
2.1
4.2
2.8
1.4





 41
163
LALVLPAALAAP
12
6
57.3
195.8
2.1
4.1
2.4
1.4





195
832
AVAAIVPVIVAP
12
7
43.2
195.0
2.5
4.1
2.7
1.4





 44
182
ALIAPVVALVAP
12
6
57.3
203.3
2.4
4.0
2.7
1.4





 11
 23
VVLVLPAAAAVP
12
6
57.3
195.0
2.4
4.0
2.6
1.3





 31
105
LLALAPAALLAP
12
6
57.3
204.1
2.1
4.0
2.6
1.3





129
561
AAVAIVLPAVVP
12
8
50.2
195.0
2.4
3.9
2.6
1.3





171
765
AVALAVVPAVLP
12
8
57.3
195.0
2.3
3.8
2.2
1.3





153
684
AAIVLALPAVLP
12
8
50.2
211.7
2.4
3.5
2.1
1.2





 36
143
AVLAVPAVLVAP
12
6
57.3
195.0
2.4
3.3
2.2
1.1





118
504
LIVALAVPALAP
12
8
50.2
211.7
2.4
3.3
2.2
1.1





 10
 22
AVVLVPVLAAAP
12
6
57.3
195.0
2.4
3.1
2.1
1.1





  5
  5
AAALLPVALVAP
12
6
57.3
187.5
2.1
3.1
2.1
1.0





 67
283
AALLAPALIVAP
12
6
50.2
195.8
2.2
3.1
2.0
1.0





 21
 65
IAIVAPVVALAP
12
6
50.2
203.3
2.4
3.0
2.0
1.0





219
883
LAIVPAAIAALP
12
6
50.2
195.8
2.2
3.0
2.0
1.0





 33
123
AAIIVPAALLAP
12
6
50.2
195.8
2.2
2.9
2.0
1.0
























TABLE 30







Sequence



Proline
Rigidity/
Sturctural
Hydro-
Relative Ratio 


ID



Position
Flexibility
Feature
pathy
(Fold)

















Number
aMTD
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)
A
B
C





 68
284
ALIAPAVALIVP
12
5
50.2
211.7
2.4
2.8
1.8
0.9





 50
205
ALALVPAIAALP
12
6
57.3
195.8
2.2
2.6
1.7
0.9





 14
 42
VAALPVVAVVAP
12
5
57.3
186.7
2.4
2.5
1.7
0.8





 32
121
AIVALPAIALAP
12
6
50.2
195.8
2.2
2.5
1.7
0.8





 13
 25
IVAVAPALVALP
12
6
50.2
203.3
2.4
2.4
1.6
0.8





 12
 24
IALAAPALIVAP
12
6
50.2
195.8
2.2
2.3
1.6
0.8





 49
204
LIAALPAVAALP
12
6
57.3
195.8
2.2
2.2
1.5
0.8





  7
 12
LLAAVPAVLLAP
12
6
57.3
211.7
2.3
2.2
1.5
0.7





 15
 43
LLAAPLVVAAVP
12
5
41.3
187.5
2.1
2.1
1.4
0.7





 29
103
ALIAAPILALAP
12
6
57.3
204.2
2.2
2.1
1.4
0.7





 23
 82
AVVLAPVAAVLP
12
6
57.3
195.0
2.4
2.1
1.4
0.7





  4
  4
ALALLPVAALAP
12
6
57.3
195.8
2.1
2.0
1.3
0.7





 26
 85
LLVLPAAALAAP
12
5
57.3
195.8
2.1
1.9
1.3
0.7





 19
 63
AALLVPALVAVP
12
6
57.3
203.3
2.3
1.9
1.3
0.7





 16
 44
ALAVPVALLVAP
12
5
57.3
203.3
2.3
1.6
1.1
0.5





 25
 84
AAVAAPLLLALP
12
6
41.3
195.8
2.1
1.5
1.0
0.5





 18
 62
VALLAPVALAVP
12
6
57.3
203.3
2.3
1.4
0.9
0.5





 24
 83
LAVAAPLALALP
12
6
41.3
195.8
2.1
1.4
0.9
0.5





 28
102
LALAPAALALLP
12
5
57.3
204.2
2.1
1.4
0.9
0.5





143
623
VAAAIALPAIVP
12
8
50.2
187.5
2.3
0.8
0.6
0.3













19.6 ±
13.1 ±
6.6 ±










1.6
1.1
0.5










Moreover, compared to reference CPPs (B type: MTM12 and C type: MTD85), novel 240 aMTDs averaged of 13±1.1 (maximum 109.9) and 6.6±0.5 (maximum 55.5) fold higher cell-permeability, respectively (Tables 26-31).












TABLE 31






Negative Control





rP38
MTM12
MTD85


















aMTD
19.6 ± 1.6*
13.1 ± 1.1*
6.6 ± 0.5*


The Average of 240 aMTDs
(Best: 164.2)
(Best: 109.9)
(Best: 55.5)





*Relative Fold (aMTD in Geo Mean in its comparison to rP38, MTM12 or MTD85)






In addition, cell-permeability of 31 rPeptides has been compared with that of 240 aMTDs (0.3±0.04; Tables 32 and 33).

















TABLE 32





Number



Proline
Rigidity/
Sturctural
Hydro-
Relative


SEQ ID



Position
Flexibility
Feature
pathy
Ratio To


NOS)
ID
Sequence
Length
(PP)
(II)
(AI)
(GRAVY)
aMTD AVE







907
692
PAPLPPVVILAV
12
1, 3, 5, 6
105.5
186.7
 1.8
0.74





895
 26
AAIAKLAAPLAIV
12
8
 18.1
204.2
 2.5
0.65





891
113
PVAVALLIAVPP
12
1, 11, 12
 57.3
195.0
 2.1
0.61





897
466
IIAAAAPLAIIP
12
7, 12
 22.8
204.2
 2.3
0.52





898
167
VAIAIPAALAIP
12
6, 12
 20.4
195.8
 2.3
0.50





936
 97
ALLAAPPALLAL
12
6, 7
 57.3
204.2
 2.1
0.41





909
390
VPLLVPVVPVVP
12
2, 6, 9, 12
105.4
210.0
 2.2
0.41





900
426
AAALAIPLAIIP
12
7, 12
  4.37
204.2
 2.2
0.40





937
241
ALIVAPALMALP
12
6, 12
 60.5
187.5
 2.2
0.33





913
 68
VAPVLPAAPLVP
12
3, 6, 9, 12
105.5
162.5
 1.6
0.32





941
 39
CYNTSPCTGCCY
12
6
 52.5
  0.0
 0.0
0.29





888
934
LILAPAAVVAAA
12
5
 57.5
195.8
 2.5
0.28





916
938
VPVLLPVVVPVP
12
2, 6, 10, 12
121.5
210.0
 2.2
0.28





917
329
LPVLVPVVPVVP
12
2, 6, 9, 12
121.5
210.0
 2.2
0.23





901
606
AAAIAAIPIIIP
12
8, 12
  4.4
204.2
 2.4
0.20





918
 49
VVPAAPAVPVVP
12
3, 6, 9, 12
121.5
145.8
 1.7
0.18





944
139
TGSTNSPTCTST
12
7
 53.4
  0.0
-0.7
0.17





919
772
LPVAPVIPIIVP
12
2, 5, 8, 12
 79.9
210.8
 2.1
0.16





931
921
IWWFVVLPLVVP
12
8, 12
 41.3
194.2
 2.2
0.14





902
 66
AGVLGGPIMGVP
12
7, 12
 35.5
121.7
 1.3
0.13





922
693
AAPVLPVAVPIV
12
3, 6, 10
 82.3
186.7
 2.1
0.13





945
 18
NYCCTPTTNGQS
12
6
 47.9
  0.0
-0.9
0.10





890
 16
NNSCITYINGSQ
12
None
 47.4
  0.0
-1.4
0.08





904
227
LAAIVPIAAAVP
12
6, 12
 34.2
187.5
 2.2
0.08





905
 17
GGCSAPQTTCSN
12
6
 51.6
  8.3
-0.5
0.08





906
 67
LDAEVPLADDVP
12
6, 12
 34.2
130.0
 0.3
0.08





947
635
GSTGGSQQNNQY
12
None
 31.9
  0.0
-1.9
0.07





924
 29
VLPPLPVLPVLP
12
3, 4, 6, 9, 12
121.5
202.5
 1.7
0.07





949
 57
QNNCNTSSQGGG
12
None
 52.4
  0.0
-1.6
0.06





951
700
GTSNTCQSNQNS
12
None
 19.1
  0.0
-1.6
0.05





952
 38
YYNQSTCGGQCY
12
ND
 53.8
  0.0
-1.0
0.05












AVE
0.3 ± 0.04



















TABLE 33








Relative Ratio to




aMTD AVE*









rPeptide
0.3 ± 0.04



The Average of 31 aMTDs







*Out of 240 aMTDs, average relative fold of aMTD had been 19.6 fold compared to type A (rP38).






In summary, relative cell-permeability of aMTDs has shown maximum of 164.0, 109.9 and 55.5 fold higher to rP38, MTM12 and MTD85, respectively. In average of total 240 aMTD sequences, 19.6±1.6, 13.1±1.1 and 6.6±0.5 fold higher cell-permeability are shown to the rP38, MTM12 and MTD85, respectively (Tables 26-31). Relative cell-permeability of negative control (rP38) to the 240 aMTDs is only 0.3±0.04 fold.


4-5. Intracellular Delivery and Localization of aMTD-Fused Recombinant Proteins


Recombinant proteins fused to the aMTDs were tested to determine their intracellular delivery and localization by laser scanning confocal microscopy with a negative control (rP38) and previous published CPPs (MTM12 and MTD85) as the positive control references. NIH3T3 cells were exposed to 10 μM of FITC-labeled protein for 1 hour at 37, and nuclei were counterstained with DAPI. Then, cells were examined by confocal laser scanning microscopy (FIG. 7). Recombinant proteins fused to aMTDs clearly display intracellular delivery and cytoplasmic localization (FIG. 7) that are typically higher than the reference CPPs (MTM12 and MTD85). The rP38-fused recombinant protein did not show internalized fluorescence signal (FIG. 7a). In addition, as seen in FIG. 8, rPeptides (his-tagged CRA recombinant proteins fused to each rPeptide) display lower- or non-cell-permeability.


4-6. Summary of Quantitative and Visual Cell-Permeability of Newly Developed aMTDs


Histidine-tagged aMTD-fused cargo recombinant proteins have been greatly enhanced in their solubility and yield. Thus, FITC-conjugated recombinant proteins have also been tested to quantitate and visualize intracellular localization of the proteins and demonstrated higher cell-permeability compared to the reference CPPs.


In the previous studies using the hydrophobic signal-sequence-derived CPPs-MTS/MTM or MTDs, 17 published sequences have been identified and analyzed in various characteristics such as length, molecular weight, pI value, bending potential, rigidity, flexibility, structural feature, hydropathy, amino acid residue and composition, and secondary structure of the peptides. Based on these analytical data of the sequences, novel artificial and non-natural peptide sequences designated as advanced MTDs (aMTDs) have been invented and determined their functional activity in intracellular delivery potential with aMTD-fused recombinant proteins.


aMTD-fused recombinant proteins have promoted the ability of protein transduction into the cells compared to the recombinant proteins containing rPeptides and/or reference hydrophobic CPPs (MTM12 and MTD85). According to the results, it has been demonstrated that critical factors of cell-penetrating peptide sequences play a major role to determine peptide-mediated intracellular delivery by penetrating plasma membrane. In addition, cell-permeability can considerably be improved by following the rational that all satisfy the critical factors.


5. Structure/Sequence Activity Relationship (SAR) of aMTDs on Delivery Potential


After determining the cell-permeability of novel aMTDs, structure/sequence activity relationship (SAR) has been analyzed for each critical factor in selected some of and all of novel aMTDs (FIGS. 13 to 16 and Table 34).
















TABLE 34







Rank of
Rigidity/
Sturctural

















Delivery
Flexibility
Feature
Hydropathy
Relative Ratio (Fold)
Amino Acid Composition

















Potential
(II)
(AI)
(GRAVY)
A
B
C
A
V
I
L




















 1~10
55.9
199.2
2.3
112.7
75.5
38.1
4.0
3.5
0.4
2.1


11~20
51.2
205.8
2.4
56.2
37.6
19.0
4.0
2.7
1.7
1.6


21~30
49.1
199.2
2.3
43.6
28.9
14.6
4.3
2.7
1.4
1.6


31~40
52.7
201.0
2.4
34.8
23.3
11.8
4.2
2.7
1.5
1.6


41~50
53.8
201.9
2.3
30.0
20.0
10.1
4.3
2.3
1.1
2.3


51~60
51.5
205.2
2.4
23.5
15.7
7.9
4.4
2.1
1.5
2.0


222~231
52.2
197.2
2.3
2.2
1.5
0.8
4.5
2.1
1.0
2.4


232~241
54.1
199.7
2.2
1.7
1.2
0.6
4.6
1.7
0.2
3.5









5-1. Proline Position:


In regards to the bending potential (proline position: PP), aMTDs with its proline at 7′ or 8′ amino acid in their sequences have much higher cell-permeability compared to the sequences in which their proline position is at 5′ or 6′ (FIGS. 14a and 15a).


5-2. Hydropathy:


In addition, when the aMTDs have GRAVY (Grand Average of Hydropathy) ranging in 2.1-2.2, these sequences display relatively lower cell-permeability, while the aMTDs with 2.3-2.6 GRAVY are shown significantly higher one (FIGS. 14b and 15b).


5-3. rPeptide SAR:


To the SAR of aMTDs, rPeptides have shown similar SAR correlations in the cell-permeability, pertaining to their proline position (PP) and hydropathy (GRAVY). These results confirms that rPeptides with high GRAVY (2.4˜2.6) have better cell-permeability (FIG. 16).


5-4. Analysis of Amino Acid Composition:


In addition to proline position and hydropathy, the difference of amino acid composition is also analyzed. Since aMTDs are designed based on critical factors, each aMTD-fused recombinant protein has equally two proline sequences in the composition. Other hydrophobic and aliphatic amino acids—alanine, isoleucine, leucine and valine—are combined to form the rest of aMTD peptide sequences.


Alanine: In the composition of amino acids, the result does not show a significant difference by the number of alanine in terms of the aMTD's delivery potential because all of the aMTDs have three to five alanines. In the sequences, however, four alanine compositions show the most effective delivery potential (geometric mean) (FIG. 13a).


Leucine and Isoleucine: Also, the compositions of isoleucine and leucine in the aMTD sequences show inverse relationship between the number of amino acid (I and L) and delivery potential of aMTDs. Lower number of isoleucine and leucine in the sequences tends to have higher delivery potential (geometric mean) (FIGS. 13a and 13b).


Valine: Conversely, the composition of valine of aMTD sequences shows positive correlation with their cell-permeability. When the number of valine in the sequence is low, the delivery potential of aMTD is also relatively low (FIG. 13b).


Ten aMTDs having the highest cell-permeability are selected (average geometric mean: 2584±126). Their average number of valine in the sequences is 3.5; 10 aMTDs having relatively low cell-permeability (average geometric mean: 80±4) had average of 1.9 valine amino acids. The average number of valine in the sequences is lowered as their cell-permeability is also lowered as shown in FIG. 13b. Compared to higher cell-permeable aMTDs group, lower sequences had average of 1.9 in their valine composition. Therefore, to obtain high cell-permeable sequence, an average of 2-4 valines should be composed in the sequence.


5-5. Conclusion of SAR Analysis:


As seen in FIG. 15, all 240 aMTDs have been examined for these association of the cell-permeability and the critical factors: bending potential (PP), rigidity/flexibility (II), structure feature (AI), and hydropathy (GRAVY), amino acid length and composition. Through this analysis, cell-permeability of aMTDs tends to be lower when their central proline position is at 5′ or 6′ and GRAVY is 2.1 or lower (FIG. 15). Moreover, after investigating 10 higher and 10 lower cell-permeable aMTDs, these trends are clearly shown to confirm the association of cell-permeability with the central proline position and hydropathy.


6. Experimental Confirmation of Index Range/Feature of Critical Factors


The range and feature of five out of six critical factors have been empirically and experimentally determined that are also included in the index range and feature of the critical factors initially proposed before conducting the experiments and SAR analysis. In terms of index range and feature of critical factors of newly developed 240 aMTDs, the bending potential (proline position: PP), rigidity/flexibility (Instability Index: II), structural feature (Aliphatic Index: AI), hydropathy (GRAVY), amino acid length and composition are all within the characteristics of the critical factors derived from analysis of reference hydrophobic CPPs.


Therefore, our hypothesis to design and develop new hydrophobic CPP sequences as advanced MTDs is empirically and experimentally proved and demonstrated that critical factor-based new aMTD rational design is correct.









TABLE 35







Summarized Critical Factors of aMTD










Newly Designed
Analysis of



CPPs
Experimental Results


Critical Factor
Range
Range












Bending Potential
Proline presences in
Proline presences in


(Proline Position: PP)
the middle (5′, 6′, 7′
the middle (5′, 6′, 7′



or 8′) and at the
or 8′) and at the



end of peptides
end of peptides


Rigidity/Flexibility
40-60
41.3-57.3


(Instability Index: II)




Structural Feature
180-220
187.5-220.0


(Aliphatic Index: AI)




Hydropathy
2.1-2.6
2.2-2.6


(Grand Average of




Hydropathy GRAVY)




Length
 9-13
12


(Number of Amino Acid)




Amino acid Composition
A, V, I, L, P
A, V, I, L, P









7. Discovery and Development of Protein-Based New Biotherapeutics with MITT Enabled by aMTDs for Protein Therapy


Total of 240 aMTD sequences have been designed and developed based on the critical factors. Quantitative and visual cell-permeability of 240 aMTDs (hydrophobic, flexible, bending, aliphatic and 12 a/a-length peptides) are all practically determined.


To measure the cell-permeability of aMTDs, rPeptides have also been designed and tested. As seen in FIGS. 13 to 15, there are vivid association of cell-permeability and the critical factors of the peptides. Out of these critical factors, we are able to configure that the most effective cell-permeable aMTDs have the amino acid length of 12; composition of A, V, L, I and P; multiple proline located at either 7′ or 8′ and at the end (12′); instability index ranged of 41.3-57.3; aliphatic index ranged of 187.5-220.0; and hydropathy (GRAVY) ranged of 2.2-2.6.


These examined critical factors are within the range that we have set for our critical factors; therefore, we are able to confirm that the aMTDs that satisfy these critical factors have relatively high cell-permeability and much higher intracellular delivery potential compared to reference hydrophobic CPPs reported during the past two decades.


It has been widely evident that many human diseases are caused by proteins with deficiency or over-expression that causes mutations such as gain-of-function or loss-of-function. If biologically active proteins could be delivered for replacing abnormal proteins within a short time frame, possibly within an hour or two, in a quantitative manner, the dosage may be regulated depending on when and how proteins may be needed. By significantly improving the solubility and yield of novel aMTD in this invention (Table 31), one could expect its practical potential as an agent to effectively deliver therapeutic macromolecules such as proteins, peptides, nucleic acids, and other chemical compounds into live cells as well as live mammals including human. Therefore, newly developed MITT utilizing the pool (240) of novel aMTDs can be used as a platform technology for discovery and development of protein-based biotherapeutics to apprehend intracellular protein therapy after determining the optimal cargo-aMTD relationship.


The following examples are presented to aid practitioners of the invention, to provide experimental support for the invention, and to provide model protocols. In no way are these examples to be understood to limit the invention.


Example 1. Development of Novel Advanced Macromolecule Transduction Domain (aMTD)

H-regions of signal sequences (HRSP)-derived CPPs (MTS/MTM and MTD) do not have a common sequence, a sequence motif, and/or a common structural homologous feature. In this invention, the aim is to develop improved hydrophobic CPPs formatted in the common sequence and structural motif that satisfy newly determined ‘critical factors’ to have a ‘common function,’ to facilitate protein translocation across the plasma membrane with similar mechanism to the analyzed CPPs.


The structural motif as follows:




embedded image


In Table 9, universal common sequence/structural motif is provided as follows. The amino acid length of the peptides in this invention ranges from 9 to 13 amino acids, mostly 12 amino acids, and their bending potentials are dependent with the presence and location of proline in the middle of sequence (at 5′, 6′, 7′ or 8′ amino acid) and at the end of peptide (at 12′) for recombinant protein bending. Instability index (II) for rigidity/flexibility of aMTDs is II<40, grand average of hydropathy (GRAVY) for hydropathy is around 2.2, and aliphatic index (AI) for structural features is around 200 (Table 9). Based on these standardized critical factors, new hydrophobic peptide sequences, namely advanced macromolecule transduction domain peptides (aMTDs), in this invention have been developed and summarized in Tables 10 to 15.


Example 2. Construction of Expression Vectors for Recombinant Proteins Fused to aMTDs

Our newly developed technology has enabled us to expand the method for making cell-permeable recombinant proteins. The expression vectors were designed for histidine-tagged CRA proteins fused with aMTDs or rPeptides. To construct expression vectors for recombinant proteins, polymerase chain reaction (PCR) had been devised to amplify each designed aMTD or rPeptide fused to CRA.


The PCR reactions (100 ng genomic DNA, 10 pmol each primer, each 0.2 mM dNTP mixture, 1× reaction buffer and 2.5 U Pfu(+) DNA polymerase (Doctor protein, Korea) was digested on the restriction enzyme site between Nde I (5′) and Sal I (3′) involving 35 cycles of denaturation (95° C.), annealing (62° C.), and extension (72° C.) for 30 seconds each. For the last extension cycle, the PCR reactions remained for 5 minutes at 72° C. Then, they were cloned into the site of pET-28a(+) vectors (Novagen, Darmstadt, Germany). DNA ligation was performed using T4 DNA ligase at 4° C. overnight. These plasmids were mixed with competent cells of E. coli DH5-alpha strain on the ice for 10 minutes. This mixture was placed on the ice for 2 minutes after it was heat shocked in the water bath at 42° C. for 90 seconds. Then, the mixture added with LB broth media was recovered in 37° C. shaking incubator for 1 hour. Transformant was plated on LB broth agar plate with kanamycin (50 μg/mL) (Biopure, Johnson City, Tenn., USA) before incubating at 37° C. overnight. From a single colony, plasmid DNA was extracted, and after the digestion of Nde I and Sal I restriction enzymes, digested DNA was confirmed at 645 bp by using 1.2% agarose gels electrophoresis (FIG. 2). PCR primers for the CRA recombinant proteins fused to aMTD and random peptides (rPeptide) are summarized in Tables 23 to 30. Amino acid sequences of aMTD and rPeptide primers are shown in Tables 31 to 38.


Example 3. Inducible Expression, Purification and Preparation of Recombinant Proteins Fused to aMTDs and rPeptides

To express recombinant proteins, pET-28a(+) vectors for the expression of CRA proteins fused to a negative control [rPeptide 38 (rP38)], reference hydrophobic CPPs (MTM12 and MTD85) and aMTDs were transformed in E. coli BL21 (DE3) strains. Cells were grown at 37° C. in LB medium containing kanamycin (50 μg/ml) with a vigorous shaking and induced at OD600=0.6 by adding 0.7 mM IPTG (Biopure) for 2 hours at 37° C. Induced recombinant proteins were loaded on 15% SDS-PAGE gel and stained with Coomassie Brilliant Blue (InstantBlue, Expedeon, Novexin, UK) (FIG. 3).


The E. coli cultures were harvested by centrifugation at 5,000×rpm for 10 minutes, and the supernatant was discarded. The pellet was re-suspended in the lysis buffer (50 mM NaH2PO4, 10 mM Imidazol, 300 mM NaCl, pH 8.0). The cell lysates were sonicated on ice using a sonicator (Sonics and Materials, Inc., Newtown, Conn., USA) equipped with a probe. After centrifuging the cell lysates at 5,000×rpm for 10 minutes to pellet the cellular debris, the supernatant was incubated with lysis buffer-equilibrated Ni-NTA resin (Qiagen, Hilden, Germany) gently by open-column system (Bio-rad, Hercules, Calif., USA). After washing protein-bound resin with 200 ml wash buffer (50 mM NaH2PO4, 20 mM Imidazol, 300 mM NaCl, pH 8.0), the bounded proteins were eluted with elution buffer (50 mM NaH2PO4, 250 mM Imidazol, 300 mM NaCl, pH 8.0).


Recombinant proteins purified under natural condition were analyzed on 15% SDS-PAGE gel and stained with Coomassie Brilliant Blue (FIG. 4). All of the recombinant proteins were dialyzed for 8 hours and overnight against physiological buffer, a 1:1 mixture of cell culture medium (Dulbecco's Modified Eagle's Medium: DMEM, Hyclone, Logan, Utah, USA) and Dulbecco's phosphate buffered saline (DPBS, Gibco, Grand Island, N.Y., USA). From 316 aMTDs and 141 rPeptides cloned, 240 aMTD- and 31 rPeptide-fused recombinant proteins were induced, purified, prepared and analyzed for their cell-permeability.


Example 4. Determination of Quantitative Cell-Permeability of Recombinant Proteins

For quantitative cell-permeability, the aMTD- or rPeptide-fused recombinant proteins were conjugated to fluorescein isothiocyanate (FITC) according to the manufacturer's instructions (Sigma-Aldrich, St. Louis, Mo., USA). RAW 264.7 cells were treated with 10 μM FITC-labeled recombinant proteins for 1 hour at 37° C., washed three times with cold PBS, treated with 0.25% tripsin/EDTA (Sigma-Aldrich, St. Louis, Mo.) for 20 minutes at 37° C. to remove cell-surface bound proteins. Cell-permeability of these recombinant proteins were analyzed by flow cytometry (Guava, Millipore, Darmstadt, Germany) using the FlowJo cytometric analysis software (FIGS. 5 to 6). The relative cell-permeability of aMTDs were measured and compared with the negative control (rP38) and reference hydrophobic CPPs (MTM12 and MTD85) (Table 31).


Example 5. Determination of Cell-Permeability and Intracellular Localization of Recombinant Proteins

For a visual reference of cell-permeability, NIH3T3 cells were cultured for 24 hours on coverslip in 24-wells chamber slides, treated with 10 μM FITC-conjugated recombinant proteins for 1 hour at 37° C., and washed three times with cold PBS. Treated cells were fixed in 4% paraformaldehyde (PFA, Junsei, Tokyo, Japan) for 10 minutes at room temperature, washed three times with PBS, and mounted with VECTASHIELD Mounting Medium (Vector laboratories, Burlingame, Calif., USA), and counter stained with DAPI (4′,6-diamidino-2-phenylindole). The intracellular localization of the fluorescent signal was determined by confocal laser scanning microscopy (LSM700, Zeiss, Germany; FIGS. 7 and 8).


Example 6-1. Cloning of aMTD/SD-Fused SOCS3 Recombinant Protein

Full-length cDNA for human SOCS3 (SEQ ID NO: 815) was purchased from Origene (USA). Histidine-tagged human SOCS3 proteins were constructed by amplifying the SOCS3 cDNA (225 amino acids) using primers for aMTD fused to SOCS3 cargo. The PCR reactions (100 ng genomic DNA, 10 pmol each primer, each 0.2 mM dNTP mixture, 1× reaction buffer and 2.5 U Pfu(+) DNA polymerase (Doctor protein, Korea)) were digested on the restriction enzyme site between Nde I (5′) and Sal I (3′) involving 35 cycles of denaturing (95° C.), annealing (62° C.), and extending (72° C.) for 45 sec each. For the last extension cycle, the PCR reactions remained for 10 min at 72° C. The PCR products were subcloned into 6×His expression vector, pET-28a(+) (Novagen, Darmstadt, Germany). Coding sequence for SDA or SDB fused to C terminus of his-tagged aMTD-SOCS3 was cloned at BamHI (5′) and Sal1 (3′) in pET-28a(+) from PCR-amplified DNA segments and confirmed by DNA sequence analysis of the resulting plasmids.













TABLE 36







Recombinant




Cargo
SD
Protein
5′ Primers
3′ Primers







SOCS3

HS3
5′-GGAATTCCATATGGTCA
5′-CCCGGATCCTTAAAGC





CCCACAGCAAGTTTCCCGC
GGGGCATCGTACTGGTCC





CGCC-3′
AGGAA-3′





(SEQ ID NO: 955)
(SEQ ID NO: 956)




HM165S3
5′-GGAATTCCATATGGCGCT
5′-CCCGGATCCTTAAAG





GGCGGTGCCGGTGGCGCT
CGGGGCATCGTACTGGT





GGCGATTGTGCCGGTCACC
CCAGGAA-3′





CACAGCAAGTTTC-3′
(SEQ ID NO: 958)





(SEQ ID NO: 957)




A
HM165S3A
5′-GGAATTCCATATGGCGC
5′-CGCGTCGACTTACCTCG





TGGCGGTGCCGGTGGCGC
GCTGCACCGG CACGGAG





TGGCGATTGTGCCGGTCAC
ATGAC-3′





CCACAGCAAGTTTC-3′
(SEQ ID NO: 960)





(SEQ ID NO: 959)




B
HM165S3B
5′-GGAATTCCATATGGCGCT
5′-CGCGTCGACTTAAAGG





GGCGGTGCCGGTGGCGCT
GTTTCCGAAGGCTTGGCT





GGCGATTGTGCCGGTCACC
ATCTT-3′





CACAGCAAGTTTC-3′
(SEQ ID NO: 962)





(SEQ ID NO: 961)




C
HM165S3C
5′-GGAATTCCATATGGCGC
5′-GCGTCGACTTAGGC





TGGCGGTGCCGGTGGCGCT
CAGGTTAGCGTCGAG-3′





GGCGATTGTGCCGGTCACC
(SEQ ID NO: 964)





CACAGCAAGTTTC-3′






(SEQ ID NO: 963)




D
HM165S3D
5′-GGAATTCCATATGGCGC
5′-GCGTCGACTTATTTT





TGGCGGTGCCGGTGGCGC
TTCTCGGACAGATA-3′





TGGCGATTGTGCCGGTCAC
(SEQ ID NO: 966)





CCACAGCAAGTTTC-3′






(SEQ ID NO: 965)




E
HM165S3E
5′-GGAATTCCATATGGCGC
5′-ACGCGTCGACTTAA





TGGCGGTGCCGGTGGCGC
CCTCCAATCTGTTCGCG





TGGCGATTGTGCCGGTCA
GTGAGCCTC-3′





CCCACAGCAAGTTTC-3′
(SEQ ID NO: 968)





(SEQ ID NO: 967)









Example 6-2. Preparation of aMTD/SD-Fused SOCS3 Recombinant Protein

To determine a stable structure of the cell-permeable aMTD/SD-fused SOCS3 recombinant protein, a pET-28a(+) vector and an E. coli BL21-CodonPlus (DE3)-RIL were subjected to the following experiment.


Each of the recombinant expression vectors, HS3, HMS3, HMS3A, HMS3B, HMS3C, HMS3D, and HMS3E prepared in example 6-1 was transformed into E. coli BL21 CodonPlus(DE3)-RIL by a heat shock method, and then 600 ul of each was incubated in an LB medium (Biopure, Johnson City, Tenn., USA) containing 50 μg/ml of kanamycin at 37° C. for 1 hour. Thereafter, the recombinant protein gene-introduced E. coli was inoculated in 7 ml of LB medium, and then incubated at 37° C. overnight. The E. coli was inoculated in 700 ml of LB medium and incubated at 37° C. until OD600 reached 0.6. To this culture medium, 0.6 mM of isopropyl-β-D-thiogalactoside (IPTG, Gen Depot, USA) was added as a protein expression inducer, followed by further incubation at 37° C. for 3 hours. This culture medium was centrifuged at 4° C. and 8,000 rpm for 10 minutes and a supernatant was discarded to recover a cell pellet. The cell pellet thus recovered was suspended in a lysis buffer (100 mM NaH2PO4, 10 mM Tris-HCl, 8 M Urea, pH 8.0), and cells were disrupted by sonication (on/off time: 30 sec/30 sec, on time 2 hours, amplify 40%), and centrifuged at 15,000 rpm for 30 min to obtain a soluble fraction and an insoluble fraction.


This insoluble fraction was suspended in a denature lysis buffer (8 M Urea, 10 mM Tris, 100 mM Sodium phosphate) and purified by Ni2+ affinity chromatography as directed by the supplier(Qiagen, Hilden, Germany) and refolded by dialyzing with a refolding buffer (0.55 M guanidine HCl, 0.44 M L-arginine, 50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 100 mM NDSB, 2 mM reduced glutathione, and 0.2 mM oxidized glutathione). After purification, the proteins were put in a SnakeSkin Dialysis Tubing bag (pore size: 10000 mw, Thermo scientific, USA) and then they were dialyzed by physiological buffer (DMEM). The strain lysate where protein expression was not induced, the strain lysate where protein expression was induced by addition of IPTG, and purified proteins were loaded on SDS-PAGE to analyze protein expression characteristics and expression levels (FIGS. 19 and 20).


As shown in FIG. 19, it was confirmed that SOCS3 recombinant proteins showed high expression levels in the BL21CodonPlus(DE3)-RIL strain. SOCS3 recombinant proteins containing aMTD165 and solubilization domain (HM165S3A and HM165S3B) had little tendency to precipitate whereas recombinant SOCS3 proteins lacking a solubilization domain (HM165S3) or lacking an aMTD and a SD (HS3) were largely insoluble. Solubility of aMTD/SD-fused SOCS3 proteins was scored on a 5 point scale compared with that of SOCS3 proteins lacking the solubilization domain.


Example 6-3. Determination of Solubility/Yield of aMTD/SD-Fused SOCS3 Recombinant Proteins According to SD Type

To determine aMTD/SD-fused SOCS3 recombinant proteins having optimal cell-permeability, solubilization domains were replaced in the same manner as in Example 6-2 to prepare 5 kinds of aMTD/SD-fused SOCS3 recombinant proteins, and their solubility/yield were measured (FIG. 19).


As shown in FIG. 19, it was confirmed that the aMTD/SD-fused SOCS3 recombinant protein prepared by fusing with SDB among the different SDs showed the highest solubility/yield. Therefore, the SDB-fused iCP-SOCS3 recombinant protein was used in the subsequent experiment.


Example 6-4. Comparison Between aMTD/SD-Fused SOCS3 Recombinant Protein and Basic CPP/SD-Fused SOCS3 Recombinant Protein

To compare the solubility/yield, cell/tissue-permeability, mechanism of cytopermeability of aMTD/SD-fused SOCS3 recombinant proteins to those of conventional basic CPP/SD-fused SOCS3 recombinant proteins, cloning, preparation, and measurement of solubility/yield of the basic CPP/SD-fused SOCS3 recombinant proteins were performed in the same manner as in Examples 6-1 to 6-3 except for a known basic CPP (TAT or PolyR) being used instead of aMTD. Sequences of amino acids and nucleotides of basic CPP, and the primers used in this example are shown in FIG. 97.


The solubility/yield of aMTD165/SD-fused SOCS3 recombinant proteins was much higher than that of TAT/SD-fused SOCS3 or PolyR/SD-fused SOCS3 recombinant proteins (FIG. 98).


Example 7-1. Cell-Permeability Test

To examine cell-permeability of SOCS3 recombinant protein, SOCS3 recombinant proteins were conjugated to 5/6-fluorescein isothiocyanate (FITC). RAW 264.7 (KCLB, Seoul, South Korea) (FIG. 20) or NIH3T3 cells (KCLB, Seoul, South Korea) (FIG. 21) were treated with 10 μM FITC-labeled SOCS3 recombinant proteins and cultivated for lhr at 37° C.


In this regard, RAW 264.7 cells were cultured in a DMEM medium containing 10% fetal bovine serum (FBS, Hyclone, USA) and 500 mg/ml of 1% penicillin/streptomycin (Hyclone, USA).


After cultivation, the cells were washed three times with ice-cold PBS (Phosphate-buffered saline, Hyclone, USA) and treated with proteinase K (10 μg/mL, SIGMA, USA) to remove surface-bound proteins, and internalized proteins were measured by flow cytometry (FlowJo cytometric analysis software, Guava, Millipore, Darmstadt, Germany). Untreated cells (gray) and equimolar concentration of unconjugated FITC (FITC only, green)-treated cells were served as control (FIG. 20). Each of NIH3T3 cells was incubated for 1 hour at 37° C. with 10 μM FITC-labeled SOCS3 protein. For nuclear staining, a mixture of VECTASHIELD Mounting Medium (Vector Laboratories, Burlingame, Calif.) and DAPI (4′,6-diamidino-2-phenylindole) was added to NIH3T3 cells, and visualized using a confocal laser microscope (LSM700, Zeiss, Germany) (FIG. 21).


As shown in FIGS. 20 and 21, SOCS3 recombinant proteins containing aMTD165 (HM165S3, HM165S3A and HM165S3B) efficiently entered the cells (FIGS. 20 and 21) and were localized to various extents in cytoplasm (FIG. 21). In contrast, SOCS3 protein containing non-aMTD (HS3) did not appear to enter cells. While all SOCS3 proteins containing aMTD165 transduced into the cells, HM165S3B displayed more uniform cellular distribution, and protein uptake of HM165S3B was also very efficient.


Example 7-1-2. Comparison Between aMTD/SD-Fused SOCS3 Recombinant Protein and Basic CPP/SD-Fused SOCS3 Recombinant Protein

The cell-permeability of basic CPP/SD-fused SOCS3 recombinant proteins was assessed by the same method as used in Example 7-1 except for a known basic CPP (TAT or PolyR) being used instead of aMTD. The results of the assessment were shown in FIG. 99.


According to the results, all recombinant proteins exhibited cell-permeability. Among the proteins, aMTD/SD-fused SOCS3 recombinant protein (HM165S3B) showed the highest cell-permeability.


Example 7-2. Tissue-Permeability Test

To further investigate in vivo delivery of SOCS3 recombinant proteins, ICR mice (Doo-Yeol Biotech Co. Ltd., Seoul, Korea) were intraperitoneal (IP) injected with 600 μg/head of 10 μM FITC (Fluorescein isothiocyanate, SIGMA, USA)-labeled SOCS3 proteins and sacrificed after 2 hrs. From the mice, the liver, kidney, spleen, lung, heart, and brain were removed and washed with PBS, and then placed on a dry ice, and embedded with an O.C.T. compound (Sakura). After cryosectioning at 20 μm, tissue distributions of fluorescence-labeled-SOCS3 proteins in different organs was analyzed by fluorescence microscopy (Carl Zeiss, Gottingen, Germany)(FIG. 22).


As shown in FIG. 22, SOCS3 recombinant proteins fused to aMTD165 (HM165S3, HM165S3A and HM165S3B) were distributed to a variety of tissues (liver, kidney, spleen, lung, heart and, to a lesser extent, brain). Liver showed highest levels of fluorescent cell-permeable SOCS3 since intraperitoneal administration favors the delivery of proteins to this organ via the portal circulation. SOCS3 containing aMTD165 was detectable to a lesser degree in lung, spleen and heart. aMTD/SDB-fused SOCS3 recombinant protein (HM165S3B) showed the highest systemic delivery of SOCS3 protein to the tissues compared to the SOCS3 containing only aMTD (HM165S3) or aMTD/SDA (HM165S3A) proteins. These data suggest that SOCS3 protein containing both of aMTD165 and SDB leads to higher cell-/tissue-permeability due to the increase in solubility and stability of the protein, and it displayed a dramatic synergic effect on cell-/tissue-permeability.


Example 7-2-2. Comparison Between aMTD/SD-Fused SOCS3 Recombinant Protein and Basic CPP/SD-Fused SOCS3 Recombinant Protein

The tissue-permeability of basic CPP/SD-fused SOCS3 recombinant proteins was assessed by the same method as used in Example 7-2 except for a known basic CPP (TAT or PolyR) being used instead of aMTD. The results of the assessment were shown in FIG. 100.


According to the results, only aMTD/SD-fused SOCS3 recombinant protein (HM165S3B) exhibited superior cell-permeability.


Example 8-1 Biological Activity Test of iCP-SOCS3—Inhibition Activity of IFN-γ-Induced STAT Phosphorylation

It was examined whether the iCP-SOCS3 recombinant proteins prepared by fusion with combinations of aMTD and SD inhibits activation of the JAK/STAT-signaling pathway.


PANC-1 Cells (KCLB, Seoul, South Korea) were treated with 10 ng/ml IFN-γ (R&D systems, Abingdon, UK) for 15 min and treated with either DMEM (vehicle) or 10 μM aMTD/SD-fused SOCS3 recombinant proteins for 2 hrs. The cells were lysed in RIPA lysis buffer (Biosesang, Seongnam, Korea) containing proteinase inhibitor cocktail (Roche, Indianapolis, Ind., USA), incubated for 15 min at 4° C., and centrifuged at 13,000 rpm for 10 min at 4° C. Equal amounts of lysates were separated on 10% SDS-PAGE gels and transferred to a nitrocellulose membrane. The membranes were blocked using 5% skim milk in TBST and for western blot analysis incubated with the following antibodies: anti-phospho-STAT1 (Cell Signaling Technology, USA) and anti-phospho-STAT3 (Cell Signaling Technology, USA), then HRP conjugated anti-rabbit secondary antibody (Santacruz).


The well-known cytokine signaling inhibitory actions of SOCS3 are inflammation inhibition through i) inhibition of IFN-γ-mediated JAK/STAT and ii) inhibition of LPS-mediated cytokine secretion. The ultimate test of cell-penetrating efficiency is a determination of intracellular activity of SOCS3 proteins transported by aMTD. Since endogenous SOCS3 are known to block phosphorylation of STAT1 and STAT3 by IFN-γ-mediated Janus kinases (JAK) 1 and 2 activation, we demonstrated whether cell-permeable SOCS3 inhibits the phosphorylation of STATs. As shown in FIG. 23, All SOCS3 recombinant proteins containing aMTD (HM165S3, HM165S3A and HM165S3B), suppressed IFN-γ-induced phosphorylation of STAT1 and STAT3. In contrast, STAT phosphorylation was readily detected in cells exposed to HS3, which lacks the aMTD motif required for membrane penetration, indicating that HS3, which lacks an MTD sequence did not enter the cells, has no biological activity.


Example 8-2. Biological Activity Test of iCP-SOCS3

Peritoneal macrophages were obtained from C3H/HeJ mice (Doo-Yeol Biotech Co. Ltd. Korea) Peritoneal macrophages were incubated with 10 μM SOCS3 recombinant proteins (1:HS3, 2:HM165S3, 3:HM165S3A and 4:HM165S3B, respectively) for 1 hr at 37° C. and then stimulated them with LPS (Lipopolysaccharide)(500 ng/ml) and/or IFN-γ (100 U/ml) without removing iCP-SOCS3 proteins for 3, 6, or 9 hrs. The culture media were collected, and the extracellular levels of cytokine (TNF-α, IL-6) were measured by a cytometric bead array (BD Pharmingen, San Diego, Calif., USA) according to the manufacturer's instructions.


The effect of cell-permeable SOCS3 proteins on cytokines secretion was investigated. Treatment of C3H/HeJ primary peritoneal macrophages with SOCS3 proteins containing aMTD165 suppressed TNF-α and IL-6 secretion induced by the combination of IFN-γ and LPS by 50-90% during subsequent 9 hrs of incubation (FIG. 24). In particular, aMTD165/SDB-fused SOCS3 recombinant protein showed the greatest inhibitory effect on cytokine secretion. In contrast, cytokine secretion in macrophages treated with non-permeable SOCS3 protein (HS3) was unchanged, indicating that recombinant SOCS3 lacking the aMTD doesn't affect intracellular signaling. Therefore, we conclude that differences in the biological activities of HM165S3B as compared to HS3B are due to the differences in protein uptake mediated by the aMTD sequence. In light of solubility/yield, cell-/tissue-permeability, and biological effect, SOCS3 recombinant protein containing aMTD and SDB (HM165S3B) is a prototype of a new generation of improved cell-permeable SOCS3 (iCP-SOCS3), and will be selected for further evaluation as a potential anti-tumor agent.


Example 9. Preparation of Control Protein (Non-CP-SOCS3: HS3B Recombinant Protein)

As an experimental negative control, a SOCS3 recombinant protein having no cell permeability was prepared.


According to Example 6-2, SOCS3 recombinant proteins lacking SD (HM165S3) or both aMTD and SD (HS3) were found to be less soluble, produced lower yields, and showed tendency to precipitate when they were expressed and purified in E. coli. Therefore, we additionally designed and constructed SOCS3 recombinant protein containing only SDB (without aMTD165: HS3B) as a negative control (FIG. 25). Preparation, expression and purification, and measurement of solubility/yield of the recombinant proteins were performed in the same manner as in Examples 6-2 and 6-3.













TABLE 37







Recombinant




Cargo
SD
Protein
5′ Primers
3′ Primers







SOCS3
B
HS3B
5′-GGAATTCCATATGGTC
5′-CGCGTCGACTTAAA





ACCCACAGCAAGTTTCC
GGGTTTCCGAAGGCTT





CGCCGCC-3′
GGCTATCTT-3′





(SEQ ID NO: 969)
(SEQ ID NO: 970)









As expected, its solubility and yield increased compared to that of SOCS3 proteins lacking SDB (HS3; FIG. 26). Therefore, HS3B proteins were used as a control protein.


Example 10. Selection of aMTD for Cell-Permeability

After a basic structure of the stable recombinant proteins fused with combinations of aMTD and SD was determined, 22 aMTDs were selected for development of iCP-SOCS3 recombinant protein (Tables 38 and 39), based on the critical Factors, in order to examine which aMTD provides the highest cell-/tissue-permeability.


For comparison, 5 kinds of random peptides that do not satisfying one or more critical factors were selected (Table 40).


Solubility/yield and cell-permeability of 22 kinds of aMTD/SDB-fused SOCS3 recombinant proteins, prepared by using primers of Table 41 in the same manner as in Example 6-2, were analyzed according to Examples 6-3 and 7-1, respectively.













TABLE 41






aMTD
Amino Acid




Cargo
ID
Sequence
5′ Primers
3′ Primers







SOCS3
MTM
AAVLLPVLLAAP
GGAATTCCATATGGCGGCGGTGCTGCTGCCGGTG
CGCGTCGACTTAAAGGG




(SEQ ID NO: 865)
CTGCTGGCGGCGCCGGTCACCCACAGCAAGTTTC
TTTCCGAAGGCTTGGCTATCCTT





CCGCCGCC (SEQ ID NO: 857)
(SEQ ID NO: 995)



 44
ALAVPVALLVAP
GGAATTCCATATGGCGCTGGCGGTGCCGGTGGCGC





(SEQ ID NO: 16)
TGCTGGTGGCGCCGGTCACCCACAGCAAGTTTCCC






GCCGCC (SEQ ID NO: 858)




 81
AALLPALAALLP
GGAATTCCATATGGCGGCGCTGCTGCCGGCGCTGG





(SEQ ID NO: 22)
CGGCGCTGCTGCCGGTCACCCACAGCAAGTTTCCC






GCCGCC (SEQ ID NO: 861)




123
AAIIVPAALLAP
GGAATTCCATATGGCGGCGATTATTGTGCCGGCGG





(SEQ ID NO: 33)
CGCTGCTGGCGCCGGTCACCCACAGCAAGTTTCCC






GCCGCC (SEQ ID NO: 862)




162
AVVALPAALIVP
GGAATTCCATATGGCGGTGGTGGCGCTGCCGGCGG





(SEQ ID NO: 40)
CGCTGATTGTGCCGGTCACCCACAGCAAGTTTCCCG






CCGCC (SEQ ID NO: 863)




281
ALIVLPAAVAVP
GGAATTCCATATGGCGCTGATTGTGCTGCCGGCGG





(SEQ ID NO: 65)
CGGTGGCGGTGCCGGTCACCCACAGCAAGTTTCCC






GCCGCC (SEQ ID NO: 864)




324
IVAVALPAALVP
GGAATTCCATATGATTGTGGCGGTGGCGCTGCCGG





(SEQ ID NO: 77)
CGGCGCTGGTGCCGGTCACCCACAGCAAGTTTCCC






GCCGCC (SEQ ID NO: 977)




364
LVAAVAPALIVP
GGAATTCCATATGCTGGTGGCGGCGGTGGCGCCGG





(SEQ ID NO: 85)
CGCTGATTGTGCCGGTCACCCACAGCAAGTTTCCCG






CCGCC (SEQ ID NO: 978)




365
AVIVVAPALLAP
GGAATTCCATATGGCGGTGATTGTGGTGGCGCCGG





(SEQ ID NO: 86)
CGCTGCTGGCGCCGGTCACCCACAGCAAGTTTCCC






GCCGCC (SEQ ID NO: 979)




622
ALIVLAAPVAVP
GGAATTCCATATGGCGCTGATTGTGCTGGCGGCGC





(SEQ ID NO: 142)
CGGTGGCGGTGCCGGTCACCCACAGCAAGTTTCCC






GCCGCC (SEQ ID NO: 980)




662
ALAVILAPVAVP
GGAATTCCATATGGCGCTGGCGGTGATTCTGGCGC





(SEQ ID NO: 822)
CGGTGGCGGTGCCGGTCACCCACAGCAAGTTTCCC






GCCGCC (SEQ ID NO: 981)




563
ALAVIVVPALAP
GGAATTCCATATGGCGCTGGCGGTGATTGTGGTGC





(SEQ ID NO: 131)
CGGCGCTGGCGCCGGTCACCCACAGCAAGTTTCCC






GCCGCC (SEQ ID NO: 982)




899
AVVIALPAVVAP
GGAATTCCATATGGCGGTGGTGATTGCGCTGCCGG





(SEQ ID NO: 229)
CGGTGGTGGCGCCGGTCACCCACAGCAAGTTTCCC






GCCGCC (SEQ ID NO: 983)




897
AVIVPVAIIAAP
GGAATTCCATATGGCGGTGATTGTGCCGGTGGCGAT





(SEQ ID NO: 228)
TATTGCGGCGCCGGTCACCCACAGCAAGTTTCCCG






CCGCC (SEQ ID NO: 984)




623
VAAAIALPAIVP
GGAATTCCATATGGTGGCGGCGGCGATTGCGCTGC





(SEQ ID NO: 143)
CGGCGATTGTGCCGGTCACCCACAGCAAGTTTCCC






GCCGCC (SEQ ID NO: 985)




908
VALALAPVVVAP
GGAATTCCATATGGTGGCGCTGGCGCTGGCGCCGG





(SEQ ID NO: 237)
TGGTGGTGGCGCCGGTCACCCACAGCAAGTTTCCC






GCCGCC (SEQ ID NO: 986)




911
VALALPAVVVAP
GGAATTCCATATGGTGGCGCTGGCGCTGCCGGCGG





(SEQ ID NO: 239)
TGGTGGTGGCGCCGGTCACCCACAGCAAGTTTCCC






GCCGCC (SEQ ID NO: 987)




  2
AAAVPLLAVVVP
GGAATTCCATATGGCGGCGGCGGTGCCGCTGCTGG





(SEQ ID NO: 2)
CGGTGGTGGTGCCGGTCACCCACAGCAAGTTTCCC






GCCGCC (SEQ ID NO: 988)




904
AVLAVVAPVVAP
GGAATTCCATATGGCGGTGCTGGCGGTGGTGGCGC





(SEQ ID NO: 233)
CGGTGGTGGCGCCGGTCACCCACAGCAAGTTTCCC






GCCGCC (SEQ ID NO: 989)




481
AIAIAIVPVALP
GGAATTCCATATGGCGATTGCGATTGCGATTGTGCC





(SEQ ID NO: 110)
GGTGGCGCTGCCGGTCACCCACAGCAAGTTTCCCG






CCGCC (SEQ ID NO: 990)




787
AVALVPVIVAAP
GGAATTCCATATGGCGGTGGCGCTGGTGCCGGTGA





(SEQ ID NO: 177)
TTGTGGCGGCGCCGGTCACCCACAGCAAGTTTCCC






GCCGCC (SEQ ID NO: 991)




264
LAAAPVVIVIAP
GGAATTCCATATGCTGGCGGCGGCGCCGGTGGTGA





(SEQ ID NO: 63)
TTGTGATTGCGCCGGTCACCCACAGCAAGTTTCCCG






CCGCC (SEQ ID NO: 992)




363
AVLAVAPALIVP
GGAATTCCATATGGCGGTGCTGGCGGTGGCGCCGG





(SEQ ID NO: 84)
CGCTGATTGTGCCGGTCACCCACAGCAAGTTTCCCG






CCGCC (SEQ ID NO: 993)




121
AIVALPALALAP
GGAATTCCATATGGCGATTGTGGCGCTGCCGGCGC





(SEQ ID NO: 32)
TGGCGCTGGCGCCGGTCACCCACAGCAAGTTTCCC






GCCGCC (SEQ ID NO: 994)















rPEPTIDE
Amino Acid




Cargo
ID
Sequence
5′ Primers
3′ Primers





SOCS3
921
IEWFVVLPLVVP
GGAATTCCATATGATTTGGTGGTTTGTGGTGCT
CGCGTCGACTTAAAGGGTTTCCG




(SEQ ID NO: 931)
GCCGCTGGTGGTGCCGGTCACCCACAGCAAG
AAGGCTTGGCTATCTT





TTTCCCGCCGCC (SEQ ID NO: 996)
(SEQ ID NO: 1001)



 16
NNSCTTYTNGSQ
GGAATTCCATATGAACAACAGCTGCACCACCTA





(SEQ ID NO: 890)
TACCAACGGCAGCCAGGTCACCCACAGCAAGT






TTCCCGCCGCC (SEQ ID NO: 997)




 67
LDAEVPLADDVP
GGAATTCCATATGCTGGATGCGGAAGTGCCGC





(SEQ ID NO: 906)
TGGCGGATGATGTGCCGGTCACCCACAGCAAG






TTTCCCGCCGCC (SEQ ID NO: 998)




 29
VLPPLPVLPVLP
GGAATTCCATATGGTGCTGCCGCCGCTGCCGG





(SEQ ID NO: 924)
TGCTGCCGGTGCTGCCGGTCACCCACAGCAA






GTTTCCCGCCGCC (SEQ ID NO: 999)




700
GTSNTCQSNQNS
GGAATTCCATATGGGCACCAGCAACACCTGCC





(SEQ ID NO: 951)
AGAGCAACCAGAACAGCGTCACCCACAGCAAG






TTTCCCGCCGCC (SEQ ID NO: 1000)









As shown in FIGS. 27 to 34, it was confirmed that most of the aMTD/SDB-fused SOCS3 recombinant proteins showed high solubility and yield and high cell permeability by aMTD. However, Random peptide-SOCS3-SDB recombinant protein showed remarkably low cell permeability.


Example 11-1. Investigation of Biological Activity for Determination of Optimal aMTD-Fused SOCS3 Recombinant Protein-1

Four kinds of aMTD/SD-fused SOCS3 recombinant proteins having high cell permeability and one kind of aMTD/SD-fused SOCS3 recombinant protein having the lowest cell permeability were selected, and their biological activity was analyzed.


PANC-1 cells (pancreatic carcinoma cell line) were seeded in a 16-well chamber slide at a density of 5×103 cells/well, and then treated with 10 uM of aMTD/SD-fused SOCS3 for 24 hours. Apoptotic cells were analyzed using terminal dUTP nick-end labeling (TUNEL) assay with In Situ Cell Death Detection kit TMR red (Roche, 4056 Basel, Switzerland). Cells were treated with either 10 μM SOCS3 recombinant protein or buffer alone for 16 hrs with 2% fetal bovine serum (Hyclone, Logan, Utah, USA). Treated cells were washed with cold PBS two times, fixed in 4% paraformaldehyde (PFA, Junsei, Tokyo, Japan) for 1 hr at room temperature, and incubated in 0.1% Triton X-100 for 2 min on the ice. Cells were washed with cold PBS twice, and treated TUNEL reaction mixture for 1 hr at 37° C. in dark, washed cold PBS three times and observed by fluorescence microscopy (Nikon, Tokyo, Japan).


As shown in FIG. 35, most of the aMTD/SDB-fused SOCS3 recombinant proteins induced cell death of pancreatic carcinoma cells, and of them, aMTD165 or aMTD324-fused SOCS3 recombinant protein induced death of the largest number of cancer cells.


Example 11-2. Investigation of Biological Activity for Determination of Optimal aMTD-Fused SOCS3 Recombinant Protein-2

AGS cells (gastric carcinoma cell line) (American Type Culture Collection; ATCC) were seeded in a 12-well plate at a density of 1×105 cells/well, and then treated with 10 uM of aMTD/SD-fused SOCS3 for 14 hours. Cancer cell death was analyzed by Annexin V analysis. Annexin V/7-Aminoactinomycin D (7-AAD) staining was performed using flow cytometry according to the manufacturer's guidelines (BD Pharmingen, San Diego, Calif., USA). Briefly, cells were washed three times with ice-cold PBS. The cells were then resuspended in 100 μl of binding buffer and incubated with 1 μl of 7-AAD and 1 μl of annexin V-PE for 30 min in the dark at 37° C. Flow cytometric analysis was immediately performed using a guava easyCyte™ 8 Instrument (Merck Millipore, Darmstadt, Germany).


As shown in FIG. 36, most of the aMTD/SDB-fused SOCS3 recombinant proteins induced cell death of gastric carcinoma cells, and of them, aMTD165 or aMTD281-fused SOCS3 recombinant protein induced death of the largest number of cancer cells.


Example 11-3. Investigation of Biological Activity for Determination of Optimal aMTD-Fused SOCS3 Recombinant Protein-3

AGS cells (gastric cancer cell line) were seeded in a 12 well plate at a density of 2.5×105 per well, grown to 90% confluence. Confluent AGS cells were incubated with 10 μM HM#S3B in serum-free medium for 2 hrs prior to changing the growth medium (DMEM/F12, Hyclone, Logan, Utah, USA) and washed twice with PBS, and the monolayer at the center of the well was “wounded” by scraping with a sterilized white pipette tip. Cells were cultured for an additional 24 hrs and cell migration was observed by phase contrast microscopy (Nikon, ECLIPSE Ts2). The migration was quantified by counting the number of cells that migrated from the wound edge into the clear area.


As shown in FIG. 37, most of the aMTD/SDB-fused SOCS3 recombinant proteins inhibited cell migration of gastric carcinoma cells, and of them, aMTD165 or aMTD904-fused SOCS3 recombinant protein showed the most effective inhibition of cancer cell migration.


Solubility/yield, permeability, and biological activity of 22 kinds of the aMTD-fused recombinant proteins were examined in Examples 10 to 11-3, and as a result, the aMTD165/SDB-fused SOCS3 recombinant protein was found to show the most excellent effect (FIG. 38). Therefore, the aMTD165-fused recombinant protein was used in the subsequent experiment.


Example 12-1. Preparation of iCP-SOCS3 Recombinant Protein and Investigation of Equivalence Thereof-1

To develop a new drug as an anticancer agent, His-tag-removed iCP-SOCS3 recombinant protein was prepared and equivalence of His-Tag+, -iCP-SOCS3 was investigated.


Histidine-tag free human SOCS3 proteins were constructed by amplifying the SOCS3 cDNA (225 amino acids) for aMTD fused to SOCS3 cargo. The PCR reactions (100 ng genomic DNA, 10 pmol each primer, each 0.2 mM dNTP mixture, 1× reaction buffer and 2.5 U Pfu(+) DNA polymerase (Doctor protein, Korea)) were digested on the restriction enzyme site between Nde I (5′) and Sal I (3′) involving 35 cycles of denaturing (95° C.), annealing (62° C.), and extending (72° C.) for 45 sec each. For the last extension cycle, the PCR reactions remained for 10 min at 72° C. The PCR products were subcloned into pET-26b(+) (Novagen, Darmstadt, Germany). Coding sequence for SDB fused to C terminus of aMTD-SOCS3 was cloned at BamHI (5′) and Sal1 (3′) in pET-26b(+) from PCR-amplified DNA segments and confirmed by DNA sequence analysis of the resulting plasmids.













TABLE 42







Recombinant




Cargo
SD
Protein
5′ Primers
3′ Primers







SOCS3

HS3
5′-GGAATTCCATATGGTCA
5′-CCCGGATCCTTAAAGC





CCCACAGCAAGTTTCCCGC
GGGGCATCGTACTGGTCC





CGCC-3′
AGGAA-3′





(SEQ ID NO: 955)
(SEQ ID NO: 956)




HM165S3
5′-GGAATTCCATATGGCGCT
5′-CCCGGATCCTTAAAG





GGCGGTGCCGGTGGCGCT
CGGGGCATCGTACTGGT





GGCGATTGTGCCGGTCACC
CCAGGAA-3′





CACAGCAAGTTTC-3′
(SEQ ID NO: 958)





(SEQ ID NO: 957)




A
HM165S3A
5′-GGAATTCCATATGGCGC
5′-CGCGTCGACTTACCTCG





TGGCGGTGCCGGTGGCGC
GCTGCACCGG CACGGAG





TGGCGATTGTGCCGGTCAC
ATGAC-3′





CCACAGCAAGTTTC-3′
(SEQ ID NO: 960)





(SEQ ID NO: 959)




B
HM165S3B
5′-GGAATTCCATATGGCGCT
5′-CGCGTCGACTTAAAGG





GGCGGTGCCGGTGGCGCT
GTTTCCGAAGGCTTGGCT





GGCGATTGTGCCGGTCACC
ATCTT-3′





CACAGCAAGTTTC-3′
(SEQ ID NO: 962)





(SEQ ID NO: 961)




C
HM165S3C
5′-GGAATTCCATATGGCGC
5′-GCGTCGACTTAGGC





TGGCGGTGCCGGTGGCGCT
CAGGTTAGCGTCGAG-3′





GGCGATTGTGCCGGTCACC
(SEQ ID NO: 964)





CACAGCAAGTTTC-3′






(SEQ ID NO: 963)




D
HM165S3D
5′-GGAATTCCATATGGCGC
5′-GCGTCGACTTATTTT





TGGCGGTGCCGGTGGCGC
TTCTCGGACAGATA-3′





TGGCGATTGTGCCGGTCAC
(SEQ ID NO: 966)





CCACAGCAAGTTTC-3′






(SEQ ID NO: 965)




E
HM165S3E
5′-GGAATTCCATATGGCGC
5′-ACGCGTCGACTTAA





TGGCGGTGCCGGTGGCGC
CCTCCAATCTGTTCGCG





TGGCGATTGTGCCGGTCA
GTGAGCCTC-3′





CCCACAGCAAGTTTC
(SEQ ID NO: 968)





(SEQ ID NO: 967)







Recombinant




Cargo
SD
Protein
5′ Primers
3′ Primers





SOCS3
B
HM165S3B
5′-GGAATTCCATATGGCGCTGGC
5′-CGCGTCGACTTAAAGGGTTT





GGTGCCGGTGGCGCTGGCGATT
CCGAAGGCTTGGCTATCTT-3′





GTGCCGGTCACCCACAGCAAGT
(SEQ ID NO: 860)





TTC-3′






(SEQ ID NO: 859)









Expression, purification and solubility/yield were measured in the same manner as in Example 6-2 to 6-3, and as a result, his-tag-removed M165S3B was found to have high solubility/yield (FIG. 39).


Example 12-2. Preparation of iCP-SOCS3 Recombinant Protein and Investigation of Equivalence Thereof-2

In the same manner as in Example 7-1, RAW264.7 cells were treated with FITC-labeled HS3B, HM165S3B, and M165S3B proteins, and cell permeability was evaluated.


As shown in FIG. 40, both HM165S3B and M165S3B were found to have high cell permeability.


Example 12-3. Preparation of iCP-SOCS3 Recombinant Protein and Investigation of Equivalence Thereof-3

To investigate biological activity equivalence of the HM165S3B and M165S3B recombinant proteins, induction of apoptosis of gastric carcinoma cell line (AGS) was analyzed by Annexin V staining in the same manner as in Example 11-2, and inhibition of migration was analyzed in the same manner as in Example 11-3.


As shown in FIG. 41, it was confirmed that both HM165S3B and M165S3B showed high anticancer efficacy and M165S3B exhibited efficacy equivalent to or higher than HM165S3B.


Example 12-4. Preparation of iCP-SOCS3 Recombinant Protein and Investigation of Equivalence Thereof-4

In silico MHC class II binding analysis using iTope™ (ANTITOPE.LTD) revealed changing the V28 p1 anchor residue in SDB sequence to L makes this region human germline and as such both MHC class II binding peptides within this region would be expected to be low risk due to T cell tolerance.


To prepare humanized SDB domain, iCP-SOCS3 was prepared in the same manner as in Example 6-1, except that SDB′ having a substitution of valine with leucine at an amino acid position 28 was used (FIG. 94). Further, protein purification was performed in the same manner as in Example 6-2 using the primer as below (Table 43).













TABLE 43







Recombinant




Cargo
SD
Protein
5′ Primers
3′ Primers







SOCS3

HS3
5′-GGAATTCCATATGGTCA
5′-CCCGGATCCTTAAAGC





CCCACAGCAAGTTTCCCGC
GGGGCATCGTACTGGTCC





CGCC-3′
AGGAA-3′





(SEQ ID NO: 955)
(SEQ ID NO: 956)




HM165S3
5′-GGAATTCCATATGGCGCT
5′-CCCGGATCCTTAAAG





GGCGGTGCCGGTGGCGCT
CGGGGCATCGTACTGGT





GGCGATTGTGCCGGTCACC
CCAGGAA-3′





CACAGCAAGTTTC-3′
(SEQ ID NO: 958)





(SEQ ID NO: 957)




A
HM165S3A
5′-GGAATTCCATATGGCGC
5′-CGCGTCGACTTACCTCG





TGGCGGTGCCGGTGGCGC
GCTGCACCGG CACGGAG





TGGCGATTGTGCCGGTCAC
ATGAC-3′





CCACAGCAAGTTTC-3′
(SEQ ID NO: 960)





(SEQ ID NO: 959)




B
HM165S3B
5′-GGAATTCCATATGGCGCT
5′-CGCGTCGACTTAAAGG





GGCGGTGCCGGTGGCGCT
GTTTCCGAAGGCTTGGCT





GGCGATTGTGCCGGTCACC
ATCTT-3′





CACAGCAAGTTTC-3′
(SEQ ID NO: 962)





(SEQ ID NO: 961)




C
HM165S3C
5′-GGAATTCCATATGGCGC
5′-GCGTCGACTTAGGC





TGGCGGTGCCGGTGGCGCT
CAGGTTAGCGTCGAG-3′





GGCGATTGTGCCGGTCACC
(SEQ ID NO: 964)





CACAGCAAGTTTC-3′






(SEQ ID NO: 963)




D
HM165S3D
5′-GGAATTCCATATGGCGC
5′-GCGTCGACTTATTTT





TGGCGGTGCCGGTGGCGC
TTCTCGGACAGATA-3′





TGGCGATTGTGCCGGTCAC
(SEQ ID NO: 966)





CCACAGCAAGTTTC-3′






(SEQ ID NO: 965)




E
HM165S3E
5′-GGAATTCCATATGGCGC
5′-ACGCGTCGACTTAA





TGGCGGTGCCGGTGGCGC
CCTCCAATCTGTTCGCG





TGGCGATTGTGCCGGTCA
GTGAGCCTC-3′





CCCACAGCAAGTTTC
(SEQ ID NO: 968)





(SEQ ID NO: 967)







Recombinant




Cargo
SD
Protein
5′ Primers
3′ Primers





SOCS3
B*
HM165S3B
5′-GGAATTCCATATGGCGCTGG
5′-CGCGTCGACTTAAAGG





CGGTGCCGGTGGCGCTGGCGA
GTTTCCGAAGGCTTGGCT





TTGTGCCGGTCACCCACAGCA
ATCTT-3′





AGTTTC-3′
(SEQ ID NO:  972)





(SEQ ID NO: 971)









As shown in FIG. 44, both HM165S3B and HM165S3B′(V28L) were found to have high solubility/yield.


Example 12-5. Preparation of iCP-SOCS3 Recombinant Protein and Investigation of Equivalence Thereof-5

In the same manner as in Example 7-1, RAW264.7 cells were treated with FITC-labeled HM165S3B and HM165S3B′(V28L) proteins, and cell permeability was evaluated.


As shown in FIG. 45, both HM165S3B and HM165S3B′(V28L) were found to have high cell permeability.


Example 12-6. Preparation of iCP-SOCS3 Recombinant Protein and Investigation of Equivalence Thereof-6

To investigate biological activity equivalence of the HM165S3B and HM165S3B′(V28L) recombinant proteins, anti-proliferative activity was examined and induction of apoptosis of gastric carcinoma cell line (AGS) was analyzed by Annexin V staining in the same manner as in Example 11-2, and inhibition of migration was analyzed in the same manner as in Example 11-3.


Antiproliferative activity were evaluated with the CellTiter-Glo Cell Viability Assay. AGS cells (3×103/well) were seeded in 96 well plates. The next day, cells were treated with DMEM (vehicle) or 10 μM HM165S3B, HM165S3B′(V28L) for 96 hrs in the presence of serum (2%). Proteins were replaced daily. Cell growth and survival were evaluated with the CellTiter-Glo Cell Viability Assay (Promega, Madison, Wis.). Measurements using a Luminometer (Turner Designs, Sunnyvale, Calif.) were conducted following the manufacturer's protocol.


It was confirmed that both HM165S3B and HM165S3B′(V28L) showed high anti-proliferative effects on gastric carcinoma cells (FIG. 46), and also effects of inducing apoptosis (FIG. 47) and of inhibiting migration of gastric carcinoma cells (FIG. 48), and in particular, HM165S3B′(V28L) exhibited efficacy equivalent to or higher than HM165S3B.


Example 12-7. Preparation of iCP-SOCS3 Recombinant Protein and Investigation of Equivalence Thereof-7

iCP-SOCS3 of BS3M165 structure was prepared in the same manner as in Example 6-1, and B′S3M165 iCP-SOCS3 was also prepared by humanized SDB domain (FIG. 49a).













TABLE 44







Recombinant




Cargo
SD
Protein
5′ Primers
3′ Primers







SOCS3
B
BS3M165
5′-GGAATTCCATATG
5′-ACGCGTCGACTTAC





ATGGCAGAACAAAGCGAC-3′
GCCAGCGCCACCG





(SEQ ID NO: 973)
GCACCGCCAGCGC






AATCACCGGAAGCG






GGGCATCGTACTGG






TCCAG-3′






(SEQ ID NO: 974)



B*
B*S3M165
5′-GGAATTCCATATG
5′-ACGCGTCGACTTAC





ATGGCAGAACAAAGCGAC-3′
GCCAGCGCCACCG





(SEQ ID NO: 975)
GCACCGCCAGCGC






AATCACCGGAAGCG






GGGCATCGTACTGG






TCCAG-3′






(SEQ ID NO: 976)









Expressions and purifications of iCP-SOCS3 recombinant protein (BS3M165, B′S3M165) in E. coli (bottom) were analyzed in the same manner as in Examples 6-2 and 6-3, respectively, and shown in FIG. 49b. Further, E. coli codon-optimized iCP-SOCS3 was prepared.


Example 13. Test of Biological Activity of iCP-SOCS3—Inhibition Activity of IFN-γ-Induced STAT Phosphorylation

Whether iCP-SOCS3 (HM165S3B) recombinant protein inhibits activation of the JAK/STAT-signaling pathway was examined by the method of Example 8-1.


PANC-1 Cells (KCLB, Seoul, South Korea) were treated with 10 ng/ml IFN-γ (R&D systems, Abingdon, UK) for 15 min and treated with either DMEM (vehicle) or 1, 5, 10 μM aMTD/SD-fused SOCS3 recombinant proteins for 2 hrs. The cells were lysed in RIPA lysis buffer (Biosesang, Seongnam, Korea) containing proteinase inhibitor cocktail (Roche, Indianapolis, Ind., USA), incubated for 15 min at 4° C., and centrifuged at 13,000 rpm for 10 min at 4° C. Equal amounts of lysates were separated on 10% SDS-PAGE gels and transferred to a nitrocellulose membrane. The membranes were blocked using 5% skim milk in TBST and for western blot analysis incubated with the following antibodies: anti-phospho-STAT3 (Cell Signaling Technology, USA), then HRP conjugated anti-rabbit secondary antibody (Santacruz).


The well-known cytokine signaling inhibitory actions of SOCS3 are inflammation inhibition through i) inhibition of IFN-γ-mediated JAK/STAT and ii) inhibition of LPS-mediated cytokine secretion. The ultimate test of cell-penetrating efficiency is a determination of intracellular activity of SOCS3 proteins transported by aMTD. Since endogenous SOCS3 are known to block phosphorylation of STAT3 by IFN-γ-mediated Janus kinases (JAK) 1 and 2 activation, we demonstrated whether cell-permeable SOCS3 inhibits the phosphorylation of STATs. As shown in FIG. 50, iCP-SOCS3 (HM165S3B) suppressed IFN-γ-induced phosphorylation of STAT3 in dose dependent manner. In contrast, STAT phosphorylation was readily detected in cells exposed to HS3B, which lacks the aMTD motif required for membrane penetration, indicating that HS3B, which lacks an MTD sequence did not enter the cells, has no biological activity.


Example 14. Investigation of aMTD-Mediated Intracellular Delivery Mechanism

The mechanism of aMTD165-mediated intracellular delivery was investigated.


(1) RAW 264.7 cells were pretreated with 100 mM EDTA for 3 hours, and then treated with 10 μM of iCP-SOCS3 (HM165S3B) recombinant protein for 1 hour, followed by flow cytometry in the same manner as in Example 7-1 (FIG. 51A).


(2) RAW 264.7 cells were pretreated with 5 μg/ml of proteinase K for 10 minutes, and then treated with 10 μM of iCP-SOCS3 (HM165S3B) recombinant protein for 1 hour, followed by flow cytometry (FIG. 51B).


(3) RAW 264.7 cells were pretreated with 20 μM taxol for 30 minutes, and then treated with 10 μM of iCP-SOCS3 (HM165S3B) recombinant protein for 1 hour, followed by flow cytometry (FIG. 52A).


(4) RAW 264.7 cells were pretreated with 1 mM ATP and 10 μM antimycin singly or in combination for 2 hours, and then treated with 10 μM of iCP-SOCS3 (HM165S3B) recombinant protein for 1 hour, followed by flow cytometry (FIG. 52B).


(5) RAW 264.7 cells were left at 4° C. and 37° C. for 1 hour, respectively, and then treated with 10 μM of iCP-SOCS3 (HM165S3B) recombinant protein for 1 hour, followed by flow cytometry (FIG. 53).


The aMTD-mediated intracellular delivery of SOCS3 protein did not require protease-sensitive protein domains displayed on the cell surface (FIG. 51B), microtubule function (FIG. 52A), or ATP utilization (FIG. 52B), since aMTD165-dependent uptake, compare to HS3 and HS3B, was essentially unaffected by treating cells with proteinase K, taxol, or the ATP depleting agent, antimycin. Conversely, iCP-SOCS3 (HM165S3B) proteins uptake was blocked by treatment with EDTA and low temperature (FIGS. 51A and 53), indicating the importance of membrane integrity and fluidity for aMTD-mediated protein transduction.


Moreover, whether cells treated with iCP-SOCS3 (HM165S3B) protein could transfer the protein to neighboring cells were also tested.


For this, RAW 264.7 cells were treated with 10 μM of FITC-labeled iCP-SOCS3 (HM165S3B) recombinant protein for 1 hour. Thereafter, these cells were co-cultured with PerCP-Cy5.5-CD14-stained RAW 264.7 cells for 2 hours. Cell-to-cell protein transfer was assessed by flow cytometry, scoring for CD14/FITC double-positive cells. Efficient cell-to-cell transfer of HM165S3B, but not HS3 or HS3B (FIG. 54), suggests that SOCS3 recombinant proteins containing aMTD165 are capable of bidirectional passage across the plasma membrane.


Example 14-2. Investigation of Basic CPP-Mediated Intracellular Delivery Mechanism

The mechanism of basic CPP (TAT and PolyR)-mediated intracellular delivery was also investigated in the same manner as in Example 7-1 and Example 14.


As shown in FIG. 101, it was confirmed that aMTD165/SD-fused SOCS3 recombinant proteins are independent to cell surface receptor (FIG. 101A) and the cell-permeability of aMTD165/SD-fused SOCS3 recombinant proteins is not due to endocytosis (FIG. 101B).


Whether cells treated with aMTD165/SD-fused SOCS3, TAT/SD-fused SOCS3, and PolyR/SD-fused SOCS3 could transfer the protein to neighboring cells were also tested on a molecular level in the same manner as in Example 13.


For this, RAW 264.7 cells were treated with 5 μM of FITC-labeled HM165S3B, HTS3B for 2 hour and washed with PBS two times. Thereafter, they were seeded on PANC-1 cell, incubated for 2 hours and treated with 20 ng/ml of IFN-γ for 15 minutes, followed by Western blotting in the same manner as in Example 8-1. And Cell-to-cell protein transfer was assessed by flow cytometry.


As shown in FIG. 102, efficient cell-to-cell transfer of HM165S3B, but not HTS3B or HRS3B, suggests that only SOCS3 recombinant proteins containing aMTD165 are capable of bidirectional passage across the plasma membrane.


Moreover, as shown in FIG. 103, phospho-STAT3 was only reduced in cells treated with HM165S3B.


Example 15. Investigation of Bioavailability of iCP-SOCS3

To investigate BA of the iCP-SOCS3 (HM165S3B) recombinant proteins, ICR mice (Doo-Yeol Biotech Co. Ltd., Seoul, Korea) were intravenous (IV) injected with 600 μg/head of 10 μM FITC (Fluorescein isothiocyanate, SIGMA, USA)-labeled SOCS3 recombinant proteins (HS3B, HM165S3B) and after 15 min, 30 min, 1H, 2H, 4H, 8H, 12H, 16H, 24H, 36H, 48H, mice of each group were sacrificed. From the mice, peripheral blood mononuclear cells (PBMCs), splenocytes, and hepatocytes were separated.


Further, the spleen was removed and washed with PBS, and then placed on a dry ice and embedded in an O.C.T. compound (Sakura). After cryosectioning at 20 μm, tissue distributions of fluorescence-labeled-SOCS3 proteins in different organs was analyzed by fluorescence microscopy (Carl Zeiss, Gottingen, Germany).


Isolation of PBMC


After anesthesia with ether, ophthalmectomy was performed and the blood was collected therefrom using a 1 ml syringe. The collected blood was immediately put in an EDTA tube and mixed well. The blood was centrifuged at 4,000 rpm and 4° C. for 5 minutes, and plasma was discarded and only buffy coat was collected in a new microtube. 0.5 ml of RBC lysis buffer (Sigma) was added thereto, followed by vortexing. The microtube was left at room temperature for 5 minutes, and then centrifuged at 4,000 rpm and 4° C. for 5 minutes. 0.3 ml of PBS was added to a pellet, followed by pipetting and flow cytometry (FlowJo cytometric analysis software, Guava, Millipore, Darmstadt, Germany).


Isolation of Splenocytes and Hepatocytes


Mice were laparotomized and the spleen or liver were removed. The spleen or liver thus removed was separated into single cells using a Cell Strainer (SPL, Korea). These cells were collected in a microtube, followed by centrifugation at 4,000 rpm and 4° C. for 5 minutes. 0.5 ml of RBC lysis buffer was added thereto, followed by vortexing. The microtube was left at room temperature for 5 minutes, and then centrifuged at 4,000 rpm and 4° C. for 5 minutes. 0.5 ml of PBS was added to a pellet, followed by pipetting and flow cytometry (FlowJo cytometric analysis software, Guava, Millipore, Darmstadt, Germany).


As shown in FIG. 55, in PBMCs, the maximum permeability of iCP-SOCS3 was observed at 30 minutes, and in splenocytes, the maximum permeability of iCP-SOCS3 was observed at 2 hours and maintained up to 16 hours. In hepatocytes, the maximum permeability of iCP-SOCS3 was observed at 15 minutes and maintained up to 16 hours. As shown in FIG. 56, in the pancreas tissue, very high distribution of iCP-SOCS3 was observed at 2 hours, and maintained up to 8 hours. Therefore, it can be seen that iCP-SOCS3 is rapidly delivered from blood to various tissues within 2 hours, and maintained up to 8-16 hours depending on the tissues.


Example 16. Investigation of Anticancer Efficacy of iCP-SOCS3 Recombinant Protein

To develop the iCP-SOCS3 recombinant protein as a therapeutic agent for solid tumors, its permeability to solid tumors (gastric cancer, colorectal cancer, breast cancer, glioblastoma cell line) and various tissues was investigated.


AGS (gastric cancer cell line), HCT116 (colorectal cancer cell line), MDA-MB-231 (breast cancer cell line), and U-87 MG (glioblastoma cell line) cells (Korean cell line bank, Korea) were seeded in a 12 well plate, grown to 90% confluence. Cells were treated with 10 μM FITC-labeled iCP-SOCS3 recombinant proteins and cultivated for lhr at 37° C.


After cultivation, the cells were treated with proteinase K (10 μg/mL, SIGMA, USA) and washed three times with ice-cold PBS (Phosphate-buffered saline, Hyclone, USA) to remove surface-bound proteins, and internalized proteins were measured by flow cytometry (FlowJo cytometric analysis software, Guava, Millipore, Darmstadt, Germany). Untreated cells (gray) and equimolar concentration of unconjugated FITC (FITC only, green)-treated cells were served as control (FIG. 57).


The permeability to various tissues was analyzed at 2 hours after protein injection by the method described in Example 7-3.


As shown in FIG. 57, iCP-SOCS3 recombinant proteins (FITC-HM165S3SB) promoted the transduction into cultured various cancer cells. In contrast, SOCS3 proteins containing non-aMTD (FITC-HS3 and FITC-HS3B) did not appear to enter cells.


In addition, iCP-SOCS3 recombinant proteins (FITC-HM165S3SB) enhanced the systemic delivery to various tissues after intraperitoneal injection (FIG. 58). Therefore, these data indicate that iCP-SOCS3 protein could be intracellularly delivered and distributed to the various cancer cells and various tissues, contributing for beneficial biotherapeutic effects.


Example 17. Investigation of Anticancer Efficacy of iCP-SOCS3 Recombinant Protein
Example 17-1. Investigation of Anti-Cancer Efficacy of iCP-SOCS3 Recombinant Protein in Gastric Cancer Cells

To develop the iCP-SOCS3 recombinant protein as a mechanism-specific therapeutic agent for solid tumors, SOCS3 levels endogenously expressed and activation of JAK/STAT-signaling pathway were investigated in different gastric cancer cell lines and normal cells, and normal hepatic cells.


Example 17-1-1. Analysis of Hypermethylation Level in Gastric Cancer Cells

SOCS3 expression is suppressed due to methylation in cancer cells, and therefore, inflammation or cancer development is increased. Further, to investigate the effect of cell permeable SOCS3, a cancer cell line where endogenous SOCS3 expression is suppressed should be selected or applied to a model, and therefore, the present experiments were performed.


Genomic DNA was extracted from cancer cell line using an Exgene™ Tissue SV mini kit (Geneall®, Korea). DNA was quantified, and experiments were performed using 500 ng of gDNA and an EZ DNA Methylation-Gold™ kit (ZYMO Research, Orange, Calif., USA) according to the manufacturer's instructions. DNA was used to perform PCR, and methylation and unmethylation of endogenous SOCS3 were qualitatively analyzed by electrophoresis. In this regard, the primers used are as follows.


Unmethyl-F was 5′-tag tgt gta agt tgt agg aga gtg g-3′(SEQ ID NO: 816), Unmethyl-R was 5′-cta aac ata aaa aaa taa cac taa tcc aaa-3′ (SEQ ID NO: 817), Methyl-F was 5′-gta gtg cgt aag ttg tag gag agc-3′ (SEQ ID NO: 818), Methyl-R was 5′-gta aaa aaa taa cgc taa tcc gaa-3′ (SEQ ID NO: 819), PCR was performed for 30 cycles consisting of pre-denaturation at 95° C. for 5 minutes, denaturation at 95° C. for 30 seconds, annealing at 60° C. for 45 seconds, extension at 72° C. for 1 minute, and final extension at 72° C. for 8 minutes.


As shown in FIG. 95, unmethylation of SOCS3 was observed in HEK293 and HaCaT cells which are normal cells, whereas hypermethylation of the promoter region of SOCS3 gene was observed in MNK75, MKN74, MKN45, MKN28, AGS, STKM2, NCI-N87 which are gastric cancer cell lines (U: unmethylated SOCS3, M: methylated SOCS3). These results indicate that SOCS3 is silenced by hypermethylation in gastric cancer cell lines.


Example 17-1-2. Analysis of Expression Level of Endogenous SOCS3 mRNA in Gastric Cell Line

SOCS3 mRNA expression levels in cancer cells were analyzed by RT-PCR. mRNAs were isolated from normal cell lines and cancer cell lines according to a method provided in a manufacturer's sheet of Hybrid-R (Geneall, Korea), and PCR was performed using SOCS3 primer F 5′-cct act gaa ccc tcc tcc ga-3′ (SEQ ID NO: 820) and SOCS3 primer R 5′-gca get ggg tga ctt tct ca-3′ (SEQ ID NO: 821) for 30 cycles consisting of denaturing (95° C.), annealing (60° C.), and extending (72° C.) for 45 seconds each.


It was confirmed that high expression levels of SOCS3 were observed in the normal HEK293 whereas low expression levels of SOCS3 were observed in the gastric cancer cell lines, except MKN74 (FIG. 59).


Example 17-1-3. Analysis of Endogenous SOCS3 and JAK/STAT Signaling Activation Status in Gastric Cell Line

JAK/STAT3 activation in cancer cells was analyzed by Western blot analysis. The normal HEK293 cells, and gastric cancer cell lines, MKN75, MKN74, MKN45, MKN28, AGS, STKM2, and NCI-N87 were washed with PBS, and then the cells were lysed in RIPA lysis buffer (Biosesang, Seongnam, Korea) containing protease inhibitor cocktail (Roche, Indianapolis, Ind., USA), incubated for 15 min at 4° C., and centrifuged at 13,000 rpm for 10 min at 4° C. to isolate proteins, followed by Western blotting in the same manner as in Example 8-1.


As shown in FIG. 60, high expression levels of SOCS3 and low levels of phosphorylations of p-JAK1, p-JAK2, p-STAT1, and p-STAT3 were observed in normal HEK293 cells. Low expression levels of SOCS3 gene were observed in the gastric cancer cell lines, compared to the normal cell line, and high levels of p-JAK1 and p-JAK2 in MKN75, high levels of p-STAT1 in MKN75, MKN74, MKN28, and NCI-N87, and high levels of p-STAT3 in MKN75, MKN45, AGS, STKN2, and NCI-N87. These results suggest a possibility of developing a mechanism-specific anticancer agent, because SOCS3-deficient cancer cells can be replenished with cell permeable proteins, and activated JAK/STAT-signaling can be negatively regulated.


Example 17-2. Investigation of Anti-Cancer Efficacy of iCP-SOCS3 Recombinant Protein

To develop the iCP-SOCS3 recombinant protein as a mechanism-specific therapeutic agent for solid tumors, SOCS3 levels endogenously expressed and activation of JAK/STAT-signaling pathway were investigated in different colorectal cell lines, normal cells, and normal hepatic cells.


Example 17-2-1. Analysis of Hypermethylation Level in Colorectal Cancer Cells

SOCS3 expression is suppressed due to methylation in cancer cells, and therefore, inflammation or cancer development is increased. Further, to investigate the effect of cell permeable SOCS3, a cancer cell line where endogenous SOCS3 expression is suppressed should be selected or applied to a model, and therefore, the present experiments were performed.


Genomic DNA was extracted from cancer cell line using an Exgene™ Tissue SV mini kit (Geneall®, Korea). DNA was quantified, and experiments were performed using 500 ng of gDNA and an EZ DNA Methylation-Gold™ kit (ZYMO Research, Orange, Calif., USA) according to the manufacturer's instructions. DNA was used to perform PCR, and methylation and unmethylation of endogenous SOCS3 were qualitatively analyzed by electrophoresis. In this regard, the primers used are as follows.


Unmethyl-F was 5′-tag tgt gta agt tgt agg aga gtg g-3′(SEQ ID NO: 816), Unmethyl-R was 5′-cta aac ata aaa aaa taa cac taa tcc aaa-3′ (SEQ ID NO: 817), Methyl-F was 5′-gta gtg cgt aag ttg tag gag agc-3′ (SEQ ID NO: 818), Methyl-R was 5′-gta aaa aaa taa cgc taa tcc gaa-3′ (SEQ ID NO: 819), PCR was performed for 30 cycles consisting of pre-denaturation at 95° C. for 5 minutes, denaturation at 95° C. for 30 seconds, annealing at 60° C. for 45 seconds, extension at 72° C. for 1 minute, and final extension at 72° C. for 8 minutes.


As shown in FIG. 96, unmethylation of SOCS3 was observed in HEK293 and HaCaT cells which are normal cells, whereas hypermethylation of the promoter region of SOCS3 gene was observed in HCT116, SW480, RKO, HT29 which are colorectal cell lines (U: unmethylated SOCS3, M: methylated SOCS3). These results indicate that SOCS3 is silenced by hypermethylation in colorectal cancer cell lines.


Example 17-2-2. Analysis of Expression Level of Endogenous SOCS3 mRNA in Colorectal Cancer Cell Line

SOCS3 mRNA expression levels in cancer cells were analyzed by RT-PCR. mRNAs were isolated from normal cell lines and cancer cell lines according to a method provided in a manufacturer's sheet of Hybrid-R (Geneall, Korea), and PCR was performed using SOCS3 primer F 5′-cct act gaa ccc tcc tcc ga-3′ (SEQ ID NO: 820) and SOCS3 primer R 5′-gca get ggg tga ctt tct ca-3′ (SEQ ID NO: 821) for 30 cycles consisting of denaturing (95° C.), annealing (60° C.), and extending (72° C.) for 45 seconds each.


The results of electrophoresis showed that high expression levels of SOCS3 were observed in the normal HEK293 cells whereas low expression levels of SOCS3 gene were observed in the colorectal cancer cell lines, SW480 and HT29 (FIG. 61).


Example 17-2-3. Analysis of Expression of Endogenous SOCS3 and JAK/STAT Signaling Activation Status in Colorectal Cancer Cell Line

JAK/STAT3 activation in cancer cells was analyzed by Western blot analysis. The normal HEK293 cells, and colorectal cancer cell lines, HCT116, SW480, RKO, and HT29 were washed with PBS, and then the cells were lysed in RIPA lysis buffer (Biosesang, Seongnam, Korea) containing proteinase inhibitor cocktail (Roche, Indianapolis, Ind., USA), incubated for 15 min at 4° C., and centrifuged at 13,000 rpm for 10 min at 4° C. to isolate proteins, followed by western blotting in the same manner as in Example 8-1.


As shown in FIG. 62, high expression level of SOCS3 and low phosphorylation levels of p-JAK1, p-JAK2, p-STAT1, and p-STAT3 were observed in normal HEK293 cells. Low expression level of SOCS3 gene was observed in the colorectal cancer cell lines, compared to the normal cell line, and similar levels of p-JAK1, p-JAK2, and p-STAT3 were observed in HCT116 and HT29. These results suggest a possibility of developing a mechanism-specific anticancer agent, because SOCS3-deficient cancer cells can be replenished with cell permeable proteins, and activated JAK/STAT-signaling can be negatively regulated.


Example 17-3. Investigation of Anticancer Efficacy of iCP-SOCS3 Recombinant Protein (Glioblastoma Cells)

To develop the iCP-SOCS3 recombinant protein as a mechanism-specific therapeutic agent for solid tumors, SOCS3 levels endogenously expressed and activation of JAK/STAT-signaling pathway were investigated in different glioblastoma cells, normal cells, and normal hepatic cells.


Example 17-3-1. Analysis of Hypermethylation Level in Glioblastoma Cell Line

SOCS3 expression is suppressed due to methylation in cancer cells, and therefore, inflammation or cancer development is increased. Further, to investigate the effect of cell permeable SOCS3, a cancer cell line where endogenous SOCS3 expression is suppressed should be selected or applied to a model, and therefore, the present experiments were performed.


Genomic DNA was extracted from cancer cell line using an Exgene™ Tissue SV mini kit (Geneall®, Korea). DNA was quantified, and experiments were performed using 500 ng of gDNA and an EZ DNA Methylation-Gold™ kit (ZYMO Research, Orange, Calif., USA) according to the manufacturer's instructions. DNA was used to perform PCR, and methylation and unmethylation of endogenous SOCS3 were qualitatively analyzed by electrophoresis. In this regard, the primers used are as follows.


Unmethyl-F was 5′-tag tgt gta agt tgt agg aga gtg g-3′(SEQ ID NO: 816), Unmethyl-R was 5′-cta aac ata aaa aaa taa cac taa tcc aaa-3′ (SEQ ID NO: 817), Methyl-F was 5′-gta gtg cgt aag ttg tag gag agc-3′ (SEQ ID NO: 818), and Methyl-R was 5′-gta aaa aaa taa cgc taa tcc gaa-3′ (SEQ ID NO: 819). PCR was performed for 30 cycles consisting of pre-denaturation at 95° C. for 5 minutes, denaturation at 95° C. for 30 seconds, annealing at 60° C. for 45 seconds, and extension at 72° C. for 1 minute, and then final extension at 72° C. for 8 minutes.


As shown in FIG. 63, unmethylation of SOCS3 was observed in HEK293 and HaCaT cells which are normal cells, whereas hypermethylation of the promoter region of SOCS3 gene was observed in U-87 MG, U-118 MG, T98G, LN229 which are glioblastoma cell lines (U: unmethylated SOCS3, M: methylated SOCS3). These results indicate that SOCS3 is silenced by hypermethylation in glioblastoma cell lines.


Example 17-3-2. Analysis of Expression of Endogenous SOCS3 and JAK/STAT Signaling Activation Status in Glioblastoma Cells

JAK/STAT3 activation in cancer cells was analyzed by Western blot analysis. The normal HaCaT and HEK293 cells, and glioblastoma cells, U-87 MG, U-118 MG, T98G, and LN229 were washed with PBS, and then the cells were lysed in RIM lysis buffer (Biosesang, Seongnam, Korea) containing protease inhibitor cocktail (Roche, Indianapolis, Ind., USA), incubated for 15 min at 4° C., and centrifuged at 13,000 rpm for 10 min at 4° C. to isolate proteins, followed by western blotting in the same manner as in Example 8-1.


As shown in FIG. 64, high expression levels of SOCS3 and low phosphorylation levels of p-STAT1, p-STAT3, and p-p65 were observed in normal HaCaT and HEK293 cells. Low expression level of SOCS3 gene was observed in the glioblastoma cell lines, compared to the normal cell line, and high levels of p-STAT1 and p-STAT3 were observed in LN229 and T98G. High levels of P-p65 were observed in all 4 types of glioblastoma cell lines. These results suggest a possibility of developing a mechanism-specific anticancer agent, because SOCS3-deficient cancer cells can be replenished with cell permeable proteins, and activated JAK/STAT-signaling can be negatively regulated.


Example 17-4. Investigation of Anticancer Efficacy of iCP-SOCS3 Recombinant Protein

To develop the iCP-SOCS3 recombinant protein as a mechanism-specific therapeutic agent for solid tumors, SOCS3 levels endogenously expressed and activation of JAK/STAT-signaling pathway were investigated in different breast cancer cell lines, normal cells, and normal hepatic cells.


Example 17-4-1. Analysis of Expression Level of Endogenous SOCS3 mRNA in Breast Cancer Cell Line

SOCS3 mRNA expression levels in cancer cells were analyzed by RT-PCR. mRNAs were isolated from normal cell lines and cancer cell lines according to a method provided in a manufacturer's sheet of Hybrid-R (Geneall, Korea), and PCR was performed using SOCS3 primer F 5′-cct act gaa ccc tcc tcc ga-3′ (SEQ ID NO: 820) and SOCS3 primer R 5′-gca get ggg tga ctt tct ca-3′ (SEQ ID NO: 821) for 30 cycles consisting of denaturing (95° C.), annealing (60° C.), and extending (72° C.) for 45 seconds each.


The results of electrophoresis showed that high expression levels of SOCS3 were observed in the normal HEK293 cells whereas low expression levels of SOCS3 were observed in the breast cancer cell lines, except MDA-MB-231 (FIG. 65).


Example 17-4-2. Analysis of Hypermethylation Level in Breast Cancer Cell Line

SOCS3 expression is suppressed due to methylation in cancer cells, and therefore, inflammation or cancer development is increased. Further, to investigate the effect of cell permeable SOCS3, a cancer cell line where endogenous SOCS3 expression is suppressed should be selected or applied to a model, and therefore, the present experiments were performed.


Genomic DNA was extracted from cancer cell line using an Exgene™ Tissue SV mini kit (Geneall®, Korea). DNA was quantified, and experiments were performed using 500 ng of gDNA and an EZ DNA Methylation-Gold™ kit (ZYMO Research, Orange, Calif., USA) according to the manufacturer's instructions. DNA was used to perform PCR, and methylation and unmethylation of endogenous SOCS3 were qualitatively analyzed by electrophoresis. In this regard, the primers used are as follows.


Unmethyl-F was 5′-tag tgt gta agt tgt agg aga gtg g-3′(SEQ ID NO: 816), Unmethyl-R was 5′-cta aac ata aaa aaa taa cac taa tcc aaa-3′ (SEQ ID NO: 817), Methyl-F was 5′-gta gtg cgt aag ttg tag gag agc-3′ (SEQ ID NO: 818), and Methyl-R was 5′-gta aaa aaa taa cgc taa tcc gaa-3′ (SEQ ID NO: 819). PCR was performed for 30 cycles consisting of pre-denaturation at 95° C. for 5 minutes, denaturation at 95° C. for 30 seconds, annealing at 60° C. for 45 seconds, and extension at 72° C. for 1 minute, and then final extension at 72° C. for 8 minutes.


As shown in FIG. 66, unmethylation of SOCS3 was observed in HEK293 cells which are normal cells, whereas hypermethylation of the promoter region of SOCS3 gene was observed in breast cancer cell lines, MDA-MB-231, MCF7, SK-BR3, and T47D (U: unmethylated SOCS3, M: methylated SOCS3). These results indicate that SOCS3 is silenced by hypermethylation in breast cancer cell lines.


Example 17-4-3. Analysis of Expression of Endogenous SOCS3 and JAK/STAT Signaling Activation Status in Breast Cancer Cell Line

JAK/STAT3 activation in cancer cells was analyzed by Western blot analysis. The normal HEK293 cells, and breast cancer cell lines, MDA-MB-231, MCF7, SK-BR3, and T47D were washed with PBS, and then the cells were lysed in RIPA lysis buffer (Biosesang, Seongnam, Korea) containing protease inhibitor cocktail (Roche, Indianapolis, Ind., USA), incubated for 15 min at 4° C., and centrifuged at 13,000 rpm for 10 min at 4° C. to isolate proteins, followed by western blotting in the same manner as in Example 8-1.


As shown in FIG. 67, high expression levels of SOCS3 and low phosphorylation levels of p-STAT1 and p-STAT3 were observed in normal HEK293 cells. Low expression level of SOCS3 gene was observed in the breast cancer cell lines, compared to the normal cell line. Further, high levels of p-STAT1 were observed in SK-BR3 and T47D, and high levels of p-STAT3 were observed in MDA-MB-231 and T47D. These results suggest a possibility of developing a mechanism-specific anticancer agent, because SOCS3-deficient cancer cells can be replenished with cell permeable proteins, and activated JAK/STAT-signaling can be negatively regulated.


Example 18. Investigation of Anti-Cancer Efficacy of iCP-SOCS3
Example 18-1. Investigation of Anti-Cancer Efficacy (Anti-Proliferative Activity) of iCP-SOCS3

In order to develop the iCP-SOCS3 recombinant protein as a therapeutic agent for solid tumors, efficacy of iCP-SOCS3 on proliferation of solid tumors (gastric cancer, colorectal cancer, breast cancer, and glioblastoma cell lines) was investigated.


Cells originated from human gastric cancer cells (AGS, MKN45, MKN75, NCI-N87), colorectal cancer cells (HCT116), glioblastoma (U-87 MG), breast cancer cells (MDA-MB-231), and mouse fibroblast (NIH3T3) were purchased from ATCC (Manassas, Va., USA) and KCLB (Seoul, Korea). All the cells were maintained as recommended by the supplier. These cells (3×103/well) were seeded in 96 well plates. The next day, cells were treated with DMEM (vehicle) or 10 μM recombinant SOCS3 proteins for 96 hrs in the presence of serum (2%). Proteins were replaced daily. Cell growth and survival were evaluated with the CellTiter-Glo Cell Viability Assay (Promega, Madison, Wis.). Measurements using a Luminometer (Turner Designs, Sunnyvale, Calif.) were conducted following the manufacturer's protocol.


Since the endogenous level of SOCS3 protein is reduced in solid tumor patient, and SOCS3 negatively regulates cell growth and motility in cultured solid tumor cells, we investigated whether iCP-SOCS3 inhibits cell viability through SOCS3 intracellular replacement in solid tumor cells. As shown in FIG. 68, SOCS3 recombinant proteins containing aMTD165 significantly suppressed cancer cell proliferation. HM165S3B (iCP-SOCS3) protein was the most cytotoxic to gastric cancer cells—over 40% in 10 μM treatment (p<0.01)—especially compared to vehicle alone (i.e. exposure of cells to culture media without recombinant proteins; left).


As shown in FIG. 69, SOCS3 recombinant proteins containing aMTD165 significantly suppressed cancer cell proliferation. HM165S3B (iCP-SOCS3) protein was the most cytotoxic to colorectal cancer cells—over 60% in 10 μM treatment (p<0.01)—especially compared to vehicle alone (i.e. exposure of cells to culture media without recombinant proteins; left).


As shown in FIG. 70, SOCS3 recombinant proteins containing aMTD165 significantly suppressed cancer cell proliferation. HM165S3B (iCP-SOCS3) protein was the most cytotoxic to glioblastoma cells—over 80% in 10 μM treatment (p<0.01)—especially compared to vehicle alone (i.e. exposure of cells to culture media without recombinant proteins; left).


As shown in FIG. 71, SOCS3 recombinant proteins containing aMTD165 significantly suppressed cancer cell proliferation. HM165S3B (iCP-SOCS3) protein was the most cytotoxic to breast cancer cells—over 40% in 10 μM treatment (p<0.01)—especially compared to vehicle alone (i.e. exposure of cells to culture media without recombinant proteins; left).


However, neither cell-permeable SOCS3 protein adversely affected the cell viability of non-cancer cells (NIH3T3) even after exposing these cells to equal concentrations (10 μM) of protein over 4 days. These results suggest that the iCP-SOCS3 protein is not overly toxic to normal cells and selectively kills tumor cells, and would have a great ability to inhibit cell survival-associated phenotypes in various cancer without any severe aberrant effects as a protein-based biotherapeutics.


Example 18-2. Investigation of Anti-Cancer Efficacy (Cell Migration Inhibition) of iCP-SOCS3

In order to develop the iCP-SOCS3 recombinant protein as a therapeutic agent for solid tumors, efficacy of iCP-SOCS3 on migration and metastasis of solid tumors (gastric cancer, colorectal cancer, breast cancer, and glioblastoma cell lines) was investigated.


Cells were seeded into 12-well plates, grown to 90% confluence, and incubated with 10 μM Non-CP-SOCS3 (HS3B), iCP-SOCS3 (HM165S3B) in serum-free medium for 2 hrs prior to changing the growth medium (recommended medium by the supplier). The cells were washed twice with PBS, and the monolayer at the center of the well was “wounded” by scraping with a pipette tip. Cells were cultured for an additional 24-48 hrs and cell migration was observed by phase contrast microscopy (Nikon, ECLIPSE Ts2). The migration was quantified by counting the number of cells that migrated from the wound edge into the clear area.


As shown in FIGS. 72-75, iCP-SOCS3 (HM165S3B) suppressed the repopulation of wounded monolayer although SOCS3 protein lacking aMTD165 (HS3B) had no effect on the cell migration, in AGS (FIG. 72), HCT116 (FIG. 73), U-87 MG (FIG. 74), and MDA-MB-231 (FIG. 75), respectly. In normal cells (NIH3T3), iCP-SOCS3 (HM165S3B) had no effect on the cell migration.


Transwell Migration Assay


The lower surface of Transwell inserts (Costar) was coated with 0.1% gelatin, and the membranes were allowed to dry for 1 hr at room temperature. The Transwell inserts were assembled into a 24-well plate, and the lower chamber was filled with growth media containing 10% FBS and FGF2 (40 ng/ml). Cells were added to each upper chamber at a density of 5×105, and the plate was incubated at 37° C. in a 5% CO2 incubator for 24 hrs. Migrated cells were stained with 0.6% hematoxylin and 0.5% eosin and counted.


As shown in FIGS. 76 (left) and 77, AGS (FIGS. 76) and U-87 MG (FIG. 77) cells treated with iCP-SOCS3 (HM165S3B) protein also showed significant inhibitory effect on their Transwell migration compared with untreated cells (Vehicle) and non-permeable SOCS3 protein-treated cells.


Invasion Assay


The lower surface of Transwell inserts (Costar) was coated with 0.1% gelatin, the upper surface of Transwell inserts was coated with matrigel (40 μg per well; BD Pharmingen, San Diego, Calif., USA), and the membranes were allowed to dry for 1 hr at room temperature. The Transwell inserts were assembled into a 24-well plate, and the lower chamber was filled with growth media containing 10% FBS and FGF2 (40 ng/ml). Cells (5×105) were added to each upper chamber, and the plate was incubated at 37° C. in a 5% CO2 incubator for 24 hrs. Migrated cells were stained with 0.6% hematoxylin and 0.5% eosin and counted.


As shown in FIG. 76 (right), AGS treated with iCP-SOCS3 (HM165S3B) protein caused remarkable decrease in invasion compared with the control proteins. Taken together, these data indicate that iCP-SOCS3 contributes to inhibit tumorigenic activities of solid tumors.


Example 18-3. Investigation of Anti-Cancer Efficacy (Induction of Apoptosis) of iCP-SOCS3


To further determine the effect of iCP-SOCS3 on the tumorigenicity of solid tumors, we subsequently investigated whether iCP-SOCS3 regulates apoptosis in various cancer cells, such as gastric cancer cells (AGS and MKN45), colorectal cancer cells (HCT116), glioblastoma cells (U-87 MG), and breast cancer cells (MDA-MB-231).


Annexin V/7-Aminoactinomycin D (7-AAD) staining was performed using flow cytometry according to the manufacturer's guidelines (BD Pharmingen, San Diego, Calif., USA). Briefly, 1×106 cells were washed three times with ice-cold PBS. The cells were then resuspended in 100 μl of binding buffer and incubated with 1 μl of 7-AAD and 1 μl of Annexin V-7-AAD for 30 min in the dark at 4° C. Flow cytometric analysis was immediately performed using a guava easyCyte™ 8 Instrument (Merck Millipore, Darmstadt, Germany). In this regard, gemcitabine (0.1˜10 μM) was used as a reference drug.


As shown in FIG. 78, 10 uM of iCP-SOCS3 (HM165S3B) protein did not induce apoptosis in normal cell lines (NIH3T3 and HEK293). Whereas, as shown in FIGS. 79-82, 10 uM iCP-SOCS3 (HM165S3B) was efficient inducer of apoptosis in cancer cells, as assessed by Annexin V staining. Consistently, no changes in Annexin V staining were observed in cancer cells treated with HS3B compared to untreated cell (Vehicle).


Example 18-4. Investigation of Anti-Cancer Efficacy (Induction of Apoptosis) of iCP-SOCS3

To further determine the effect of iCP-SOCS3 on the tumorigenicity of solid tumors, we subsequently investigated whether iCP-SOCS3 regulates apoptosis in colorectal cancer cells.


Apoptotic cells were analyzed using terminal dUTP nick-end labeling (TUNEL) assay with In Situ Cell Death Detection kit TMR red (Roche, 4056 Basel, Switzerland). Cells were treated for 24 hr with 10 μM HS3B or HM165S3B proteins with 2% fetal bovine serum and apoptotic cells were visualized by TUNEL staining. Treated cells were washed with cold PBS two times, fixed in 4% paraformaldehyde (PFA, Junsei, Tokyo, Japan) for 1 hr at room temperature, and incubated in 0.1% Triton X-100 for 2 min on the ice. Cells were washed with cold PBS twice, and treated TUNEL reaction mixture for 1 hr at 37° C. in dark, washed cold PBS three times and observed by fluorescence microscopy (Nikon, Tokyo, Japan).


iCP-SOCS3 (HM165S3B) protein was considerably efficient inducer of apoptosis in HCT116 cells (FIG. 83), as assessed by a fluorescent terminal dUTP nick-end labeling (TUNEL) assay. Consistently, no changes in TUNEL was observed in HCT116 cells treated with HS3B compared to untreated cell (Vehicle).


Example 18-5. Investigation of Anti-Cancer Efficacy (Inhibition of Cell Cycle Progression) of iCP-SOCS3

To further determine the effect of iCP-SOCS3 on the tumorigenicity of solid tumors, we subsequently investigated whether iCP-SOCS3 regulates cell cycle progression in various cancer cells, such as gastric cancer cells (AGS), colorectal cancer cells (HCT116), glioblastoma cells (U-87 MG, and breast cancer cells (MDA-MB-231).


Cancer cells and normal cells (NIH3T3, HaCaT, and HEK293) were treated with 10 uM protein (Non-CP-SOCS3 (HS3B) and iCP-SOSC3 (HM165S3B)) for 8 hrs. After the treatment, cells were washed twice with cold PBS and re-suspended in 1 ml cold PBS, fixed in cold 70% ethanol, washed with cold PBS twice and re-suspended in PI master mix (PI 10 ug/ml (sigma), 50 ug/ml RNase A (invitrogen) in staining buffer) at a final cell density of 2×105 cell/ml. The cell mixtures were incubated 30 min in the dark at 4° C. Flow cytometric analysis was immediately performed using a guava easyCyte™ 8 Instrument (Merck Millipore, Darmstadt, Germany).


iCP-SOCS3 (HM165S3B) protein efficiently inhibited cell cycle progression in various cancer cells, such as AGS, HCT116, U-87 MG, and MDA-MB-231 (FIGS. 85 to 88), while iCP-SOCS3 (HM165S3B) protein did not inhibit cell cycle progression in normal cells (FIG. 84).


Example 18-6. Investigation of Anti-Cancer Efficacy (Effect on Molecular Mechanism-Mode of Action) of iCP-SOCS3

To further determine the effect of iCP-SOCS3 on the tumorigenicity of solid tumors, we subsequently investigated whether iCP-SOCS3 regulates apoptosis in breast cancer cells (MDA-MB-231).


Cells were treated for 24 hr with 10 μM HS3B or HM165S3B proteins, lysed in RIPA lysis buffer containing proteinase inhibitor cocktail, incubated for 15 min at 4° C., and centrifuged at 13,000 rpm for 10 min at 4° C. Equal amounts of lysates were separated on 15% SDS-PAGE gels and transferred to a nitrocellulose membrane. The membranes were blocked using 5% skim milk or 5% Albumin in TBST and incubated with the following antibodies: anti-Bc1-2 (Santa Cruz biotechnology), anti-Cleaved Caspase 3 (Cell Signaling Technology), then HRP conjugated anti-mouse or anti-rabbit secondary antibody. The expression of each protein was determined by immunoblotting with indicated antibodies. An antibody against β-actin was used as a loading control.


MDA-MB-231 cells treated with iCP-SOCS3 (HM165S3B) protein dramatically reduced the expression of anti-apoptotic protein such as B-cell lymphoma 2 (Bc1-2) and increased the level of cleaved cysteine-aspartic acid protease (caspase-3) at 24 hr (FIG. 89). These results indicate that iCP-SOCS3 induces apoptosis of breast cancer cells and may suppress the cancer progression by this pathway.


Example 19. Investigation of Anti-Cancer Efficacy of iCP-SOCS3 in Xenograft Model (Cell-Derived Xenograft (CDX)-Model)
Example 19-1. Investigation of Anti-Cancer Efficacy of iCP-SOCS3 in Gastric Cancer Cell (NCI-N87)-Derived Xenograft (CDX) Model

In the following experiments, Western blotting was performed in the same manner as in Example 8-1, and RT-PCR and MC were performed by the following method.


RT-PCR


Tumor tissues were finely minced using a homogenizer according to the manufacturer's protocol of Hybrid-R (geneall, Korea), and then mRNA was isolated therefrom. 1 ug of mRNA thus separated was used to synthesize cDNA using an Accupower RT Premix (Bioneer, Korea). PCR was performed using 2 ul of cDNA and the primers of Table 45. PCR was performed using an Accupower PCR Premix (Bioneer, Korea) for 30 cycles consisting of denaturing (95° C.), annealing (60° C.), and extending (72° C.) for 45 seconds each.











TABLE 45





Genes
Forward Sequence
Reverse Sequence







Cyclin
CCGTTTACAAGCTAAGCAGC
GTGGTTCCAAGTCAGAATGC


E
(SEQ ID NO: 839)
(SEQ ID NO: 840)





Cyclin
TCAGTACTTGAGGCGACAAGG
CTCCCTAATTGCTTGCTGAGG


A1
(SEQ ID NO: 841)
(SEQ ID NO: 842)





Bax
CCCTTTTGCTTCAGGGTTTC
GCCACTCGGAAAAAGACCTC



(SEQ ID NO: 843)
(SEQ ID NO: 844)





FAK
TGGTGAAAGCTGTCATCGAG
CTGGGCCAGTTTCATCTTGT



(SEQ ID NO: 845)
(SEQ ID NO: 846)





p21
CAGCGGAACAAGGAGTCAGA
AGAAACGGGAACCAGGACAC



(SEQ ID NO: 847)
(SEQ ID NO: 848)





p27
GATAATCCCGCTCTGAATGC
GCTTCTCTTAGTGCTGTAGC



(SEQ ID NO: 849)
(SEQ ID NO: 850)





VEGF
CTTCAAGCCATCCTGTGTGC
ACGCGAGTCTGTGTTTTTGC



(SEQ ID NO: 851)
(SEQ ID NO: 852)





HIF-
ATCAGACACCTAGTCCTTCCG
TTGAGGACTTGCGCTTTCAGG



(SEQ ID NO: 853)
(SEQ ID NO: 854)





GAPDH
AAGGGTCATCATCTCTGCCC
GTGATGGCATGGACTGTGGT



(SEQ ID NO: 855)
(SEQ ID NO: 856)









Immunohistochemistry (IHC)


Tissue samples were fixed in 4% Paraformaldehyde (Duksan, South Korea) for 3 days, dehydrated, cleared with xylene and embedded in Paraplast. Sections (6 μm thick) of tumor were placed onto poly-L-lysine coated slides. To block endogenous peroxidase activity, sections were incubated for 15 min with 3% H2O2 in methanol. After washing three times with PBS, slides were incubated for 30 min with blocking solution (5% fetal bovine serum in PBS). Mouse anti-Bax antibody (sc-7480, Santa Cruz Biotechnology, SantaCruz, Calif., USA) and rabbit anti-VEGF (ab46154, Abcam, Cambridge, UK) were diluted 1:1000 (to protein concentration 0.1 μg/ml) in blocking solution, applied to sections, and incubated at 4° C. for 24 hrs. After washing three times with PBS, sections were incubated with biotinylated mouse and rabbit IgG (Vector Laboratories, Burlingame, Calif., USA) at a 1:1000 dilution for 1 hr at room temperature, then incubated with avidin-biotinylated peroxidase complex using a Vectorstain ABC Kit (Vector Laboratories, Burlingame, Calif., USA) for 30 min at room temperature. After the slides are reacted with oxidized 3, 3-diaminobenzidine as a chromogen, they were counterstained with Harris hematoxylin (Sigma-Aldrich, USA). Permanently mounted slides were observed and photographed using a microscope equipped with a digital imaging system (ECLIPSE Ti, Nikon, Japan).


Anti-tumor activity of iCP-SOCS3 against human cancer xenografts was assessed. Female Balb/cmu/mu mice (5-week-old, Doo-Yeol Biotech Co. Ltd. Korea) were subcutaneously implanted with Hep3B2.1-7 tumor block (1 mm3) into the left back side of the mouse. Tumor-bearing mice were intravenously administered with 600 μg/head of iCP-SOCS3 (HM165S3B) or the control proteins (HS3B) for 21 days and observed for 2 weeks following the termination of the treatment. After protein treatment, mice were killed, and six organs (brain, heart, lung, liver, kidney, and spleen) from each were collected and kept in a suitable fixation solution until the next step. Tumor size was monitored by measuring the longest (length) and shortest dimensions (width) once a day with a dial caliper, and tumor volume was calculated as width2×length×0.5.


As shown in FIG. 90, HM165S3B protein significantly suppressed the tumor growth (p<0.05) during the treatment and the effect persisted for at least 2 weeks after the treatment was terminated (65% inhibition at day 35, respectively). Whereas, the growth of HS3B-treated tumors increased, matching the rates observed in control mice (Vehicle). These results suggest that iCP-SOCS3 inhibits the growth of established tumors as well as the tumor growth of gastric cancer cells.


mRNA levels were analyzed using the tumor tissues removed at 2 weeks (Day 35) after termination of drug administration to analyze changes in expressions of major biomarker genes by iCP-SOCS3.


Expressions of cell cycle (cyclinAl) and angiogenesis (VEGF)-related genes were significantly regulated by treatment of iCP-SOCS3.


Accordingly, it was confirmed that iCP-SOCS3 is able to inhibit development of gastric cancer through expressions of various factors regulating cancer activity such as cell cycle, angiogenesis, etc.


Further, tumor tissues removed at 2 weeks (Day 35) after termination of drug administration were used to perform Western blotting and IHC, and increase or decrease in the expressions of cancer activity regulating factors by iCP-SOCS3 was observed.


In iCP-SOCS3-treated tumor tissues, expressions of a cell cycle regulator, p21 and apoptosis inducers, Bax and cleaved caspase-3 were increased. Further, expression of an angiogenesis inducer VEGF was also remarkably decreased (FIG. 90). Accordingly, it was demonstrated that cell cycle, apoptosis, and angiogenesis are also regulated by iCP-SOCS3 in-vivo.


Example 19-2. Investigation of Anti-Cancer Efficacy of iCP-SOCS3 in Colorectal Cancer Cell (HCT116)-Derived Xenograft (CDX) Model

The following experiments were performed in the same manner as in Example 19-1.


As shown in FIG. 91, HM165S3B protein significantly suppressed the tumor growth (p<0.05) during the treatment and the effect persisted for at least 2 weeks after the treatment was terminated (79% at day 35, respectively). Whereas, the growth of HS3B-treated tumors increased, matching the rates observed in control mice (Vehicle). These results suggest that iCP-SOCS3 inhibits the growth of established tumors as well as the tumor growth of colorectal cancer cells.


mRNA levels were analyzed using the tumor tissues removed at 2 weeks (Day 35) after termination of drug administration to analyze changes in expressions of major biomarker genes by iCP-SOCS3.


Expressions of apoptosis (Bax) and angiogenesis (VEGF)-related genes were significantly regulated by treatment of iCP-SOCS3.


Accordingly, it was confirmed that iCP-SOCS3 is able to inhibit development of colorectal cancer through expressions of various factors regulating cancer activity such as apoptosis, angiogenesis, etc.


Further, tumor tissues removed at 2 weeks (Day 35) after termination of drug administration were used to perform Western blotting and IHC, and increase or decrease in the expressions of cancer activity regulating factors by iCP-SOCS3 was observed.


In iCP-SOCS3-treated tumor tissues, expressions of a cell cycle regulator, p21 and an apoptosis inducer, Bax were increased. Further, expression of an angiogenesis inducer VEGF was also remarkably decreased (FIG. 91). Accordingly, it was demonstrated that cell cycle, apoptosis, and angiogenesis are also regulated by iCP-SOCS3 in-vivo.


Example 19-3. Investigation of Anti-Cancer Efficacy of iCP-SOCS3 in Glioblastoma Cell (U-87 MG)-Derived Xenograft (CDX) Model

The following experiments were performed in the same manner as in Example 19-1.


As shown in FIG. 92, HM165S3B protein significantly suppressed the tumor growth (p<0.05) during the treatment and the effect persisted for at least 2 weeks after the treatment was terminated (76% at day 42, respectively). Whereas, the growth of HS3B-treated tumors increased, matching the rates observed in control mice (Vehicle). These results suggest that iCP-SOCS3 inhibits the growth of established tumors as well as the tumor growth of glioblastoma cells.


mRNA levels were analyzed using the tumor tissues removed at 3 weeks (Day 42) after termination of drug administration to analyze changes in expressions of major biomarker genes by iCP-SOCS3.


Expressions of apoptosis (Bax), cell cycle (CDK4, CDK2, cyclinE, cyclinAl), angiogenesis (HIF1a, VEGF), and migration (FAK)-related genes were significantly regulated by treatment of iCP-SOCS3.


Expressions of NSE, FSTL-1, and GFAT which are biomarker genes of glioblastoma were remarkably decreased by iCP-SOCS3.


Expressions of VEGF and angiopoietin I which are biomarker genes of angiogenesis were significantly decreased by treatment of iCP-SOCS3.


Accordingly, it was confirmed that iCP-SOCS3 is able to inhibit development of glioblastoma through expressions of various factors regulating cancer activity such as apoptosis, cell cycle, migration, angiogenesis, etc.


Example 19-4. Investigation of Anti-Cancer Efficacy of iCP-SOCS3 in Breast Cancer Cell (MDA-MB-231)-Derived Xenograft (CDX) Model

The following experiments were performed in the same manner as in Example 19-1.


As shown in FIG. 93, HM165S3B protein significantly suppressed the tumor growth (p<0.05) during the treatment and the effect persisted for at least 2 weeks after the treatment was terminated (63% at day 35, respectively). Whereas, the growth of HS3B-treated tumors increased, matching the rates observed in control mice (Vehicle). These results suggest that iCP-SOCS3 inhibits the growth of established tumors as well as the tumor growth of breast cancer cells.


mRNA levels were analyzed using the tumor tissues removed at 2 weeks (Day 35) after termination of drug administration to analyze changes in expressions of major biomarker genes by iCP-SOCS3.


Expressions of cell cycle (p21, p2′7, cyclinE), proliferation (PCNA), and angiogenesis (HIF1a, VEGF)-related genes were significantly regulated by treatment of iCP-SOCS3.


Accordingly, it was confirmed that iCP-SOCS3 is able to inhibit development of breast cancer through expressions of various factors regulating cancer activity such as cell cycle, angiogenesis, etc., indicating characteristics of iCP-SOCS3 as a mechanism-specific therapeutic agent targeting solid tumors.


Further, tumor tissues removed at 2 weeks (Day 35) after termination of drug administration were used to perform Western blotting and IHC, and increase or decrease in the expressions of cancer activity regulating factors by iCP-SOCS3 was observed.


In iCP-SOCS3-treated tumor tissues, expression of a cell cycle regulator, p21 was increased and expressions of angiogenesis inducers, VEGF and CD31 were remarkably decreased (FIG. 93). Accordingly, it was demonstrated that cell cycle and angiogenesis are also regulated by iCP-SOCS3 in-vivo.


Statistical Analysis


Statistical analysis and graphic presentation have been performed using GraphPad Prism 5.01 software (GraphPad, La Jolla, Calif., USA). All experimental data are presented as means±SEM. Statistical significance was analyzed by the Student's t-test or ANOVA method. Experimental differences between groups were assessed using paired Student's t-tests. For animal experiments, ANOVA was used for comparing between and within groups to determine the significance. Differences with p<0.05 are considered to be statistically significant.


Those skilled in the art to which the present invention pertains will appreciate that the present invention may be implemented in different forms without departing from the essential characteristics thereof. Therefore, it should be understood that the disclosed embodiments are not limitative, but illustrative in all aspects. The scope of the present invention is made to the appended claims rather than to the foregoing description, and all variations which come within the range of equivalency of the claims are therefore intended to be embraced therein.

Claims
  • 1. A method of treating solid tumor in a subject in need thereof comprising: administering to the subject a therapeutically effective amount of an iCP-SOCS3 recombinant protein,wherein the iCP-SOCS3 recombinant protein comprises a SOCS3 protein, an advanced macromolecule transduction domain (aMTD) and a solubilization domain (SD), and the iCP-SOCS3 recombinant protein is represented by following structural formula: A-B-C,wherein A is the aMTD,B is the SOCS3 protein, andC is the SD,wherein the aMTD has an amino acid sequence of SEQ ID NO: 122, and the SD has an amino acid sequence independently selected from the group consisting of SEQ ID NOs: 798, 799, 800, 801, 802, 803, and 804.
  • 2. The method of claim 1, wherein the SOCS3 protein has an amino acid sequence of SEQ ID NO: 814.
  • 3. The method of claim 2, wherein the SOCS3 protein is encoded by a polynucleotide sequence of SEQ ID NO: 815.
  • 4. The method claim 1, wherein the aMTD is encoded by a polynucleotide sequence of SEQ ID NO: 362.
  • 5. The method of claim 1, wherein the SD is encoded by a polynucleotide sequence independently selected from the group consisting of SEQ ID NOs: 805, 806, 807, 808, 809, 810, and 811.
  • 6. The method of claim 1, wherein the iCP-SOCS3 recombinant protein has a histidine-tag affinity domain additionally fused to one end thereof.
  • 7. The method of claim 6, wherein the histidine-tag affinity domain has an amino acid sequence of SEQ ID NO: 812.
  • 8. The method of claim 7, wherein the histidine-tag affinity domain is encoded by a polynucleotide sequence of SEQ ID NO: 813.
CROSS REFERENCE TO RELATED APPLICATIONS

This is Divisional Application of U.S. application Ser. No. 15/361,701 filed Nov. 28, 2016, which is a Continuation-in-Part of application Ser. No. 14/838,304 filed Aug. 27, 2015, which claims the benefit of the filing date of U.S. Provisional Application No. 62/042,493, filed on Aug. 27, 2014, in the United States Patent and Trademark Office, the disclosure of which is incorporated herein in its entirety by reference.

Provisional Applications (1)
Number Date Country
62042493 Aug 2014 US
Divisions (1)
Number Date Country
Parent 15361701 Nov 2016 US
Child 16426751 US
Continuation in Parts (1)
Number Date Country
Parent 14838304 Aug 2015 US
Child 15361701 US