The present disclosure provides a process for forming chemically-locked bispecific or heterodimer antibodies, preferably in the IgG class, in high specificity and with high homogeneity. More specifically, the present disclosure provides a chemically-locked bispecific IgG class antibody having a linkage region joined with bio-orthogonal click chemistry.
Human immunoglobulin G or IgG antibodies exist in four subclasses, each with distinct structural and functional properties. IgGs are composed of two heavy chain-light chain pairs (half-antibodies) which are connected via inter-heavy chain disulfide bonds directly linking Cys residues in the hinge region (EU-index numbering: cysteine residues 226 and 229; Kabat numbering: cysteine residues 239 and 242). Human IgG4 molecules exist in various molecular forms which differ by the absence or presence of inter-heavy chain disulfide bonds.
A wide variety of recombinant antibody formats have been developed, such as, tetravalent bispecific antibodies by fusion of an IgG antibody format and single chain domains (Coloman et al., Nature Biotech 15 (1997) 159-163; WO 2001/077342; and Morrison, Nature Biotech 25 (2007) 1233-1234). Another format has the antibody core structure (IgA, IgD, IgE, IgG or IgM) no longer retained, such as dia-, tria- or tetrabodies, minibodies, several single chain formats (scFv, Bis-scFv). But such formats are capable of binding two or more antigens (Holliger et al., Nature Biotech 23 (2005) 1126-1136; Fischer and Leger, Pathobiology 74 (2007) 3-14; Shen et al., J. Immunological Methods 318 (2007) 65-74; and Wu et al., Nature Biotech. 25 (2007) 1290-1297).
A method for separating or preferentially synthesizing dimers which are linked via at least one interchain disulfide linkage from dimers which are not linked via at least one interchain disulfide linkage from a mixture comprising the two types of polypeptide dimers is reported in US 2005/0163782.
Bispecific antibodies have difficulty producing materials in sufficient quantity and quality using traditional hybrid hybridoma and chemical conjugation methods. Further, WO2005/062916 and U.S. patent application 2010/0105874 describe how to form bispecific antibodies by reducing antibody “AA” and antibody “BB” to separate the disulfide bonds into single heavy-light chain units (A or B) with a single binding region (wherein both A and B bind to different targets). And then allowing the disulfide bonds to undergo isomerization such that antibodies AB, BA, AA and BB are reformed at a probability of about 25% each. However, both AB and BA are the same bispecific antibodies and therefore represent, at best, about a 50% yield. Therefore, this requires additional steps to separate the desired bispecific antibodies formed from the original reconstituted antibodies. However, U.S. patent application 2010/0105874 points to the hinge region in IgG4 having a sequence of CPSC and stating: “the CPSC sequence results in a more flexible core hinge and the possibility to form intra-chain disulfide bonds . . . it is believed that antibodies having an IgG4-like core hinge sequence may have an intrinsic activity for rearrangement of disulfide bonds, which is simulated by the conditions used in the methods of the invention.” (paragraph 0013). In addition, other forms of bispecific antibodies have been made with a “knob and hole” structure made by altering the sequence of the heavy chains of antibodies A and B.
Therefore, the present disclosure provides a process to produce chemically-locked bispecific IgG antibodies that address the need in the art for a much higher yield of bispecific antibodies and with better stability than the knob and hole methods that alter amino acid sequences in the fixed antibody regions.
The present disclosure provides a process for generation of a chemically-locked bispecific antibody “AB” or “BA” from IgG class antibody “A” and IgG class antibody “B” comprising:
(a) reducing an antibody “A” with the hinge residue sequence (EU-index numbering: residues 226-229; Kabat numbering: residues 239-242) CPPC or CPSC or SPPC or SPSC and a second antibody “B” with the hinge residue sequence (residues 226-229) CPPC or CPSC or SPPC or SPSC to form half-antibody A and half-antibody-B, whereby the reducing conditions break any inter-chain or intra-chain disulfide bonds in a hinge region of antibody with the hinge residue sequence (EU-index numbering: residues 226-229; Kabat numbering: residues 239-242) CPPC or CPSC or SPPC or SPSC;
(b) linking a compound selected from the group consisting of:
wherein N3 is —N═N═N;
to one or both Cys residues (EU-index numbering: residues 226 and 229; Kabat numbering: residues 239 and 242) of the hinge core sequence of half-antibody A to form a linked half-antibody A;
(c) linking a compound selected from the group consisting of:
to one or both Cys residues 226 and 229 (EU-index numbering: residues 226 and 229; Kabat numbering: residues 239 and 242) of the hinge core sequence of antibody B to form a linked antibody B; and
(d) incubating approximately equal molar amounts of linked antibody A with linked antibody B under acidic conditions to form the bispecific antibody AB that are linked.
Preferably, the reduction of antibody A to form half-antibody A and antibody B to form half-antibody B is conducted in a reducing agent, wherein the reducing agent is selected from the group consisting of L-cysteine, dithiothreitol, beta-mercapto ethanol, cysteamine, TCEP (tris(2-carboxyethyl)phosphine), 2-MEA (2-Mercaptoethylamine), and combinations thereof. Preferably the hinge region of antibody A, having one or two Cys residues, is linked with a moiety A having the structure selected from the group consisting of:
wherein N3 is —N═N═N. Preferably the hinge region of antibody B, having one or two Cys residues, is linked with a moiety B having the structure selected from the group consisting of:
to form a linked half-antibody A.
wherein N3 is —N═N═N;
and a linked antibody B having the structure selected from the group consisting of:
The present disclosure further provides a chemically-locked bispecific antibody AB, wherein a linked half-antibody A
wherein N3 is —N═N═N;
joins a linked antibody B
to form a bispecific antibody AB having the structure shown in
The present disclosure provides a chemically-locked bispecific antibody “AB” or “BA” from IgG class antibody “A” and IgG class antibody “B” comprising a half-antibody A having a structure selected from the group consisting of:
wherein N3 is —N═N═N, and wherein Z is the leaving group that binds to;
and a half-antibody B having the structure selected from the group consisting of:
The present disclosure provides a process for generation of a chemically-locked bispecific antibody “AB” or “BA” from IgG class antibody “A” and IgG class antibody “B” comprising:
(a) reducing a first antibody “A” with the hinge residue sequence (EU-index numbering: residues 226-229; Kabat numbering: residues 239-242) CPPC or CPSC or SPPC or SPSC and a second antibody “B” with the hinge residue sequence (EU-index numbering: residues 226-229; Kabat numbering: residues 239-242) CPPC or CPSC or SPPC or SPSC to form half-antibody A and half-antibody-B, wherein antibody A binds to a first target and antibody B binds to a second target, whereby the reducing conditions break any inter-chain or intra-chain disulfide bonds in a hinge region of an class antibody with the hinge residue sequence (residues 226-229) CPPC or CPSC or SPPC or SPSC;
(b) linking a compound from formula I to one or two Cys residues (EU-index numbering: residues 226 and 229; Kabat numbering: residues 239 and 242) of the hinge core sequence of half-antibody A to form a linked half-antibody A having a structure selected from the group consisting of:
wherein N3 is —N═N═N;
(c) linking a compound from formula II to one or two Cys residues (EU-index numbering: residues 226 and 229; Kabat numbering: residues 239 and 242) of the hinge core sequence of antibody B to form a linked antibody B having the structure selected from the group consisting of:
and
(d) incubating approximately equal molar amounts of linked antibody A with linked antibody B under acidic conditions to form the bispecific antibody AB that are linked.
Preferably, the reduction of antibody A to form half-antibody A and antibody B to form half-antibody B is conducted in a reducing agent, such as L-cysteine, dithiothreitol, beta-mercapto ethanol, cysteamine, TCEP (tris(2-carboxyethyl)phosphine), 2-MEA (2-Mercaptoethylamine), and combinations thereof. Preferably the hinge region of antibody A, having two Cys residues, is linked with a moiety A having the structure selected from the group consisting of:
wherein N3 is —N═N═N. Preferably the hinge region of antibody B, having two Cys residues, is linked with a moiety B having the structure selected from the group consisting of:
to form a linked half-antibody A having a structure selected from the group consisting of:
wherein N3 is —N═N═N;
and a linked antibody B having the structure selected from the group consisting of:
The present disclosure further provides a chemically-locked bispecific antibody AB, wherein a linked half-antibody A
wherein N3 is —N═N═N;
joins a linked antibody B
to form a bispecific antibody AB having the structure shown in
The present disclosure provides a chemically-locked bispecific antibody “AB” or “BA” from IgG class antibody “A” and IgG class antibody “B” comprising a half-antibody A having a structure selected from the group consisting of:
wherein N3 is —N═N═N;
and a half-antibody B having the structure selected from the group consisting of:
Preferably, the reduction of antibody A to form half-antibody A and antibody B to form half-antibody B is conducted in a reducing agent such as L-cysteine, dithiothreitol, beta-mercapto ethanol, cysteamine, TCEP (tris(2-carboxyethyl)phosphine), 2-MEA (2-Mercaptoethylamine), and combinations thereof.
Preferably, antibodies A and B are monoclonal antibodies. Monoclonal antibodies may be produced by hybridoma methods or by recombinant DNA and protein expression methods. Further, antibodies A and B are full-length antibodies or are antibody fragments.
The antibodies A and B have a CPPC core hinge region sequence or a CPSC core hinge region sequence or a SPPC core hinge region sequence or a SPSC core hinge region sequence (EU-index numbering: residues 226-229; Kabat numbering: residues 239-242). Further, step (d) incubating further comprises the step of adding a reducing agent, wherein the reducing gent is selected from the group consisting of L-cysteine, dithiothreitol, beta-mercapto ethanol, cysteamine, TCEP (tris(2-carboxyethyl)phosphine), 2-MEA (2-Mercaptoethylamine), and combinations thereof.
The quality and purity of the resulting bispecific antibodies can be analyzed using routine biochemical techniques, such as absorbance measurements, HP-SEC, SDS-PAGE, native PAGE, and RP-HPLC. It should be noted that the disclosed method generally avoids any purification step because of the specificity of the affinity the linker of formula I for the linker of formula II. However, there are various purification steps provided in US2010/0105874, the disclosure of which is incorporated by reference herein.
The disclosed process further comprises the step of formulating the bispecific antibody for therapeutic use. This is accomplished by a formulation of an effective amount of a bispecific antibody in an aqueous solution that is suitable for human use, in particular suitable for parenteral or intravenous administration.
IgG1 with hinge mutations (CPSC) and wt IgG4 are used in this study.
The first step is to reduce each of antibody A and antibody B. In one embodiment, the antibody (10 mg) was treated with 10 molar equivalents of 2-mercaptoethyl-amine (2-MEA) in 0.1M PBS pH 7.4, 1.0 mM diethylenetriaminepentaacetic acid (DTPA) for 2 h at 37° C. Excess 2-MEA was purified away from the partially reduced mAb using 50 kDa filter centrifuge tubes with centrifugation conducted at 3,000 RPM for 20 minutes. A total of three washes with 0.1M PBS were conducted. The protein concentration was quantified using an absorbance value of 1.58 at 280 nm for a 1.0 mg/mL solution, and the molar concentration determined using a molecular weight of 150,000 g/mol.
In another embodiment of the reduction step, the antibody (10 mg) was treated with 3.0 molar equivalents of dithiothreitol (DTT) in 0.1M PBS pH 7.4, 1.0 mM diethylenetriaminepentaacetic acid (DTPA) for 2 h at 24° C. The excess DTT was purified away from the partially reduced mAb using 50 kDa filter centrifuge tubes with centrifugation conducted at 3,000 RPM for 20 minutes. A total of 3 washes with 0.1M PBS were conducted.
In another embodiment of the reduction step, the mAb (10 mg) was treated with 2.0 molar equivalents of tris (2-carboxyethyl)-phosphine (TCEP) in 0.1M PBS pH 8.0, 1.0 mM diethylenetriaminepentaacetic acid (DTPA) for 2 h at 24° C. The mAb concentration was 8.0 mM. Without purification, the partially reduced mAb was used in conjugation step directly.
The second step is the conjugation step. A partially reduced mAb “Antibody A” from a reduction step in 0.1M PBS was added to 2.5 molar equivalents of cross linking agent Z—X—Z (
The third step is the inter-chain conjugation step. The click conjugation for interchain cross-link is illustrated in
This example shows the synthesis of a bispecific antibody according to the disclosed process.
More specifically, we obtained antibody “A” an IgG1 with hinge mutations (CPSC) and antibody “B” a wild type IgG4. The first step was antibody reduction. Condition 1: The antibodies (10 mg) were separately treated with 10 molar equivalents of 2-mercaptoethyl-amine (2-MEA) in 0.1M PBS pH 7.4, 1.0 mM diethylenetriaminepentaacetic acid (DTPA) for 2 h at 37° C. Excess 2-MEA was purified away from the partially reduced mAb using 50 kDa filter centrifuge tubes with centrifugation conducted at 3,000 RPM for 20 minutes. A total of three washes with 0.1M PBS were conducted. The protein concentration was quantified using an absorbance value of 1.58 at 280 nm for a 1.0 mg/mL solution, and the molar concentration determined using a molecular weight of 150,000 g/mol.
Condition 2: The antibody (10 mg) was treated with 3.0 molar equivalents of dithiothreitol (DTT) in 0.1M PBS pH 7.4, 1.0 mM diethylenetriaminepentaacetic acid (DTPA) for 2 h at 24° C. The excess DTT was purified away from the partially reduced mAb using 50 kDa filter centrifuge tubes with centrifugation conducted at 3,000 RPM for 20 minutes. A total of 3 washes with 0.1M PBS were conducted.
Condition 3: The mAb (10 mg) was treated with 2.0 molar equivalents of tris (2-carboxyethyl)-phosphine (TCEP) in 0.1M PBS pH 8.0, 1.0 mM diethylenetriaminepentaacetic acid (DTPA) for 2 h at 24° C. The mAb concentration was 8.0 mM. Without purification, the partially reduced mAb was used in conjugation directly.
This example shows that the bispecific antibody made in Example 1 retained both of its original half Mab binding characteristics.
To 2.5 g of 3,4-dibromo-1H-pyrrole-2,5-dione (10 mmol) and 1 g of NMM in 60 mL of THF, MeOCOCl (10 mmol, 940 mg in 10 ml DCM) was added dropwise, stirred for 20 min, then the reaction solution was diluted with 6o mL of DCM, washed 3 time by water, the organic phase was stirred by sodium sulfate anhydrous, concentrated, 2.65 g of methyl 3,4-dibromo-2,5-dioxo-2H-pyrrole-1(5H)-carboxylate was obtained. To 311 mg, 1 mmol of this compound, 2-(2-azidoethoxy)ethanamine (130 mg, 1 mmol) and 5 mL DCM was added, TLC shown the reaction finished in 20 min, then extracted by DCM and brine, washed by NH4Cl solution, dried on sodium sulfate anhydrous, and then concentrated for column purification, flashed by 2:1 hexane and ethyl ethylate, 230 mg of 1-(2-(2-azidoethoxy)ethyl)-3,4-dibromo-1H-pyrrole-2,5-dione obtained. 1HNMR: 3.32 ppm (t, J=5.0 Hz, 1H), 3.40 ppm (t, J=5.0 Hz, 1H), 3.50 ppm (q, J=5.0 Hz, 1H), 3.62 ppm (t, J=5.0 Hz, 1H), 3.63-3.69 ppm (m, 3H), 3.84 ppm (t, J=5 hz, 1H). Fw: 365.9, C8H8Br2N4O3; Mass Peaks (1:2:1): 366.9, 368.9, 370.9.
This example illustrates chemical generation of a bispecific antibody using a single Cys residue located in the hinge region of an IgG class antibody. The starting mAbs described herein contain an engineered hinge region where one Cys at the same position on each chain was mutated to Ser, thus resulting in a hinge with only a single disulfide left. The process of bispecific mAb generation involves three main steps (
Condition 1: The antibody (10 mg) was treated with 10 molar equivalents of 2-mercaptoethyl-amine (2-MEA) in 0.1M PBS pH 7.4, 1.0 mM diethylenetriaminepentaacetic acid (DTPA) for 2 h at 37° C. Excess 2-MEA was purified away from the partially reduced mAb using 50 kDa filter centrifuge tubes with centrifugation conducted at 3,000 RPM for 20 minutes. A total of three washes with 0.1M PBS were conducted. The protein concentration was quantified using an absorbance value of 1.58 at 280 nm for a 1.0 mg/mL solution, and the molar concentration determined using a molecular weight of 150,000 g/mol.
Condition 2: The antibody (10 mg) was treated with 3.0 molar equivalents of dithiothreitol (DTT) in 0.1M PBS pH 7.4, 1.0 mM diethylenetriaminepentaacetic acid (DTPA) for 2 h at 24° C. The excess DTT was purified away from the partially reduced mAb using 50 kDa filter centrifuge tubes with centrifugation conducted at 3,000 RPM for 20 minutes. A total of 3 washes with 0.1M PBS were conducted.
Condition 3: The mAb (10 mg) was treated with 2.0 molar equivalents of tris (2-carboxyethyl)-phosphine (TCEP) in 0.1M PBS pH 8.0, 1.0 mM diethylenetriaminepentaacetic acid (DTPA) for 2 h at 24° C. The mAb concentration was 8.0 mM. Without purification, the partially reduced mAb was used in conjugation directly.