In the drawings:
A relatively large number of dielectric mirror coatings have been known to those skilled in the art for a relatively long period of time from the literature. All dielectric mirror coatings have in common the fact they are composed of two or more dielectric λ/4 layers, immediately successive dielectric layers having a different refractive index. Relating to dielectric mirror coatings, the reader is referred by way of example to Matt Young, “Optik, Laser, Wellenleiter”; Springer, 1997; pp 160-161. Despite this fact, experts in the field of integrated circuit chips have never proposed the use of such dielectric mirror coatings in the case of chips having integrated circuits.
“Light” in the present context is understood to be not only light visible to humans, that is, a wavelength range from 380 nm to 780 nm, but also light from spectral ranges of the infrared and ultraviolet adjoining this range.
According to the embodiment shown in
The embodiments according to the invention just mentioned ensure that the dielectric mirror coating 3 is always arranged between the light incident upon the surface of the chip 1 and the integrated circuit 2.
The embodiments of the invention illustrated in
The dielectric mirror coating 3 is applied directly on the passivation layer 10. In the absence of such a passivation layer, the mirror coating 3 is applied directly on the active zone 9, that is, on parts of the active zone 9 of the chip 1 that are to be protected against incidence of light, the chip 1 having already been completed as far as circuit engineering is concerned. As already mentioned above, it is also possible for the dielectric mirror coating 3 to be applied additionally or exclusively on the second side 5 of the chip 1, depending on the preferred use and construction of the chip 1. It should be noted at this point that the ratio to one another of thicknesses of the individual layers 8, 9, 10, H, L, H, . . . 7, 6 illustrated in
To produce the dielectric mirror coating 3 on the chip 1, virtually completely transparent dielectrics (e.g. SiO2 and TiO2) can be used in the wavelength range under consideration. When using dielectrics in the manufacture of the dielectric mirror coating 3 it is of advantage above all that these materials are compatible with the chip production process and are hence integrable without problems in the production process.
A dielectric shall be understood here to mean a substance that conducts no or hardly any current, that is, has a high resistivity (>1010 Ω). Dielectrics have a large energy band gap of in part more than 10 eV, giving a very low interaction with electromagnetic radiation over a broad spectral range. Depending on specification, dielectric thin-film materials for the manufacture of the dielectric mirror coating 3 are chosen in accordance with their optical, mechanical and chemical suitability.
To produce the dielectric mirror coating 3, layers H, L, H, . . . 7, 6 of dielectrics are applied alternately to the surface or to parts of the surface of the chip 1. Each layer H, L, H, . . . 7, 6 in this case comprises a dielectric, layers having a high and a low refractive index following one after another alternately. Preferably, the dielectric mirror coating 3 comprises layers of two different dielectrics. It is also possible, however, instead of a layer system of two dielectrics to provide a layer system of a plurality of different dielectrics in the case of a chip 1.
In
The dielectric mirror coating 3 can be realized even with two (2) to three (3) dielectric layers H, L, which can also be produced relatively inexactly. With a mirror coating 3 of this kind comprising two (2) to three (3) layers H, L it is already possible to achieve a reflectivity of 80% or more.
If the outermost dielectric layer 6 of the mirror coating 3 adjoins air or a medium having a low refractive index, then it is advantageous for this outermost dielectric layer 6 to have a higher refractive index than the inner dielectric layer 7 following immediately thereafter, since in this case a large proportion of the incident light is already reflected at the outermost dielectric layer 6.
The quality of the interfaces of the individual layers H, L of the dielectric mirror coating 3 is also important. By different coating techniques, it is possible to influence the properties of the individual layers and the constitution of the interfaces as determining factors for the overall layer system of the dielectric mirror coating 3. The preferred techniques for applying the dielectric layers to the surface of the chip 1 are here resistance deposition, electron beam vapor deposition, laser-assisted electron beam vapor deposition, ion beam-assisted vapor deposition and plasma ion-assisted vapor deposition. Moreover, the coating process can additionally be optimized by pre-heating of the chip 1.
With just relatively few dielectric layers H, L—even with two (2) to three (3) layers—a pre-determined degree of reflection for a pre-determinable wavelength range can be achieved with the dielectric mirror coating 3.
The mode of operation of the dielectric mirror coating 3 is illustrated in
Primarily, the reflectance of the dielectric mirror coating 3 as far as its resonance wavelength is concerned depends only on the number of H, L—pairs, the ratio of the refractive indices of high-refracting and low-refracting materials and to a minor extent also on the refractive index of the substrate 8.
The reflectance of the dielectric mirror coating 3 is wavelength-dependent, the reflection in a region around the central wavelength being very high and reducing at larger and smaller wavelengths. The breadth of the highly-reflected spectral range largely depends on the refractive index ratios of the layer materials used. The higher are the refractive index ratios of the dielectric layer materials, the greater also is the spectral bandwidth of the dielectric mirror coating 3.
To summarize, the merit of the invention lies in rendering possible the realization of an effective light-protection means for chips, even for very thin chips, in a cost-effective and simple manner through the use of a dielectric mirror coating known per se in various forms in the field of chips having at least one integrated circuit.
Number | Date | Country | Kind |
---|---|---|---|
04103562.7 | Jul 2004 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB05/52426 | 7/20/2006 | WO | 00 | 10/3/2007 |