Ceramic heaters, a method for producing the same and heating apparatuses used for a system for producing semiconductors

Information

  • Patent Application
  • 20030094447
  • Publication Number
    20030094447
  • Date Filed
    October 21, 2002
    22 years ago
  • Date Published
    May 22, 2003
    21 years ago
Abstract
An object of the present invention is to provide a novel ceramic heater having a ceramic substrate with a heating face and a heat generator so that the temperature on the heating face may be controlled without the necessity of a temperature controlling member separate from the substrate. A ceramic heater 1B has a ceramic substrate 2 with a surface 2A and a heat generator 3. The surface 2A includes a heating face 2a, a first region 15 provided out of the heating face 2a and a second region 13 provided out of the heating face 2a. The second region 13 has an emissivity of thermal radiation lower than that of the first region 15.
Description


[0001] This application claims the benefit of Japanese Patent Application P2001-352964, filed on Nov. 19, 2001, the entirety of which is incorporated by reference.


BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention


[0003] The invention relates to ceramic heaters, a process for producing the same, and heating apparatuses for a system for producing semiconductors.


[0004] 2. Related Art Statement


[0005] In a system for producing semiconductors, a ceramic heater has been provided for heating a wafer (substrate) so as to deposit a semiconductor thin film on the wafer from gaseous raw materials such as silane gas by means of thermal CVD or the like. In such heater, it is necessary to maintain the temperature on a heating face high and to assure the uniformity of the temperature on the heating face so as to prevent semiconductor defects. Such ceramic heater, however, is generally made of a ceramic substrate and a heat generator embedded in the substrate, so that some degree of temperature difference may be observed on the heating face.


[0006] Japanese patent publication 6-53, 145 A discloses a technique for improving the uniformity of temperature on the heating face for a semiconductor of a ceramic heater. That is, a disk-shaped ceramic heater with a heating face for a semiconductor is produced. The temperature distribution on the heating face is then observed with a thermograph. The thus observed temperature distribution is then subjected to image processing to obtain image-processed data. A reflector is provided on a position opposing the back face of the ceramic heater. Heat radiated from the back face of the ceramic heater is reflected by the reflector and irradiated into the heater again. The temperature distribution of the reflector is controlled based on the image-processed data. In a region where a lower temperature is observed on the heating face, the thermal absorptance of the reflector is reduced, so that heat reflected by the reflector into the heater may be increased. The temperature in the region with a lower temperature observed may be thus increased. The surface of the reflector is subjected to sandblasting to control the surface roughness and thus to control the reflectance of the reflector.



SUMMARY OF THE INVENTION

[0007] The inventor has studied the above technique in Japanese patent publication 6-53, 145 A and encountered the following problems. That is, it is necessary to fix a reflector on a specific position opposing the back surface of a ceramic heater in a semiconductor chamber. After fixing the reflector, the distribution of the thermal absorptance (or thermal reflectance) on the reflecting face of the reflector should be accurately matched with the temperature distribution on the heating face of the ceramic heater before fixing the reflector. It is however difficult to adjust the positions of the heating face of the heater and of the reflecting face of the reflector, according to the following reasons.


[0008] (1) The center of a circular heating face of the ceramic heater should be accurately matched with the center of the circular reflecting face of the reflector.


[0009] (2) In addition to this, the angle and diameter of each position of the heating face with respect to the center should be accurately matched with those of each position of the reflecting face with respect to the center.


[0010] Furthermore, even if such adjustment of two-dimensional position had been successfully performed, such adjustment is insufficient for obtaining uniformity of temperature on the heating face within a specification, according to the following reasons. That is, the distance between the back face of the heater and the reflecting face of the reflector is also important. Specifically, the thermal absorptance of each point on the reflecting face is calculated and designed on the provision that a distance between the reflecting face and the back face of the heater is a specific value “α”. When the distance between the reflecting face and back face is smaller than “α”, heat transmitted from the reflecting face to the back face of the heater is increased so that the temperature on the heating face of the heater may be increased. The following adjustments (3) and (4) are thus needed.


[0011] (3) To control the distance between the back face of the heater and the reflecting face of the reflector at a specific value “α”.


[0012] (4) To make the back face of the heater and the reflecting face be parallel with each other over the whole of the back face.


[0013] It may be difficult to set and fix the reflector in a semiconductor chamber while maintaining the above four geometrical conditions.


[0014] Furthermore, the fixed reflector may result in a complicated structure as well as the deterioration of the reflector, fracture or warping of the reflector due to thermal stress and adverse effects on gas flow.


[0015] An object of the present invention is to provide a novel ceramic heater having a ceramic substrate with a heating face and a heat generator so that the temperature on the heating face may be controlled without the necessity of a temperature controlling member separate from the substrate.


[0016] The present invention provides a ceramic heater having a heat generator and a ceramic substrate with a surface including a heating face. A first region is provided on the surface and out of the heating face, and a second region is provided on the surface and out of the heating face. The second region has an emissivity of thermal radiation lower than that of the first region.


[0017] The present invention further provides a heating apparatus for a system for producing semiconductors. The heating apparatus has the ceramic heater with a back face, a terminal connected with the generator, a hollow supporting member defining an inner space and fixed on the back face of the heater, and a power supply means provided in the inner space and electrically connected with the terminal.


[0018] A system for producing semiconductors means a system usable in a wide variety of semiconductor processes in which metal contamination of a semiconductor is to be avoided. Such system includes a film forming, etching, cleaning and testing systems.


[0019] The present invention provides a method for producing a ceramic heater having a heat generator and a ceramic substrate with a surface including a heating face. The method has the step of providing a first region and a second region both on the surface and out of the heating face. The second region has an emissivity of thermal radiation lower than that of the first region.


[0020] The inventor has tried to divide the surface of the ceramic substrate itself other than the heating face into a plurality of regions having the different thermal emissivities with each other. The inventor has thus studied the effects on the heating face of the substrate. As a result, the inventor has found that the uniformity of temperature on the heating face may be substantially affected beyond expectation. The present invention is based on the findings.


[0021] For example, when a cold spot is observed on a heating face of a ceramic substrate, an emissivity of thermal radiation may be reduced in a projected area defined by projecting a planar pattern of the cold spot onto the back face. It is thereby possible to slightly increase the temperature in the cold spot on the heating face so that the cold spot may be cancelled. Alternatively, when a hot spot is observed on a heating face of a ceramic substrate, an emissivity of thermal radiation may be increased in a projected area defined by projecting a planar pattern of the hot spot onto the back face. It is thereby possible to slightly reduce the temperature in the hot spot on the heating face so that the hot spot may be cancelled. Such change or control of the emissivity of thermal radiation of a part of the surface of the ceramic substrate may be performed only with a surface processing of the ceramic surface. It has not been known that the temperature distribution on the heating face may be considerably improved only by performing surface processing of the ceramic substrate to control the emissivity of thermal radiation.


[0022] These and other objects, features and advantages of the invention will be appreciated upon reading the following description of the invention when taken in conjunction with the attached drawings, with the understanding that some modifications, variations and changes of the same could be made by the skilled person in the art.







BRIEF DESCRIPTION OF THE DRAWINGS

[0023]
FIG. 1 is a schematic diagram for explaining a method for measuring the temperature distribution on a heating face 2a of a ceramic heater 1.


[0024]
FIG. 2 (a) is a plan view showing the ceramic heater 1 observed from the side of heating face 2a.


[0025]
FIG. 2 (b) is a cross sectional view showing a proximal part of a side face 2c of the heater 1.


[0026]
FIG. 3 (a) is a bottom view showing a ceramic heater 1A after lapping observed from the side of a back face 2b.


[0027]
FIG. 3 (b) is a cross sectional view schematically showing a proximal part of a side face 2c of the heater 1A.


[0028]
FIG. 4 (a) is a bottom view showing the heater 1A with a mask mounted thereon observed from the side of a back face 2b.


[0029]
FIG. 4 (b) is a cross sectional view showing a proximal part of the side face 2c of the heater 1A with a mask mounted thereon.


[0030]
FIG. 5 (a) is a bottom view showing a ceramic heater 1B after a roughening treatment observed from the side of a back face 2b.


[0031]
FIG. 5 (b) is a cross sectional view showing a proximal part of the side face 2c of a heater 1B.


[0032]
FIG. 6 is a perspective view showing a heating apparatus 22 observed from the side of a back face 2b.


[0033]
FIG. 7 is a cross sectional view of a heating apparatus 22.


[0034]
FIG. 8 (a) is a cross sectional view showing an essential part of a ceramic heater 1C having a first region 15 with a groove 24 formed therein.


[0035]
FIG. 8 (b) is a cross sectional view showing an essential part of a ceramic heater 1D having a first region 15 with protrusions formed at specified intervals thereon.


[0036]
FIG. 9 is a cross sectional view showing an essential part of a ceramic heater 1E.


[0037]
FIG. 10 is an image showing the result of measurement of the temperature distribution on a heating face of a ceramic heater 1 before a treatment.


[0038]
FIG. 11 is an image showing the result of measurement of the temperature distribution on a heating face of a ceramic heater 1B after a treatment.







PREFERRED EMBODIMENTS OF THE INVENTION

[0039] The present invention will be described further in detail, referring to the attached drawings.


[0040] In an embodiment shown in FIGS. 1 to 7, the center line average surface roughness of a ceramic substrate is controlled so as to control the emissivity of thermal radiation. That is, as the center line average surface roughness “Ra” of a ceramic surface is larger (as the ceramic surface is made rougher), the emissivity of thermal radiation of the surface is slightly increased. On the contrary, as the center line average surface roughness “Ra” of a ceramic surface is lower (as the ceramic surface is made smoother), the emissivity of thermal radiation of the surface is slightly reduced.


[0041] According to one embodiment of the present invention, the temperature distribution on a heating face of a ceramic heater is observed. For example, as shown in FIG. 1, the heater has a plate-shaped ceramic substrate 2 and heat generators 3A, 3B embedded in the substrate 2. 2a denotes a heating face, 2b a back face, and 2c a side face. A measuring apparatus 4 is provided over the heating face so that the temperature distribution on the heating face is measured as an arrow “A”. The results obtained by the measurement is sent as an arrow “B” to a processor 5 to perform image processing. The result of the image processing is then sent to a display 6 as an arrow “C”.


[0042] When a cold spot or hot spot out of a specification is observed on the heating face, the subsequent steps are performed. For example, as shown in FIG. 2(a), it is provided that a cold spot 7 is observed on the heating face 2a. As shown in FIG. 2(b), it is also provided that the whole of a side face 2c and a back face 2b of the substrate 2 is rough to a some degree, at this stage.


[0043] In the present embodiment, a projected area may be defined at least on the back face 2b corresponding with a planar pattern of the cold spot 7. A second region with a smaller center line average surface roughness is provided in the projected area. For example, as shown in FIGS. 3(a) and 3(b), 8 denotes a projected area defined by projecting a planar pattern of the cold spot 8 onto the back face 2b. For providing the second region, for example, the whole of the back face 2b and side face 2c of the heater 1A is subjected to lapping so at to form smoothened surfaces 10A, 10B and 10C each having a smaller center line average roughness.


[0044] As shown in FIGS. 4(a) and 4(b), the side face 2c is covered with a mask 12B. The projected area 8 corresponding with the cold spot 7 is also covered with a mask 12A.


[0045] The back face 2b of the substrate 2 is then subjected to a treatment for increasing surface roughness. The masks 12A and 12B are then removed to obtain a ceramic heater 1B shown in FIGS. 5(a), 5(b) and 6.


[0046] In the heater, the projected area 8 corresponding with the cold spot 7 on the back face 2b is covered with the mask so that the smoothened surface 10B remains. The smoothened surface 10A remains on the side face 2c of the substrate 2 covered with the mask These smoothened faces 10A and 10B together form a second region 13. The other region without the mask on the back face 2b is made a roughened surface 14, which forms a first region 15 with a larger center line average roughness.


[0047] It has been proved to be possible to reduce or cancel the cold spot, by forming the smoothened surface region 13 with a smaller center line average surface roughness in the projected area one the back face corresponding with the cold spot or in the side face.


[0048] Further, it should be noted that the uniformity of the temperature distribution on the heating face may be realized by surface processing of the surface itself of a ceramic substrate. Such control of the temperature distribution does not require an outer member (such as a reflector) fixed outside of the ceramic substrate, for example in the prior art described above.


[0049] Particularly, in the present embodiment, two layers of resistance heat generators 3A and 3B are embedded in the ceramic substrate so that the calorific value generated by each heat generator is controlled for performing so-called two zone controlling system. It is possible to apply a multi zone control system having three or more zones. In the present example, a multi-zone control system, particularly multi-zone control system using a plural layers of heat generators embedded in a ceramic substrate, is applied. The temperature distribution on the heating face may be normally controlled within an order of not more than 10° C., by applying such multi-zone control system. In an actually manufactured article, a local cold spot or hot spot may be observed due to various reasons, even when the multi-zone control system is performed.


[0050] In this case, it may be considered to control the calorific value of a heat generator embedded in a zone where a cold spot or hot spot is observed, so as to cancel the cold or hot spot. Such control has been, however, proved to be difficult. The reasons are as follows. When electric power supply to each of the heat generators is increased or reduced, the calorific value of the heat generator is changed. Such change does not necessarily reduce the temperature distribution on the heating face and may even increase the temperature distribution. The multi-zone heater is effective for controlling the average temperature in each of the outer peripheral zone and inner zone of the heating face. However, a cold spot or hot spot may be observed in only a part of each of the outer peripheral and inner zones of the heating face in a ceramic heater. It is thus difficult for providing a solution for such cold or hot spot.


[0051] The present invention may provide a solution for such local hot or cold spot, even in a small order of, for example, not more than 10° C., when uniformity of temperature distribution has been already realized to a some degree by means of the multi zone control system. It is thus possible to control and accurately adjust the temperature distribution for an individual article.


[0052] It is possible to provide a reduced temperature distribution according to the present invention. The control according to the present invention is, however, not limited to such control of reducing the temperature distribution. For example, a region with a higher temperature or a lower temperature with a specific temperature difference may be provided in a specified area on the heating face, according to the present invention.


[0053] An emissivity of thermal radiation on the surface of a ceramic substrate may be measured as follows. A ceramic substrate is maintained at a specific temperature and its surface is observed with a thermoviewer to obtain a temperature. The emissivity of thermal radiation is adjusted so that the temperature measured by the thermoviewer becomes identical with a specified temperature for the ceramic substrate.


[0054] In the present invention, a plurality of regions having the emissivities of thermal radiation different from each other may be provided on the surface of a ceramic substrate, by controlling the center line average surface roughness, as described above. Alternatively, the regions may be provided according to the following methods.


[0055] (1) A recess having a depth of not smaller than 1 μm is formed in a first region by machining. The recess may preferably be an elongate recess or groove, and most preferably a V-shaped or U-shaped groove. The depth of the recess may preferably be not smaller than 10 μm for further improving the effects of the present invention. The depth may preferably be not larger than 1000 μm on the viewpoint of difficulty of machining process.


[0056] (2) A protrusion having a height of not smaller than 1 μm is formed by machining in a first region. Preferably, the protrusion is so-called an emboss or dimple. The height of the protrusion may preferably be not smaller than 10 μm for further improving the effect of the present invention. The height may preferably be not larger than 1000 μm on the viewpoint of the difficulty of machining process and for preventing the adverse effects on the gas flow used for processing.


[0057] (3) The first region is subjected to a chemical surface treatment. Such treatment includes etching or oxidizing process as described below.


[0058] (4) The lightness of the first region is made smaller than that of the second region, so as to increase the emissivity of thermal radiation of the first region. In this case, the difference of the lightness of the first region and that of the second region may preferably be not smaller than 0.5. Further, the lightness of the first region may preferably be N1 to N6, and the lightness of the second region may preferably be N2 to N10.


[0059] Lightness will be described below. The surface color of a substance may be represented by three properties of color perception: hue, lightness and chroma. Lightness is a property for representing visual perception judging the reflectance of the surface of a substance. The representations of the three properties are defined in “JIS Z 8721”. The representation of lightness will be briefly described. The lightness “V” is defined based on achromatic colors. The lightness of ideal black and that of ideal white are defined as “0” and “10”, respectively. Achromatic colors between the ideal black and ideal white are divided into 10 categories and represented as symbols from “N0” to “N10”. The categories are divided so that each category has a same rate or span in terms of visual perception of lightness. When actually measuring the lightness of a ceramic substrate, the surface color of the substrate is compared with standard color samples corresponding with “N0” to “N10” to determine the lightness of the body. The lightness is determined to the first decimal point, whose value is selected from “0” and “5”.


[0060] In a preferred embodiment, a difference between the maximum and minimum temperatures on the heating face of the substrate is not more than 20° C. and more preferably not more than 10° C. when an average temperature on the heating face is 600° C. When the average temperature on the heating face is not lower than 600° C., the effect of thermal radiation from a rough surface becomes considerable. As a result, the invention may be effective for further improving the uniformity of temperature after the in-plane temperature distribution of an object on the heating face is controlled to be uniform to a some degree.


[0061] According to one embodiment of the present invention, a ceramic substrate has a surface including at least a heating face and a back face opposing to the heating face. Further, the surface of the substrate may include a side face in addition to the heating and back faces.


[0062] In a preferred embodiment, the back face of the substrate is divided into first and second regions. The first region has an emissivity of thermal radiation larger than that of the second region. The temperature on the heating face may be slightly reduced in a first projected area defined by projecting the first region onto the heating face, because the first region has a larger emissivity of thermal radiation. The temperature on the heating face may be slightly increased in a second projected area defined by projecting the second region onto the heating face, because the second region has a smaller emissivity of thermal radiation.


[0063] Further, a first or second region may be provided on the side face of the substrate. When a cold spot is observed in the outer peripheral portion of the heating face, the side face may be made the second region having a smaller emissivity of thermal radiation, so that the temperature in the cold spot may be increased to cancel the cold spot. Alternatively, when a hot spot is observed in the outer peripheral portion of the heating face, the side face may be made the first region having a larger emissivity of thermal radiation, so that the temperature in the hot spot may be reduced to cancel the hot spot.


[0064] In a preferred embodiment, temperature distribution on the heating face of the ceramic substrate is observed, so that the first and second regions are provided based on the observed temperature distribution.


[0065] In a preferred embodiment, a cold spot observed on the heating face is projected onto the back face to define a projected area, on which the second region having a smaller emissivity of thermal radiation is provided. Alternatively, a hot spot observed on the heating face is projected onto the back face to define a projected area, on which the first region having a larger emissivity of thermal radiation is provided.


[0066] When a cold spot is observed in the outer peripheral portion on the heating face, the second region having a smaller emissivity of thermal radiation is provided on the side face of the substrate. When a hot spot is observed in the outer peripheral portion on the heating face, the first region having a larger emissivity of thermal radiation is provided on the side face of the substrate.


[0067] The difference of the center line average surface roughness Ra of the first region and that of the second region may preferably be not smaller than 0.05 μm and more preferably be not smaller than 0.1 μm, on the viewpoint of the effects according to the present invention.


[0068] The center line average surface roughness Ra of the first region may preferably be not smaller than 0.6 μm and more preferably be not smaller than 0.8 μm, on the viewpoint of the effects according to the present invention.


[0069] The center line average surface roughness Ra of the second region may preferably be not larger than 0.6 μm and more preferably be not larger than 0.4 μm, on the viewpoint of the effects according to the present invention.


[0070] The average surface roughness is measured by means of a surface roughness tester.


[0071] For providing a difference between the center line average surface roughness of the first region and that of the second region, the following methods may be listed.


[0072] (1) A part of the surface of the substrate (other than heating face) is subjected to a roughening treatment to provide the first region having a larger roughness and to leave an untreated second region.


[0073] (2) A part of the surface of the substrate is subjected to a smoothening treatment to provide the second region having a smaller roughness and to leave an untreated first region.


[0074] (3) One part of the surface of the substrate is subjected to a roughening treatment to provide the first region having a larger roughness and the other part of the surface is subjected to a smoothening treatment to provide the second region having a smaller roughness.


[0075] The roughening treatment for providing the first region is not limited and may preferably be blasting or etching. The followings are particularly preferred conditions.


[0076] (Sandblast)


[0077] A blasting material for sandblasting may preferably be a ceramic material such as silicon carbide or alumina. Metals are not preferable because they may be a source of metal contamination. The particle diameter of the blast material may preferably be smaller than #180, for reducing damage caused on the surface of the ceramic substrate and the content of residual metal components on the damaged area. The blast nozzle material may preferably be a ceramic material. Wet and dry processes are both available.


[0078] (Etching)


[0079] Wet etching using hydrofluoric acid, hydrochloric acid, nitric acid or ammonia is preferred. Alternatively, dry etching using a halogen gas such as NF3, Cl2 and ClF3 is preferred.


[0080] The smoothening treatment for providing the second region is not also limited and may preferably be mechanical working process. Such working includes lapping and polishing. The followings are particularly preferred conditions.


[0081] ◯ Grinding using diamond grind stones of #800 or more


[0082] ◯ Baffing using free abrasive grains (having a particle size of not more that 0.1 μm) such as alumina and colloidal silica grains


[0083] ◯ Lapping using diamond abrasive grains having a particle size of not more than 5 μm (number of revolution is not smaller than 10 rpm and pressure is not lower than 100 g/cm2)


[0084] A system for observing the temperature distribution on the heating face is not limited and may preferably be an infrared thermoviewer, a wafer equipped with a thermocouple, an RTD wafer or a thermocouple. It is known a method for producing a mask based on the results of image processing of the observed temperature distribution.


[0085] A material for the substrate is not particularly limited. The material may be a known ceramic material including a nitride ceramics such as aluminum nitride, silicon nitride, boron nitride and sialon, and an alumina-silicon carbide composite material. The material may most preferably be aluminum nitride or alumina for providing high anti-corrosion property to a corrosive gas such as a halogen based gas.


[0086] The shape of the substrate is not particularly limited, and may preferably be a disk. Pocket shaped parts, emboss-shaped parts, or grooves may be formed on its semiconductor mounting face.


[0087] The heater may be produced by any method not particularly limited, and may preferably be produced by hot pressing or hot isostatic pressing.


[0088] The shape of the resistance heat generator may be coil, ribbon, mesh, plate or film. The material of the heat generator may preferably be a pure metal selected from the group consisting of tantalum, tungsten, molybdenum, platinum, rhenium and hafnium, or an alloy of two or more metals selected from the group consisting of tantalum, tungsten, molybdenum, platinum, rhenium and hafnium. When the substrate is made of aluminum nitride, the material for the heat generator may preferably be molybdenum or the alloy of molybdenum. The other known resistance heat generator of a conductive material such as carbon, TiN, TiC or the like may be used.


[0089]
FIG. 6 is a perspective view showing a heating apparatus 22 according to one embodiment of the present invention observed from a back face 2b. FIG. 7 is a cross sectional view showing the heating apparatus 22.


[0090] The heating apparatus 22 has a ceramic heater 1B and a supporting member 21. The heater 1B is the same as that shown in FIG. 5. A substrate 2 has a heating face 2a functioning as a semiconductor mounting face for mounting a semiconductor W. One end face 21c of the supporting member 21 is joined with the back face 2b of the heater 1B. The method for joining is not particularly limited. The joining may be carried out by soldering or solid phase welding as described in Japanese patent publication P8-73280A. The heater and supporting member may be joined and sealed using a sealing member such as an O-ring and a metal packing.


[0091] The supporting member 21 has a cylindrical shape. The supporting member 21 defines an inner space 19 separated from atmosphere 20 in a chamber. Power supply means 18 are contained in the inner space 19. One ends of the power supply means 18 are connected with the terminals 17. 21a denotes an outer surface and 21b denotes an inner surface of the supporting member 21. The terminals 17 and power supply means 18 are contained in the inner space 19 of the supporting member so that they are prevented from the contact with the atmosphere 20 in a system for producing semiconductors. It is thereby possible to prevent or reduce the corrosion of the terminals 17 and power supply means 18 so as to prevent the metal contamination of a semiconductor.


[0092] A material for the supporting member is not limited, and includes a known ceramic material including a nitride ceramics such as aluminum nitride, silicon nitride, boron nitride and sialon, and an alumina-silicon carbide composite material.


[0093] The shape of each of the first and second power supply means is not particularly limited, and may be a rod shaped body, a wire shaped body or a combination of rod and wire shaped bodies. A material for the power supply means is not particularly limited. The power supply means are separated from atmosphere 20 in a chamber and thus do not directly exposed to a highly corrosive substance. The material of the supply means may thus preferably be a metal and most preferably be nickel.


[0094] FIGS. 8(a), 8(b), and 9 are cross sectional views each showing an essential part of each ceramic heater 1C, 1D or 1E according to another embodiment of the present invention.


[0095] In a ceramic heater 1C of FIG. 8(a), the second region 13 is a smoothened surface described above. Many V-shaped grooves 24 are formed in parallel with each other at predetermined intervals in the first region 15. The emissivity of thermal radiation from the first region 15 is thereby made larger than that from the second region 13 after the above smoothening treatment.


[0096] In a ceramic heater ID of FIG. 8(b), the second region 13 is a smoothened surface. Many dimple-shaped or emboss-shaped protrusions 25 are formed at predetermined intervals in the first region 15. The emissivity of thermal radiation from the first region 15 is thereby made larger than that from the smoothened second region 13.


[0097] In a heater 1E of FIG. 9, the second region 13 is a smoothened surface. In the first region 15, the surface area of the substrate is removed by grinding so that a ground surface 26 is exposed. The ground surface 26 has a lightness lower than those of smoothened surfaces 10A and 10B, so that the emissivity of thermal radiation from the region 15 is made larger than that from the region 13. When the lightness of the surface of a ceramic substrate may be changed by working the surface as described above, the lightness of the substrate surface may be controlled only by working so that the emissivity of thermal radiation may be controlled.



EXAMPLES

[0098] A ceramic heater was produced according to the method described referring to FIGS. 1 to 5. The substrate 2 was composed of an aluminum nitride sintered body having a diameter ∅ of 250 mm and a thickness of 10 mm. Heat generators 3A and 3B each having a shape of coil spring and made of molybdenum are embedded in the substrate 2. Each terminal was made of molybdenum and cylindrical shaped.


[0099] Power was supplied to the ceramic heater 1 until the average temperature on the heating face 2a reached about 700° C. The temperature distribution on the heating face 2a was then measured by means of a thermoviewer. The results were shown in FIG. 10. As can be seen from FIG. 10, a cold spot 7 having a shape of an arc as shown in FIG. 2(a) was observed. The difference of the maximum and minimum temperatures on the heating face was measured and proved to be 8.5° C.


[0100] As shown in FIG. 3, the whole of the side face 2c and back face 2b were lapped to provide smoothened surfaces 10A, 10B and 10C each having a center line average surface roughness of 0.5 μm.


[0101] Masks 12A and 12B were set as shown in FIG. 4 and the smoothened surfaces are subjected to sandblasting. The masks were then removed to obtain a ceramic heater 1B shown in FIG. 5. The first region 13 has a center line average surface roughness of 0.5 μm, and the second region 15 has that of 1.0 μm.


[0102] Power was supplied to the ceramic heater 1B until the average temperature on the heating face 2a reached about 700° C. The temperature distribution on the heating face 2a was then measured by means of a thermoviewer. The results were shown in FIG. 11. As can be seen from FIG. 11, the cold spot 7 shown in FIG. 10 was not observed. The difference of the maximum and minimum temperatures on the heating face was measured and proved to be 4.5° C.


[0103] As described above, the present invention provides a novel ceramic heater having a ceramic substrate and a heat generator so that the temperature on the heating face may be controlled without the necessity of a temperature controlling member separate from the substrate.


[0104] The present invention has been explained referring to the preferred embodiments. However, the present invention is not limited to the illustrated embodiments which are given by way of examples only, and may be carried out in various modes without departing from the scope of the invention.


Claims
  • 1. A ceramic heater comprising a heat generator and a ceramic substrate having a surface, said surface including a heating face, a first region provided out of said heating face and a second region provided out of said heating face, wherein said second region has an emissivity of thermal radiation lower than that of said first region.
  • 2. The heater of claim 1, wherein said second region has a center line average surface roughness smaller than that of said first region.
  • 3. The heater of claim 1, wherein said surface includes a back face, and said first and second regions is provided on said back face.
  • 4. The heater of claim 1, said surface includes a side face, and at least one of said first and second regions is provided on said side face.
  • 5. The heater of claim 1, wherein at least one of said first and second regions is subjected to a chemical surface treatment.
  • 6. The heater of claim 5, wherein said chemical surface treatment is etching.
  • 7. The heater of claim 1, wherein at least one of said first and second regions is subjected to a physical surface treatment.
  • 8. The heater of claim 7, wherein said physical surface treatment is grinding, lapping, polishing or blasting.
  • 9. The heater of claim 1, wherein said first region has a lightness lower than that of said second region.
  • 10. The heater of claim 1, wherein a difference between the maximum temperature and minimum temperatures on said heating face is not larger than 20° C. when the average temperature on said heating face is 600° C.
  • 11. A heating apparatus for a system for producing semiconductors, said apparatus comprising said heater of claim 1 having a back face, a terminal connected with said generator, a hollow supporting member defining an inner space and fixed on said back face of said heater, and a power supply means provided in said inner space and electrically connected with said terminal.
  • 12. A method for producing a ceramic heater comprising a heat generator and a ceramic substrate having a surface including a heating face, the method comprising the step of providing a first region on said surface out of said heating face and a second region on said surface out of said heating face, wherein said second region has an emissivity of thermal radiation lower than that of said first region.
  • 13. The method of claim 12, further comprising the step of measuring temperature distribution on said heating face of said heater, wherein said first and second regions are provided based on said temperature distribution measured.
  • 14. The method of claim 13, wherein said surface includes a back face, a cold spot is detected on said heating face, and said second region is provided on said back face and in a projected zone defined by projecting said cold spot on said back face.
  • 15. The method of claim 13, wherein said surface includes a back face, a hot spot is detected on said heating face, and said first region is provided on said back face and in a projected zone defined by projecting said hot spot on said back face.
  • 16. The method of claim 12, wherein said second region has a central line average surface roughness smaller than that of said first region.
Priority Claims (1)
Number Date Country Kind
P2001-352964 Nov 2001 JP