This invention relates to a circuit arrangement for surface mounted semi-conductors. In particular, the invention concerns a circuit arrangement which comprises a circuit board carrying semi-conductors, heat conductive plugs, and a heat sink disposed in a heat transferring contact by a thermally conductive electrical insulator. The heat sink may be an integral part of the unit-supporting framework. The invention also relates to a method of assembling a circuit arrangement.
Semi-conductors, such as power semi-conductors, generate heat from losses that have to be dissipated by heat sinks to carry away the loss energy. One common way to solve this is to use through-hole mounted components and press the semi-conductors to a heat sink. These semi-conductors are pressed, either by a pressure spring, or screwed to the heat sink most often with a thermally conductive electrical insulator inbetween. These solutions form a good thermal path/contact between the semi-conductors and the heat sink and thereby effective heat dissipation of the semi-conductor is achieved.
Rational and fully automated production is desirable for production of units including semi-conductors and it is therefore desirable to use surface mounted semi-conductors instead of the through hole mounted semi-conductors. One solution for applying surface mounted semi-conductors with high power losses on a circuit board is to introduce many via-holes through the circuit board in the neighborhood of the mounted semi-conductor. The backside of the circuit board can then be pressed to the heat sink via a thermally conductive electrical insulation. The losses generated by the semi-conductor are then transported, mainly by via-holes, to the other side of the circuit board and then further on to the thermally conductive electrical insulation and the heat sink. This solution, however, has the drawback of limited heat transfer through the via-holes due to the limited cross-section metal area thereof. Also, this solution may result in rough surfaces, degrading the heat transfer capacity and thereby the final cooling efficiency.
US patent application US2002/0109220 describes surface mounted power semi-conductors in the form of transistors that are cooled by positioning of a heat sink in the form of a mounting plate between the power semi-conductor and solder pad on the circuit board. However, the above-mentioned surface mounted transistor and heat sink have the following problem: When the heat sink is fixed directly on the circuit board the cooling efficiency is limited due to mechanical layout considerations and therefore the power semi-conductors current capability has to be de-rated due to the limited cooling capability.
U.S. Pat. No. 5,459,640 describes another way where a break-away portion of a circuit board is located under a power module. After soldering of the power module this break-away portion is removed and the power module is put in direct contact with the heat sink. However, the above mentioned electrical power module mounting apparatus and method have the following problems. The breakaway portion must be removed which is complicated to make in an automatic process. Also, no electrical insulation is provided between the power module and mounting structure, the heatsink itself mechanically goes through the printed circuit board and is clamped to the cooling surface of the power module, so the power module itself must therefore provide the electrical insulation. This is a severe drawback if discrete SMD power-semiconductors are to be used because they are non-insulated in their nature. For example To263 has its coaling surface acting as one of the three electrical connections that need to be connected to the printed circuit board and at the same time, in most cases, also must be electrically isolated from heatsink potential. The described method is also difficult to fully automate due to the breakaway portion. In addition, the method describes through-hole mounted power modules.
An object of the invention is to provide a compact circuit arrangement with a circuit board, a semi-conductor, and a heat sink, which includes a low thermal resistive path from a heat dissipating semi-conductor provided on a first side of a circuit board to a heat sink provided on a second side of the circuit board. A further object of the invention is to provide a mechanical distance between the circuit board and the heat conductive electrical insulator/mounting structure.
A further object of the invention is to provide a method of assembling such a circuit arrangement that is fully automated and standard for surface mounted circuit board manufacturing.
The invention is based on the realization that a heat conductive element can be provided in a large through hole in the circuit board, which provide a low thermal resistance-path for dissipated heat and which nevertheless allows an automated mounting process. This element will also act as a heat spreader between the semi-conductor and the heat sink.
According to a first aspect of the invention there is provided a circuit arrangement as defined in appended claim 1. According to a second aspect of the invention there is provided a method of assembling a circuit arrangement as defined in appended claim 11.
Further preferred embodiments are defined by the dependent claims.
Thus there is provided a circuit arrangement, wherein the provision of a low thermal resistance path through the circuit board by means of heat conductive elements gives a compact arrangement well suited for assembly by means of an automated surface mounting process.
Further objects and advantages of the invention will appear from the following specification in which preferred embodiments of the invention are described in detail with reference to the accompanying drawings.
The invention is now described, by way of example, with reference to the accompanying drawings, in which:
In the following a detailed description of preferred embodiments of the present invention will be given. The circuit arrangement illustrated in
A number of power semi-conductors 12, such as in the foam of D2 packages, also known as To263 packages, having a cooling surface of metal and two connecting pins, wherein the cooling surface functions as a third electrical connector, are mounted on top of a respective of a corresponding number of heat conductive plugs 13, which are provided in a respective through hole in the a circuit board 10. The plugs 13 consist of a material with good heat conducting properties, such as copper or aluminum or alloys thereof. A small rim or flange 13a is provided on the plugs, see
The plugs 13 in the first embodiment are shaped for insertion from the top of the circuit board 10 and into a corresponding through hole.
The heat conductive plugs 13 can be of various shapes, such as elliptical or rectangular. The part extending through the circuit board may have a different shape from the rest of the plugs to effect a heat spreading function by increasing the cross-sectional area,
A heat conductive electrical insulator 14 is provided below each plug 13 and between the plugs and a heat sink 15, which may be an integral part of a unit-supporting framework. The heat conductive electrical insulator 14 and the heat sink 15 are shown in more detail in
A method of assembling the above described circuit arrangement will now be described.
First, solder paste is applied onto the circuit board 10 by means of some suitable method, such as screening or dispensing. Then, the heat conductive plugs 13 are inserted into a respective hole 10a in the circuit board from above. This insertion can be effected manually or by means of an automated process.
The power semi-conductors 12 are surface mounted onto the circuit board 10 and the heat conductive plugs 13 by soldering or gluing with a thermally and electrically conductive glue so as to obtain an efficient heat transfer from the power semi-conductor 12 to the heat conductive plug 13.
The heat conductive plugs 13 are preferably soldered to the circuit board 10 at the same time as soldering of the power semi-conductors 12 and they can thereby act as electrical connection to the circuit board. In order to have a fully automated circuit board assembly where the heat conductive plugs 13 are mounted in the same mounting machine as the power semi-conductors 12, solder re-forms 17, i.e., a thin metal plate of solder, can be placed on top of the heat conductive plugs as shown in
The power semi-conductors 12 and the heat conductive lugs 13 are soldered to the pads on the circuit board 10. The mounting of the plugs 13 as well as the mounting of the semi conductors 12 can be carried out using established, automated surface mount techniques, such as using pick & place machines. Alternatively, the heat conductive plugs 13 may be secured to the circuit board 10 by thermally and/or electrically conductive glue or ay means of press fitting.
In
As shown in
It is seen in
A method of assembling the second embodiment of circuit arrangement described with reference to
First, the heat conductive plugs 13′ are inserted into a respective hole 10a in the circuit board 10 from below. This insertion can be effected manually or by means of an automated process. The plugs are preferably retained in the holes by means of press fit. Then, solder paste is applied onto the circuit board 10 and the upper surface of the plugs 13′ by means of some suitable method, such as screening or dispensing. Following this step, the components 11 and the semi-conductors 12 are applied and then soldered or glued to the circuit board 10.
Accordingly, the screw joints for clamping shown in
Another embodiment of the invention (not shown) includes a clamping means in the form of one or more spring elements acting on the power semi-conductors 32 in one or several locations to transfer the clamping force to the heat conductive plugs 13. The spring or springs may he coupled to the mounting structure 15 via anchor bolts extending through the circuit board 10 and the heat conductive electrical insulator or via a drive unit framework surrounding the circuit board 10.
Since the heat conductive plugs 13 have a relatively large contact area against the heat conductive electrical insulator 14, the contact pressure between the heat conductive electrical insulator 14 and the heat sink 15 is distributed across a relatively large area. This means that the conditions are good for obtaining an efficient heat transport from the power semi-conductors 12, via the heat conductive plugs 13, via the heat conductive electrical insulator 14 to the heat sink 15. To further facilitate this heat transport, thermal grease 16, shown in
Alternatively the heat conductive plugs 13 are made pre-equipped with a thermally conductive electrical insulation layer attached directly on the surface towards the heat sink 15. The separate heat-conductive electrical insulator 14 can then be omitted.
One heat conductive plug has been shown for each semi-conductor. In an alternative embodiment shown in
By making the heat conductive plugs 13 of an electrical conductive material, like copper or any other suitable metal, they can also be used as electrical inter-connections.
The invention can generally be applied for applications where power semi-conductors are used.
Among others, the invention can be applied to:
Preferred embodiments of a circuit arrangement according to the invention and methods of assembling it have been described. The person skilled in the art realizes that these could be varied within the scope of the appended claims.
In the described embodiments of the invention the circuit board carries a number of logic components, but may in an alternative embodiment be formed as a pure power semi-conductor board. Also, other heat generating components than the described semi-conductors 12 could be used with the inventive circuit arrangement, such as shunt resistors etc.
The inventive method is particularly suitable for surface mounting. It will be appreciated that it can be used with other mounting method as well, such as manual soldering of components.
Number | Date | Country | Kind |
---|---|---|---|
0402262-0 | Sep 2004 | SE | national |