1. Field of the Invention
Aspects of the invention generally relate to an apparatus and method for heat processing substrates.
2. Background of the Related Art
In the fabrication of flat panel displays (FPD), thin film transistors (TFT) and liquid crystal cells, metal interconnects and other features are formed by depositing and removing multiple layers of conducting, semiconducting and dielectric materials from a glass substrate. The various features formed are integrated into a system that collectively is used to create, for example, active matrix display screens in which display states are electrically created in individual pixels on the FPD. Processing techniques used to create the FPD include plasma-enhanced chemical vapor deposition (PECVD), physical vapor deposition (PVD), etching, and the like. Plasma processing is particularly well suited for the production of flat panel displays because of the relatively lower processing temperatures required to deposit film and good film quality which results from plasma processes.
During FPD processing, proper heat processing of the film across the entire surface of the substrate is critical for the FPD to function properly. The heating temperature required varies depending on the type of film being processed, and process being performed. For example, one exemplary type of flat panel display film used in the construction of FPDs is low temperature poly silicon (LTPS). Part of the LTPS film processing requires the LTPS film be heated up to about 600° C. to remove hydrogen from the film whereas a similar heat treatment for amorphous silicon α-Si) film requires a substantially lower temperature of up to 450° C.
Generally, the film heating process is highly temperature sensitive as temperature non-uniformity may cause insufficient removal of unwanted contaminates, resulting in peeling and ablation of the film. To compensate for temperature non-uniformity heating process times must be extended. Unfortunately, extending the heating process times increases the production cost and often results in unusable films if the process is not completed.
Conventional heating chambers provide heat processing by heating one or more substrates through a combination of gas conduction and heat radiation. Unfortunately, the chamber walls and other internal chamber components provide heat conduction paths within the chamber resulting in conductive heat losses. The conductive heat losses create a constantly fluctuating substrate-heating environment. As the temperatures are increased, conductive heat losses become more pronounced, exacerbating the heat non-uniformity within the substrate-heating environment. Moreover, conventional heating chambers are often very large to accommodate the substrate perimeter, further exacerbating the heating issues by increasing the area and volume to be heated. For example, as the demand for larger computer displays, monitors, flat-screen televisions, and the like increases a typical substrate may be 620 mm×750 mm, or larger. For instance, substrates of 1 meter×1 meter are contemplated. Typically, to compensate for the larger substrates, larger chamber volumes, and the subsequent increase in heat losses, more heating elements are used, thereby increasing the cost of the equipment, energy usage, and temperature non-uniformity. As temperatures increase, copper heating elements are often employed to offset energy costs and provide efficient heating. Copper heaters are generally more energy efficient than other types of heating elements. Unfortunately, as the temperatures are increased, copper atoms from the copper heaters often escape into the heating chamber and contaminate the film. Thus, traditional heating chambers and heating processes do not provide acceptably uniform and contaminant-free substrate heating for an efficient and cost effective substrate heating process.
Therefore, there is a need for a method and apparatus for uniformly heat processing a plurality of substrates in an efficient contaminate-free heat processing system.
Embodiments of the invention generally provide for the uniform heating of substrates within a heating chamber for use with substrate processing systems. In one aspect of the invention, substrates are uniformly heated within an insulated chamber having a body, a bottom portion, and a lid. The chamber also includes a heat reflector disposed within the chamber, a heater disposed within the chamber adjacent to the heat reflector and a plurality of heated supports movably disposed within the chamber to support at least two substrates within the chamber.
In another aspect of the invention, a method is provided for uniformly heating substrates, comprising supporting a plurality of substrates on a plurality of heated supports within a chamber slightly larger than and shaped to conform to the shape of the substrate support, providing a process temperature between about 450° C. and about 600° C., providing a vacuum within the chamber, and uniformly heating the substrates to a uniform temperature.
So that the manner in which the recited embodiments of the invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.
It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Embodiments of the invention have particular advantages in a multi-chamber processing system also known as a cluster tool, commonly used in the semiconductor industry and well suited for supporting the substrate-heating chamber described herein. A cluster tool is a modular system comprising multiple chambers that perform various functions including substrate heating, center-finding and orientation, annealing, deposition and/or etching. The multiple chambers are mounted to a central transfer chamber which houses a robot adapted to shuttle substrates between the chambers. The transfer chamber is typically maintained at a vacuum condition and provides an intermediate stage for shuttling substrates from one chamber to another and/or to a load lock chamber positioned at a front end of the cluster tool.
The load locks 106 provide a first vacuum interface between the front-end environment 104 and a transfer chamber 110. Two load locks 106 are provided to increase throughput by alternatively communicating with the transfer chamber 110 and the front-end environment 104. Thus, while one load lock 106 communicates with the transfer chamber 110, a second load lock 106 communicates with the front-end environment 104.
A robot 113 is centrally disposed in the transfer chamber 110 to transfer substrates from the load locks 106 to one of the various processing chambers 114 or holding chambers 116. The processing chambers 114 are adapted to perform any number of processes such as film deposition, annealing, etching, and the like while the holding chambers 116 adapted for, orientation, cool down and the like. A heating chamber 140 used to heat substrates during a heat process such as hydrogen removal and annealing is disposed within processing system 100. The heating chamber 140 is located typically disposed within the processing system 100 in the most efficient processing position but may be located anywhere within processing system 100. For example, the heating process step may follow a deposition process step. Therefore, to minimize the movement of the robot 113, the heating chamber 140 may be located adjacent to one of the processing chambers 114 used for a deposition process step.
The heating chamber 140 is mounted on a mounting frame 255 to provide support for the upper section 215 and lower section 217. In one aspect, the mounting frame 255 may comprise rotatably mounted casters 245, 246, and 247 on a lower end for moving the heating chamber 140. The mounting frame 255 may be attached to the heating chamber 140 and connecting body 230 by conventional means such as bolts, clamps or other fasteners as are known in the art. While the heating chamber 140 is preferably mounted on frame 255, the heating chamber 140 may be mounted to and supported by the transfer chamber 110 using fasteners such as screws, bolts, clips, and the like.
A motor 285 used with the transportation of substrates within the heating chamber 140, may be attached to the heating chamber 140 using fasteners such as screws, bolts, clips, and the like. The motor 285 is rotatably coupled to a lead screw 288. The lead screw 288 is rotatably coupled to a platform 287 slidably coupled to the frame 255. When the lead screw 288 is rotated by the motor 285, the platform 287 is vertically raised or lowered.
In one embodiment, a thermal insulating layer (not shown) may be used to enclose, or wrap, the heating chamber 140 to minimize heat loss from the heating chamber 140. The thermal insulating layer may comprise insulators such as fiberglass, ceramic fiber, asbestos, or other materials adapted to provide insulation from heat loss. In one embodiment, the insulating layer comprises a flexible insulating ceramic fiber blanket having a thermal conductivity of less than about 0.035 watt/m° K and stabilizes at a surface temperature of about 30° C.
A substrate cassette 310 is moveably disposed within the cavity 307 and is coupled to an upper end of a movable member 330. The moveable member 330 is comprised of process resistant materials such as aluminum, steel, nickel, and the like, adapted to withstand process temperatures and generally free of contaminates such as copper. The movable member 330 enters the cavity 307 through the bottom 316. The movable member 330 is slidably and sealably disposed through the bottom 316 and is raised and lowered by the platform 287. The platform 287 supports a lower end of the movable member 330 such that the movable member 330 is vertically raised or lowered in conjunction with the raising or lowering of the platform 287. The movable member 330 vertically raises and lowers the cassette 310 within the cavity 307 to move the substrates 328 across a substrate transfer plane 332 extending through the window 235. The substrate transfer plane 332 is defined by the path along which substrates are moved into and out of the cassette 310 by the robot 113.
The cassette 310 comprises a plurality of substrate-heating shelves 336 supported by a frame 325. Although in one aspect,
The substrate-heating shelves 336 are spaced vertically apart and parallel within the cassette 310 to define a plurality of substrate-heating spaces 322. Each substrate-heating space 322 is adapted to heat at least one substrate 328 therein supported on a plurality of support pins 342. The substrate-heating shelves 336 above and below each substrate 328 establish the upper and lower boundary of the substrate-heating space 322 such that the top and bottom sides of the substrate 328 are exposed to heat. In one embodiment, the upper and lower boundaries are equidistant from the substrate 328 in order to ensure uniform heating of both sides of the substrate 328. To ensure heating of the top substrate 328 in the cassette 310, the upper boundary for the top heating space 322 is established by an empty heated substrate support 340. In another embodiment, the spacing and substrate position may be adjusted to accommodate different heating requirements for different processes such as annealing, hydrogen removal, and the like. The spacing between the upper and lower boundary of the heating space 322 may be adjusted to increase or decrease the rate of heating, and the amount of heat applied to each substrate side. For example, the spacing between the upper and lower boundary of the heating space 322 can be spaced more narrowly to increase the radiant energy from the heated substrate supports 340 to thereby increase the temperature and rate of heating, or spaced further apart to reduce the incident radiant energy, thereby lowering the substrate temperature and slowing the heating of the substrate 328. Moreover, the substrate 328 may be positioned closer to either the upper or the lower boundary to provided differing amounts of heating to either side of the substrate 328. In one aspect, to increase production efficiency, the spacing between the upper and lower boundary of the heating space 322 may be adjusted to heat the substrate 328 at a desired rate and temperature while allowing the cassette 310 to hold as many substrate-heating shelves 336 as possible. In one aspect, the spacing between the upper and lower boundary is about 45 mm. The inventors believe that the about 45 mm spacing between the upper and lower boundary provides for adequate space to receive a substrate 328, uniform substrate heating, and efficient space utilization within the chamber 307 to maximize the number of substrate-heating shelves 336.
A heater 315 is disposed within the cavity 307 between the heat reflector 320 and the cassette 310. The heater 315 is adapted to form a heating member conforming to and surrounding the cassette 310. The heater 315 comprises one or more heating elements such as resistive heaters, heating lamps, and the like disposed within a layer, or layers, of heat conducting materials such as nickel, steel, aluminum, and the like that radiate heat. Although, the inside surface 331 of the heater 315 is preferably bead blasted or anodized to provided a higher heat emissivity to improve the transmission of radiated heat within the cavity 307, other types of surface conditioning adapted to provided greater surface emissivity may be used. The outer surface 333 of the heater 315 is polished to provide a low emissivity, thereby minimizing the transmission of radiated heat to the chamber body 305. During substrate heat processing, the heater 315 is activated by a power source (not shown) and heated to a desired temperature. Although, in one aspect, a gap is established between the heater 315 and the heat reflector 320 to minimize heat transference via conduction to the heat reflector 320, the heater 315 may be in direct contact with heat reflector 320.
A pair of couplings 318 are connected to a power source (not shown), such as an external power supply, to provide power to the continuous heating element 337. Although it is preferred that the continuous heating element 337 be formed as a unified and homogenous heating member to provided uniform heating throughout the jacket 319, a plurality of individual heating elements such as restive heaters, lamps and the like, may be coupled together to form the continuous heating element 337. Additionally, the jacket 319 may be heated by a plurality of the individual heaters dispersed and coupled discretely throughout jacket 319.
The heater 315 may be secured within the cavity 307 using any of several methods. For example, the heater 315 may be attached to the inner surface 311 using attachment methods such as bonding using adhesives such as pressure sensitive adhesives, ceramic bonding, glue, and the like, or fasteners such as screws, bolts, clips, and the like that are process resistant and generally free of contaminates such as copper. In a particular embodiment, the heater 315 comprises an upper portion having a mounting flange 312 for mounting the heater 315 to the body 305. Although it is preferred that the mounting flange 312 be integral to the heater 315, the mounting flange 312 may be a separate component. The mounting flange 312 may be attached to the body 305 using adhesives such as pressure sensitive adhesives, ceramic bonding, glue, and the like, or fasteners such as screws, bolts, clips, and the like that are process resistant and generally free of contaminates such as copper.
In operation, the heating chamber 140 heating process is initiated by the robot 113 placing the substrate 328 via window 235 within cavity 307 on a heated substrate support 340. An inert process gas, such as nitrogen, is flowed into the cavity 307 through the gas inlet 360 and is maintained at a required chamber pressure by the vacuum pump 390. Alternatively, the process gas may be an active process gas, such as fluorine, adapted for a particular process. The cavity 307 is heated with radiant heat by the heater 315 and heated substrate support 340, or heater 315 alone, in cooperation with the heat reflector 320, to a desired ambient level sufficient to provide a uniform substrate heating profile. The individual substrates 328 are uniformly heated to a substrate body temperature between about 350° C. to about 600° C. The temperature variation referenced to a temperature on the substrate body (i.e., normalized temperature variation) is about between +/−5° C. and about +/−10° C.
For example, in one method of operation in accordance with the invention the heating chamber 140 heating process is initiated by the robot 113 placing the substrate 328 via window 235 within cavity 307 on a heated substrate support 340. A vacuum within the cavity 307 is provided by vacuum pump 390 at about 0 to about 0.5 Torr. A process gas such as nitrogen is flowed into the cavity 307 through the gas inlet 360 and is maintained at chamber pressure at about 0.0 Torr to about 0.5 Torr by the vacuum pump 390. Heat is applied to the substrates via heater 315 and heated supports 340 to heat each substrate uniformly to a temperature of about 450° C. to about 600° C. each. Each substrate maintains a normalized heating profile of about +/−5° C. at a substrate body temperature of about 450° C. to about +/−10° C. at a substrate body temperature of about 600° C. For example,
While foregoing is directed to the embodiments of the invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a divisional of U.S. patent application Ser. No. 10/025,152 filed on Dec. 18, 2001 now U.S. Pat. No. 6,765,178, which claims benefit of U.S. provisional Patent Application Ser. No. 60/259,035, filed on Dec. 29, 2000. Each of the aforementioned related patent applications is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3862397 | Anderson et al. | Jan 1975 | A |
4058430 | Suntola et al. | Nov 1977 | A |
4389973 | Suntola et al. | Jun 1983 | A |
4413022 | Suntola et al. | Nov 1983 | A |
4486487 | Skarp | Dec 1984 | A |
4767494 | Kobayashi et al. | Aug 1988 | A |
4806321 | Nishizawa et al. | Feb 1989 | A |
4813846 | Helms | Mar 1989 | A |
4829022 | Kobayashi et al. | May 1989 | A |
4834831 | Nishizawa et al. | May 1989 | A |
4838983 | Schumaker et al. | Jun 1989 | A |
4838993 | Aoki et al. | Jun 1989 | A |
4840921 | Matsumoto | Jun 1989 | A |
4845049 | Sunakawa | Jul 1989 | A |
4859625 | Nishizawa et al. | Aug 1989 | A |
4859627 | Sunakawa | Aug 1989 | A |
4861417 | Mochizuki et al. | Aug 1989 | A |
4876218 | Pessa et al. | Oct 1989 | A |
4917556 | Stark et al. | Apr 1990 | A |
4927670 | Erbil | May 1990 | A |
4931132 | Aspnes et al. | Jun 1990 | A |
4951601 | Maydan et al. | Aug 1990 | A |
4960720 | Shimbo | Oct 1990 | A |
4975252 | Nishizawa et al. | Dec 1990 | A |
4993357 | Scholz | Feb 1991 | A |
5000113 | Wang et al. | Mar 1991 | A |
5013683 | Petroff et al. | May 1991 | A |
5028565 | Chang et al. | Jul 1991 | A |
5082798 | Arimoto | Jan 1992 | A |
5085885 | Foley et al. | Feb 1992 | A |
5091320 | Aspnes et al. | Feb 1992 | A |
5130269 | Kitahara et al. | Jul 1992 | A |
5166092 | Mochizuki et al. | Nov 1992 | A |
5173474 | Connell et al. | Dec 1992 | A |
5186718 | Tepman et al. | Feb 1993 | A |
5205077 | Wittstock | Apr 1993 | A |
5225366 | Yoder | Jul 1993 | A |
5234561 | Randhawa et al. | Aug 1993 | A |
5246536 | Nishizawa et al. | Sep 1993 | A |
5250148 | Nishizawa et al. | Oct 1993 | A |
5254207 | Nishizawa et al. | Oct 1993 | A |
5256244 | Ackerman | Oct 1993 | A |
5259881 | Edwards et al. | Nov 1993 | A |
5270247 | Sakuma et al. | Dec 1993 | A |
5278435 | Van Hove et al. | Jan 1994 | A |
5281274 | Yoder | Jan 1994 | A |
5286296 | Sato et al. | Feb 1994 | A |
5290748 | Knuuttila et al. | Mar 1994 | A |
5294286 | Nishizawa et al. | Mar 1994 | A |
5296403 | Nishizawa et al. | Mar 1994 | A |
5300186 | Kitahara et al. | Apr 1994 | A |
5311055 | Goodman et al. | May 1994 | A |
5316615 | Copel | May 1994 | A |
5316793 | Wallace et al. | May 1994 | A |
5330610 | Eres et al. | Jul 1994 | A |
5336324 | Stall et al. | Aug 1994 | A |
5338389 | Nishizawa et al. | Aug 1994 | A |
5348911 | Jurgensen et al. | Sep 1994 | A |
5369361 | Wada | Nov 1994 | A |
5374570 | Nasu et al. | Dec 1994 | A |
5395791 | Cheng et al. | Mar 1995 | A |
5438952 | Otsuka | Aug 1995 | A |
5439876 | Graf et al. | Aug 1995 | A |
5441703 | Jurgensen | Aug 1995 | A |
5443033 | Nishizawa et al. | Aug 1995 | A |
5443647 | Aucoin et al. | Aug 1995 | A |
5455072 | Bension et al. | Oct 1995 | A |
5458084 | Thorne et al. | Oct 1995 | A |
5469806 | Mochizuki et al. | Nov 1995 | A |
5480818 | Matsumoto et al. | Jan 1996 | A |
5483919 | Yokoyama et al. | Jan 1996 | A |
5484664 | Kitahara et al. | Jan 1996 | A |
5503875 | Imai et al. | Apr 1996 | A |
5521126 | Okamura et al. | May 1996 | A |
5527733 | Nishizawa et al. | Jun 1996 | A |
5532511 | Nishizawa et al. | Jul 1996 | A |
5540783 | Eres et al. | Jul 1996 | A |
5561735 | Camm | Oct 1996 | A |
5567152 | Morimoto | Oct 1996 | A |
5580380 | Liu et al. | Dec 1996 | A |
5601651 | Watabe | Feb 1997 | A |
5607009 | Turner et al. | Mar 1997 | A |
5609689 | Kato et al. | Mar 1997 | A |
5616181 | Yamamoto et al. | Apr 1997 | A |
5637530 | Gaines et al. | Jun 1997 | A |
5641984 | Aftergut et al. | Jun 1997 | A |
5644128 | Wollnik et al. | Jul 1997 | A |
5667592 | Boitnott et al. | Sep 1997 | A |
5674786 | Turner et al. | Oct 1997 | A |
5693139 | Nishizawa et al. | Dec 1997 | A |
5695564 | Imahashi | Dec 1997 | A |
5705224 | Murota et al. | Jan 1998 | A |
5707880 | Aftergut et al. | Jan 1998 | A |
5711811 | Suntola et al. | Jan 1998 | A |
5730801 | Tepman et al. | Mar 1998 | A |
5730802 | Ishizumi et al. | Mar 1998 | A |
5747113 | Tsai | May 1998 | A |
5749974 | Habuka et al. | May 1998 | A |
5788447 | Yonemitsu et al. | Aug 1998 | A |
5788799 | Steger et al. | Aug 1998 | A |
5796116 | Nakata et al. | Aug 1998 | A |
5801634 | Young et al. | Sep 1998 | A |
5807792 | Ilg et al. | Sep 1998 | A |
5830270 | McKee et al. | Nov 1998 | A |
5835677 | Li et al. | Nov 1998 | A |
5850071 | Makiguchi et al. | Dec 1998 | A |
5851849 | Comizzoli et al. | Dec 1998 | A |
5855675 | Doering et al. | Jan 1999 | A |
5855680 | Soininen et al. | Jan 1999 | A |
5856219 | Naito et al. | Jan 1999 | A |
5858102 | Tsai | Jan 1999 | A |
5866213 | Foster et al. | Feb 1999 | A |
5866795 | Wang et al. | Feb 1999 | A |
5879459 | Gadgil et al. | Mar 1999 | A |
5882165 | Maydan et al. | Mar 1999 | A |
5882413 | Beaulieu et al. | Mar 1999 | A |
5904565 | Nguyen et al. | May 1999 | A |
5916365 | Sherman | Jun 1999 | A |
5923056 | Lee et al. | Jul 1999 | A |
5923985 | Aoki et al. | Jul 1999 | A |
5925574 | Aoki et al. | Jul 1999 | A |
5928389 | Jevtic | Jul 1999 | A |
5942040 | Kim et al. | Aug 1999 | A |
5947710 | Cooper et al. | Sep 1999 | A |
5972430 | DiMeo, Jr. et al. | Oct 1999 | A |
6001669 | Gaines et al. | Dec 1999 | A |
6015590 | Suntola et al. | Jan 2000 | A |
6025627 | Forbes et al. | Feb 2000 | A |
6036773 | Wang et al. | Mar 2000 | A |
6042652 | Hyun et al. | Mar 2000 | A |
6043177 | Falconer et al. | Mar 2000 | A |
6046439 | Johnsgard et al. | Apr 2000 | A |
6051286 | Zhao et al. | Apr 2000 | A |
6062798 | Muka | May 2000 | A |
6071808 | Merchant et al. | Jun 2000 | A |
6084302 | Sandhu | Jul 2000 | A |
6086677 | Umotoy et al. | Jul 2000 | A |
6110556 | Bang et al. | Aug 2000 | A |
6113977 | Soininen et al. | Sep 2000 | A |
6117244 | Bang et al. | Sep 2000 | A |
6124158 | Dautartas et al. | Sep 2000 | A |
6130147 | Major et al. | Oct 2000 | A |
6139700 | Kang et al. | Oct 2000 | A |
6140237 | Chan et al. | Oct 2000 | A |
6140238 | Kitch | Oct 2000 | A |
6143659 | Leem | Nov 2000 | A |
6144060 | Park et al. | Nov 2000 | A |
6147334 | Hannigan | Nov 2000 | A |
6151447 | Moore et al. | Nov 2000 | A |
6158446 | Mohindra et al. | Dec 2000 | A |
6174377 | Doering et al. | Jan 2001 | B1 |
6174809 | Kang et al. | Jan 2001 | B1 |
6183563 | Choi et al. | Feb 2001 | B1 |
6200893 | Sneh | Mar 2001 | B1 |
6203613 | Gates et al. | Mar 2001 | B1 |
6206967 | Mak et al. | Mar 2001 | B1 |
6207302 | Sugiura et al. | Mar 2001 | B1 |
6231672 | Choi et al. | May 2001 | B1 |
6248605 | Harkonen et al. | Jun 2001 | B1 |
6270572 | Kim et al. | Aug 2001 | B1 |
6271148 | Kao et al. | Aug 2001 | B1 |
6287965 | Kang et al. | Sep 2001 | B1 |
6291876 | Stumborg et al. | Sep 2001 | B1 |
6305314 | Sneh et al. | Oct 2001 | B1 |
6306216 | Kim et al. | Oct 2001 | B1 |
6316098 | Yitzchaik et al. | Nov 2001 | B1 |
6447607 | Soininen et al. | Sep 2002 | B1 |
6478872 | Chae et al. | Nov 2002 | B1 |
6481945 | Hasper et al. | Nov 2002 | B1 |
6511539 | Raaijmakers | Jan 2003 | B1 |
6551406 | Kilpi | Apr 2003 | B1 |
20010000866 | Sneh et al. | May 2001 | A1 |
20010009140 | Bondestam et al. | Jul 2001 | A1 |
20010011526 | Doering et al. | Aug 2001 | A1 |
20010013312 | Soininen et al. | Aug 2001 | A1 |
20010014371 | Kilpi | Aug 2001 | A1 |
20010031562 | Raaijmakers et al. | Oct 2001 | A1 |
20010034123 | Jeon et al. | Oct 2001 | A1 |
20010041250 | Werkhoven et al. | Nov 2001 | A1 |
20010042523 | Kesala | Nov 2001 | A1 |
20010042799 | Kim et al. | Nov 2001 | A1 |
20010054377 | Lindfors et al. | Dec 2001 | A1 |
20020000196 | Park | Jan 2002 | A1 |
20020007790 | Park | Jan 2002 | A1 |
20020041931 | Suntola et al. | Apr 2002 | A1 |
20020052097 | Park | May 2002 | A1 |
20020086106 | Park et al. | Jul 2002 | A1 |
20020092471 | Kang et al. | Jul 2002 | A1 |
20020094689 | Park | Jul 2002 | A1 |
20020108570 | Lindfors | Aug 2002 | A1 |
20020134307 | Choi | Sep 2002 | A1 |
20030004723 | Chihara | Jan 2003 | A1 |
20030075273 | Kilpela et al. | Apr 2003 | A1 |
20030075925 | Lindfors et al. | Apr 2003 | A1 |
Number | Date | Country |
---|---|---|
198 20 147 | Jul 1999 | DE |
196 27 017 | Jan 2000 | DE |
0 344 352 | Jun 1988 | EP |
0 429 270 | Nov 1990 | EP |
0 442 490 | Aug 1991 | EP |
0 799 614 | Oct 1997 | EP |
1 167 569 | Jan 2002 | EP |
2 626 110 | Jul 1989 | FR |
2 692 597 | Dec 1993 | FR |
2 298 314 | Aug 1996 | GB |
2 355 727 | May 2001 | GB |
58-098917 | Jun 1983 | JP |
58-100419 | Jun 1983 | JP |
60-065712 | Apr 1985 | JP |
61-035847 | Feb 1986 | JP |
61-210623 | Sep 1986 | JP |
62-069508 | Mar 1987 | JP |
62-091495 | Apr 1987 | JP |
62-141717 | Jun 1987 | JP |
62-167297 | Jul 1987 | JP |
62-171999 | Jul 1987 | JP |
62-232919 | Oct 1987 | JP |
63-062313 | Mar 1988 | JP |
63-085098 | Apr 1988 | JP |
63-090833 | Apr 1988 | JP |
63-222420 | Sep 1988 | JP |
63-222421 | Sep 1988 | JP |
63-227007 | Sep 1988 | JP |
63-252420 | Oct 1988 | JP |
63-266814 | Nov 1988 | JP |
64-009895 | Jan 1989 | JP |
64-009896 | Jan 1989 | JP |
64-009897 | Jan 1989 | JP |
64-037832 | Feb 1989 | JP |
64-082615 | Mar 1989 | JP |
64-082617 | Mar 1989 | JP |
64-082671 | Mar 1989 | JP |
64-082676 | Mar 1989 | JP |
01-103982 | Apr 1989 | JP |
01-103996 | Apr 1989 | JP |
64-090524 | Apr 1989 | JP |
01-117017 | May 1989 | JP |
01-143221 | Jun 1989 | JP |
01-143233 | Jun 1989 | JP |
01-154511 | Jun 1989 | JP |
01-245512 | Sep 1989 | JP |
01-236657 | Oct 1989 | JP |
01-264218 | Oct 1989 | JP |
01-270593 | Oct 1989 | JP |
01-272108 | Oct 1989 | JP |
01-290221 | Nov 1989 | JP |
01-290222 | Nov 1989 | JP |
01-296673 | Nov 1989 | JP |
01-303770 | Dec 1989 | JP |
01-305894 | Dec 1989 | JP |
01-313927 | Dec 1989 | JP |
02-012814 | Jan 1990 | JP |
02-014513 | Jan 1990 | JP |
02-017634 | Jan 1990 | JP |
02-063115 | Mar 1990 | JP |
02-074029 | Mar 1990 | JP |
02-074587 | Mar 1990 | JP |
02-106822 | Apr 1990 | JP |
02-129913 | May 1990 | JP |
02-162717 | Jun 1990 | JP |
02-172895 | Jul 1990 | JP |
02-196092 | Aug 1990 | JP |
02-203517 | Aug 1990 | JP |
02-230690 | Sep 1990 | JP |
02-230722 | Sep 1990 | JP |
02-246161 | Sep 1990 | JP |
02-264491 | Oct 1990 | JP |
02-283084 | Nov 1990 | JP |
02-304916 | Dec 1990 | JP |
03-019211 | Jan 1991 | JP |
03-022569 | Jan 1991 | JP |
03-023294 | Jan 1991 | JP |
03-023299 | Jan 1991 | JP |
03-044967 | Feb 1991 | JP |
03-048421 | Mar 1991 | JP |
03-070124 | Mar 1991 | JP |
03-185716 | Aug 1991 | JP |
03-208885 | Sep 1991 | JP |
03-234025 | Oct 1991 | JP |
03-286522 | Dec 1991 | JP |
03-286531 | Dec 1991 | JP |
04-031391 | Feb 1992 | JP |
04-031396 | Feb 1992 | JP |
04-100292 | Apr 1992 | JP |
04-111418 | Apr 1992 | JP |
04-132214 | May 1992 | JP |
04-132681 | May 1992 | JP |
04-151822 | May 1992 | JP |
04-162418 | Jun 1992 | JP |
04-175299 | Jun 1992 | JP |
04-186824 | Jul 1992 | JP |
04-212411 | Aug 1992 | JP |
04-260696 | Sep 1992 | JP |
04-273120 | Sep 1992 | JP |
04-291916 | Sep 1992 | JP |
04-285167 | Oct 1992 | JP |
04-325500 | Nov 1992 | JP |
04-328874 | Nov 1992 | JP |
05-029228 | Feb 1993 | JP |
05-047665 | Feb 1993 | JP |
05-047666 | Feb 1993 | JP |
05-047668 | Feb 1993 | JP |
05-074717 | Mar 1993 | JP |
05-074724 | Mar 1993 | JP |
05-102189 | Apr 1993 | JP |
05-160152 | Jun 1993 | JP |
05-175143 | Jul 1993 | JP |
05-175145 | Jul 1993 | JP |
05-182906 | Jul 1993 | JP |
05-186295 | Jul 1993 | JP |
05-206036 | Aug 1993 | JP |
05-234899 | Sep 1993 | JP |
05-235047 | Sep 1993 | JP |
05-251339 | Sep 1993 | JP |
05-270997 | Oct 1993 | JP |
05-283336 | Oct 1993 | JP |
05-291152 | Nov 1993 | JP |
05-304334 | Nov 1993 | JP |
05-343327 | Dec 1993 | JP |
05-343685 | Dec 1993 | JP |
06-045606 | Feb 1994 | JP |
06-224138 | May 1994 | JP |
06-177381 | Jun 1994 | JP |
06-196809 | Jul 1994 | JP |
06-222388 | Aug 1994 | JP |
06-230421 | Aug 1994 | JP |
06-252057 | Sep 1994 | JP |
06-291048 | Oct 1994 | JP |
07-070752 | Mar 1995 | JP |
07-086269 | Mar 1995 | JP |
06-132236 | Jul 1995 | JP |
08-181076 | Jul 1996 | JP |
08-245291 | Sep 1996 | JP |
08-264530 | Oct 1996 | JP |
09-260786 | Oct 1997 | JP |
09-293681 | Nov 1997 | JP |
10-190128 | Jul 1998 | JP |
11-269652 | Oct 1999 | JP |
2000-031387 | Jan 2000 | JP |
2000-058777 | Feb 2000 | JP |
2000-068072 | Mar 2000 | JP |
2000-319772 | Mar 2000 | JP |
2000-138094 | May 2000 | JP |
2000-218445 | Aug 2000 | JP |
2001-020075 | Nov 2000 | JP |
2000-340883 | Dec 2000 | JP |
2000-353666 | Dec 2000 | JP |
10-308283 | Mar 2001 | JP |
2001-062244 | Mar 2001 | JP |
2001-189312 | May 2001 | JP |
2000-087029 | Jun 2001 | JP |
2001-152339 | Jun 2001 | JP |
2001-172767 | Jun 2001 | JP |
2001-217206 | Aug 2001 | JP |
2001-220287 | Aug 2001 | JP |
2001-220294 | Aug 2001 | JP |
2001-240972 | Sep 2001 | JP |
2001-254181 | Sep 2001 | JP |
2001-284042 | Oct 2001 | JP |
2001-303251 | Oct 2001 | JP |
2001-328900 | Nov 2001 | JP |
10-188840 | Dec 2001 | JP |
WO 9002216 | Mar 1990 | WO |
WO 9110510 | Jul 1991 | WO |
WO 9302111 | Feb 1993 | WO |
WO 9617107 | Jun 1996 | WO |
WO 9618756 | Jun 1996 | WO |
WO 9806889 | Feb 1998 | WO |
WO 9851838 | Nov 1998 | WO |
WO 9901595 | Jan 1999 | WO |
WO 9913504 | Mar 1999 | WO |
WO 9929924 | Jun 1999 | WO |
WO 9941423 | Aug 1999 | WO |
WO 9965064 | Dec 1999 | WO |
WO 0011721 | Mar 2000 | WO |
WO 0015865 | Mar 2000 | WO |
WO 0015881 | Mar 2000 | WO |
WO 0016377 | Mar 2000 | WO |
WO 0054320 | Sep 2000 | WO |
WO 0063957 | Oct 2000 | WO |
WO 0079019 | Dec 2000 | WO |
WO 0079576 | Dec 2000 | WO |
WO 0115220 | Mar 2001 | WO |
WO 0117692 | Mar 2001 | WO |
WO 0127346 | Apr 2001 | WO |
WO 0127347 | Apr 2001 | WO |
WO 0129280 | Apr 2001 | WO |
WO 0129891 | Apr 2001 | WO |
WO 0129893 | Apr 2001 | WO |
WO 0136702 | May 2001 | WO |
WO 0140541 | Jun 2001 | WO |
WO 0166832 | Sep 2001 | WO |
WO 0208488 | Jan 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040255861 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
60259035 | Dec 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10025152 | Dec 2001 | US |
Child | 10885468 | US |