The present invention relates generally to apparatus for use in the connection of orthopedic implants to bones, and more specifically, but not by way of limitation, to apparatus for use in the fusion of vertebral bodies of the cervical spine, and to methods of using such apparatus.
Fusion is a surgical treatment for clinical conditions such as Degenerative Disk Disease (DDD), deformity, trauma or other conditions. The pertinent anatomical cervical vertebral element of interest to this invention is the body portion of the vertebrae comprised of an outer cortical bone “can like” shell and an inner cancellous bone core. The top and bottom “lids” of this cortical shell are known as the endplates. During this surgical treatment the cartilaginous connection structure, known as the disk, between adjacent vertebrae is removed and a graft of bone is applied to maintain or restore the proper spacing between the vertebrae. When fusing cervical vertebrae it is necessary to immobilize the endplates where fusion is desired with respect to one another to foster a proper bone growth environment. Excessive motion between the endplates and the graft will inhibit fusion and the long term effectiveness of the treatment would be compromised.
The use of cervical plates and screws to provide this relative immobilization between the vertebral bodies is well established within the clinical history of this surgical treatment. One of the problems with the historical designs was retention of the screws within the plate to maintain immobilization. Over the course of this treatments history, several screw retention methods have been employed such as additional retainer plates applied over the screw heads to prevent back out, expanding screw heads, or displacement capture mechanisms where a tab is deformed or indexed into a locking position after the screw has been placed. The commonality between these locking mechanisms is that they all required additional steps by the surgeon to establish the locked or retaining condition of the plate. These additional steps are difficult and time consuming for a surgeon to perform due to limited visibility and access to the plate implantation site on the anterior cervical vertebral column. The access aperture is only approximately 1.5″ diameter by 4″ deep.
In the most recent history of this surgical treatment, the designs have evolved to minimize or eliminate the steps required to actuate the locking mechanisms for the screws. The problem with these so called “zero-step” designs is that they do not accommodate for the scenarios where the surgeon must remove and/or replace the screws due to screw mal-alignment, screw to bone strip out, or other routine surgical scenarios. In these scenarios, the surgeons must pry open the locking mechanisms and remove the screws simultaneously within the limited aperture and this further limits the visibility available to perform the task.
The present invention provides a cervical plate with a locking mechanism that eliminates the need for additional locking steps while allowing for a selectable locking actuation of the plate to facilitate desired screw removal. The locking mechanism does not require simultaneous locking mechanism actuation and screw removal.
In one embodiment an orthopedic implant apparatus includes an implant body having at least one screw receiving hole defined through the implant body. A resilient locking clip is connected to the implant body and selectively movable relative to the implant body between an actuated position wherein the clip automatically prevents screw back-out from the hole after screw insertion into the hole, and an unactuated position wherein the clip is displaced relative to the hole so that the screw may be removed from the hole. A retention assembly includes an implant retention part connected to the implant body and a clip retention part connected to the clip. The implant retention part and the clip retention part are configured to hold the clip in either selected one of the actuated and unactuated positions relative to the implant body.
In another embodiment an orthopedic implant apparatus includes a plate body and a resilient clip. The plate body includes an outward body surface, an inward body surface, and first and second screw receiving holes extending through the plate body from the outward body surface to the inward body surface for receiving first and second screws, respectively. A central area of the plate body is located between the first and second holes, and has a first locking member defined thereon. A first undercut groove at least partially surrounds the first hole adjacent the outward body surface. A second undercut groove at least partially surrounds the second hole adjacent the outward body surface. The resilient clip is received in the first and second undercut grooves and spans the central area. The clip includes a first open loop portion received in the first undercut groove and including a first free end. The clip further includes a second open loop portion received in the second undercut groove and including a second free end. The clip further includes an intermediate clip portion joining the first and second open loop portions and spanning the central area. The intermediate clip portion includes a second locking member defined thereon and operatively engaged with the first locking member so that the clip is movable relative to the plate body between a locked position wherein the first and second open loop portions extend laterally into the first and second holes to prevent the screws from backing out of the holes, and an unlocked position wherein the first and second open loop portions are displaced laterally outward from the first and second holes so that the clip does not interfere with removal of the screws.
In another embodiment an orthopedic implant apparatus includes an implant body having at least one screw receiving passage defined therethrough. The passage has a reduced diameter socket end. A screw having an elongated portion and an enlarged head is configured to seat on the socket end of the passage. A zero-step locking member is connected to the implant body and operatively associated with the passage and configured to automatically lock the head of the screw in place in the passage when the head of the screw is seated on the socket end. The locking member is selectively movable to an unlocked position. A retention structure is configured to retain the locking member in the unlocked position without further engagement of the locking member by a surgeon so that the screw can be removed after the locking member is moved to the unlocked position.
In another embodiment a method is provided for attaching an orthopedic implant body to a bone. The method comprises:
(a) inserting a screw through an opening of the implant body and into the bone to seat the screw on the implant body and thus attach the implant body to the bone;
(b) automatically locking the screw in the implant body during step (a) by movement of a resilient retaining clip as the screw is inserted past the retaining clip, and thereby preventing back-out of the screw, without any additional locking action being necessary by a surgeon performing the method;
(c) moving the retaining clip to an unlocked position wherein the retaining clip is held in the unlocked position by a detent structure of the implant body; and
(d) after step (c), removing the screw without the surgeon having to simultaneously retract the retaining clip.
In each of the embodiments above the orthopedic implant apparatus may be a cervical plate for joining two cervical vertebrae as part of a cervical fusion operation. The cervical plate may include first and second pairs of such holes through the plate, and the clip or locking member includes two such clips or locking members, each of which is operable to lock two screws in two adjacent holes.
In each of the embodiments described above, the clip or locking member may be a w-shaped resilient member.
In each of the embodiments above the clip or locking member may be resiliently biased laterally relative to the hole through the implant body when the clip or locking member is in its actuated position, and the implant body may include a cam surface for guiding laterally outward movement of the clip when the clip is moved from its actuated to its unactuated position.
The clip may either be resiliently biased laterally inward or laterally outward relative to its associated hole, and the associated cam surface is formed in a complementary manner to control the laterally outward movement of the clip structure as the clip is moved from its actuated to its unactuated position.
In each of the embodiments described above the portion of the clip associated with each hole preferably includes a plurality of interference tabs extending laterally inward toward the associated hole, and the plurality preferably includes at least three such tabs.
In each of the described embodiments the clip is preferably received in an undercut groove surrounding its associated hole or holes.
The clips are preferably integrally formed from a nitinol material.
Numerous objects, features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the following disclosure when taken in conjunction with the accompanying drawings.
Referring now to the drawings, and particularly to
As seen in
The cervical plate 12 as shown in
The hole 36 is shown in cross-sectional view in
The holes 30 and 32 may be described as a first pair of screw receiving holes aligned perpendicularly to the longitudinal axis 26 and located on opposite sides of the longitudinal axis 26. The holes 34 and 36 may be described as a second pair of screw receiving holes axially spaced from the first set of holes 30, 32.
While the cervical plate 12 illustrated in
Between the first pair of holes 30, 32 and the second pair of holes 34, 36, a graft viewing opening 50 is defined through the plate 12 for allowing the surgeon to view the placement of a cervical interbody in the disc space between the vertebrae 22A and 22B.
The cervical plate 12 includes an undercut groove at least partially surrounding each of the holes 30-36 for receipt of the associated retaining clips 14 and 15. Each of the holes 30, 32, 34 and 36 has undercut grooves 52, 54, 56 and 58, respectively, associated therewith as seen in
The first clip 14 is shown in a relaxed elevation view in
The generally w-shaped clip 14 may be described as having a middle leg 66 coincident with the intermediate portion 66, and as having outer legs coincident with the outermost portions of the first and second open loop portions 62 and 64. The axial motion of the clip 14 as it moves between its actuated and unactuated positions may be described as motion in a direction parallel to the middle leg 66.
When assembled with the cervical plate 12 as shown in
The first and second open loop portions 62 and 64 may alternatively be referred to as first and second partially annular portions 62 and 64.
The first open loop portion 62 includes a plurality, preferably three, laterally inward extending interference tabs or retention tabs 72A, 72B, and 72C. Similarly, the second open loop portion 64 includes three laterally inward extending retention tabs 74A, 74B, and 74C. With reference to the retention tabs of the second open loop portion 64, the tab 74A is located generally at the 3:00 position, the tab 74B is located generally at the 5:00 position and the tab 74C is located generally at the 7:00 position. These tabs are designed to be displaced radially or laterally outward as the enlarged head 48 of the screw 46 is advanced past them, and to then spring back to their original position as the screw 46 is seated within the socket 44 of the cervical plate 12 and within the bone member 22. The associated undercut groove has sufficient clearance to allow for outward deflection of the retaining clip 14 to permit screw passage. Thus, the screw 46 is locked into place merely by the act of the surgeon installing the screw 46 with no additional locking steps required. Such a locking member may be referred to as a zero-step locking member.
As can be seen in comparing the positions of the spring clip 14 in
The free ends 68 and 70 may have laterally outwardly facing cam follower tabs 76 and 78 defined thereon which are engaged with cam surface portions 80 and 82, respectively, of their associated undercut grooves 52 and 54. As can be seen in comparing
As can be seen in
With reference to
As previously noted, the cervical plate assembly 10 includes a retention assembly 16 having first and second retention structures 18 and 20 defined on the cervical plate 12 and on the clip 14. The first locking member 18 defined on the central area 60 of the cervical plate 12 is an enlarged knob shaped protuberance 18 defined between the two undercut grooves 52 and 54. The second locking member or retention structure 20 defined on the clip 14 is comprised of a pair of bumps or detents 20A and 20B defined on the intermediate clip portion 66 and facing each other on opposite sides of the protuberance 18.
In the actuated position of
Although the detent mechanism illustrated utilizes bumps on the cervical plate interacting with bumps on the clip, alternatively the bumps on either component could work in concert with notches on the other component to form an alternative simple detent structure.
It is noted that when the clip 14 moves from its actuated position of
The clip 14 is preferably integrally formed from a nitinol material. The clip 14 may for example be cut from a sheet of nitinol material. The clip 14 is thin enough to actuate within the undercut grooves 52 and 54, yet thick enough to provide adequate screw retention force when in the actuated position of
As can best be seen in
In order to move the clip 14 between its actuated position of
As identified in
The first and second actuating tool elements 92 and 94 may be placed in engagement with the first and second actuating tool engagement structures 102 and 104A and then moved toward each other to pull the clip 14 downward from its actuated position of
The methods of use of the cervical clip apparatus 10 for connecting two cervical vertebrae such as 22A and 22B is generally as follows.
First and second clips such as 14 will be preassembled with the cervical plate 12 by the manufacturer and the clips 14 will be placed in their actuated positions as shown for example in
During the surgical procedure of cervical fusion, the surgeon will place the cervical plate 12 in a position substantially like that shown in
As the screw 46 is threaded into the bone and is inserted past the tabs such as 74A-74C of the retaining clip 14, the clip 14 will flex laterally outwardly within the undercut groove to allow the enlarged head 48 of the screw 46 to pass to a position below the clip 14 wherein the enlarged head 48 will seat on the socket end 44 of the hole in the cervical plate 12. The clip 14 automatically snaps back into its actuated position as seen in
The other screws 46 are similarly put into place within each of the holes of the cervical plate 12 to firmly attach the cervical plate 12 to the cervical vertebrae 22A and 22B so as to stabilize the position of the cervical vertebrae 22A and 22B relative to each other.
If for any reason, it is desired to remove one or more of the screws 46, that is accomplished in the following manner.
The actuating tool 90 of
The detent mechanism 16 allows the surgeon to set the desired clip position and then remove the clip actuating instrument 90 allowing full visibility for subsequent screw removal.
In the embodiment described above, the spring clip 14 is biased laterally outwardly when in its actuated position, and the action of cam surfaces 80 and 82 guides the outer arms of the clip 14 laterally outwardly when the clip 14 is moved from the actuated position of
Thus it is seen that the apparatus and methods of the present invention readily achieve the ends and advantages mentioned as well as those inherent therein. While certain preferred embodiments of the invention have been illustrated and described for purposes of the present disclosure, numerous changes in the arrangement and construction of parts and steps may be made by those skilled in the art, which changes are encompassed within the scope and spirit of the present invention as defined by the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US13/65072 | 10/15/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61715960 | Oct 2012 | US |