1. Field of Invention
This invention relates to a chemical mechanical polishing (CMP) applied in forming shallow trench isolation (STI), and more particularly, to a process of forming a STI structure combining CMP, using a partial reverse active mask.
2. Background
CMP is a technique ideal for applying in global planarization in very large scale integration (VLSI) and even in ultra large-scale integration (ULSI). Moreover, CMP is likely to be the only reliable technique as the feature size of the integrated circuit (IC) is highly reduced. Therefore, it is of great interest to develop and improve CMP techniques to reduce costs.
As the IC devices are continuously sized down to a linewith of 0.25 μm or even 0.18 μm (deep sub-half micron), using CMP to planarize the wafer surface, especially to planarize the oxide layer on the surface of the shallow trench, becomes even more important. To prevent the dishing effect occurring at the surface of a larger trench during CMP process and to obtain a superior CMP uniformity, a reverse tone active mask was proposed, in cooperation with an etching back process.
Typically, the active regions have varied sizes and the shallow trenches between the active regions also have different sizes.
Next, referring to
Referring to
Referring to
As a result, it is important to overcome the problems coming after the formation of the concaves due to the misalignment of the reverse active mask during the process of CMP, especially, while nowadays the linewidth is decreasing.
It is therefore an objective of the present invention to provide a method of chemical-mechanical polishing for forming a shallow trench isolation. A substrate having a number of active regions, including a number of relative large active regions and a number of relative small active regions, is provided. The method comprises the following steps. A silicon nitride layer on the substrate is first formed. A number of shallow trenches are formed between the active regions. An oxide layer is formed over the substrate, so that the shallow trenches are filled with the oxide layer. A partial reverse active mask is formed on the oxide layer. The partial reverse active mask has an opening at a central part of each relative large active region. The opening exposes a portion of the oxide layer. The opening has at least a dummy pattern. The oxide layer on the central part of each large active region is removed to expose the silicon nitride layer. The partial reverse active mask is removed. The oxide layer is planarized to expose the silicon nitride layer.
In one aspect, the invention provides a method of chemical-mechanical polishing for forming a shallow trench isolation, wherein a substrate having a plurality of active regions, including a plurality of relatively large active regions and a plurality of relatively small active regions and an alignment mark. The method comprises: forming a plurality of shallow trenches between the active regions; forming an oxide layer over the substrate, so that the shallow trenches and the alignment mark are filled therewith; forming a partial reverse active mask on the oxide layer, wherein the partial reverse active mask has an opening at each relatively large active region and at the alignment mark when the reverse active mask completely covers each relatively small active region and trenches, wherein the opening exposes a portion of the oxide layer; removing portions of the oxide layer on each large active region and at the alignment mark; removing the partial reverse active mask; and planarizing the oxide layer.
In another aspect, the invention provides a method of chemical-mechanical polishing in forming a multi-layered semiconductor device comprising a substrate. The method comprises forming an alignment mark in the substrate and a plurality of shallow trenches between active regions of the semiconductor substrate; forming an oxide layer over the substrate; forming a partial reverse active mask on the oxide layer, wherein the partial reverse active mask has an opening over a portion of at least one active region and over the alignment mark; removing portions of the oxide layer over at least one active region and over portions of the alignment mark to expose a portion of the oxide layer; removing the partial reverse active mask; and planarizing the oxide layer.
In yet another aspect, the invention provides a method of forming a semiconductor device having an alignment mark. The method comprises forming an alignment mark in a substrate; forming at least one active area on the substrate; forming an oxide layer over the substrate, wherein the oxide layer covers at least a portion of the alignment mark; forming a partial reverse active mask on the oxide layer, wherein the partial reverse active mask has an opening over at least a portion of the alignment mark; removing portions of the oxide layer to expose a portion of the oxide layer; removing the partial reverse active mask; and planarizing the oxide layer.
The invention can be more fully understood by reading the following detailed description of the preferred embodiments, with reference made to the accompanying drawings, wherein:
The invention provides a process for forming STI, combining the partial reverse active mask and CMP, using high density plasma chemical vapor deposition (HDCVD). This process prevents the formation of concaves in the shallow trenches due to the misalignment of the reverse active mask, which consequently causes short circuit or leakage current. In another embodiment, a partial active reverse mask technique is used to permit oxide to be etched from an alignment mark in the substrate.
Referring to
Referring to
Referring to
Next, referring to
In the above embodiment, a partial reverse active mask is employed for forming a shallow trench isolation. In
Referring to
Referring to
Referring to
It will be appreciated by one of skill in the art that the reverse partial active mask techniques described hereinabove may be used to facilitate etching oxide from an alignment mark in the substrate. This removes the oxide from the alignment so that a CMP process over the alignment mark is unnecessary. Thus, the alignment mark is clearly exposed without the need for additional steps.
This is illustrated in
Referring to
Referring to
Next, referring to
Advantages of the Invention Include:
(1) The oxide layer formed by HDCVD has a pyramid-like profile, so that using chemical-mechanical polishing, the oxide layer is planarized easily.
(2) Using a partial reverse active mask to etch away the oxide layer on the central part of an active region, only the oxide layer on the edge part of the active region and on a small active region is remained. The profile of the remaining oxide layer is pyramid-like and has a better uniformity. Therefore, a recess formed while polishing a large trench is avoided.
(3) The dishing effect on the large active region is avoided since the partial reverse active mask has a dummy pattern.
(4) Since only the oxide layer on the central part of an active region is etched away by using a partial reverse active mask, even when a misalignment occurs, the oxide layer within the trench is not etched. The kink effect is prevented. As a consequence, the current leakage and the short circuit caused by kink effect are avoided, so that the yield of wafer is enhanced.
Although the invention has been described and illustrated with a certain degree of particularity, it is understood that the present disclosure has been made only by way of example, and that numerous changes in the combination and arrangement of parts can be resorted to by those skilled in the art without departing from the spirit and scope of the invention, as hereinafter claimed.
The words “comprise,” “comprising,” “include,” “including,” and “includes” when used in this specification and in the following claims are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, or groups.
Number | Date | Country | Kind |
---|---|---|---|
87108699 A | Jun 1998 | TW | national |
This application is a continuation of continuation-in-part U.S. patent application Ser. No. 10/293,243, filed Nov. 13, 2002 now U.S. Pat. No. 6,790,742, which is a continuation-in-part of U.S. patent application Ser. No. 09/991,395, filed Nov. 20, 2001 now U.S. Pat. No. 6,486,040, which is a continuation of U.S. patent application Ser. No. 09/692,251, filed Oct. 19, 2000, now U.S. Pat. No. 6,448,159, which is a divisional of U.S. patent application Ser. No. 09/111,007 filed Jul. 7, 1998, now U.S. Pat. No. 6,169,012, which claims priority from Taiwan Application No. 87108699, filed Jun. 3, 1998, all the disclosures of which are herein specifically incorporated by this reference.
Number | Name | Date | Kind |
---|---|---|---|
4755050 | Watkins | Jul 1988 | A |
5459096 | Venkatesan et al. | Oct 1995 | A |
5498565 | Gocho et al. | Mar 1996 | A |
5626913 | Tomoeda et al. | May 1997 | A |
5792707 | Chung | Aug 1998 | A |
5837612 | Ajuria et al. | Nov 1998 | A |
5854133 | Hachiya et al. | Dec 1998 | A |
5858842 | Park | Jan 1999 | A |
5885856 | Gilbert et al. | Mar 1999 | A |
5885886 | Lee | Mar 1999 | A |
5893744 | Wang | Apr 1999 | A |
5902752 | Sun et al. | May 1999 | A |
5911110 | Yu | Jun 1999 | A |
5923993 | Sahota | Jul 1999 | A |
5926723 | Wang | Jul 1999 | A |
5948573 | Takahashi | Sep 1999 | A |
5958795 | Chen et al. | Sep 1999 | A |
5965941 | Weling et al. | Oct 1999 | A |
5998279 | Liaw | Dec 1999 | A |
6004863 | Jang | Dec 1999 | A |
6013558 | Harvey et al. | Jan 2000 | A |
6020616 | Bothra et al. | Feb 2000 | A |
6043133 | Jang et al. | Mar 2000 | A |
6087733 | Maxim et al. | Jul 2000 | A |
6117622 | Eisele et al. | Sep 2000 | A |
6169012 | Chen et al. | Jan 2001 | B1 |
6184104 | Tan et al. | Feb 2001 | B1 |
6194287 | Jang | Feb 2001 | B1 |
6215197 | Iwamatsu | Apr 2001 | B1 |
6259115 | You et al. | Jul 2001 | B1 |
6326309 | Hatanaka et al. | Dec 2001 | B1 |
6603612 | Nakano | Aug 2003 | B1 |
Number | Date | Country |
---|---|---|
0 712 156 | May 1996 | EP |
0 712 156 | Nov 1997 | EP |
60283995 | Jun 1987 | JP |
62142334 | Jun 1987 | JP |
Number | Date | Country | |
---|---|---|---|
20050032328 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09111007 | Jul 1998 | US |
Child | 09692251 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10293243 | Nov 2002 | US |
Child | 10939716 | US | |
Parent | 09692251 | Oct 2000 | US |
Child | 09991395 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09991395 | Nov 2001 | US |
Child | 10293243 | US |