This application claims priority to Japanese Patent Application No. 2015-206193, the disclosure of which is incorporated herein by reference in its entirety.
The present invention relates to a cell treatment apparatus for cell treatment.
In recent years, cell culture is performed using tissues and cells of various sites of human body, fertilized eggs, or the like, and the cultured cells have been put to practical use for regenerative medicine. In the cell culture, it is important to prevent contamination of cells by bacteria or the like during the culture. Therefore, a cell treatment apparatus that enables the culture of cells in an environment that can maintain thereinside in aseptic conditions has been already proposed.
The aforementioned cell treatment apparatus includes an equipment installing section with an operating robot arranged therein, and a conveying unit for conveying containers (articles) for use in treatment cells to the equipment installing section side. This conveying unit is constituted by a glovebox for temporal placement of the containers, and a communication section for connecting the glovebox with the equipment installing section.
Arranged inside the conveying unit are a carriage, on which containers put in the glovebox are mounted, and rails having a length extending between the glovebox and the communication section (for example, Patent Literature 1)
Meanwhile, large kinds of containers are needed for containers such as reagent containers in which articles and reagents for use in cell treatment are contained. In this regard, Patent Literature 1 mentioned above is configured so that the same kind of containers are housed in a dedicated stand, and the stand with the plurality of containers housed therein is placed on the carriage to be conveyed toward the equipment installing section. Therefore, different kinds of containers cannot together be conveyed, which causes increase in the number of times that containers are conveyed by the carriage as the kinds of containers are increased. As a result, it take a long time to convey the containers, which poses a disadvantage of deteriorating the working efficiency.
In view of the above circumstances, it is an object of the present invention to provide a cell treatment apparatus that can shorten the time for conveying the articles.
A cell treatment apparatus according to the present invention includes: an isolator that has an inner space maintained in aseptic conditions and is configured to treat cells in the inner space; trays that are each configured to house plural kinds of articles for use in treatment of cells in the inner space of the isolator, while positioning them; and a pass box that is configured to carry the trays with the plural kinds of articles housed therein into the inner space of the isolator.
The cell treatment apparatus according to the present invention may be configured so that the isolator includes in the inner space a guide unit that guides the movement of the trays carried into the inner space of the isolator in a direction crossing the carrying-in direction.
The cell treatment apparatus according to the present invention may be configured so that the isolator includes in the inner space a robot for handling the articles housed inside of each of the trays carried into the isolator from the pass box, and the robot is configured to move the trays carried into the inner space in a direction crossing the carrying-in direction.
The cell treatment apparatus according to the present invention may be configured so that a plurality of pass boxes are provided.
Hereinafter, an apparatus to produce cultured cell products (hereinafter, referred to as production apparatus) that is an example of a cell treatment apparatus of the present invention will be described. In the following description on the front, rear, left, and right directions, the left and right directions correspond to the state shown in
The incubators 2 are provided while being vertically stacked in two stages as shown in
As described above, the isolator 3 is horizontally elongated (in this embodiment, it is rectangular in planer view), where one set (two units on the upper and lower sides) of incubators 2 is located on the short side of the isolator 3 (in this embodiment, the left side), and a plurality of sets (in this embodiment, two sets of incubators 2) are located on the longitudinal side (in this embodiment, the rear side). This configuration can reduce the size of the production apparatus without decreasing the number of cultured cells.
The isolator 3 includes an observation section 8, a processing section 13, and an outlet 14. The observation section 8 includes two first robot arms 6 and 7 configured to move the culture vessels 1 to an observation position so that the degree of growth in the culture vessels 1 taken out of the incubators 2 is checked. The processing section 13 is provided continuously with the observation section 8. The processing section 13 includes three second robot arms 10, 11, and 12. The second robot arms 10, 11, and 12 are configured to transfer cells in the culture vessels 1 that have a specified number of cells out of the culture vessels 1 observed in the observation section 8 into a large number of product containers 9 (such as vial containers, see the enlarged view of
With reference to the left and right directions, the first robot arm 6 on the left side corresponds to one set of incubators 2 located on the short side of the isolator 3 (in this embodiment, on the left side) and one set of incubators 2 on the left side out of the sets of incubators 2 located on the longitudinal side (in this embodiment, on the rear side). The first robot arm 6 on the left side can handle the culture vessels 1 that are housed in these incubators 2 (the range that can be reached by each robot arm (in planer view) is shown in
With reference to the left and right directions, the second robot arm 10 on the left side and the second robot arm 11 in the middle correspond to the pass box 4 on the left side out of the pass boxes 4 located on the longitudinal side of the isolator 3 (in this embodiment, on the rear side). The second robot arm 10 on the left side and the second robot arm 11 in the middle can handle reagent containers in which articles and reagents are contained, the reagent containers being to be housed (or having been housed) in the pass box 4.
The second robot arm 12 on the right side corresponds to the pass box 4 on the right side out of the pass boxes 4 located on the longitudinal side of the isolator 3 (in this embodiment, on the rear side) and a box 22 for carrying out the product containers 9. The second robot arm 12 on the right side can handle reagent containers in which articles and reagents are contained, the reagent containers being to be housed (or having been housed) in the pass box 4, and the product containers 9 to be housed in the box 22.
As seen from the overlapping of the dashed-double-dotted circles shown in
In this way, the robot arms 6, 7, 10, 11, and 12 are located within the isolator 3, thereby enabling each of the robot arms 6, 7, 10, 11, and 12 to act on the incubators 2, the isolator 3, the pass boxes 4, and the box 22 according to the purpose. Thus, according to the production apparatus of this embodiment, it is possible to improve the working efficiency and contribute to mass production of cultured cell products.
The first robot arms 6 and 7 and the second robot arms 10, 11, and 12 in this embodiment have the same configuration. Therefore, the description for the first robot arm 6 located at the left end will be applied to the description for each of the first robot arm 7, and the second robot arms 10, 11, and 12. The first robot arm 6 is constituted by articulated robot arm. The first robot arm 6 includes a fixed part 6A fixed to a base member 15 of the isolator 3, a base part 6B that is pivotable about the vertical axis at the distal end part of the fixed part 6A, a first arm 6C that is swingable about the horizontal axis at the distal end part of the base part 6B, a second arm 6D that is swingable about the horizontal axis at the distal end part of the first arm 6C, a third arm 6E that is swingable about the horizontal axis at the distal end part of the second arm 6D, and a pair of grips 6F, 6F that are attached to the distal end of the third arm 6E so as to be opposed thereto. The pair of grips 6F, 6F are configured to be capable of moving close to and away from each other. The articulated first robot arms 6 and 7 can hold the culture vessels 1 delivered from the incubators 2 using the pair of grips 6F (see
The microscope 16 located at an observation position is arranged between the two first robot arms 6 and 7. According to such an arrangement, it is possible to move the culture vessels 1 to the microscope 16 using the first robot arm 6 on the left side so as to observe the cells, and as a result of the observation, it is possible to hold the culture vessels 1 that have been determined to have a specified number of cells so as to rapidly move them to the processing section 13 side, using the first robot arm 7 on the right side. That is, the first robot arm 6 on the left side mainly performs the operation to move the culture vessels 1 to the microscope 16, and the first robot arm 7 on the right side performs the operation to move the culture vessels 1 that have been determined to have a specified number of cells toward the processing section 13 side. These operations by the first robot arms 6 and 7 can accelerate the operation speed. The determination on whether the culture vessels 1 have a specified number of cells may be made by counting the number of cells by visual inspection of the operator (human) of the production apparatus or may be made automatically by the control device based on the number of cells calculated by analyzing an image captured by a camera so as to automatically calculate the number of cells. The culture vessels 1 that are delivered from the incubator 2 located opposed to the first robot arm 7 on the right side are held by the first robot arm 7 on the right side to be moved to the microscope 16. Further, a microscope 25 is provided also in the processing section 13. The object observed by the microscope 25 is held by the second robot arm 12 on the right end to be moved.
The culture vessels 1 after the observation are conveyed not only by being directly passed from the first robot arm 7 on the right side to the second robot arms 10 arranged at the left end of the processing section 13. For example, in the case where the second robot arm 10 is in an operation, the culture vessels 1 are conveyed by a conveying apparatus 19 to a position where the second robot arm 10 at the left end of the processing section 13 or the second robot arm 11 arranged at horizontal center of the processing section 13 can grip them. The conveying apparatus 19 is provided along the front sidewall of the isolator 3 and is set to a length that allows the conveying apparatus 19 to convey them from the right end part of the observation section 8 of the isolator 3 to the horizontal center of the processing section 13. Accordingly, when the first robot arm 7 on the right side passes the culture vessels 1 after the observation to the conveyance starting end part of the conveying apparatus 19, the conveying apparatus 19 conveys the culture vessels 1 to the position where one of the two second robot arms 10 and 11 can grip them.
The conveying apparatus 19 is provided corresponding to at least one robot arm (in this embodiment, the first robot arm 7) located in the observation section 8 and a plurality of robot arms (in this embodiment, the two second robot arms 10 and 11) located in the processing section 13. The first robot arm 7 can directly deliver the articles to the second robot arm 10. The conveying apparatus 19 can deliver the articles to the first robot arm 7 and the third robot arm 11 between which direct delivery of the articles is impossible. Therefore, even in the case where the articles cannot be delivered from the first robot arm 7 to the third robot arm 11 via the second robot arm 10 due to the second robot arm 10 being in operation, the articles can be delivered from the first robot arm 7 to the third robot arm 11 via the conveying apparatus 19. Therefore, the articles can be conveyed in parallel (via a plurality of routes) within the isolator 3. Accordingly, the working efficiency within the isolator 3 can be improved, and thus the productivity can be improved.
In the processing section 13, three units of the second robot arms 10, 11, and 12 are arranged at equal intervals, and the intervals are set to be smaller than the interval between the two first robot arms 6 and 7, so that the speed of various processes performed between the second robot arms 10 and 11 or 11 and 12 is higher. As shown in
The two pass boxes 4, 4 are provided to be continuous with the rear wall of the processing section 13. One (on the left side) of the pass boxes 4 is arranged so that the articles can be carried therein passing through between the second robot arm 10 located at the left end and the second robot arm 11 located at the center. Examples of the articles include a plurality of types of containers including the product containers 9, the culture vessels 1, and the centrifuge tube 17, and the preparation tank 18 that is a container in which drugs are put. The other (on the right side) of the pass boxes 4 is arranged so that the articles are carried to the second robot arm 12 located at the right end. The articles (various kinds of containers) carried from the pass box 4 on the left side are handled by the second robot arm 10 located at the left end and the second robot arm 11 located at the horizontal center, while the articles (containers) carried from the pass box 4 on the right side are handled by the second robot arm 12 located at the right end.
As described above, the isolator 3 is horizontally elongated, in which the plurality (in this embodiment, two) of pass boxes 4 are located on the longitudinal side of the isolator 3 (in this embodiment, on the rear side). This configuration can reduce the size of the production apparatus without limiting the amount of articles to be carried into the isolator 3.
The opening of the outlet 14 is configured to have a size such that the second robot arm 12 located at the right end can easily enter therethrough. The outlet 14 is provided with a freely openable electric shutter (not shown) and is provided continuously with the box 22 that forms a space in which the product containers 9 moved through the outlet 14 to the outside of the isolator 3 are kept for a while.
The processing section 13 includes a first transfer processing unit, a separation processing unit, and a second transfer unit. The first transfer processing unit is configured to transfer a cell-containing liquid housed in the culture vessels 1 received from the first robot arm 7 into the centrifuge tube 17 using the second robot arm 10. The separation processing unit is configured to separate the cells and a liquid portion by subjecting the centrifuge tube 17 to a centrifuge 26 using the second robot arm 10. The second transfer unit is configured to transfer a specified number of cells within the centrifuge tube 17 into a large number of the product containers 9 while a preservative solution (cryopreservation solution) is put into the centrifuge tube 17 after removing at least part of the liquid portion separated in the separation processing unit from the centrifuge tube 17, using the second robot arm 10. In the description of this embodiment, the term “cell-containing liquid” simply means a “liquid containing cells” and is not limited to a liquid in a specific state.
The processing section 13 includes a medium-replacing unit configured to replace the culture medium within the culture vessels 1 taken out of the incubators 2 using the first robot arm 7. The medium-replacing unit is configured to open the caps of the culture vessels 1 received by the second robot arm 10 from the first robot arm 7, to dispose of the culture medium within the culture vessels 1, to supply another culture medium into the cell culture vessels 1, to put the caps thereon, and to return them to the first robot arm 7.
The processing section 13 configured as above is capable of performing a first process of thawing frozen cells and seeding them, a second process (passage process) of collecting the cells and seeding them on a large number of culture vessels, and a third process of collecting the cultured cells in the culture vessels after the passage process, subdividing the collected cells, transferring them into the product containers 9, and carrying them out through the outlet 14.
Provided at a position close to the processing section 13 within the observation section 8 is a first disposal part 23 for disposal of waste products, which can be lid-closed, such as the centrifuge tube 17 and the preparation tank 18 (mainly those having a large size), in addition to the cell culture vessels 1, which become unnecessary during the aforementioned processes. Provided at a position close to the box 22 within the processing section 13 is a second disposal part 24 for disposal of waste products (mainly those having a small size, but even for tips, there are large tips such as disposable tips), which cannot be lid-closed and therefore may cause dripping, such as pipette tips (suction openings mounted to pipettes, not shown).
The two pass boxes 4 have the same configuration. Each of the pass boxes 4 includes a first box 27 that constitutes a clean bench chamber for carrying containers from outside thereinto, and a second box 28 that constitutes a decontamination chamber for carrying containers from the clean bench chamber into the isolator 3. As shown in
As shown in
The clean bench chamber includes a decontamination chamber opening 35A that is openable and closable for carrying containers into the decontamination chamber. As shown in
The decontamination chamber includes an isolator opening 37A that can be opened and closed, through which containers carried from the clean bench chamber into the decontamination chamber is carried into the isolator 3. As shown in
The reference numeral 49 shown in
The culture vessel 1, the centrifuge tube 17, the preparation tank 18 and the like, which are various kinds of containers for use in the isolator 3, are placed in the pass box 4 on the left side, then housed in a first tray 29 shown in
The carrying-in device 31 includes a first carrying-in unit 51 installed in the pass box 4 on the left side shown in
The first movable member 53 includes a first mounting member 53A that is a plate like member having a rectangular shape in planer view and allows substantially all the area of the first tray 29 excepting a rear end part to be mounted thereon, and a first interlocking member 53B that is a plate like member having a rectangular shape in planer view extending from one end of the first mounting member 53A, allows the rear end part of the first tray 29 to be mounted thereon, and is interlocked with the first support member 54 side. The first mounting member 53A and the first interlocking member 53B respectively have a large number of holes 53a and a large number of holes 53b, through which air flows pass. The first interlocking member 53B has a width slightly larger than the width of the first mounting member 53A. Provided at a portion of the first interlocking member 53B close to the first mounting member 53A side is a first vertical plate 53C that is provided upstanding to abut a rear end in the carrying-in direction of the first tray 29 to block the movement of the first tray 29 rearward in the carrying-in direction of the first tray 29. A first handle 53D is attached to an upper part of a rear surface in the front-rear direction (carrying-in direction) of the first vertical plate 53C. A plate 55 is arranged at a position just beneath the first movable member 53 when the first movable member 53 has moved into the isolator 3, and has a large number of holes 55A through which air flows pass.
The first support member 54 includes a pair of first side plates 54A, 54A provided upstanding with an interval therebetween in the left-right direction (width direction) on a base plate 56 of the pass box 4, an L-shaped first cover member 54B that is configured to cover an area including a rear half in the front-rear direction of an upper side between the first side plates 54A, 54A and a rear end in the front-rear direction between the first side plates 54A, 54A, a pair of rod-shaped first guide members 54C, 54C that are supported at a certain height from the base plate 56 of the pass box 4 and arranged with a certain interval therebetween in the left-right direction, and a pair of left and right first rotating rollers 54D, 54D that contact a lower surface of the first movable member 53 to support the same during movement of the first movable member 53. First tubular bodies 53E, 53E, through which the pair of first guide members 54C, 54C extend so as to be movable therealong, are connected to a lower surface of a rear end part in the front-rear direction of the first movable member 53. The first side plates 54A, 54A and the first cover member 54B respectively have a large number of holes 54a and a large number of holes 54b, through which air flows pass.
The second carrying-in unit 52 also includes a second movable member 57 that can move the second tray 30, which is placed on the second movable member 57 in the pass box 4, toward the isolator 3 side, and a second support member 58 that movably supports the second movable member 53.
The second movable member 57 includes a second mounting member 57A that is a plate like member having a rectangular shape in planer view and allows substantially all the area of the second tray 30 excepting a rear end part to be mounted thereon, and a second interlocking member 57B that is a plate like member having a rectangular shape in planer view extending from one end of the second mounting member 57A, allows the rear end part of the second tray 30 to be mounted thereon, and is interlocked with the second support member 58 side. The second mounting member 57A and the second interlocking member 57B respectively have a large number of holes 57a and a large number of holes 57b, through which air flows pass. The second interlocking member 57B has a width in the left-right direction slightly larger than the second mounting member 57A. Provided at a portion of the second interlocking member 57B close to the second mounting member 57A side is a second vertical plate 57C that is provided upstanding to abut a rear end in the front-rear direction of the second tray 30 to block the movement of the second tray 30 rearward in the front-rear direction of the second tray 30. A second handle 57D is attached to an upper part of a rear surface in the front-rear direction of the second vertical plate 57C. A plate 59 is arranged at a position just beneath the second movable member 57 when the second movable member 57 has moved into the isolator 3, and has a large number of holes 59A (see
The second support member 58 includes a pair of left and right second side plates 58A, 58A provided upstanding with an interval therebetween in the left-right direction (width direction) on the base plate 56 of the pass box 4, an L-shaped second cover member 58B that is configured to cover an area including a rear half in the front-rear direction of an upper side between the second side plates 58A, 58A and a rear end in the carrying-in direction between the second side plates 58A, 58A, a pair of rod-shaped second guide members 58C, 58C that are supported at a certain height from the base plate 56 of the pass box 4 and arranged with a certain interval therebetween in the left-right direction, and a pair of left and right second rotating rollers 58D, 58D that contact a lower surface of the second movable member 57 to support the same during movement of the second movable member 57. Second tubular bodies 57E, 57E, through which the pair of second guide members 58C, 58C extend so as to be movable therealong, are connected to a lower surface of a rear end part in the front-rear direction of the second movable member 57. The second side plates 58A, 58A and the second cover member 58B respectively have a large number of holes 58a and a large number of holes 58b, through which air flows pass.
For example, when the first movable member 57 is to be moved into the isolator 3, the first handle 53D is grabbed through a given one of the glove ports G1 to G2 and pulled manually toward the isolator 3 side.
As shown in
The thus configured isolator 3 includes guide units 60, 60 located therein, which are configured to move the first tray 29 or the second tray 30 carried into the isolator 3 by the first movable member 53 or the second movable member 57 while guiding them in a direction (left-right direction) orthogonal to (or crossing) the carrying-in direction (front-rear direction). As shown in
The rod shaped member 61 on the front side is formed by a single rod-shaped member extending in the left-right direction from a portion corresponding to the isolator opening 37A so that when, for example, the first tray 29 is carried into the isolator 3 by the first carrying-in unit 51, the rod shaped member 61 on the front side can engage with the pair of left and right rotating rollers 29C, 29C at the front end of the first tray 29. A portion corresponding to the isolator opening 37A of the rod shaped member 62 on the rear side is omitted so as to allow passing of the first tray 29, for example, when the first tray 29 is carried into the isolator 3 by the first carrying-in unit 51. The rod shaped member 62 on the rear side is constituted by a left-side rod-shaped member 62A extending from a portion in proximity to the left end of the isolator opening 37A toward the left side, and a right-side rod-shaped member 62B extending from a portion in proximity to the right end of the isolator opening 37A toward the right side. Accordingly, in
Each of the isolator opening 37A and the decontamination chamber opening 35A has such a height as to allow a container having a largest dimension (herein HYPERFlask manufactured by Corning Incorporated) capable of culturing cells to pass therethrough. It is preferable that the isolator opening 37A and the decontamination chamber opening 35A have a width in the left-right direction being slightly larger than the width in the left-right direction of the first tray 29 and the second tray 30, so that the first tray 29 and the second tray 30 can be passed therethrough. The opening 34K of the clean bench chamber R1 also has such a height as to allow a container having a largest dimension (herein HYPERFlask manufactured by Corning Incorporated) capable of culturing cells to pass therethrough. Such height setting enables the size of each opening to be minimized and air flows to be desirably controlled, while enabling all the kinds of handled container to be carried into the respective chambers. As a result, it is possible to more securely avoid occurrence of troubles such as contamination.
The cell treatment apparatus according to the present invention is not limited to the aforementioned embodiment, and various modifications can be made without departing from the gist of the present invention.
The aforementioned embodiment was described by taking, for example, the case where the two robot arms 6 and 7 are provided in the observation section 8, and the three robot arms 10, 11, and 12 are provided in the processing section 13. However, it is also possible to apply, to the present invention, the configuration of providing at least one robot arm in the observation section 8 and providing at least one robot arm in the processing section 13.
In the aforementioned embodiment, the isolator 3 is configured to have a horizontally elongated shape as an example, but may be configured to have a square shape or a circular shape. Further, it may be configured to have a bent shape.
The aforementioned embodiment was described by taking, for example, the case where the first cover 35 is configured to be movable in the vertical direction and the second cover 37 is configured to be movable in the lateral direction. However, the moving direction of each of the first cover 35 and the second cover 37 may be set to any direction.
The description of the aforementioned embodiment was made for the apparatus to produce cultured cell products, which is configured to culture cells and subdivide cultured cells into products. However, the present invention is also applicable to an apparatus to culture cells, which is configured to perform only cell culturing, or applicable to a product manufacturing apparatus, which is configured to subdivide cultured cells into products.
The aforementioned embodiment was described by taking, for example, the case where the two pass boxes 4, 4 are provided. However, the present invention is also applicable to the case where one pass box, or three or more pass boxes are provided.
The aforementioned embodiment was described by taking, for example, the case where each of the trays 29 and 30 has a rectangular shape in planer view. However, the trays 29 and 30 may have any shape, such as a square shape, a polygonal shape, a circular shape or an elliptical shape.
The configuration and action of the aforementioned embodiment will be summarized below. The cell treatment apparatus according to the present embodiment includes: an isolator 3 that has an inner space maintained in aseptic conditions and is configured to treat cells in the inner space; trays 29 and 30 that are each configured to house plural kinds of articles for use in treatment of cells in the inner space of the isolator 3, while positioning them; and pass boxes 4, 4 that are configured to respectively carry the trays 29 and 30 with the plural kinds of containers housed therein into the isolator 3.
According to the above configuration, the plural kinds of containers are housed in each of the trays 29 and 30 while being positioned therein, so that the containers can be efficiently housed in the inner part of each of the trays 29 and 30. As a result, it is possible to reduce the number of times that the containers are carried into the isolator 3, and shorten the time for carrying in the containers corresponding to such reduction.
The isolator 3 may include in the inner space a guide unit 60 that guides the movement of the trays 29 and 30 carried into the inner space of the isolator 3 in a direction crossing the carrying-in direction.
According to such a configuration, the guide unit 60 guides the movements of the trays 29 and 30 carried into the inner space of the isolator 3 in a direction crossing the carrying-in direction, so that a plurality of trays 29 and 30 can be arranged in the inner space of the isolator 3 while being aligned and thereby a large number of cells can be treated.
The isolator 3 may include in the inner space a robot for handling the containers housed in the trays 29 and 30, and the robot is configured to move the trays 29 and 30 carried into the inner space in a direction crossing the carrying-in direction.
According to such a configuration, only carrying-in of the trays 29 and 30 suffices since the robot moves the trays 29 and 30 carried inside in a direction crossing the carrying-in direction.
A plurality of the pass boxes 4, 4 may be provided. With such a configuration including the plurality of pass boxes 4, 4, it is possible to complete carrying-in operations of the trays 29 and 30 in a short time and hence further shorten the time required for carrying in the containers.
Number | Date | Country | Kind |
---|---|---|---|
2015-206193 | Oct 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/080943 | 10/19/2016 | WO | 00 |