The present invention relates to a board mount type antenna (chip antenna) to be incorporated into wireless communication devices such as a mobile phone, a wireless LAN, a Bluetooth (trademark) device, and the like.
The chip antenna includes a base formed of a dielectric body such as a resin and ceramics and provided with an antenna pattern formed of a conductor. As a method of forming the antenna pattern on a surface of the base, there have been employed printing, deposition, lamination, plating (refer to Patent Literature 1), etching (refer to Patent Literature 2), and the like.
Patent Literature 1: JP 10-242734 A Patent Literature 2: JP 2005-80229 A
As mobile phones and the like are downsized and become thinner, a demand for downsizing of chip antennae has become much higher. For example, when the antenna pattern is formed into a three-dimensional shape over a plurality of surfaces of the base, the conductor can be formed to cover a larger area. With this, the chip antenna can be downsized as compared, for example, to a case where the same antenna pattern is formed in a single plane.
However, an operation of forming the antenna pattern over the plurality of surfaces of the base by means such as printing is not easy. In particular, the chip antenna, which is to be incorporated in the mobile phone and the like, is required to be downsized to have a longitudinal side of 10 mm or less, or 5 mm or less in some cases. It is significantly difficult to form the antenna pattern over a plurality of surfaces of such a small chip antenna by printing and the like, which involves an increase in manufacturing cost and deterioration in productivity.
It is therefore an object of the present invention to manufacture a chip antenna comprising the three-dimensional antenna pattern easily and at low cost.
In order to achieve the above-mentioned object, according to the present invention, there is provided a manufacturing method for a chip antenna, the chip antenna comprising: a base made of a resin; and a three-dimensional antenna pattern formed of a conductive plate, the manufacturing method for the chip antenna comprising: a bending pressing step of bending the conductive plate so that the three-dimensional antenna pattern is formed; and an injection molding step of injection molding the base with the resin together with the three-dimensional antenna pattern as an insert component.
In this way, in the present invention, after the three-dimensional antenna pattern is formed by bending the conductive plate through the pressing process, the base is formed by injection molding of the resin together with the three-dimensional antenna pattern thus bent as an insert component. With this, the chip antenna comprising the three-dimensional antenna pattern can be formed easier as comparison to a case where the antenna pattern is formed over the plurality of surfaces by printing and the like.
When the conductive plate comprises a long-belt-like hoop member and the three-dimensional antenna pattern comprises a plurality of three-dimensional antenna patterns formed in the long-belt-like hoop member, the conductive plate can be successively supplied into a die set used in the bending pressing step (bending pressing die set) and a die set used in the injection molding step (injection molding die set). With this, as comparison, for example, to a case where conductive plates are supplied one by one into the die set for each shot of injection molding, the conductive plate can be supplied into the die set easier.
Specifically, for example, the three-dimensional antenna pattern may be formed as follows: punching out the long-belt-like hoop member so that a two-dimensionally expanded form of each of the plurality of three-dimensional antenna patterns is formed; shifting the two-dimensionally expanded form to the bending pressing step; and bending the two-dimensionally expanded form under a state in which the two-dimensionally expanded form remains fixed to the long-belt-like hoop member. Further, the injection molding of the base may be performed under a state in which the plurality of three-dimensional antenna patterns are arranged in the injection molding die set while being fixed to the long-belt-like hoop member. Note that, after the injection molding step, the chip antenna thus formed may be rolled up together with the long-belt-like hoop member, or may be cut off from the long-belt-like hoop member.
In a case where the antenna pattern is provided over the surfaces of the base, when there is a gap between the injection molding die set and the antenna pattern supplied as an insert component into the injection molding die set, the resin may enter the gap. Specifically, as illustrated, for example, in
When the bending pressing step is performed by utilizing a force of the clamping of the injection molding die set for the base, it is unnecessary to provide an additional drive apparatus for bending the conductive plate. As a result, both equipment costs and equipment spaces can be reduced. In this case, the clamping of the injection molding die set for the base and the bending pressing step can be simultaneously performed.
For example, when the conductive plate is bent in two phases, or in order to further bend the conductive plate after the conductive plate is bent by utilizing the force of the clamping of the injection molding die set, the bending pressing step may be performed not only with the force of the clamping of the injection molding die set but also with a force of an additionally provided actuator. This actuator may be provided in or out of the die set for performing the bending pressing.
A chip antenna, which can be provided by the manufacturing method for a chip antenna described above, comprises: an antenna pattern formed of a conductive plate bent into a three-dimensional shape; and the base formed by injection molding of a resin together with the three-dimensional antenna pattern as an insert component.
In this case, when the antenna pattern is held by the base so that the three-dimensional shape is maintained, characteristics of the chip antenna can be stabilized. For example, in the case where the antenna pattern is provided over the surfaces of the base, when the angle of the bent portion of the antenna pattern becomes higher by an elastic force, two flat plate portions on both sides of the bent portion may be separated from the base. As a countermeasure, both the two flat plate portions on both the sides of the bent portion of the antenna pattern are held by being embedded in the base. In this way, the angle of the bent portion is prevented from becoming higher, and hence the three-dimensional shape of the antenna pattern can be maintained. Further, when the antenna pattern further comprises an edge portion provided with a projecting portion which is embedded in the base, the projecting portion yields an anchoring effect. With this, the antenna pattern and the base are more firmly coupled to each other, and hence the three-dimensional shape of the antenna pattern is more reliably maintained.
Alternatively, also when the three-dimensional antenna pattern is embedded in the base, the three-dimensional shape of the antenna pattern can be maintained.
It is preferred that the resin of the base comprise a highly dielectric material having a dielectric constant of 4 or more.
Further, in order to secure a bonding force between the conductive plate and the base, it is preferred that a surface roughness of at least a surface of the conductive plate, which bonded to the base, be Ra 1.6 or more.
As described above, according to the present invention, the base is formed by injection molding together with the three-dimensionally bent antenna pattern as an insert component. In this way, the chip antenna comprising the three-dimensional antenna pattern can be manufactured easily and at low cost.
[
[
[
[
[
[
[
[
[
[
[
[
[
[
In the following, description is made of embodiments of the present invention with reference to the drawings.
A chip antenna 1 according to an embodiment of the present invention comprises, as illustrated in
The antenna pattern 10 is formed of a conductive plate such as a metal plate, more specifically, a copper plate, a steel plate, a SUS plate, brass plate, and the like. Note that, when necessary, plating (for example, gold plating) may be performed on those metal plates. The conductive plate has a thickness set sufficiently to maintain the conductive plate in a three-dimensionally bent state, for example, set approximately to from 0.2 mm to 0.8 mm. The antenna pattern 10 is provided over surfaces of the base 20. In the illustration, the antenna pattern 10 comprises a plurality of conductive plates 11 provided separately from each other at a plurality of points on the surfaces of the base 20. In order to maintain fitting properties with respect to the base 20, at least a surface of the antenna pattern 10, which is bonded to the base 20, is preferred to be rough to some extent. For example, a surface roughness is set to Ra 1.6 or more, preferably Ra 3.2 or more.
The antenna pattern 10 is formed by bending the conductive plates 11 into a three-dimensional shape so as to be provided over the plurality of side surfaces of the base 20 (refer to
Apart of the antenna pattern 10 functions as a feeder terminal portion. The feeder terminal portion is connected to a feeder line (not shown), and serves as a terminal for feeding power to the antenna pattern 10. Further, another part of the antenna pattern 10 functions as a fixation portion. In order to fix the chip antenna 1 onto the board (not shown), the fixation portion and the board are, for example, soldered to each other.
The base 20 is a product formed by injection molding of a resin together with the antenna pattern 10 as an insert component. In the illustration, the surfaces of the base 20 and the surfaces of the antenna pattern 10 are flush with each other. The base 20 is made, for example, of a resin having a dielectric constant of 4 or more. Specifically, as a base resin, there may be employed polyphenylene sulfide (PPS), liquid crystal polymer (LCP), and the like. Further, a filler to be mixed with the resin is not particularly limited, and may comprise ceramics and the like. Note that, the resin having a dielectric constant of 4 or more is not necessarily limited to a base resin having a dielectric constant of 4 or more, and comprises a resin mixed with a filler and hence having a total dielectric constant of 4 or more.
Next, description is made of a manufacturing method for the chip antenna 1 described above. The chip antenna 1 is manufactured through (a) a punch-out pressing step, (b) a bending pressing step, (c) an injection molding step, and (d) a separation step in this order.
First, in the punch-out pressing step, a conductive plate is punched out with a punch-out pressing die set (not shown) so as to be formed into a predetermined shape. Specifically, as illustrated in part (a) of
Next, the hoop member 30 is sent in a direction indicated by an arrow in
Then, the hoop member 30 is further sent so that the antenna pattern 10 is shifted to the injection molding step. In the injection molding step, first, under a state in which the antenna pattern 10 is arranged as an insert component in a cavity of an injection molding die set (not shown), the injection molding die set is clamped. At this time, angles of the bent portions of the antenna pattern 10 supplied in the injection molding die set are set to be somewhat higher than angles of parts corresponding to the bent portions in the injection molding die set. This antenna pattern 10 is supplied into the injection molding die set and the injection molding die set is clamped. With this, the bent portions of the antenna pattern 10 are pressed by the injection molding die set, and hence the angles of the bent portions are corrected. In this way, the antenna pattern 10 can be held in close contact with the die set (refer to
Next, in order to form the base 20, a resin is injected into the cavity in which the antenna pattern 10 is arranged (refer to part (c) of
Lastly, a molded product (chip antenna 1) is separated from the frame of the hoop member 30 (refer to part (d) of
In the manufacturing steps described above, when the pressing with the bending pressing die set and the clamping of the injection molding die set are performed by the same drive unit, it is unnecessary to provide respective drive units for the die sets. Thus, a manufacturing apparatus can be simplified. Further, when the bending pressing process with the bending pressing die set and the clamping of the injection molding die set are simultaneously performed, a cycle time can be shortened.
The present invention is not limited to the embodiment described above. For example, in the bending pressing step described above, the bending operation may be performed in two phases. Alternatively, in order to further bend the conductive plate after the conductive plate is bent with the bending pressing die set, the conductive plate may be bent not only with a clamping force of the injection molding die set but also with a force of an additionally provided actuator (not shown). This actuator may be provided in or out of the bending pressing die set. As the actuator, for example, a pneumatic cylinder, a hydraulic cylinder, or a motor may be used.
Further, in the embodiment described above, the antenna pattern 10 is provided over the surfaces of the base 20. However, the present invention is not limited thereto. For example, as illustrated in
Still further, the structure of the chip antenna 1 is not limited to that described above, and any structure may be employed as long as the antenna pattern 10 is formed into a three-dimensional shape. For example, the antenna pattern 10 is not limited to that described above, and various other structures may be employed.
1 chip antenna
10 antenna pattern
10′ two-dimensionally expanded form
11 conductive plate
12, 13 flat plate portion
14 bent portion
15 projecting portion
20 base
30 hoop member
31 frame
32 bridge
Number | Date | Country | Kind |
---|---|---|---|
2010-217021 | Sep 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/070069 | 9/2/2011 | WO | 00 | 4/5/2013 |