Chamber for uniform substrate heating

Information

  • Patent Grant
  • 7022948
  • Patent Number
    7,022,948
  • Date Filed
    Tuesday, July 6, 2004
    20 years ago
  • Date Issued
    Tuesday, April 4, 2006
    18 years ago
Abstract
Embodiments of the invention generally provide an apparatus and a method for providing a uniform thermal profile to a plurality of substrates during heat processing. In one embodiment, a cassette containing one or more heated substrate supports is moveably disposed within a heating chamber having an about uniform thermal profile therein to more uniformly heat the substrates.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Aspects of the invention generally relate to an apparatus and method for heat processing substrates.


2. Background of the Related Art


In the fabrication of flat panel displays (FPD), thin film transistors (TFT) and liquid crystal cells, metal interconnects and other features are formed by depositing and removing multiple layers of conducting, semiconducting and dielectric materials from a glass substrate. The various features formed are integrated into a system that collectively is used to create, for example, active matrix display screens in which display states are electrically created in individual pixels on the FPD. Processing techniques used to create the FPD include plasma-enhanced chemical vapor deposition (PECVD), physical vapor deposition (PVD), etching, and the like. Plasma processing is particularly well suited for the production of flat panel displays because of the relatively lower processing temperatures required to deposit film and good film quality which results from plasma processes.


During FPD processing, proper heat processing of the film across the entire surface of the substrate is critical for the FPD to function properly. The heating temperature required varies depending on the type of film being processed, and process being performed. For example, one exemplary type of flat panel display film used in the construction of FPDs is low temperature poly silicon (LTPS). Part of the LTPS film processing requires the LTPS film be heated up to about 600° C. to remove hydrogen from the film whereas a similar heat treatment for amorphous silicon α-Si) film requires a substantially lower temperature of up to 450° C.


Generally, the film heating process is highly temperature sensitive as temperature non-uniformity may cause insufficient removal of unwanted contaminates, resulting in peeling and ablation of the film. To compensate for temperature non-uniformity heating process times must be extended. Unfortunately, extending the heating process times increases the production cost and often results in unusable films if the process is not completed.


Conventional heating chambers provide heat processing by heating one or more substrates through a combination of gas conduction and heat radiation. Unfortunately, the chamber walls and other internal chamber components provide heat conduction paths within the chamber resulting in conductive heat losses. The conductive heat losses create a constantly fluctuating substrate-heating environment. As the temperatures are increased, conductive heat losses become more pronounced, exacerbating the heat non-uniformity within the substrate-heating environment. Moreover, conventional heating chambers are often very large to accommodate the substrate perimeter, further exacerbating the heating issues by increasing the area and volume to be heated. For example, as the demand for larger computer displays, monitors, flat-screen televisions, and the like increases a typical substrate may be 620 mm×750 mm, or larger. For instance, substrates of 1 meter×1 meter are contemplated. Typically, to compensate for the larger substrates, larger chamber volumes, and the subsequent increase in heat losses, more heating elements are used, thereby increasing the cost of the equipment, energy usage, and temperature non-uniformity. As temperatures increase, copper heating elements are often employed to offset energy costs and provide efficient heating. Copper heaters are generally more energy efficient than other types of heating elements. Unfortunately, as the temperatures are increased, copper atoms from the copper heaters often escape into the heating chamber and contaminate the film. Thus, traditional heating chambers and heating processes do not provide acceptably uniform and contaminant-free substrate heating for an efficient and cost effective substrate heating process.


Therefore, there is a need for a method and apparatus for uniformly heat processing a plurality of substrates in an efficient contaminate-free heat processing system.


SUMMARY OF THE INVENTION

Embodiments of the invention generally provide for the uniform heating of substrates within a heating chamber for use with substrate processing systems. In one aspect of the invention, substrates are uniformly heated within an insulated chamber having a body, a bottom portion, and a lid. The chamber also includes a heat reflector disposed within the chamber, a heater disposed within the chamber adjacent to the heat reflector and a plurality of heated supports movably disposed within the chamber to support at least two substrates within the chamber.


In another aspect of the invention, a method is provided for uniformly heating substrates, comprising supporting a plurality of substrates on a plurality of heated supports within a chamber slightly larger than and shaped to conform to the shape of the substrate support, providing a process temperature between about 450° C. and about 600° C., providing a vacuum within the chamber, and uniformly heating the substrates to a uniform temperature.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the recited embodiments of the invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.


It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 is a plan view of a processing system including the heating chamber of the invention.



FIG. 2 is a perspective view of one embodiment of the heating chamber of FIG. 1.



FIG. 3 is a partial cross-sectional view of the heating chamber of FIG. 1 illustrating an upper and lower bell jar configuration.



FIG. 4 is a partial cross-sectional view of the heating chamber and transfer chamber of FIG. 1.



FIG. 5 is a partial cross-sectional view of the heating chamber of FIG. 1 illustrating the body, heat reflector, and heater.



FIG. 6 is a top cross-sectional view of the heating chamber of FIG. 5.



FIG. 7 is a side view of a heater used with the heating chamber of FIG. 5.



FIG. 8 is a partial cross-section of a heater used with the heating chamber of FIG. 5.



FIG. 9 is a perspective view of a heated substrate support used with the heating chamber of FIG. 5.



FIG. 10 is a top view of a heated substrate support used with the heating chamber of FIG. 5.



FIG. 11 is a temperature contour of a substrate undergoing heat treatment within the heating chamber of FIG. 5.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Embodiments of the invention have particular advantages in a multi-chamber processing system also known as a cluster tool, commonly used in the semiconductor industry and well suited for supporting the substrate-heating chamber described herein. A cluster tool is a modular system comprising multiple chambers that perform various functions including substrate heating, center-finding and orientation, annealing, deposition and/or etching. The multiple chambers are mounted to a central transfer chamber which houses a robot adapted to shuttle substrates between the chambers. The transfer chamber is typically maintained at a vacuum condition and provides an intermediate stage for shuttling substrates from one chamber to another and/or to a load lock chamber positioned at a front end of the cluster tool.



FIG. 1 is a plan view of a typical processing system 100 for semiconductor processing wherein the invention may be used to advantage. The processing system 100 generally comprises a plurality of chambers and robots and is preferably equipped with a process system controller 102 programmed to carry out the various processing methods performed in the processing system 100. A front-end environment 104 is shown positioned in selective communication with a pair of load lock chambers 106. Pod loaders 108A–B disposed in the front-end environment 104 are capable of linear, rotational, and vertical movement to shuttle substrates between the load locks 106 and a plurality of pods 105 which are mounted on the front-end environment 104.


The load locks 106 provide a first vacuum interface between the front-end environment 104 and a transfer chamber 110. Two load locks 106 are provided to increase throughput by alternatively communicating with the transfer chamber 110 and the front-end environment 104. Thus, while one load lock 106 communicates with the transfer chamber 110, a second load lock 106 communicates with the front-end environment 104.


A robot 113 is centrally disposed in the transfer chamber 110 to transfer substrates from the load locks 106 to one of the various processing chambers 114 or holding chambers 116. The processing chambers 114 are adapted to perform any number of processes such as film deposition, annealing, etching, and the like while the holding chambers 116 adapted for, orientation, cool down and the like. A heating chamber 140 used to heat substrates during a heat process such as hydrogen removal and annealing is disposed within processing system 100. The heating chamber 140 is located typically disposed within the processing system 100 in the most efficient processing position but may be located anywhere within processing system 100. For example, the heating process step may follow a deposition process step. Therefore, to minimize the movement of the robot 113, the heating chamber 140 may be located adjacent to one of the processing chambers 114 used for a deposition process step.



FIG. 2 is a perspective view of the heating chamber 140 comprising an upper section 215 (e.g., upper bell jar) and a lower section 217 (e.g., lower bell jar) where the upper section 215 is separated from the lower section 217 by a connecting body 230 having a loading window 235. The upper and lower sections 215, 217 are sealably attached to and generally symmetrical and coaxial about the connecting body 230. The upper section 215 and lower section 217 may be sealed to connecting body 230 using frictional fit, using sealing materials such as gaskets or putty adapted to withstand high temperatures, or by using adhesives such as pressure sensitive adhesives, ceramic bonding, glue, and the like that are process resistant and free of contaminates such as copper. The upper section 215 and lower section 217 may be connected to connecting body 230 by conventional means such as welding, or by using bolts, clamps or other fasteners as are known in the art.


The heating chamber 140 is mounted on a mounting frame 255 to provide support for the upper section 215 and lower section 217. In one aspect, the mounting frame 255 may comprise rotatably mounted casters 245, 246, and 247 on a lower end for moving the heating chamber 140. The mounting frame 255 may be attached to the heating chamber 140 and connecting body 230 by conventional means such as bolts, clamps or other fasteners as are known in the art. While the heating chamber 140 is preferably mounted on frame 255, the heating chamber 140 may be mounted to and supported by the transfer chamber 110 using fasteners such as screws, bolts, clips, and the like.


A motor 285 used with the transportation of substrates within the heating chamber 140, may be attached to the heating chamber 140 using fasteners such as screws, bolts, clips, and the like. The motor 285 is rotatably coupled to a lead screw 288. The lead screw 288 is rotatably coupled to a platform 287 slidably coupled to the frame 255. When the lead screw 288 is rotated by the motor 285, the platform 287 is vertically raised or lowered.


In one embodiment, a thermal insulating layer (not shown) may be used to enclose, or wrap, the heating chamber 140 to minimize heat loss from the heating chamber 140. The thermal insulating layer may comprise insulators such as fiberglass, ceramic fiber, asbestos, or other materials adapted to provide insulation from heat loss. In one embodiment, the insulating layer comprises a flexible insulating ceramic fiber blanket having a thermal conductivity of less than about 0.035 watt/m° K and stabilizes at a surface temperature of about 30° C.



FIG. 3 is a cross-section of one embodiment of a heating chamber 140 of the invention adapted for substrate heat processing. The heating chamber 140 comprises a body 305, a lid 335 and bottom 316 disposed on the body 305 and defining a cavity 307 for heating a plurality of substrates 328 therein. In one aspect, the body 305 is formed of process resistant materials such as aluminum, steel, nickel, and the like, adapted to withstand process temperatures and is generally free of contaminates such as copper. The body 305 may comprise a gas inlet 360 extending into the cavity 307 for connecting the heating chamber 140 to a process gas supply (not shown) for delivery of processing gases therethrough. In another aspect, a vacuum pump 390 may be coupled to the cavity 307 through a vacuum port 392 to maintain a vacuum within the cavity 307.


A substrate cassette 310 is moveably disposed within the cavity 307 and is coupled to an upper end of a movable member 330. The moveable member 330 is comprised of process resistant materials such as aluminum, steel, nickel, and the like, adapted to withstand process temperatures and generally free of contaminates such as copper. The movable member 330 enters the cavity 307 through the bottom 316. The movable member 330 is slidably and sealably disposed through the bottom 316 and is raised and lowered by the platform 287. The platform 287 supports a lower end of the movable member 330 such that the movable member 330 is vertically raised or lowered in conjunction with the raising or lowering of the platform 287. The movable member 330 vertically raises and lowers the cassette 310 within the cavity 307 to move the substrates 328 across a substrate transfer plane 332 extending through the window 235. The substrate transfer plane 332 is defined by the path along which substrates are moved into and out of the cassette 310 by the robot 113.


The cassette 310 comprises a plurality of substrate-heating shelves 336 supported by a frame 325. Although in one aspect, FIG. 3 illustrates twelve substrate-heating shelves 336 within cassette 310, it is contemplated that any number of shelves may be used. Each substrate-heating shelf 336 comprises a heated substrate support 340 (e.g., heating plate) connected by brackets 317 to the frame 325. The brackets 317 connect the edges of the heated substrate support 340 to the frame 325 and may be attached to both the frame 325 and heated substrate support 340 using adhesives such as pressure sensitive adhesives, ceramic bonding, glue, and the like, or fasteners such as screws, bolts, clips, and the like that are process resistant and are free of contaminates such as copper. The frame 325 and brackets 317 are comprised of process resistant materials such as ceramics, aluminum, steel, nickel, and the like that are process resistant and are generally free of contaminates such as copper. While the frame 325 and brackets 317 may be separate items, it is contemplated that the brackets 317 may be integral to the frame 325 to form support members for the heated substrate supports 340. While, in one aspect, the heated substrate supports 340 are conformal to and slightly larger than the substrates 328 to maximize heating efficiency by applying a majority of the heat to the substrate 328, it is contemplated that the heated support 340 may be of any shape adapted to provide desired substrate heating. For example, in one embodiment the heated support 340 may be considerably larger than the substrate 328 to ensure that the substrate 328 is fully exposed to the heat from the support 340. Alternatively, the heated support 340 may be formed to accommodate substrates 328 of various sizes.


The substrate-heating shelves 336 are spaced vertically apart and parallel within the cassette 310 to define a plurality of substrate-heating spaces 322. Each substrate-heating space 322 is adapted to heat at least one substrate 328 therein supported on a plurality of support pins 342. The substrate-heating shelves 336 above and below each substrate 328 establish the upper and lower boundary of the substrate-heating space 322 such that the top and bottom sides of the substrate 328 are exposed to heat. In one embodiment, the upper and lower boundaries are equidistant from the substrate 328 in order to ensure uniform heating of both sides of the substrate 328. To ensure heating of the top substrate 328 in the cassette 310, the upper boundary for the top heating space 322 is established by an empty heated substrate support 340. In another embodiment, the spacing and substrate position may be adjusted to accommodate different heating requirements for different processes such as annealing, hydrogen removal, and the like. The spacing between the upper and lower boundary of the heating space 322 may be adjusted to increase or decrease the rate of heating, and the amount of heat applied to each substrate side. For example, the spacing between the upper and lower boundary of the heating space 322 can be spaced more narrowly to increase the radiant energy from the heated substrate supports 340 to thereby increase the temperature and rate of heating, or spaced further apart to reduce the incident radiant energy, thereby lowering the substrate temperature and slowing the heating of the substrate 328. Moreover, the substrate 328 may be positioned closer to either the upper or the lower boundary to provided differing amounts of heating to either side of the substrate 328. In one aspect, to increase production efficiency, the spacing between the upper and lower boundary of the heating space 322 may be adjusted to heat the substrate 328 at a desired rate and temperature while allowing the cassette 310 to hold as many substrate-heating shelves 336 as possible. In one aspect, the spacing between the upper and lower boundary is about 45 mm. The inventors believe that the about 45 mm spacing between the upper and lower boundary provides for adequate space to receive a substrate 328, uniform substrate heating, and efficient space utilization within the chamber 307 to maximize the number of substrate-heating shelves 336.



FIG. 4 illustrates a cross-sectional view of the heating chamber 140 and transfer chamber 110. The heating chamber 140 is positioned so that the window 235 is registered with an opening 109 formed in the sidewall of transfer chamber 110. In such a position, the transfer chamber opening 109 and the window 235 define a substrate transfer aperture 372 through which substrates 328 may be transferred by robot 113. The substrate transfer aperture 372 is selectively sealed by a sealing apparatus such as a gate valve or slit valve (not shown). During operation, the robot 113 receives a substrate 328 on a blade 118 supported on arms 111 from the processing system 100 via the transfer chamber 110 through the substrate transfer aperture 372. The blade 118 is positioned to deliver the substrate 328 to the heating chamber 140 through the substrate transfer aperture 372. The cassette 310 is moved vertically up or down to position an empty heating space 322 inline with the substrate transfer plane 332 to receive the substrate 328. The arms 111 are extended through the substrate transfer aperture 372 to dispose the substrate 328 within the heating chamber 140 and subsequently dispose the substrate 328 within cassette 310. The arms 111 extend the substrate 328 into the heating space 322 and position the substrate 328 above the pins 342. In one embodiment, the cassette 310 moves vertically until the pins 342 contact the substrate surface, lifting the substrate 328 off the blade 118. Subsequently the arms 111 and blade 118 are retracted back to the transfer chamber 110. In another embodiment, the arms 111 and blade 118 move vertically downwardly until the substrate 328 contacts the pins 342. The arms 111 and blade 118 continue to move downwardly until the substrate 328 is fully supported by the pins 342.



FIG. 5 is a cross-section top view of the heating chamber 140 illustrating one embodiment of the invention. Because the cavity 307 holds a plurality of substrates 328, the cavity 307 is typically larger in volume than chambers such as processing chambers 114 and holding chamber 116, which usually hold only one substrate 328. Because of the increased volume of the cavity 307, external atmospheric pressures on the chamber 140 under vacuum may be considerable. To provide structural strength and to minimize the cavity volume, the cavity 307 is preferably semi-round in shape and is conformal with and slightly larger than the cassette 310. In other embodiments, it is contemplated that the shape of the cavity 307 may be round, square, or any shape adapted to accommodate the substrate 328 and to have sufficient structural integrity to withstand the external atmospheric pressures.



FIG. 6 is a partial cross-sectional view of the heating chamber 140. A heat reflector 320 is disposed within cavity 307 and spaced adjacent an inner surface 311 of body 305, forming a reflective surface within the cavity 307. The heat reflector 320 is adapted to minimize conductive heat losses through the body 305 by providing radiant heat insulation between the cavity 307 and the inner surface 311. The heat reflector 320 reflects radiated heat within the cavity 307 away from the inner surface 311 and toward the center of the cavity 307. The heat reflector 320 may comprise a single layer. Alternatively, the heat reflector 320 may comprise multiple layers, or several pieces combined to form a unified body. The heat reflector 320 typically comprises heat conductors such as aluminum, nickel, steel, and the like that are process resistant and generally free of contaminates such as copper. When additional insulation is desired between the cavity 307 and the inner surface 311, the heat reflector 320 comprises insulators such as metal plated ceramics, glass, and the like that are process resistant and generally free of contaminates such as copper. The heat reflector 320 comprises an inner heat reflective surface 327 plated with aluminum, nickel, gold, or other surfaces adapted to reflect heat and that are process resistant and generally free of contaminates such as copper. The heat reflector 320 may be attached to the inner surface 311 using several methods such as bonding to the inner surface 311 using pressure sensitive adhesives, ceramic bonding, glue, and the like, or by fasteners such as screws, bolts, clips, and the like that are process resistant and generally free of contaminates such as copper. Additionally, the heat reflector 320 can be deposited on the inner surface 311 using techniques such as electroplating, sputtering, anodizing, and the like. In one embodiment, the heat reflector 320 is spaced from the inner surface 311 using insulated fasteners such as insulated screws, bolts, clips, and the like, forming a gap therebetween the inner surface 311 and the heat reflector 320.


A heater 315 is disposed within the cavity 307 between the heat reflector 320 and the cassette 310. The heater 315 is adapted to form a heating member conforming to and surrounding the cassette 310. The heater 315 comprises one or more heating elements such as resistive heaters, heating lamps, and the like disposed within a layer, or layers, of heat conducting materials such as nickel, steel, aluminum, and the like that radiate heat. Although, the inside surface 331 of the heater 315 is preferably bead blasted or anodized to provided a higher heat emissivity to improve the transmission of radiated heat within the cavity 307, other types of surface conditioning adapted to provided greater surface emissivity may be used. The outer surface 333 of the heater 315 is polished to provide a low emissivity, thereby minimizing the transmission of radiated heat to the chamber body 305. During substrate heat processing, the heater 315 is activated by a power source (not shown) and heated to a desired temperature. Although, in one aspect, a gap is established between the heater 315 and the heat reflector 320 to minimize heat transference via conduction to the heat reflector 320, the heater 315 may be in direct contact with heat reflector 320.



FIGS. 7 and 8 illustrate one embodiment of the heater 315 that may be used to advantage. The heater 315 comprises a jacket 319 comprising thermally conducting materials such as aluminum, nickel, steel, and the like adapted to uniformly radiate heat within the cavity 307 and that are process resistant and generally free of contaminates such as copper. A continuous heating element 337 is disposed within slot 314 formed within the jacket 319. The continuous heating element 337 is adapted to radiate heat within the jacket 319. The continuous heating element 337 may be secured within slot 314 by frictional fit, by welding, using fill materials 313 generally free of contaminates such as copper and/or silver, or by using adhesives such as pressure sensitive adhesives, ceramic bonding, glue, and the like, or fasteners such as screws, bolts, clips, and the like that are process resistant and generally free of contaminates such as copper. In one embodiment, to provide a tighter fit between the jacket 319 and the continuous heating element 337, the continuous heating element 337 has a higher coefficient of expansion than that of the jacket 319. Although, in one aspect, the thermal expansion coefficient for the continuous heating element 337 is about α=17, and the thermal expansion coefficient for the jacket 319 is about α=13 other thermal expansion coefficients may be used to advantage.


A pair of couplings 318 are connected to a power source (not shown), such as an external power supply, to provide power to the continuous heating element 337. Although it is preferred that the continuous heating element 337 be formed as a unified and homogenous heating member to provided uniform heating throughout the jacket 319, a plurality of individual heating elements such as restive heaters, lamps and the like, may be coupled together to form the continuous heating element 337. Additionally, the jacket 319 may be heated by a plurality of the individual heaters dispersed and coupled discretely throughout jacket 319.


The heater 315 may be secured within the cavity 307 using any of several methods. For example, the heater 315 may be attached to the inner surface 311 using attachment methods such as bonding using adhesives such as pressure sensitive adhesives, ceramic bonding, glue, and the like, or fasteners such as screws, bolts, clips, and the like that are process resistant and generally free of contaminates such as copper. In a particular embodiment, the heater 315 comprises an upper portion having a mounting flange 312 for mounting the heater 315 to the body 305. Although it is preferred that the mounting flange 312 be integral to the heater 315, the mounting flange 312 may be a separate component. The mounting flange 312 may be attached to the body 305 using adhesives such as pressure sensitive adhesives, ceramic bonding, glue, and the like, or fasteners such as screws, bolts, clips, and the like that are process resistant and generally free of contaminates such as copper.



FIG. 9 illustrates one embodiment of the invention where the heated substrate support 340 and the support pins 342 space and support the substrate 328 thereon forming a lower portion of the heating space 322. Although, in one aspect, the number of support pins 342 is at least six, having four support pins 342 spaced substantially uniformly on the substrate outer periphery to fully support the edges and two support pins 342 adjacent the middle of the substrate 328, as illustrated in FIG. 5. Alternatively, any number of support pins 342 may be used in any configuration adapted to support the substrate 328. The supporting pins 342 preferably comprises insulators such as polymers, ceramics, and the like with a cross section adapted to minimize contact with the substrate 328 and to prevent conduction between the heated substrate support 340 and the substrate 328. For additional supporting strength the supporting pins 342 may also comprise conductors such as steel, aluminum, nickel, and the like having a sufficiently small surface area to minimize conduction, that are process resistant, and generally free from contaminates such as copper. While in one aspect the support pins 324 comprise a pointed tip to minimize contact with substrate 328, the support pins 328 may have any tip cross section and profile adapted to support the substrate 328 such as rounded tip, square tip, flat tip, and the like adapted to minimize heat conduction to the heated substrate support 340.



FIG. 10 is a top view of the heated substrate support 340 comprising a plurality of plate heaters 347 disposed within a layer of thermally and electrically insulating material such as fiberglass, glass, ceramic, asbestos, and the like. The plate heaters 347 may be resistive heaters, radiant lamps, and the like. The plate heaters 347 may be activated by power supplied by a power source (not shown) such as an external power supply coupled through connectors 345. Typically, the temperature across the substrate surfaces varies as a function of the substrate body heat migration due to convection and conduction within the chamber 140, proximity to the heated substrate support 340, the support pins 342, the heater 315, and the overall thermal profile within the cavity 307. In one embodiment, the plate heaters 347 are patterned to provide a radiant heating profile to match and compensate for substrate thermal losses, i.e. the substrate heat loss profile. For example, the plate heaters 347 illustrated in FIG. 10 are spaced closer together near the corners than the middle of the heated substrate support 340 to provide more concentrated heat to the corners and edges of the substrate 328 where a substantial amount of conductive and/or radiated heat loss occurs. Although, heat typically tends to radiate from the substrate edges, it is contemplated that the patterned heating profile may be adapted to encompass any variation in the substrate heat loss profile. For example, the plate heaters 347 may be adapted to provide a variable amount of heat output by varying their size, spacing, resistivity, illumination, input power, and the like to more closely fit the substrate heat loss profile. Moreover, the heated substrate support 340 is spaced from the substrate 328 by the support pins 342 as shown in FIGS. 3, 4, and 6 to allow the radiated heat between the lower surface of the substrate 328 and upper surface of the heated support to intermix. Although, in one aspect the spacing between the heated substrate support 340 and the substrate 328 is about 20 mm, other spacings are contemplated. Although it is believed that the radiant heat from the heated substrate support 340 intermixes before heating the substrate 328, thereby minimizing hotspots defined by the plate heater configuration, it is also contemplated that the substrate 328 may be laid directly on a heated substrate support 340 with plate heaters adapted to substantially match the substrate heat loss profile.


In operation, the heating chamber 140 heating process is initiated by the robot 113 placing the substrate 328 via window 235 within cavity 307 on a heated substrate support 340. An inert process gas, such as nitrogen, is flowed into the cavity 307 through the gas inlet 360 and is maintained at a required chamber pressure by the vacuum pump 390. Alternatively, the process gas may be an active process gas, such as fluorine, adapted for a particular process. The cavity 307 is heated with radiant heat by the heater 315 and heated substrate support 340, or heater 315 alone, in cooperation with the heat reflector 320, to a desired ambient level sufficient to provide a uniform substrate heating profile. The individual substrates 328 are uniformly heated to a substrate body temperature between about 350° C. to about 600° C. The temperature variation referenced to a temperature on the substrate body (i.e., normalized temperature variation) is about between +/−5° C. and about +/−10° C.


For example, in one method of operation in accordance with the invention the heating chamber 140 heating process is initiated by the robot 113 placing the substrate 328 via window 235 within cavity 307 on a heated substrate support 340. A vacuum within the cavity 307 is provided by vacuum pump 390 at about 0 to about 0.5 Torr. A process gas such as nitrogen is flowed into the cavity 307 through the gas inlet 360 and is maintained at chamber pressure at about 0.0 Torr to about 0.5 Torr by the vacuum pump 390. Heat is applied to the substrates via heater 315 and heated supports 340 to heat each substrate uniformly to a temperature of about 450° C. to about 600° C. each. Each substrate maintains a normalized heating profile of about +/−5° C. at a substrate body temperature of about 450° C. to about +/−10° C. at a substrate body temperature of about 600° C. For example, FIG. 11 is an illustrative temperature contour map of a substrate 328 illustrating the normalized temperature variation across the body of the substrate 328, using the perimeter temperature as the normalizing value, during heat processing at about 500° C. Region, 350A, is the reference region and therefore has a zero temperature variance. Region, 350B, has about a +/−1° C. normalized temperature variation. Region 350C has about a +/−2° C. normalized temperature variation. Region 350D has about a +/−3° C. normalized temperature variation. Region 350E has about a +/−5° C. normalized temperature variation. Thus, the normalized temperature variation across the substrate 328 is about +/−5° C.


While foregoing is directed to the embodiments of the invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A method for processing substrates, comprising: supporting a plurality of substrates on a plurality of substrate supports movably disposed within a chamber, the chamber having a heat reflector disposed within the chamber, and a heater adjacent to the heat reflector and coupled to the body of the chamber;providing a vacuum within the chamber; andheating the plurality of substrates disposed on the plurality of substrate supports comprising: heating the heater outside the plurality of the substrate support; andheating a plurality of heating elements disposed in the plurality of the substrate supports using a heat pattern which matches a heat loss profile for the plurality of the substrates within the chamber.
  • 2. The method of claim 1, wherein the heater substantially surrounds the substrate supports.
  • 3. A method for processing substrates, comprising: supporting a plurality of substrates on a plurality of substrate supports movably disposed within a chamber, the chamber having a heat reflector disposed within the chamber, and a heater adjacent to the heat reflector and coupled to the body of the chamber;providing a vacuum within the chamber; andheating the plurality of substrates within the chamber by heating a plurality of heating elements disposed in the substrate supports using a heat pattern machine a heat loss profile of the substrate and providing more concentrated heat to corners and edges of the substrates.
  • 4. The method of claim 3, wherein the heating elements are spaced closer to each other near the corner and edges of the substrate supports than in the middle of the substrate supports.
  • 5. The method of claim 3, wherein the heat reflector comprises one or more materials selected from the group consisting of nickel, gold, glass, ceramics, aluminum, nickel, steel, and combinations thereof.
  • 6. The method of claim 3 further comprising minimizing heat loss from the chamber by providing at least one insulating layer disposed about the chamber.
  • 7. The method of claim 3, further comprising maintaining a substrate temperature profile within the chamber having a normalized temperature variation of about +/−10° C.
  • 8. A method for heating substrates, comprising: supporting a plurality of substrates on a plurality of substrate supports movably disposed within a chamber, the chamber having a heat reflector disposed within the chamber, and a heater adjacent to the heat reflector and coupled to the body of the chamber;providing a vacuum within the chamber; andmaintaining the temperature of the substrates at a range of between about 350° C. and about 600° C., wherein the temperature of the substrates is maintained by heating the heater and the substrate supports to provide a substrate temperature profile within the chamber having a normalized temperature variation of about +/−10° C.
  • 9. The method of claim 1, wherein the temperature of the substrates is maintained at a range of between about 350° C. and about 600° C.
  • 10. The method of claim 1, further comprising maintaining a substrate temperature profile within the chamber having a temperature variation of about +/−5° C.
  • 11. The method of claim 1, further comprising maintaining a substrate temperature profile within the chamber having a temperature variation of about +/−10° C.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 10/025,152 filed on Dec. 18, 2001 now U.S. Pat. No. 6,765,178, which claims benefit of U.S. provisional Patent Application Ser. No. 60/259,035, filed on Dec. 29, 2000. Each of the aforementioned related patent applications is herein incorporated by reference.

US Referenced Citations (194)
Number Name Date Kind
3862397 Anderson et al. Jan 1975 A
4058430 Suntola et al. Nov 1977 A
4389973 Suntola et al. Jun 1983 A
4413022 Suntola et al. Nov 1983 A
4486487 Skarp Dec 1984 A
4767494 Kobayashi et al. Aug 1988 A
4806321 Nishizawa et al. Feb 1989 A
4813846 Helms Mar 1989 A
4829022 Kobayashi et al. May 1989 A
4834831 Nishizawa et al. May 1989 A
4838983 Schumaker et al. Jun 1989 A
4838993 Aoki et al. Jun 1989 A
4840921 Matsumoto Jun 1989 A
4845049 Sunakawa Jul 1989 A
4859625 Nishizawa et al. Aug 1989 A
4859627 Sunakawa Aug 1989 A
4861417 Mochizuki et al. Aug 1989 A
4876218 Pessa et al. Oct 1989 A
4917556 Stark et al. Apr 1990 A
4927670 Erbil May 1990 A
4931132 Aspnes et al. Jun 1990 A
4951601 Maydan et al. Aug 1990 A
4960720 Shimbo Oct 1990 A
4975252 Nishizawa et al. Dec 1990 A
4993357 Scholz Feb 1991 A
5000113 Wang et al. Mar 1991 A
5013683 Petroff et al. May 1991 A
5028565 Chang et al. Jul 1991 A
5082798 Arimoto Jan 1992 A
5085885 Foley et al. Feb 1992 A
5091320 Aspnes et al. Feb 1992 A
5130269 Kitahara et al. Jul 1992 A
5166092 Mochizuki et al. Nov 1992 A
5173474 Connell et al. Dec 1992 A
5186718 Tepman et al. Feb 1993 A
5205077 Wittstock Apr 1993 A
5225366 Yoder Jul 1993 A
5234561 Randhawa et al. Aug 1993 A
5246536 Nishizawa et al. Sep 1993 A
5250148 Nishizawa et al. Oct 1993 A
5254207 Nishizawa et al. Oct 1993 A
5256244 Ackerman Oct 1993 A
5259881 Edwards et al. Nov 1993 A
5270247 Sakuma et al. Dec 1993 A
5278435 Van Hove et al. Jan 1994 A
5281274 Yoder Jan 1994 A
5286296 Sato et al. Feb 1994 A
5290748 Knuuttila et al. Mar 1994 A
5294286 Nishizawa et al. Mar 1994 A
5296403 Nishizawa et al. Mar 1994 A
5300186 Kitahara et al. Apr 1994 A
5311055 Goodman et al. May 1994 A
5316615 Copel May 1994 A
5316793 Wallace et al. May 1994 A
5330610 Eres et al. Jul 1994 A
5336324 Stall et al. Aug 1994 A
5338389 Nishizawa et al. Aug 1994 A
5348911 Jurgensen et al. Sep 1994 A
5369361 Wada Nov 1994 A
5374570 Nasu et al. Dec 1994 A
5395791 Cheng et al. Mar 1995 A
5438952 Otsuka Aug 1995 A
5439876 Graf et al. Aug 1995 A
5441703 Jurgensen Aug 1995 A
5443033 Nishizawa et al. Aug 1995 A
5443647 Aucoin et al. Aug 1995 A
5455072 Bension et al. Oct 1995 A
5458084 Thorne et al. Oct 1995 A
5469806 Mochizuki et al. Nov 1995 A
5480818 Matsumoto et al. Jan 1996 A
5483919 Yokoyama et al. Jan 1996 A
5484664 Kitahara et al. Jan 1996 A
5503875 Imai et al. Apr 1996 A
5521126 Okamura et al. May 1996 A
5527733 Nishizawa et al. Jun 1996 A
5532511 Nishizawa et al. Jul 1996 A
5540783 Eres et al. Jul 1996 A
5561735 Camm Oct 1996 A
5567152 Morimoto Oct 1996 A
5580380 Liu et al. Dec 1996 A
5601651 Watabe Feb 1997 A
5607009 Turner et al. Mar 1997 A
5609689 Kato et al. Mar 1997 A
5616181 Yamamoto et al. Apr 1997 A
5637530 Gaines et al. Jun 1997 A
5641984 Aftergut et al. Jun 1997 A
5644128 Wollnik et al. Jul 1997 A
5667592 Boitnott et al. Sep 1997 A
5674786 Turner et al. Oct 1997 A
5693139 Nishizawa et al. Dec 1997 A
5695564 Imahashi Dec 1997 A
5705224 Murota et al. Jan 1998 A
5707880 Aftergut et al. Jan 1998 A
5711811 Suntola et al. Jan 1998 A
5730801 Tepman et al. Mar 1998 A
5730802 Ishizumi et al. Mar 1998 A
5747113 Tsai May 1998 A
5749974 Habuka et al. May 1998 A
5788447 Yonemitsu et al. Aug 1998 A
5788799 Steger et al. Aug 1998 A
5796116 Nakata et al. Aug 1998 A
5801634 Young et al. Sep 1998 A
5807792 Ilg et al. Sep 1998 A
5830270 McKee et al. Nov 1998 A
5835677 Li et al. Nov 1998 A
5850071 Makiguchi et al. Dec 1998 A
5851849 Comizzoli et al. Dec 1998 A
5855675 Doering et al. Jan 1999 A
5855680 Soininen et al. Jan 1999 A
5856219 Naito et al. Jan 1999 A
5858102 Tsai Jan 1999 A
5866213 Foster et al. Feb 1999 A
5866795 Wang et al. Feb 1999 A
5879459 Gadgil et al. Mar 1999 A
5882165 Maydan et al. Mar 1999 A
5882413 Beaulieu et al. Mar 1999 A
5904565 Nguyen et al. May 1999 A
5916365 Sherman Jun 1999 A
5923056 Lee et al. Jul 1999 A
5923985 Aoki et al. Jul 1999 A
5925574 Aoki et al. Jul 1999 A
5928389 Jevtic Jul 1999 A
5942040 Kim et al. Aug 1999 A
5947710 Cooper et al. Sep 1999 A
5972430 DiMeo, Jr. et al. Oct 1999 A
6001669 Gaines et al. Dec 1999 A
6015590 Suntola et al. Jan 2000 A
6025627 Forbes et al. Feb 2000 A
6036773 Wang et al. Mar 2000 A
6042652 Hyun et al. Mar 2000 A
6043177 Falconer et al. Mar 2000 A
6046439 Johnsgard et al. Apr 2000 A
6051286 Zhao et al. Apr 2000 A
6062798 Muka May 2000 A
6071808 Merchant et al. Jun 2000 A
6084302 Sandhu Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6110556 Bang et al. Aug 2000 A
6113977 Soininen et al. Sep 2000 A
6117244 Bang et al. Sep 2000 A
6124158 Dautartas et al. Sep 2000 A
6130147 Major et al. Oct 2000 A
6139700 Kang et al. Oct 2000 A
6140237 Chan et al. Oct 2000 A
6140238 Kitch Oct 2000 A
6143659 Leem Nov 2000 A
6144060 Park et al. Nov 2000 A
6147334 Hannigan Nov 2000 A
6151447 Moore et al. Nov 2000 A
6158446 Mohindra et al. Dec 2000 A
6174377 Doering et al. Jan 2001 B1
6174809 Kang et al. Jan 2001 B1
6183563 Choi et al. Feb 2001 B1
6200893 Sneh Mar 2001 B1
6203613 Gates et al. Mar 2001 B1
6206967 Mak et al. Mar 2001 B1
6207302 Sugiura et al. Mar 2001 B1
6231672 Choi et al. May 2001 B1
6248605 Harkonen et al. Jun 2001 B1
6270572 Kim et al. Aug 2001 B1
6271148 Kao et al. Aug 2001 B1
6287965 Kang et al. Sep 2001 B1
6291876 Stumborg et al. Sep 2001 B1
6305314 Sneh et al. Oct 2001 B1
6306216 Kim et al. Oct 2001 B1
6316098 Yitzchaik et al. Nov 2001 B1
6447607 Soininen et al. Sep 2002 B1
6478872 Chae et al. Nov 2002 B1
6481945 Hasper et al. Nov 2002 B1
6511539 Raaijmakers Jan 2003 B1
6551406 Kilpi Apr 2003 B1
20010000866 Sneh et al. May 2001 A1
20010009140 Bondestam et al. Jul 2001 A1
20010011526 Doering et al. Aug 2001 A1
20010013312 Soininen et al. Aug 2001 A1
20010014371 Kilpi Aug 2001 A1
20010031562 Raaijmakers et al. Oct 2001 A1
20010034123 Jeon et al. Oct 2001 A1
20010041250 Werkhoven et al. Nov 2001 A1
20010042523 Kesala Nov 2001 A1
20010042799 Kim et al. Nov 2001 A1
20010054377 Lindfors et al. Dec 2001 A1
20020000196 Park Jan 2002 A1
20020007790 Park Jan 2002 A1
20020041931 Suntola et al. Apr 2002 A1
20020052097 Park May 2002 A1
20020086106 Park et al. Jul 2002 A1
20020092471 Kang et al. Jul 2002 A1
20020094689 Park Jul 2002 A1
20020108570 Lindfors Aug 2002 A1
20020134307 Choi Sep 2002 A1
20030004723 Chihara Jan 2003 A1
20030075273 Kilpela et al. Apr 2003 A1
20030075925 Lindfors et al. Apr 2003 A1
Foreign Referenced Citations (198)
Number Date Country
198 20 147 Jul 1999 DE
196 27 017 Jan 2000 DE
0 344 352 Jun 1988 EP
0 429 270 Nov 1990 EP
0 442 490 Aug 1991 EP
0 799 614 Oct 1997 EP
1 167 569 Jan 2002 EP
2 626 110 Jul 1989 FR
2 692 597 Dec 1993 FR
2 298 314 Aug 1996 GB
2 355 727 May 2001 GB
58-098917 Jun 1983 JP
58-100419 Jun 1983 JP
60-065712 Apr 1985 JP
61-035847 Feb 1986 JP
61-210623 Sep 1986 JP
62-069508 Mar 1987 JP
62-091495 Apr 1987 JP
62-141717 Jun 1987 JP
62-167297 Jul 1987 JP
62-171999 Jul 1987 JP
62-232919 Oct 1987 JP
63-062313 Mar 1988 JP
63-085098 Apr 1988 JP
63-090833 Apr 1988 JP
63-222420 Sep 1988 JP
63-222421 Sep 1988 JP
63-227007 Sep 1988 JP
63-252420 Oct 1988 JP
63-266814 Nov 1988 JP
64-009895 Jan 1989 JP
64-009896 Jan 1989 JP
64-009897 Jan 1989 JP
64-037832 Feb 1989 JP
64-082615 Mar 1989 JP
64-082617 Mar 1989 JP
64-082671 Mar 1989 JP
64-082676 Mar 1989 JP
01-103982 Apr 1989 JP
01-103996 Apr 1989 JP
64-090524 Apr 1989 JP
01-117017 May 1989 JP
01-143221 Jun 1989 JP
01-143233 Jun 1989 JP
01-154511 Jun 1989 JP
01-245512 Sep 1989 JP
01-236657 Oct 1989 JP
01-264218 Oct 1989 JP
01-270593 Oct 1989 JP
01-272108 Oct 1989 JP
01-290221 Nov 1989 JP
01-290222 Nov 1989 JP
01-296673 Nov 1989 JP
01-303770 Dec 1989 JP
01-305894 Dec 1989 JP
01-313927 Dec 1989 JP
02-012814 Jan 1990 JP
02-014513 Jan 1990 JP
02-017634 Jan 1990 JP
02-063115 Mar 1990 JP
02-074029 Mar 1990 JP
02-074587 Mar 1990 JP
02-106822 Apr 1990 JP
02-129913 May 1990 JP
02-162717 Jun 1990 JP
02-172895 Jul 1990 JP
02-196092 Aug 1990 JP
02-203517 Aug 1990 JP
02-230690 Sep 1990 JP
02-230722 Sep 1990 JP
02-246161 Sep 1990 JP
02-264491 Oct 1990 JP
02-283084 Nov 1990 JP
02-304916 Dec 1990 JP
03-019211 Jan 1991 JP
03-022569 Jan 1991 JP
03-023294 Jan 1991 JP
03-023299 Jan 1991 JP
03-044967 Feb 1991 JP
03-048421 Mar 1991 JP
03-070124 Mar 1991 JP
03-185716 Aug 1991 JP
03-208885 Sep 1991 JP
03-234025 Oct 1991 JP
03-286522 Dec 1991 JP
03-286531 Dec 1991 JP
04-031391 Feb 1992 JP
04-031396 Feb 1992 JP
04-100292 Apr 1992 JP
04-111418 Apr 1992 JP
04-132214 May 1992 JP
04-132681 May 1992 JP
04-151822 May 1992 JP
04-162418 Jun 1992 JP
04-175299 Jun 1992 JP
04-186824 Jul 1992 JP
04-212411 Aug 1992 JP
04-260696 Sep 1992 JP
04-273120 Sep 1992 JP
04-291916 Sep 1992 JP
04-285167 Oct 1992 JP
04-325500 Nov 1992 JP
04-328874 Nov 1992 JP
05-029228 Feb 1993 JP
05-047665 Feb 1993 JP
05-047666 Feb 1993 JP
05-047668 Feb 1993 JP
05-074717 Mar 1993 JP
05-074724 Mar 1993 JP
05-102189 Apr 1993 JP
05-160152 Jun 1993 JP
05-175143 Jul 1993 JP
05-175145 Jul 1993 JP
05-182906 Jul 1993 JP
05-186295 Jul 1993 JP
05-206036 Aug 1993 JP
05-234899 Sep 1993 JP
05-235047 Sep 1993 JP
05-251339 Sep 1993 JP
05-270997 Oct 1993 JP
05-283336 Oct 1993 JP
05-291152 Nov 1993 JP
05-304334 Nov 1993 JP
05-343327 Dec 1993 JP
05-343685 Dec 1993 JP
06-045606 Feb 1994 JP
06-224138 May 1994 JP
06-177381 Jun 1994 JP
06-196809 Jul 1994 JP
06-222388 Aug 1994 JP
06-230421 Aug 1994 JP
06-252057 Sep 1994 JP
06-291048 Oct 1994 JP
07-070752 Mar 1995 JP
07-086269 Mar 1995 JP
06-132236 Jul 1995 JP
08-181076 Jul 1996 JP
08-245291 Sep 1996 JP
08-264530 Oct 1996 JP
09-260786 Oct 1997 JP
09-293681 Nov 1997 JP
10-190128 Jul 1998 JP
11-269652 Oct 1999 JP
2000-031387 Jan 2000 JP
2000-058777 Feb 2000 JP
2000-068072 Mar 2000 JP
2000-319772 Mar 2000 JP
2000-138094 May 2000 JP
2000-218445 Aug 2000 JP
2001-020075 Nov 2000 JP
2000-340883 Dec 2000 JP
2000-353666 Dec 2000 JP
10-308283 Mar 2001 JP
2001-062244 Mar 2001 JP
2001-189312 May 2001 JP
2000-087029 Jun 2001 JP
2001-152339 Jun 2001 JP
2001-172767 Jun 2001 JP
2001-217206 Aug 2001 JP
2001-220287 Aug 2001 JP
2001-220294 Aug 2001 JP
2001-240972 Sep 2001 JP
2001-254181 Sep 2001 JP
2001-284042 Oct 2001 JP
2001-303251 Oct 2001 JP
2001-328900 Nov 2001 JP
10-188840 Dec 2001 JP
WO 9002216 Mar 1990 WO
WO 9110510 Jul 1991 WO
WO 9302111 Feb 1993 WO
WO 9617107 Jun 1996 WO
WO 9618756 Jun 1996 WO
WO 9806889 Feb 1998 WO
WO 9851838 Nov 1998 WO
WO 9901595 Jan 1999 WO
WO 9913504 Mar 1999 WO
WO 9929924 Jun 1999 WO
WO 9941423 Aug 1999 WO
WO 9965064 Dec 1999 WO
WO 0011721 Mar 2000 WO
WO 0015865 Mar 2000 WO
WO 0015881 Mar 2000 WO
WO 0016377 Mar 2000 WO
WO 0054320 Sep 2000 WO
WO 0063957 Oct 2000 WO
WO 0079019 Dec 2000 WO
WO 0079576 Dec 2000 WO
WO 0115220 Mar 2001 WO
WO 0117692 Mar 2001 WO
WO 0127346 Apr 2001 WO
WO 0127347 Apr 2001 WO
WO 0129280 Apr 2001 WO
WO 0129891 Apr 2001 WO
WO 0129893 Apr 2001 WO
WO 0136702 May 2001 WO
WO 0140541 Jun 2001 WO
WO 0166832 Sep 2001 WO
WO 0208488 Jan 2002 WO
Related Publications (1)
Number Date Country
20040255861 A1 Dec 2004 US
Provisional Applications (1)
Number Date Country
60259035 Dec 2000 US
Divisions (1)
Number Date Country
Parent 10025152 Dec 2001 US
Child 10885468 US