A push for higher performance and smaller die size drives the semiconductor industry to reduce circuit chip area by approximately 50% every two years. The chip area reduction provides an economic benefit for migrating to newer technologies. The 50% chip area reduction is achieved by reducing the feature sizes between 25% and 30%. The reduction in feature size is enabled by improvements in manufacturing equipment and materials. For example, improvement in the lithographic process has enabled smaller feature sizes to be achieved, while improvement in chemical mechanical polishing (CMP) has in-part enabled a higher number of interconnect layers.
In the evolution of lithography, as the minimum feature size approached the wavelength of the light source used to expose the feature shapes, unintended interactions occurred between neighboring features. Today minimum feature sizes are being reduced below 45 nm (nanometers), while the wavelength of the light source used in the photolithography process remains at 193 nm. The difference between the minimum feature size and the wavelength of light used in the photolithography process is defined as the lithographic gap. As the lithographic gap grows, the resolution capability of the lithographic process decreases.
An interference pattern occurs as each shape on the mask interacts with the light. The interference patterns from neighboring shapes can create constructive or destructive interference. In the case of constructive interference, unwanted shapes may be inadvertently created. In the case of destructive interference, desired shapes may be inadvertently removed. In either case, a particular shape is printed in a different manner than intended, possibly causing a device failure. Correction methodologies, such as optical proximity correction (OPC), attempt to predict the impact from neighboring shapes and modify the mask such that the printed shape is fabricated as desired. The quality of the light interaction prediction is declining as process geometries shrink and as the light interactions become more complex.
In view of the foregoing, solutions are sought for improvements in circuit design and layout that can improve management of lithographic gap issues as technology continues to progress toward smaller semiconductor device features sizes.
In one embodiment, an exclusive-or (XOR) logic circuit is disclosed. The XOR logic circuit includes a first input node, a second input node, and an output node. A pass gate is connected to be controlled by a logic state present at the second input node. The pass gate is connected to pass through a version of a logic state present at the first input node to the output node when controlled to transmit by the logic state present at the second input node. A transmission gate is connected to be controlled by the logic state present at the first input node. The transmission gate is connected to pass through a version of the logic state present at the second input node to the output node when controlled to transmit by the logic state present at the first input node. Pullup logic is connected to be controlled by both the logic state present at the first input node and the logic state present at the second input node. The pullup logic is connected to drive a state present at the output node low when both the logic state present at the first input node and the logic state present at the second input node are high.
In one embodiment, an exclusive-or (XOR) logic circuit layout is disclosed. The XOR logic circuit layout includes six PMOS transistors and five NMOS transistors. The five NMOS transistors are respectively paired with five of the six PMOS transistors, such that each pair of NMOS and PMOS transistors is defined to share a contiguous gate electrode structure placed along a respective one of five gate electrode tracks. A sixth of the six PMOS transistors is defined by a gate electrode structure placed along a sixth gate electrode track, such that the sixth PMOS transistor does not share the sixth gate electrode track with another transistor within the exclusive-or logic circuit layout. The six gate electrode tracks are oriented parallel to each other.
In one embodiment, an exclusive-nor (XNOR) logic circuit is disclosed. The XNOR logic circuit includes a first input node, a second input node, and an output node. A pass gate is connected to be controlled by a logic state present at the second input node. The pass gate is connected to pass through a version of a logic state present at the first input node to the output node when controlled to transmit by the logic state present at the second input node. A transmission gate is connected to be controlled by the logic state present at the first input node. The transmission gate is connected to pass through a version of the logic state present at the second input node to the output node when controlled to transmit by the logic state present at the first input node. Pulldown logic is connected to be controlled by both the logic state present at the first input node and the logic state present at the second input node. The pulldown logic is connected to drive a state present at the output node high when both the logic state present at the first input node and the logic state present at the second input node are low.
In one embodiment, an exclusive-nor (XNOR) logic circuit layout is disclosed. The XNOR logic circuit layout includes five PMOS transistors and six NMOS transistors. The five PMOS transistors are respectively paired with five of the six NMOS transistors, such that each pair of PMOS and NMOS transistors is defined to share a contiguous gate electrode structure placed along a respective one of five gate electrode tracks. A sixth of the six NMOS transistors is defined by a gate electrode structure placed along a sixth gate electrode track, such that the sixth NMOS transistor does not share the sixth gate electrode track with another transistor within the exclusive-nor logic circuit layout. The six gate electrode tracks are oriented parallel to each other.
Other aspects and advantages of the invention will become more apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the present invention.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
Conventional XOR Circuit
As shown in
The node 102 is connected to a gate of a PMOS transistor 114 and to a gate of an NMOS transistor 119. The node 102 is also connected to an input of an inverter 111. An output of the inverter 111 is connected to a node 104. The node 104 is connected to a gate of an NMOS transistor 115 and to a gate of a PMOS transistor 118.
The PMOS transistors 113 and 114 are connected in a serial manner between a power supply (VDD) and the node 105, which provides the XOR 100 output Q. The NMOS transistors 115 and 116 are connected in a serial manner between the node 105 and a reference ground potential (GND). The PMOS transistors 117 and 118 are connected in a serial manner between the power supply (VDD) and the node 105. The NMOS transistors 119 and 120 are connected in a serial manner between the node 105 and the reference ground potential (GND).
Based on the foregoing, the conventional XOR 100 includes two sets of pullup logic, where the first set is defined by PMOS transistors 113 and 114, and the second set is defined by PMOS transistors 117 an 118. The XOR 100 also includes two sets of pulldown logic, where the first set is defined by NMOS transistors 115 and 116, and the second set is defined by NMOS transistors 119 and 120. Each set of pullup and pulldown logic is controlled by both a version of the input A and a version of the input B. Therefore, based on the inputs A and B, the circuitry of the conventional XOR 100 is defined to drive the output Q either high or low by use of either set of pullup logic or either set of pulldown logic, respectively.
Additionally, it should be understood that each of inverters 110 and 111 includes one PMOS transistor and one NMOS transistor.
It should be understood that in order to layout the conventional XOR 100 within six gate electrode tracks using the restricted gate level architecture, it is necessary to have at least two gate electrode end-to-end spacings, e.g., 195 and 196, within the gate level of the XOR 100. Such end-to-end gate electrode spacings are defined in accordance with applicable design rules which require a minimum end-to-end spacing size. Therefore, it should be appreciated that the presence of end-to-end gate electrode spacings can require the P-type and N-type diffusion regions to be separated more than what would be required in the absence of end-to-end gate electrode spacings, thereby requiring a larger overall cell height.
XOR Circuit and Layout Embodiments
As shown in
A node 305 is connected to each of: 1) a second terminal of the NMOS transistor 312, 2) a second terminal of the NMOS transistor 313, 3) a second terminal of the PMOS transistor 314, and 4) a second terminal of the PMOS transistor 316. A first terminal of the PMOS transistor 315 is connected to a power supply (VDD). A second terminal of the PMOS transistor 315 is connected to a node 306, which is connected to an first terminal of the PMOS transistor 316. The node 305 is connected to an input of an inverter 317. An output of the inverter 317 is connected to a node 307, which provides the output Q of the XOR 300.
The state tables of
The 2-input XOR 300 is defined to process four unique combinations of inputs A and B, as depicted in
The PMOS transistors 315 and 316 together define pullup logic 370 which is controlled by both of the inputs A and B. When both the state of input A and the state of input B are high, i.e., logical 1, both the transmission gate 350 and pass gate 360 are disabled, and the pullup logic 370 controls the state of output Q, such that the state of output Q is low, i.e., a logical 0. When either state of inputs A and B is low, i.e., logical 0, the pullup logic 370 is disabled.
The XOR 300 is defined to either:
In accordance with the foregoing, the XOR logic circuit 300 includes the first input A node 301, the second input B node 302, and the output Q node 307. The pass gate 360 is connected to be controlled by a logic state present at the second input node 302. The pass gate 360 is connected to pass through a version of a logic state present at the first input node 301 to the output node 307 when controlled to transmit by the logic state present at the second input node 302. The transmission gate 350 is connected to be controlled by the logic state present at the first input node 301. The transmission gate 350 is connected to pass through a version of the logic state present at the second input node 302 to the output node 307 when controlled to transmit by the logic state present at the first input node 301. Pullup logic 370 is connected to be controlled by both the logic state present at the first input node 301 and the logic state present at the second input node 302. The pullup logic 370 is connected to drive a state present at the output node 307 low when both the logic state present at the first input node 301 and the logic state present at the second input node 302 are high.
The PMOS transistor 315 of the pullup logic 370 and the NMOS transistor 312 of the pass gate 360 share a contiguous gate electrode structure 381G defined along a single gate electrode track 381. The PMOS transistor 316 of the pullup logic 370 and the NMOS transistor 313 of the transmission gate 350 share a contiguous gate electrode structure 382G defined along a single gate electrode track 382. The PMOS transistor 314 of the transmission gate 350 is defined along a single gate electrode track 383. The nodes 301-307 are defined in the XOR 300 layout by various combinations of contacts, interconnect structures (M1, M2), and vias (Via1), so as make the connections between the various transistors as shown in
It should be appreciated that the layout of the XOR 300, when defined in accordance with the restricted gate electrode architecture, is defined using six adjacent gate electrode tracks (380-385). In one embodiment, the six adjacent gate electrode tracks (380-385) are equally spaced apart. However, in another embodiment, different perpendicular spacings can be used to separate the six adjacent gate electrode tracks (380-385). Also, it should be appreciated that the layout of the XOR 300, when defined in accordance with the restricted gate electrode architecture, does not require placement of opposing gate electrode line ends. In other words, there are no gate electrode structures placed end-to-end along any given gate electrode track within the XOR 300 layout. Therefore, lithographic difficulties associated with manufacturing end-to-end spacings between gate electrode features is avoided.
Also, because there are no end-to-end gate electrode spacings positioned along a given gate electrode track between the P-type diffusion region and the N-type diffusion region, the perpendicular layout space between the P-type and N-type diffusion regions is not forced to comply with a minimum size requirement, as would be dictated by design rules associated with placement/manufacture of end-to-end gate electrode spacings. Thus, if desired in certain embodiments, the overall cell height of the XOR 300 layout, i.e., the perpendicular distance between VDD and GND, may be reduced by spacing the P-type and N-type diffusion regions closer together.
Additionally, although the exemplary embodiment of
XNOR Circuit and Layout Embodiments
As shown in
A node 205 is connected to each of: 1) a second terminal of the PMOS transistor 212, 2) a second terminal of the PMOS transistor 213, 3) a second terminal of the NMOS transistor 214, and 4) a second terminal of the NMOS transistor 215. A first terminal of the NMOS transistor 216 is connected to a reference ground potential (GND). A second terminal of the NMOS transistor 216 is connected to a node 206, which is connected to a first terminal of the NMOS transistor 215. The node 205 is connected to an input of an inverter 217. An output of the inverter 217 is connected to a node 207, which provides the output Q of the XNOR 200. The state tables of
The 2-input XNOR 200 is defined to process four unique combinations of inputs A and B, as depicted in
The NMOS transistors 215 and 216 together define pulldown logic 270 which is controlled by both of the inputs A and B. When both the state of input A and the state of input B are low, i.e., logical 0, both the transmission gate 250 and pass gate 260 are disabled, and the pulldown logic 270 controls the state of output Q, such that the state of output Q is high, i.e., a logical 1. When either state of inputs A and B is high, i.e., logical 1, the pulldown logic 270 is disabled.
Based on the foregoing, the XNOR 200 is defined to either:
In accordance with the foregoing, the XNOR logic circuit 200 includes the first input A node 201, the second input B node 202, and the output Q node 207. The pass gate 260 is connected to be controlled by a logic state present at the second input node 202. The pass gate 260 is connected to pass through a version of a logic state present at the first input node 201 to the output node 207 when controlled to transmit by the logic state present at the second input node 202. The transmission gate 250 is connected to be controlled by the logic state present at the first input node 201. The transmission gate 250 is connected to pass through a version of the logic state present at the second input node 202 to the output node 207 when controlled to transmit by the logic state present at the first input node 201. Pulldown logic 270 is connected to be controlled by both the logic state present at the first input node 201 and the logic state present at the second input node 202. The pulldown logic 270 is connected to drive a state present at the output node 207 high when both the logic state present at the first input node 201 and the logic state present at the second input node 202 are low.
The NMOS transistor 216 of the pulldown logic 270 and the PMOS transistor 212 of the pass gate 260 share a contiguous gate electrode structure 281G defined along a single gate electrode track 281. The NMOS transistor 215 of the pulldown logic 270 and the PMOS transistor 213 of the transmission gate 250 share a contiguous gate electrode structure 282G defined along a single gate electrode track 282. The NMOS transistor 214 of the transmission gate 250 is defined along a single gate electrode track 283. The nodes 201-207 are defined in the XNOR 200 layout by various combinations of contacts, interconnect structures (M1, M2), and vias (Via1), so as make the connections between the various transistors as shown in
It should be appreciated that the layout of the XNOR 200, when defined in accordance with the restricted gate electrode architecture, is defined using six adjacent gate electrode tracks (280-285). In one embodiment, the six adjacent gate electrode tracks (280-285) are equally spaced apart. However, in another embodiment, different perpendicular spacings can be used to separate the six adjacent gate electrode tracks (280-285). Also, it should be appreciated that the layout of the XNOR 200, when defined in accordance with the restricted gate electrode architecture, does not require placement of opposing gate electrode line ends. In other words, there are no gate electrode structures placed end-to-end along any given gate electrode track within the XNOR 200 layout. Therefore, lithographic difficulties associated with manufacturing end-to-end spacings between gate electrode features is avoided.
Also, because there are no end-to-end gate electrode spacings positioned along a given gate electrode track between the P-type diffusion region and the N-type diffusion region, the perpendicular layout space between the P-type and N-type diffusion regions is not forced to comply with a minimum size requirement, as would be dictated by design rules associated with placement/manufacture of end-to-end gate electrode spacings. Thus, if desired in certain embodiments, the overall cell height of the XNOR 200 layout, i.e., the perpendicular distance between VDD and GND, may be reduced by spacing the P-type and N-type diffusion regions closer together.
It should be understood that the XOR 300 circuit and associated layout as described herein can be converted to an XNOR circuit and associated layout by removing the output inverter 317. In this converted configuration, the output node 307 becomes equivalent to the node 305, and the relationship between the output Q and the inputs A and B is the same as shown in the state tables of
It should also be understood that the XNOR 200 circuit and associated layout as described herein can be converted to an XOR circuit and associated layout by removing the output inverter 217. In this converted configuration, the output node 207 becomes equivalent to the node 205, and the relationship between the output Q and the inputs A and B is the same as shown in the state tables of
Additionally, although the exemplary embodiment of
Restricted Gate Level Layout Architecture
As mentioned above, the XOR 300 and XNOR 200 circuits of the present invention can be implemented in a restricted gate level layout architecture within a portion of a semiconductor chip. For the gate level, a number of parallel virtual lines are defined to extend across the layout. These parallel virtual lines are referred to as gate electrode tracks, as they are used to index placement of gate electrodes of various transistors within the layout. In one embodiment, the parallel virtual lines which form the gate electrode tracks are defined by a perpendicular spacing therebetween equal to a specified gate electrode pitch. Therefore, placement of gate electrode segments on the gate electrode tracks corresponds to the specified gate electrode pitch. In another embodiment the gate electrode tracks are spaced at variable pitches greater than or equal to a specified gate electrode pitch.
Within the restricted gate level layout architecture, a gate level feature layout channel is defined about a given gate electrode track so as to extend between gate electrode tracks adjacent to the given gate electrode track. For example, gate level feature layout channels 401A-1 through 401E-1 are defined about gate electrode tracks 401A through 401E, respectively. It should be understood that each gate electrode track has a corresponding gate level feature layout channel. Also, for gate electrode tracks positioned adjacent to an edge of a prescribed layout space, e.g., adjacent to a cell boundary, the corresponding gate level feature layout channel extends as if there were a virtual gate electrode track outside the prescribed layout space, as illustrated by gate level feature layout channels 401A-1 and 401E-1. It should be further understood that each gate level feature layout channel is defined to extend along an entire length of its corresponding gate electrode track. Thus, each gate level feature layout channel is defined to extend across the gate level layout within the portion of the chip to which the gate level layout is associated.
Within the restricted gate level layout architecture, gate level features associated with a given gate electrode track are defined within the gate level feature layout channel associated with the given gate electrode track. A contiguous gate level feature can include both a portion which defines a gate electrode of a transistor, and a portion that does not define a gate electrode of a transistor. Thus, a contiguous gate level feature can extend over both a diffusion region and a dielectric region of an underlying chip level.
In one embodiment, each portion of a gate level feature that forms a gate electrode of a transistor is positioned to be substantially centered upon a given gate electrode track. Furthermore, in this embodiment, portions of the gate level feature that do not form a gate electrode of a transistor can be positioned within the gate level feature layout channel associated with the given gate electrode track. Therefore, a given gate level feature can be defined essentially anywhere within a given gate level feature layout channel, so long as gate electrode portions of the given gate level feature are centered upon the gate electrode track corresponding to the given gate level feature layout channel, and so long as the given gate level feature complies with design rule spacing requirements relative to other gate level features in adjacent gate level layout channels. Additionally, physical contact is prohibited between gate level features defined in gate level feature layout channels that are associated with adjacent gate electrode tracks.
A gate electrode corresponds to a portion of a respective gate level feature that extends over a diffusion region, wherein the respective gate level feature is defined in its entirety within a gate level feature layout channel. Each gate level feature is defined within its gate level feature layout channel without physically contacting another gate level feature defined within an adjoining gate level feature layout channel. As illustrated by the example gate level feature layout channels 401A-1 through 401E-1 of
Some gate level features may have one or more contact head portions defined at any number of locations along their length. A contact head portion of a given gate level feature is defined as a segment of the gate level feature having a height and a width of sufficient size to receive a gate contact structure, wherein “width” is defined across the substrate in a direction perpendicular to the gate electrode track of the given gate level feature, and wherein “height” is defined across the substrate in a direction parallel to the gate electrode track of the given gate level feature. It should be appreciated that a contact head of a gate level feature, when viewed from above, can be defined by essentially any layout shape, including a square or a rectangle. Also, depending on layout requirements and circuit design, a given contact head portion of a gate level feature may or may not have a gate contact defined thereabove.
A gate level of the various embodiments disclosed herein is defined as a restricted gate level, as discussed above. Some of the gate level features form gate electrodes of transistor devices. Others of the gate level features can form conductive segments extending between two points within the gate level. Also, others of the gate level features may be non-functional with respect to integrated circuit operation. It should be understood that the each of the gate level features, regardless of function, is defined to extend across the gate level within their respective gate level feature layout channels without physically contacting other gate level features defined with adjacent gate level feature layout channels.
In one embodiment, the gate level features are defined to provide a finite number of controlled layout shape-to-shape lithographic interactions which can be accurately predicted and optimized for in manufacturing and design processes. In this embodiment, the gate level features are defined to avoid layout shape-to-shape spatial relationships which would introduce adverse lithographic interaction within the layout that cannot be accurately predicted and mitigated with high probability. However, it should be understood that changes in direction of gate level features within their gate level layout channels are acceptable when corresponding lithographic interactions are predictable and manageable.
It should be understood that each of the gate level features, regardless of function, is defined such that no gate level feature along a given gate electrode track is configured to connect directly within the gate level to another gate level feature defined along a different gate electrode track without utilizing a non-gate level feature. Moreover, each connection between gate level features that are placed within different gate level layout channels associated with different gate electrode tracks is made through one or more non-gate level features, which may be defined in higher interconnect levels, i.e., through one or more interconnect levels above the gate level, or by way of local interconnect features at or below the gate level.
It should be understood that the XOR 300 and XNOR 200 circuits and layouts as disclosed herein can be stored in a tangible form, such as in a digital format on a computer readable medium. For example, the layouts of the XOR 300 and/or XNOR 200 circuits as disclosed herein can be stored in a layout data file as one or more cells, selectable from one or more libraries of cells. The layout data file can be formatted as a GDS II (Graphic Data System) database file, an OASIS (Open Artwork System Interchange Standard) database file, or any other type of data file format suitable for storing and communicating semiconductor device layouts. Also, the multi-level layouts of the XOR 300 and/or XNOR 200 circuits can be included within a multi-level layout of a larger semiconductor device. The multi-level layout of the larger semiconductor device can also be stored in the form of a layout data file, such as those identified above.
Also, the invention described herein can be embodied as computer readable code on a computer readable medium. For example, the computer readable code can include the layout data file within which the XOR 300 and/or XNOR 200 circuit layouts are stored. The computer readable code can also include program instructions for selecting one or more layout libraries and/or cells that include the XOR 300 and/or XNOR 200 circuit layouts. The layout libraries and/or cells can also be stored in a digital format on a computer readable medium.
The computer readable medium mentioned herein is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include hard drives, network attached storage (NAS), read-only memory, random-access memory, CD-ROMs, CD-Rs, CD-RWs, magnetic tapes, and other optical and non-optical data storage devices. The computer readable medium can also be distributed over a network of coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
Any of the operations described herein that form part of the invention are useful machine operations. The invention also relates to a device or an apparatus for performing these operations. The apparatus may be specially constructed for the required purpose, such as a special purpose computer. When defined as a special purpose computer, the computer can also perform other processing, program execution or routines that are not part of the special purpose, while still being capable of operating for the special purpose. Alternatively, the operations may be processed by a general purpose computer selectively activated or configured by one or more computer programs stored in the computer memory, cache, or obtained over a network. When data is obtained over a network the data maybe processed by other computers on the network, e.g., a cloud of computing resources.
The embodiments of the present invention can also be defined as a machine that transforms data from one state to another state. The data may represent an article, that can be represented as an electronic signal and electronically manipulate data. The transformed data can, in some cases, be visually depicted on a display, representing the physical object that results from the transformation of data. The transformed data can be saved to storage generally, or in particular formats that enable the construction or depiction of a physical and tangible object. In some embodiments, the manipulation can be performed by a processor. In such an example, the processor thus transforms the data from one thing to another. Still further, the methods can be processed by one or more machines or processors that can be connected over a network. Each machine can transform data from one state or thing to another, and can also process data, save data to storage, transmit data over a network, display the result, or communicate the result to another machine.
It should be further understood that the XOR 300 and XNOR 200 circuits and layouts as disclosed herein can be manufactured as part of a semiconductor device or chip. In the fabrication of semiconductor devices such as integrated circuits, memory cells, and the like, a series of manufacturing operations are performed to define features on a semiconductor wafer. The wafer includes integrated circuit devices in the form of multi-level structures defined on a silicon substrate. At a substrate level, transistor devices with diffusion regions are formed. In subsequent levels, interconnect metallization lines are patterned and electrically connected to the transistor devices to define a desired integrated circuit device. Also, patterned conductive layers are insulated from other conductive layers by dielectric materials.
While this invention has been described in terms of several embodiments, it will be appreciated that those skilled in the art upon reading the preceding specifications and studying the drawings will realize various alterations, additions, permutations and equivalents thereof. Therefore, it is intended that the present invention includes all such alterations, additions, permutations, and equivalents as fall within the true spirit and scope of the invention.
This application is a continuation application under 35 U.S.C. 120 of prior U.S. patent application Ser. No. 14/181,556, filed on Feb. 14, 2014, issued as U.S. Pat. No. 9,673,825, on Jun. 6, 2017, which is a divisional application under 35 U.S.C. 121 of prior U.S. patent application Ser. No. 12/435,672, filed on May 5, 2009, which: 1) claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application No. 61/174,408, filed Apr. 30, 2009, and2) is a continuation-in-part application under 35 U.S.C. 120 of prior U.S. patent application Ser. No. 12/212,562, filed Sep. 17, 2008, issued as U.S. Pat. No. 7,842,975, on Nov. 30, 2010, which is a continuation application under 35 U.S.C. 120 of prior U.S. application Ser. No. 11/683,402, filed Mar. 7, 2007, issued as U.S. Pat. No. 7,446,352, on Nov. 4, 2008, which claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application No. 60/781,288, filed Mar. 9, 2006. The disclosure of each above-identified patent application is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3521242 | Katz | Jul 1970 | A |
4069493 | Bobenrieth | Jan 1978 | A |
4197555 | Uehara et al. | Apr 1980 | A |
4417161 | Uya | Nov 1983 | A |
4424460 | Best | Jan 1984 | A |
4575648 | Lee | Mar 1986 | A |
4602270 | Finegold | Jul 1986 | A |
4613940 | Shenton et al. | Sep 1986 | A |
4627152 | DeHond | Dec 1986 | A |
4657628 | Holloway et al. | Apr 1987 | A |
4682202 | Tanizawa | Jul 1987 | A |
4745084 | Rowson et al. | May 1988 | A |
4780753 | Shinichi et al. | Oct 1988 | A |
4801986 | Chang et al. | Jan 1989 | A |
4804636 | Groover, III et al. | Feb 1989 | A |
4812688 | Chu et al. | Mar 1989 | A |
4884115 | Michel et al. | Nov 1989 | A |
4890148 | Ikeda | Dec 1989 | A |
4928160 | Crafts | May 1990 | A |
4975756 | Haken et al. | Dec 1990 | A |
5005068 | Ikeda | Apr 1991 | A |
5047979 | Leung | Sep 1991 | A |
5068603 | Mahoney | Nov 1991 | A |
5079614 | Khatakhotan | Jan 1992 | A |
5097422 | Corbin et al. | Mar 1992 | A |
5117277 | Yuyama et al. | May 1992 | A |
5121186 | Wong et al. | Jun 1992 | A |
5208765 | Turnbull | May 1993 | A |
5224057 | Igarashi | Jun 1993 | A |
5242770 | Chen et al. | Sep 1993 | A |
5268319 | Harari | Dec 1993 | A |
5298774 | Ueda et al. | Mar 1994 | A |
5313426 | Sakuma et al. | May 1994 | A |
5338963 | Klaasen | Aug 1994 | A |
5351197 | Upton et al. | Sep 1994 | A |
5359226 | DeJong | Oct 1994 | A |
5365454 | Nakagawa et al. | Nov 1994 | A |
5367187 | Yuen | Nov 1994 | A |
5378649 | Huang | Jan 1995 | A |
5396128 | Dunning et al. | Mar 1995 | A |
5420447 | Waggoner | May 1995 | A |
5461577 | Shaw et al. | Oct 1995 | A |
5471403 | Fujimaga | Nov 1995 | A |
5486717 | Kokubo | Jan 1996 | A |
5497334 | Russell et al. | Mar 1996 | A |
5497337 | Ponnapalli et al. | Mar 1996 | A |
5526307 | Lin et al. | Jun 1996 | A |
5536955 | Ali | Jul 1996 | A |
5545904 | Orbach | Aug 1996 | A |
5581098 | Chang | Dec 1996 | A |
5581202 | Yano et al. | Dec 1996 | A |
5612893 | Hao et al. | Mar 1997 | A |
5636002 | Garofalo | Jun 1997 | A |
5656861 | Godinho et al. | Aug 1997 | A |
5682323 | Pasch et al. | Oct 1997 | A |
5684311 | Shaw | Nov 1997 | A |
5684733 | Wu et al. | Nov 1997 | A |
5698873 | Colwell et al. | Dec 1997 | A |
5705301 | Garza et al. | Jan 1998 | A |
5723883 | Gheewalla | Mar 1998 | A |
5723908 | Fuchida et al. | Mar 1998 | A |
5740068 | Liebmann et al. | Apr 1998 | A |
5745374 | Matsumoto | Apr 1998 | A |
5754826 | Gamal | May 1998 | A |
5764533 | deDood | Jun 1998 | A |
5774367 | Reyes et al. | Jun 1998 | A |
5780909 | Hayashi | Jul 1998 | A |
5789776 | Lancaster et al. | Aug 1998 | A |
5790417 | Chao et al. | Aug 1998 | A |
5796128 | Tran et al. | Aug 1998 | A |
5796624 | Sridhar et al. | Aug 1998 | A |
5798298 | Yang et al. | Aug 1998 | A |
5814844 | Nagata et al. | Sep 1998 | A |
5825203 | Kusunoki et al. | Oct 1998 | A |
5834851 | Ikeda et al. | Nov 1998 | A |
5838594 | Kojima | Nov 1998 | A |
5841663 | Sharma et al. | Nov 1998 | A |
5847421 | Yamaguchi | Dec 1998 | A |
5850362 | Sakuma et al. | Dec 1998 | A |
5852562 | Shinomiya et al. | Dec 1998 | A |
5858580 | Wang et al. | Jan 1999 | A |
5898194 | Gheewala | Apr 1999 | A |
5900340 | Reich et al. | May 1999 | A |
5905287 | Hirata | May 1999 | A |
5908827 | Sirna | Jun 1999 | A |
5915199 | Hsu | Jun 1999 | A |
5917207 | Colwell et al. | Jun 1999 | A |
5920486 | Beahm et al. | Jul 1999 | A |
5923059 | Gheewala | Jul 1999 | A |
5923060 | Gheewala | Jul 1999 | A |
5929469 | Mimoto et al. | Jul 1999 | A |
5930163 | Hara et al. | Jul 1999 | A |
5935763 | Caterer et al. | Aug 1999 | A |
5949101 | Aritome | Sep 1999 | A |
5973369 | Hayashi | Oct 1999 | A |
5973507 | Yamazaki | Oct 1999 | A |
5977305 | Wigler et al. | Nov 1999 | A |
5977574 | Schmitt et al. | Nov 1999 | A |
5984510 | Ali | Nov 1999 | A |
5998879 | Iwaki et al. | Dec 1999 | A |
6009251 | Ho et al. | Dec 1999 | A |
6026223 | Scepanovic et al. | Feb 2000 | A |
6026225 | Iwasaki | Feb 2000 | A |
6037613 | Mariyama | Mar 2000 | A |
6037617 | Kumagai | Mar 2000 | A |
6040991 | Ellis-Monaghan | Mar 2000 | A |
6044007 | Capodieci | Mar 2000 | A |
6054872 | Fudanuki et al. | Apr 2000 | A |
6063132 | DeCamp et al. | May 2000 | A |
6077310 | Yamamoto et al. | Jun 2000 | A |
6080206 | Tadokoro et al. | Jun 2000 | A |
6084255 | Ueda | Jul 2000 | A |
6084437 | Sako | Jul 2000 | A |
6091845 | Pierrat et al. | Jul 2000 | A |
6099584 | Arnold et al. | Aug 2000 | A |
6100025 | Wigler et al. | Aug 2000 | A |
6114071 | Chen et al. | Sep 2000 | A |
6144227 | Sato | Nov 2000 | A |
6159839 | Jeng et al. | Dec 2000 | A |
6166415 | Sakemi et al. | Dec 2000 | A |
6166560 | Ogura et al. | Dec 2000 | A |
6174742 | Sudhindranath et al. | Jan 2001 | B1 |
6182272 | Andreev et al. | Jan 2001 | B1 |
6194104 | Hsu | Feb 2001 | B1 |
6194252 | Yamaguchi | Feb 2001 | B1 |
6194912 | Or-Bach | Feb 2001 | B1 |
6209123 | Maziasz et al. | Mar 2001 | B1 |
6230299 | McSherry et al. | May 2001 | B1 |
6232173 | Hsu et al. | May 2001 | B1 |
6240542 | Kapur | May 2001 | B1 |
6249902 | Igusa et al. | Jun 2001 | B1 |
6255600 | Schaper | Jul 2001 | B1 |
6255845 | Wong et al. | Jul 2001 | B1 |
6262487 | Igarashi et al. | Jul 2001 | B1 |
6269472 | Garza et al. | Jul 2001 | B1 |
6275973 | Wein | Aug 2001 | B1 |
6282696 | Garza et al. | Aug 2001 | B1 |
6291276 | Gonzalez | Sep 2001 | B1 |
6295224 | Chan | Sep 2001 | B1 |
6297668 | Schober | Oct 2001 | B1 |
6297674 | Kono et al. | Oct 2001 | B1 |
6303252 | Lin | Oct 2001 | B1 |
6323117 | Noguchi | Nov 2001 | B1 |
6331733 | Or-Bach et al. | Dec 2001 | B1 |
6331791 | Huang | Dec 2001 | B1 |
6335250 | Egi | Jan 2002 | B1 |
6338972 | Sudhindranath et al. | Jan 2002 | B1 |
6347062 | Nii et al. | Feb 2002 | B2 |
6356112 | Tran et al. | Mar 2002 | B1 |
6359804 | Kuriyama et al. | Mar 2002 | B2 |
6370679 | Chang et al. | Apr 2002 | B1 |
6378110 | Ho | Apr 2002 | B1 |
6380592 | Tooher et al. | Apr 2002 | B2 |
6388296 | Hsu | May 2002 | B1 |
6393601 | Tanaka et al. | May 2002 | B1 |
6399972 | Masuda et al. | Jun 2002 | B1 |
6400183 | Yamashita et al. | Jun 2002 | B2 |
6408427 | Cong et al. | Jun 2002 | B1 |
6415421 | Anderson et al. | Jul 2002 | B2 |
6416907 | Winder et al. | Jul 2002 | B1 |
6417549 | Oh | Jul 2002 | B1 |
6421820 | Mansfield et al. | Jul 2002 | B1 |
6425112 | Bula et al. | Jul 2002 | B1 |
6425117 | Pasch et al. | Jul 2002 | B1 |
6426269 | Haffner et al. | Jul 2002 | B1 |
6436805 | Trivedi | Aug 2002 | B1 |
6445049 | Iranmanesh | Sep 2002 | B1 |
6445065 | Gheewala et al. | Sep 2002 | B1 |
6467072 | Yang et al. | Oct 2002 | B1 |
6469328 | Yanai et al. | Oct 2002 | B2 |
6470489 | Chang et al. | Oct 2002 | B1 |
6476493 | Or-Bach et al. | Nov 2002 | B2 |
6477695 | Gandhi | Nov 2002 | B1 |
6480032 | Aksamit | Nov 2002 | B1 |
6480989 | Chan et al. | Nov 2002 | B2 |
6492066 | Capodieci et al. | Dec 2002 | B1 |
6496965 | van Ginneken et al. | Dec 2002 | B1 |
6504186 | Kanamoto et al. | Jan 2003 | B2 |
6505327 | Lin | Jan 2003 | B2 |
6505328 | van Ginneken et al. | Jan 2003 | B1 |
6507941 | Leung et al. | Jan 2003 | B1 |
6509952 | Govil et al. | Jan 2003 | B1 |
6514849 | Hui et al. | Feb 2003 | B1 |
6516459 | Sahouria | Feb 2003 | B1 |
6523156 | Cirit | Feb 2003 | B2 |
6525350 | Kinoshita et al. | Feb 2003 | B1 |
6536028 | Katsioulas et al. | Mar 2003 | B1 |
6543039 | Watanabe | Apr 2003 | B1 |
6553544 | Tanaka et al. | Apr 2003 | B2 |
6553559 | Liebmann et al. | Apr 2003 | B2 |
6553562 | Capodieci et al. | Apr 2003 | B2 |
6566720 | Aldrich | May 2003 | B2 |
6570234 | Gardner | May 2003 | B1 |
6571140 | Wewalaarachchi | May 2003 | B1 |
6571379 | Takayama | May 2003 | B2 |
6574786 | Pohlenz et al. | Jun 2003 | B1 |
6578190 | Ferguson et al. | Jun 2003 | B2 |
6583041 | Capodieci | Jun 2003 | B1 |
6588005 | Kobayashi et al. | Jul 2003 | B1 |
6590289 | Shively | Jul 2003 | B2 |
6591207 | Naya et al. | Jul 2003 | B2 |
6609235 | Ramaswamy et al. | Aug 2003 | B2 |
6610607 | Armbrust et al. | Aug 2003 | B1 |
6617621 | Gheewala et al. | Sep 2003 | B1 |
6620561 | Winder et al. | Sep 2003 | B2 |
6621132 | Onishi et al. | Sep 2003 | B2 |
6624459 | Dachtera | Sep 2003 | B1 |
6627960 | Nii | Sep 2003 | B2 |
6632741 | Clevenger et al. | Oct 2003 | B1 |
6633182 | Pileggi et al. | Oct 2003 | B2 |
6635935 | Makino | Oct 2003 | B2 |
6642744 | Or-Bach et al. | Nov 2003 | B2 |
6643831 | Chang et al. | Nov 2003 | B2 |
6650014 | Kariyazaki | Nov 2003 | B2 |
6661041 | Keeth | Dec 2003 | B2 |
6662350 | Fried et al. | Dec 2003 | B2 |
6664587 | Guterman et al. | Dec 2003 | B2 |
6673638 | Bendik et al. | Jan 2004 | B1 |
6675361 | Crafts | Jan 2004 | B1 |
6677649 | Minami et al. | Jan 2004 | B2 |
6687895 | Zhang | Feb 2004 | B2 |
6690206 | Rikino et al. | Feb 2004 | B2 |
6691297 | Misaka et al. | Feb 2004 | B1 |
6700405 | Hirairi | Mar 2004 | B1 |
6703170 | Pindo | Mar 2004 | B1 |
6709880 | Yamamoto et al. | Mar 2004 | B2 |
6714903 | Chu et al. | Mar 2004 | B1 |
6732334 | Nakatsuka | May 2004 | B2 |
6732338 | Crouse et al. | May 2004 | B2 |
6732344 | Sakamoto et al. | May 2004 | B2 |
6734506 | Oyamatsu | May 2004 | B2 |
6737199 | Hsieh | May 2004 | B1 |
6737318 | Murata et al. | May 2004 | B2 |
6737347 | Houston et al. | May 2004 | B1 |
6745372 | Cote et al. | Jun 2004 | B2 |
6745380 | Bodendorf et al. | Jun 2004 | B2 |
6749972 | Yu | Jun 2004 | B2 |
6750555 | Satomi et al. | Jun 2004 | B2 |
6760269 | Nakase et al. | Jul 2004 | B2 |
6765245 | Bansal | Jul 2004 | B2 |
6777138 | Pierrat et al. | Aug 2004 | B2 |
6777146 | Samuels | Aug 2004 | B1 |
6787823 | Shibutani | Sep 2004 | B2 |
6789244 | Dasasathyan et al. | Sep 2004 | B1 |
6789246 | Mohan et al. | Sep 2004 | B1 |
6792591 | Shi et al. | Sep 2004 | B2 |
6792593 | Takashima et al. | Sep 2004 | B2 |
6794677 | Tamaki et al. | Sep 2004 | B2 |
6794914 | Sani et al. | Sep 2004 | B2 |
6795332 | Yamaoka et al. | Sep 2004 | B2 |
6795358 | Tanaka et al. | Sep 2004 | B2 |
6795952 | Stine et al. | Sep 2004 | B1 |
6795953 | Bakarian et al. | Sep 2004 | B2 |
6800883 | Furuya et al. | Oct 2004 | B2 |
6806180 | Cho | Oct 2004 | B2 |
6807663 | Cote et al. | Oct 2004 | B2 |
6809399 | Ikeda et al. | Oct 2004 | B2 |
6812574 | Tomita et al. | Nov 2004 | B2 |
6818389 | Fritze et al. | Nov 2004 | B2 |
6818929 | Tsutsumi et al. | Nov 2004 | B2 |
6819136 | Or-Bach | Nov 2004 | B2 |
6820248 | Gan | Nov 2004 | B1 |
6826738 | Cadouri | Nov 2004 | B2 |
6834375 | Stine et al. | Dec 2004 | B1 |
6835991 | Pell, III | Dec 2004 | B2 |
6841880 | Matsumoto et al. | Jan 2005 | B2 |
6850854 | Naya et al. | Feb 2005 | B2 |
6854096 | Eaton et al. | Feb 2005 | B2 |
6854100 | Chuang et al. | Feb 2005 | B1 |
6867073 | Enquist | Mar 2005 | B1 |
6871338 | Yamauchi | Mar 2005 | B2 |
6872990 | Kang | Mar 2005 | B1 |
6877144 | Rittman et al. | Apr 2005 | B1 |
6879511 | Dufourt | Apr 2005 | B2 |
6881523 | Smith | Apr 2005 | B2 |
6884712 | Yelehanka et al. | Apr 2005 | B2 |
6885045 | Hidaka | Apr 2005 | B2 |
6889370 | Kerzman et al. | May 2005 | B1 |
6897517 | Houdt et al. | May 2005 | B2 |
6897536 | Nomura et al. | May 2005 | B2 |
6898770 | Boluki et al. | May 2005 | B2 |
6904582 | Rittman et al. | Jun 2005 | B1 |
6918104 | Pierrat et al. | Jul 2005 | B2 |
6920079 | Shibayama | Jul 2005 | B2 |
6921982 | Joshi et al. | Jul 2005 | B2 |
6922354 | Ishikura et al. | Jul 2005 | B2 |
6924560 | Wang et al. | Aug 2005 | B2 |
6928635 | Pramanik et al. | Aug 2005 | B2 |
6931617 | Sanie et al. | Aug 2005 | B2 |
6953956 | Or-Bach et al. | Oct 2005 | B2 |
6954918 | Houston | Oct 2005 | B2 |
6957402 | Templeton et al. | Oct 2005 | B2 |
6968527 | Pierrat | Nov 2005 | B2 |
6974978 | Possley | Dec 2005 | B1 |
6977856 | Tanaka et al. | Dec 2005 | B2 |
6978436 | Cote et al. | Dec 2005 | B2 |
6978437 | Rittman et al. | Dec 2005 | B1 |
6980211 | Lin et al. | Dec 2005 | B2 |
6992394 | Park | Jan 2006 | B2 |
6992925 | Peng | Jan 2006 | B2 |
6993741 | Liebmann et al. | Jan 2006 | B2 |
6994939 | Ghandehari et al. | Feb 2006 | B1 |
6998722 | Madurawe | Feb 2006 | B2 |
7003068 | Kushner et al. | Feb 2006 | B2 |
7009862 | Higeta et al. | Mar 2006 | B2 |
7016214 | Kawamata | Mar 2006 | B2 |
7022559 | Barnak et al. | Apr 2006 | B2 |
7028285 | Cote et al. | Apr 2006 | B2 |
7041568 | Goldbach et al. | May 2006 | B2 |
7052972 | Sandhu et al. | May 2006 | B2 |
7053424 | Ono | May 2006 | B2 |
7063920 | Baba-Ali | Jun 2006 | B2 |
7064068 | Chou et al. | Jun 2006 | B2 |
7065731 | Jacques et al. | Jun 2006 | B2 |
7079413 | Tsukamoto et al. | Jul 2006 | B2 |
7079989 | Wimer | Jul 2006 | B2 |
7093208 | Williams et al. | Aug 2006 | B2 |
7093228 | Andreev et al. | Aug 2006 | B2 |
7103870 | Misaka et al. | Sep 2006 | B2 |
7105871 | Or-Bach et al. | Sep 2006 | B2 |
7107551 | de Dood et al. | Sep 2006 | B1 |
7115343 | Gordon et al. | Oct 2006 | B2 |
7115920 | Bernstein et al. | Oct 2006 | B2 |
7120882 | Kotani et al. | Oct 2006 | B2 |
7124386 | Smith et al. | Oct 2006 | B2 |
7126837 | Banachowicz et al. | Oct 2006 | B1 |
7132203 | Pierrat | Nov 2006 | B2 |
7137092 | Maeda | Nov 2006 | B2 |
7141853 | Campbell et al. | Nov 2006 | B2 |
7143380 | Anderson et al. | Nov 2006 | B1 |
7149999 | Kahng et al. | Dec 2006 | B2 |
7152215 | Smith et al. | Dec 2006 | B2 |
7155685 | Mori et al. | Dec 2006 | B2 |
7155689 | Pierrat et al. | Dec 2006 | B2 |
7159197 | Falbo et al. | Jan 2007 | B2 |
7174520 | White et al. | Feb 2007 | B2 |
7175940 | Laidig et al. | Feb 2007 | B2 |
7176508 | Joshi et al. | Feb 2007 | B2 |
7177215 | Tanaka et al. | Feb 2007 | B2 |
7183611 | Bhattacharyya | Feb 2007 | B2 |
7185294 | Zhang | Feb 2007 | B2 |
7188322 | Cohn et al. | Mar 2007 | B2 |
7194712 | Wu | Mar 2007 | B2 |
7200835 | Zhang et al. | Apr 2007 | B2 |
7202517 | Dixit et al. | Apr 2007 | B2 |
7205191 | Kobayashi | Apr 2007 | B2 |
7208794 | Hofmann et al. | Apr 2007 | B2 |
7214579 | Widdershoven et al. | May 2007 | B2 |
7219326 | Reed et al. | May 2007 | B2 |
7221031 | Ryoo et al. | May 2007 | B2 |
7225423 | Bhattacharya et al. | May 2007 | B2 |
7227183 | Donze et al. | Jun 2007 | B2 |
7228510 | Ono | Jun 2007 | B2 |
7231628 | Pack et al. | Jun 2007 | B2 |
7235424 | Chen et al. | Jun 2007 | B2 |
7243316 | White et al. | Jul 2007 | B2 |
7252909 | Shin et al. | Aug 2007 | B2 |
7257017 | Liaw | Aug 2007 | B2 |
7264990 | Rueckes et al. | Sep 2007 | B2 |
7266787 | Hughes et al. | Sep 2007 | B2 |
7269803 | Khakzadi et al. | Sep 2007 | B2 |
7278118 | Pileggi et al. | Oct 2007 | B2 |
7279727 | Ikoma et al. | Oct 2007 | B2 |
7287320 | Wang et al. | Oct 2007 | B2 |
7294534 | Iwaki | Nov 2007 | B2 |
7302651 | Allen et al. | Nov 2007 | B2 |
7308669 | Buehler et al. | Dec 2007 | B2 |
7312003 | Cote et al. | Dec 2007 | B2 |
7312144 | Cho | Dec 2007 | B2 |
7315994 | Aller et al. | Jan 2008 | B2 |
7327591 | Sadra et al. | Feb 2008 | B2 |
7329938 | Kinoshita | Feb 2008 | B2 |
7329953 | Tu | Feb 2008 | B2 |
7335966 | Ihme et al. | Feb 2008 | B2 |
7337421 | Kamat | Feb 2008 | B2 |
7338896 | Vanhaelemeersch et al. | Mar 2008 | B2 |
7345511 | Morgenshtein | Mar 2008 | B2 |
7345909 | Chang et al. | Mar 2008 | B2 |
7346885 | Semmler | Mar 2008 | B2 |
7350183 | Cui et al. | Mar 2008 | B2 |
7353492 | Gupta et al. | Apr 2008 | B2 |
7358131 | Bhattacharyya | Apr 2008 | B2 |
7360179 | Smith et al. | Apr 2008 | B2 |
7360198 | Rana et al. | Apr 2008 | B2 |
7366997 | Rahmat et al. | Apr 2008 | B1 |
7367008 | White et al. | Apr 2008 | B2 |
7376931 | Kokubun | May 2008 | B2 |
7383521 | Smith et al. | Jun 2008 | B2 |
7397260 | Chanda et al. | Jul 2008 | B2 |
7400627 | Wu et al. | Jul 2008 | B2 |
7402848 | Chang et al. | Jul 2008 | B2 |
7404154 | Venkatraman et al. | Jul 2008 | B1 |
7404173 | Wu et al. | Jul 2008 | B2 |
7411252 | Anderson et al. | Aug 2008 | B2 |
7421678 | Barnes et al. | Sep 2008 | B2 |
7423298 | Mariyama et al. | Sep 2008 | B2 |
7424694 | Ikeda | Sep 2008 | B2 |
7424695 | Tamura et al. | Sep 2008 | B2 |
7424696 | Vogel et al. | Sep 2008 | B2 |
7426710 | Zhang et al. | Sep 2008 | B2 |
7432562 | Bhattacharyya | Oct 2008 | B2 |
7434185 | Dooling et al. | Oct 2008 | B2 |
7441211 | Gupta et al. | Oct 2008 | B1 |
7442630 | Kelberlau et al. | Oct 2008 | B2 |
7444609 | Charlebois et al. | Oct 2008 | B2 |
7446352 | Becker et al. | Nov 2008 | B2 |
7449371 | Kemerling et al. | Nov 2008 | B2 |
7458045 | Cote et al. | Nov 2008 | B2 |
7459792 | Chen | Dec 2008 | B2 |
7465973 | Chang et al. | Dec 2008 | B2 |
7466607 | Hollis et al. | Dec 2008 | B2 |
7469396 | Hayashi et al. | Dec 2008 | B2 |
7480880 | Visweswariah et al. | Jan 2009 | B2 |
7480891 | Sezginer | Jan 2009 | B2 |
7484197 | Allen et al. | Jan 2009 | B2 |
7485934 | Liaw | Feb 2009 | B2 |
7487475 | Kriplani et al. | Feb 2009 | B1 |
7492013 | Correale, Jr. | Feb 2009 | B2 |
7500211 | Komaki | Mar 2009 | B2 |
7502275 | Nii et al. | Mar 2009 | B2 |
7503026 | Ichiryu et al. | Mar 2009 | B2 |
7504184 | Hung et al. | Mar 2009 | B2 |
7506300 | Sezginer et al. | Mar 2009 | B2 |
7508238 | Yamagami | Mar 2009 | B2 |
7509621 | Melvin, III | Mar 2009 | B2 |
7509622 | Sinha et al. | Mar 2009 | B2 |
7512017 | Chang | Mar 2009 | B2 |
7512921 | Shibuya | Mar 2009 | B2 |
7514355 | Katase | Apr 2009 | B2 |
7514959 | Or-Bach et al. | Apr 2009 | B2 |
7523429 | Kroyan et al. | Apr 2009 | B2 |
7527900 | Zhou et al. | May 2009 | B2 |
7535751 | Huang | May 2009 | B2 |
7538368 | Yano | May 2009 | B2 |
7543262 | Wang et al. | Jun 2009 | B2 |
7563701 | Chang et al. | Jul 2009 | B2 |
7564134 | Lee et al. | Jul 2009 | B2 |
7568174 | Sezginer et al. | Jul 2009 | B2 |
7569309 | Walter et al. | Aug 2009 | B2 |
7569310 | Wallace et al. | Aug 2009 | B2 |
7569894 | Suzuki | Aug 2009 | B2 |
7575973 | Mokhlesi et al. | Aug 2009 | B2 |
7592676 | Nakanishi | Sep 2009 | B2 |
7598541 | Okamoto et al. | Oct 2009 | B2 |
7598558 | Hashimoto et al. | Oct 2009 | B2 |
7614030 | Hsu | Nov 2009 | B2 |
7625790 | Yang | Dec 2009 | B2 |
7632610 | Wallace et al. | Dec 2009 | B2 |
7640522 | Gupta et al. | Dec 2009 | B2 |
7646651 | Lee et al. | Jan 2010 | B2 |
7647574 | Haruki | Jan 2010 | B2 |
7653884 | Furnish et al. | Jan 2010 | B2 |
7665051 | Ludwig et al. | Feb 2010 | B2 |
7700466 | Booth et al. | Apr 2010 | B2 |
7712056 | White et al. | May 2010 | B2 |
7739627 | Chew et al. | Jun 2010 | B2 |
7749662 | Matthew et al. | Jul 2010 | B2 |
7755110 | Gliese et al. | Jul 2010 | B2 |
7770144 | Dellinger | Aug 2010 | B2 |
7781847 | Yang | Aug 2010 | B2 |
7791109 | Wann et al. | Sep 2010 | B2 |
7802219 | Tomar et al. | Sep 2010 | B2 |
7816740 | Houston | Oct 2010 | B2 |
7825437 | Pillarisetty et al. | Nov 2010 | B2 |
7842975 | Becker et al. | Nov 2010 | B2 |
7873929 | Kahng et al. | Jan 2011 | B2 |
7882456 | Zach | Feb 2011 | B2 |
7888705 | Becker et al. | Feb 2011 | B2 |
7898040 | Nawaz | Mar 2011 | B2 |
7906801 | Becker et al. | Mar 2011 | B2 |
7908578 | Becker et al. | Mar 2011 | B2 |
7910958 | Becker et al. | Mar 2011 | B2 |
7910959 | Becker et al. | Mar 2011 | B2 |
7917877 | Singh et al. | Mar 2011 | B2 |
7917879 | Becker et al. | Mar 2011 | B2 |
7923266 | Thijs et al. | Apr 2011 | B2 |
7923337 | Chang et al. | Apr 2011 | B2 |
7923757 | Becker et al. | Apr 2011 | B2 |
7926001 | Pierrat | Apr 2011 | B2 |
7932544 | Becker et al. | Apr 2011 | B2 |
7932545 | Becker et al. | Apr 2011 | B2 |
7934184 | Zhang | Apr 2011 | B2 |
7939443 | Fox et al. | May 2011 | B2 |
7943966 | Becker et al. | May 2011 | B2 |
7943967 | Becker et al. | May 2011 | B2 |
7948012 | Becker et al. | May 2011 | B2 |
7948013 | Becker et al. | May 2011 | B2 |
7952119 | Becker et al. | May 2011 | B2 |
7956421 | Becker | Jun 2011 | B2 |
7958465 | Lu et al. | Jun 2011 | B2 |
7962867 | White et al. | Jun 2011 | B2 |
7962878 | Melzner | Jun 2011 | B2 |
7962879 | Tang et al. | Jun 2011 | B2 |
7964267 | Lyons et al. | Jun 2011 | B1 |
7971160 | Osawa et al. | Jun 2011 | B2 |
7989847 | Becker et al. | Aug 2011 | B2 |
7989848 | Becker et al. | Aug 2011 | B2 |
7992122 | Burstein et al. | Aug 2011 | B1 |
7994583 | Inaba | Aug 2011 | B2 |
8004042 | Yang et al. | Aug 2011 | B2 |
8022441 | Becker et al. | Sep 2011 | B2 |
8030689 | Becker et al. | Oct 2011 | B2 |
8035133 | Becker et al. | Oct 2011 | B2 |
8044437 | Venkatraman et al. | Oct 2011 | B1 |
8058671 | Becker et al. | Nov 2011 | B2 |
8058690 | Chang | Nov 2011 | B2 |
8072003 | Becker et al. | Dec 2011 | B2 |
8072053 | Li | Dec 2011 | B2 |
8088679 | Becker et al. | Jan 2012 | B2 |
8088680 | Becker et al. | Jan 2012 | B2 |
8088681 | Becker et al. | Jan 2012 | B2 |
8088682 | Becker et al. | Jan 2012 | B2 |
8089098 | Becker et al. | Jan 2012 | B2 |
8089099 | Becker et al. | Jan 2012 | B2 |
8089100 | Becker et al. | Jan 2012 | B2 |
8089101 | Becker et al. | Jan 2012 | B2 |
8089102 | Becker et al. | Jan 2012 | B2 |
8089103 | Becker et al. | Jan 2012 | B2 |
8089104 | Becker et al. | Jan 2012 | B2 |
8101975 | Becker et al. | Jan 2012 | B2 |
8110854 | Becker et al. | Feb 2012 | B2 |
8129750 | Becker et al. | Mar 2012 | B2 |
8129751 | Becker et al. | Mar 2012 | B2 |
8129752 | Becker et al. | Mar 2012 | B2 |
8129754 | Becker et al. | Mar 2012 | B2 |
8129755 | Becker et al. | Mar 2012 | B2 |
8129756 | Becker et al. | Mar 2012 | B2 |
8129757 | Becker et al. | Mar 2012 | B2 |
8129819 | Becker et al. | Mar 2012 | B2 |
8130529 | Tanaka | Mar 2012 | B2 |
8134183 | Becker et al. | Mar 2012 | B2 |
8134184 | Becker et al. | Mar 2012 | B2 |
8134185 | Becker et al. | Mar 2012 | B2 |
8134186 | Becker et al. | Mar 2012 | B2 |
8138525 | Becker et al. | Mar 2012 | B2 |
8161427 | Morgenshtein et al. | Apr 2012 | B2 |
8178905 | Toubou | May 2012 | B2 |
8178909 | Venkatraman et al. | May 2012 | B2 |
8198656 | Becker et al. | Jun 2012 | B2 |
8207053 | Becker et al. | Jun 2012 | B2 |
8214778 | Quandt et al. | Jul 2012 | B2 |
8217428 | Becker et al. | Jul 2012 | B2 |
8225239 | Reed et al. | Jul 2012 | B2 |
8225261 | Hong et al. | Jul 2012 | B2 |
8245180 | Smayling et al. | Aug 2012 | B2 |
8247846 | Becker | Aug 2012 | B2 |
8253172 | Becker et al. | Aug 2012 | B2 |
8253173 | Becker et al. | Aug 2012 | B2 |
8258547 | Becker et al. | Sep 2012 | B2 |
8258548 | Becker et al. | Sep 2012 | B2 |
8258549 | Becker et al. | Sep 2012 | B2 |
8258550 | Becker et al. | Sep 2012 | B2 |
8258551 | Becker et al. | Sep 2012 | B2 |
8258552 | Becker et al. | Sep 2012 | B2 |
8258581 | Becker et al. | Sep 2012 | B2 |
8264007 | Becker et al. | Sep 2012 | B2 |
8264008 | Becker et al. | Sep 2012 | B2 |
8264009 | Becker et al. | Sep 2012 | B2 |
8264044 | Becker | Sep 2012 | B2 |
8274099 | Becker | Sep 2012 | B2 |
8283701 | Becker et al. | Oct 2012 | B2 |
8294212 | Wang et al. | Oct 2012 | B2 |
8316327 | Herold | Nov 2012 | B2 |
8356268 | Becker et al. | Jan 2013 | B2 |
8363455 | Rennie | Jan 2013 | B2 |
8378407 | Audzeyeu et al. | Feb 2013 | B2 |
8395224 | Becker et al. | Mar 2013 | B2 |
8402397 | Robles et al. | Mar 2013 | B2 |
8405163 | Becker et al. | Mar 2013 | B2 |
8422274 | Tomita et al. | Apr 2013 | B2 |
8436400 | Becker et al. | May 2013 | B2 |
8453094 | Kornachuk et al. | May 2013 | B2 |
8575706 | Becker et al. | Nov 2013 | B2 |
8667443 | Smayling et al. | Mar 2014 | B2 |
8701071 | Kornachuk et al. | Apr 2014 | B2 |
8735995 | Becker et al. | May 2014 | B2 |
8756551 | Becker et al. | Jun 2014 | B2 |
8836045 | Becker et al. | Sep 2014 | B2 |
8839162 | Amundson et al. | Sep 2014 | B2 |
8839175 | Smayling et al. | Sep 2014 | B2 |
8847329 | Becker et al. | Sep 2014 | B2 |
8863063 | Becker et al. | Oct 2014 | B2 |
9006841 | Kumar | Apr 2015 | B2 |
9035359 | Becker | May 2015 | B2 |
9202779 | Kornachuk et al. | Dec 2015 | B2 |
9269423 | Sever | Feb 2016 | B2 |
9336344 | Smayling | May 2016 | B2 |
9425272 | Becker | Aug 2016 | B2 |
9425273 | Becker | Aug 2016 | B2 |
9443947 | Becker | Sep 2016 | B2 |
9613844 | Or-Bach | Apr 2017 | B2 |
9633987 | Smayling | Apr 2017 | B2 |
20010049813 | Chan et al. | Dec 2001 | A1 |
20020003270 | Makino | Jan 2002 | A1 |
20020015899 | Chen et al. | Feb 2002 | A1 |
20020024049 | Nii | Feb 2002 | A1 |
20020030510 | Kono et al. | Mar 2002 | A1 |
20020063582 | Rikino | May 2002 | A1 |
20020068423 | Park et al. | Jun 2002 | A1 |
20020079516 | Lim | Jun 2002 | A1 |
20020079927 | Katoh et al. | Jun 2002 | A1 |
20020149392 | Cho | Oct 2002 | A1 |
20020166107 | Capodieci et al. | Nov 2002 | A1 |
20020194575 | Allen et al. | Dec 2002 | A1 |
20030042930 | Pileggi et al. | Mar 2003 | A1 |
20030046653 | Liu | Mar 2003 | A1 |
20030061592 | Agrawal et al. | Mar 2003 | A1 |
20030088839 | Watanabe | May 2003 | A1 |
20030088842 | Cirit | May 2003 | A1 |
20030090924 | Nii | May 2003 | A1 |
20030103176 | Abe et al. | Jun 2003 | A1 |
20030106037 | Moniwa et al. | Jun 2003 | A1 |
20030117168 | Uneme et al. | Jun 2003 | A1 |
20030124847 | Houston et al. | Jul 2003 | A1 |
20030125917 | Rich et al. | Jul 2003 | A1 |
20030126569 | Rich et al. | Jul 2003 | A1 |
20030128565 | Tomita | Jul 2003 | A1 |
20030145288 | Wang et al. | Jul 2003 | A1 |
20030145299 | Fried et al. | Jul 2003 | A1 |
20030177465 | MacLean et al. | Sep 2003 | A1 |
20030185076 | Worley | Oct 2003 | A1 |
20030203287 | Miyagawa | Oct 2003 | A1 |
20030229868 | White et al. | Dec 2003 | A1 |
20030229875 | Smith et al. | Dec 2003 | A1 |
20040029372 | Jang et al. | Feb 2004 | A1 |
20040049754 | Liao et al. | Mar 2004 | A1 |
20040063038 | Shin et al. | Apr 2004 | A1 |
20040115539 | Broeke et al. | Jun 2004 | A1 |
20040139412 | Ito et al. | Jul 2004 | A1 |
20040145028 | Matsumoto et al. | Jul 2004 | A1 |
20040153979 | Chang | Aug 2004 | A1 |
20040161878 | Or-Bach et al. | Aug 2004 | A1 |
20040164360 | Nishida et al. | Aug 2004 | A1 |
20040169201 | Hidaka | Sep 2004 | A1 |
20040194050 | Hwang et al. | Sep 2004 | A1 |
20040196705 | Ishikura et al. | Oct 2004 | A1 |
20040229135 | Wang et al. | Nov 2004 | A1 |
20040232444 | Shimizu | Nov 2004 | A1 |
20040243966 | Dellinger | Dec 2004 | A1 |
20040262640 | Suga | Dec 2004 | A1 |
20050001271 | Kobayashi | Jan 2005 | A1 |
20050009312 | Butt et al. | Jan 2005 | A1 |
20050009344 | Hwang et al. | Jan 2005 | A1 |
20050012157 | Cho et al. | Jan 2005 | A1 |
20050044522 | Maeda | Feb 2005 | A1 |
20050055828 | Wang et al. | Mar 2005 | A1 |
20050076320 | Maeda | Apr 2005 | A1 |
20050087806 | Hokazono | Apr 2005 | A1 |
20050093147 | Tu | May 2005 | A1 |
20050101112 | Rueckes et al. | May 2005 | A1 |
20050110130 | Kitabayashi et al. | May 2005 | A1 |
20050135134 | Yen | Jun 2005 | A1 |
20050136340 | Baselmans et al. | Jun 2005 | A1 |
20050138598 | Kokubun | Jun 2005 | A1 |
20050156200 | Kinoshita | Jul 2005 | A1 |
20050185325 | Hur | Aug 2005 | A1 |
20050189604 | Gupta et al. | Sep 2005 | A1 |
20050189614 | Ihme et al. | Sep 2005 | A1 |
20050196685 | Wang et al. | Sep 2005 | A1 |
20050205894 | Sumikawa et al. | Sep 2005 | A1 |
20050212018 | Schoellkopf et al. | Sep 2005 | A1 |
20050224982 | Kemerling et al. | Oct 2005 | A1 |
20050229130 | Wu et al. | Oct 2005 | A1 |
20050251771 | Robles | Nov 2005 | A1 |
20050264320 | Chung et al. | Dec 2005 | A1 |
20050264324 | Nakazato | Dec 2005 | A1 |
20050266621 | Kim | Dec 2005 | A1 |
20050268256 | Tsai et al. | Dec 2005 | A1 |
20050274983 | Hayashi et al. | Dec 2005 | A1 |
20050278673 | Kawachi | Dec 2005 | A1 |
20050280031 | Yano | Dec 2005 | A1 |
20060036976 | Cohn | Feb 2006 | A1 |
20060038234 | Liaw | Feb 2006 | A1 |
20060063334 | Donze et al. | Mar 2006 | A1 |
20060070018 | Semmler | Mar 2006 | A1 |
20060084261 | Iwaki | Apr 2006 | A1 |
20060091550 | Shimazaki et al. | May 2006 | A1 |
20060095872 | McElvain | May 2006 | A1 |
20060101370 | Cui et al. | May 2006 | A1 |
20060112355 | Pileggi et al. | May 2006 | A1 |
20060113533 | Tamaki et al. | Jun 2006 | A1 |
20060113567 | Ohmori et al. | Jun 2006 | A1 |
20060120143 | Liaw | Jun 2006 | A1 |
20060121715 | Chang et al. | Jun 2006 | A1 |
20060123376 | Vogel et al. | Jun 2006 | A1 |
20060125024 | Ishigaki | Jun 2006 | A1 |
20060131609 | Kinoshita et al. | Jun 2006 | A1 |
20060136848 | Ichiryu et al. | Jun 2006 | A1 |
20060146638 | Chang et al. | Jul 2006 | A1 |
20060151810 | Ohshige | Jul 2006 | A1 |
20060158270 | Gibet et al. | Jul 2006 | A1 |
20060170108 | Hiroi | Aug 2006 | A1 |
20060177744 | Bodendorf et al. | Aug 2006 | A1 |
20060181310 | Rhee | Aug 2006 | A1 |
20060195809 | Cohn et al. | Aug 2006 | A1 |
20060195810 | Morton | Aug 2006 | A1 |
20060197557 | Chung | Sep 2006 | A1 |
20060203530 | Venkatraman | Sep 2006 | A1 |
20060206854 | Barnes et al. | Sep 2006 | A1 |
20060223302 | Chang et al. | Oct 2006 | A1 |
20060248495 | Sezginer | Nov 2006 | A1 |
20060261417 | Suzuki | Nov 2006 | A1 |
20060277521 | Chen | Dec 2006 | A1 |
20060289861 | Correale, Jr. | Dec 2006 | A1 |
20070001304 | Liaw | Jan 2007 | A1 |
20070002617 | Houston | Jan 2007 | A1 |
20070004147 | Toubou | Jan 2007 | A1 |
20070007574 | Ohsawa | Jan 2007 | A1 |
20070038973 | Li et al. | Feb 2007 | A1 |
20070074145 | Tanaka | Mar 2007 | A1 |
20070094634 | Seizginer et al. | Apr 2007 | A1 |
20070101305 | Smith et al. | May 2007 | A1 |
20070105023 | Zhou et al. | May 2007 | A1 |
20070106971 | Lien et al. | May 2007 | A1 |
20070113216 | Zhang | May 2007 | A1 |
20070172770 | Witters et al. | Jul 2007 | A1 |
20070186196 | Tanaka | Aug 2007 | A1 |
20070196958 | Bhattacharya et al. | Aug 2007 | A1 |
20070204253 | Murakawa | Aug 2007 | A1 |
20070209029 | Ivonin et al. | Sep 2007 | A1 |
20070210391 | Becker et al. | Sep 2007 | A1 |
20070234252 | Visweswariah et al. | Oct 2007 | A1 |
20070234262 | Uedi et al. | Oct 2007 | A1 |
20070241810 | Onda | Oct 2007 | A1 |
20070251771 | Huang | Nov 2007 | A1 |
20070256039 | White | Nov 2007 | A1 |
20070257277 | Takeda et al. | Nov 2007 | A1 |
20070264758 | Correale | Nov 2007 | A1 |
20070274140 | Joshi et al. | Nov 2007 | A1 |
20070277129 | Allen et al. | Nov 2007 | A1 |
20070288882 | Kniffin et al. | Dec 2007 | A1 |
20070290361 | Chen | Dec 2007 | A1 |
20070294652 | Bowen | Dec 2007 | A1 |
20070297249 | Chang et al. | Dec 2007 | A1 |
20070300202 | Uchida | Dec 2007 | A1 |
20080001176 | Gopalakrishnan | Jan 2008 | A1 |
20080005712 | Charlebois et al. | Jan 2008 | A1 |
20080021689 | Yamashita et al. | Jan 2008 | A1 |
20080022247 | Kojima et al. | Jan 2008 | A1 |
20080046846 | Chew et al. | Feb 2008 | A1 |
20080073717 | Ha et al. | Mar 2008 | A1 |
20080081472 | Tanaka | Apr 2008 | A1 |
20080082952 | O'Brien | Apr 2008 | A1 |
20080086712 | Fujimoto | Apr 2008 | A1 |
20080097641 | Miyashita et al. | Apr 2008 | A1 |
20080098334 | Pileggi et al. | Apr 2008 | A1 |
20080098341 | Kobayashi et al. | Apr 2008 | A1 |
20080099795 | Bernstein et al. | May 2008 | A1 |
20080127000 | Majumder et al. | May 2008 | A1 |
20080127029 | Graur et al. | May 2008 | A1 |
20080134128 | Blatchford et al. | Jun 2008 | A1 |
20080144361 | Wong | Jun 2008 | A1 |
20080148216 | Chan et al. | Jun 2008 | A1 |
20080163141 | Scheffer et al. | Jul 2008 | A1 |
20080168406 | Rahmat et al. | Jul 2008 | A1 |
20080169868 | Toubou | Jul 2008 | A1 |
20080211028 | Suzuki | Sep 2008 | A1 |
20080216207 | Tsai | Sep 2008 | A1 |
20080244494 | McCullen | Oct 2008 | A1 |
20080251779 | Kakoschke et al. | Oct 2008 | A1 |
20080265290 | Nielsen et al. | Oct 2008 | A1 |
20080276105 | Hoberman et al. | Nov 2008 | A1 |
20080283910 | Dreeskornfeld et al. | Nov 2008 | A1 |
20080285331 | Torok et al. | Nov 2008 | A1 |
20080308848 | Inaba | Dec 2008 | A1 |
20080308880 | Inaba | Dec 2008 | A1 |
20080315258 | Masuda et al. | Dec 2008 | A1 |
20090014811 | Becker et al. | Jan 2009 | A1 |
20090024974 | Yamada | Jan 2009 | A1 |
20090031261 | Smith et al. | Jan 2009 | A1 |
20090032898 | Becker et al. | Feb 2009 | A1 |
20090032967 | Becker et al. | Feb 2009 | A1 |
20090037864 | Becker et al. | Feb 2009 | A1 |
20090044163 | Wang | Feb 2009 | A1 |
20090057780 | Wong et al. | Mar 2009 | A1 |
20090075485 | Ban et al. | Mar 2009 | A1 |
20090077524 | Nagamura | Mar 2009 | A1 |
20090085067 | Hayashi et al. | Apr 2009 | A1 |
20090087991 | Yatsuda et al. | Apr 2009 | A1 |
20090101940 | Barrows et al. | Apr 2009 | A1 |
20090106714 | Culp et al. | Apr 2009 | A1 |
20090155990 | Yanagidaira et al. | Jun 2009 | A1 |
20090181314 | Shyu et al. | Jul 2009 | A1 |
20090187871 | Cork | Jul 2009 | A1 |
20090206443 | Juengling | Aug 2009 | A1 |
20090224408 | Fox | Sep 2009 | A1 |
20090228853 | Hong et al. | Sep 2009 | A1 |
20090228857 | Kornachuk et al. | Sep 2009 | A1 |
20090235215 | Lavin | Sep 2009 | A1 |
20090273100 | Aton et al. | Nov 2009 | A1 |
20090280582 | Thijs et al. | Nov 2009 | A1 |
20090283921 | Wang | Nov 2009 | A1 |
20090302372 | Chang et al. | Dec 2009 | A1 |
20090319977 | Saxena et al. | Dec 2009 | A1 |
20100001321 | Becker | Jan 2010 | A1 |
20100006897 | Becker et al. | Jan 2010 | A1 |
20100006898 | Becker et al. | Jan 2010 | A1 |
20100006899 | Becker et al. | Jan 2010 | A1 |
20100006900 | Becker et al. | Jan 2010 | A1 |
20100006901 | Becker et al. | Jan 2010 | A1 |
20100006902 | Becker et al. | Jan 2010 | A1 |
20100006903 | Becker et al. | Jan 2010 | A1 |
20100006947 | Becker et al. | Jan 2010 | A1 |
20100006948 | Becker et al. | Jan 2010 | A1 |
20100006950 | Becker et al. | Jan 2010 | A1 |
20100006951 | Becker et al. | Jan 2010 | A1 |
20100006986 | Becker et al. | Jan 2010 | A1 |
20100011327 | Becker et al. | Jan 2010 | A1 |
20100011328 | Becker et al. | Jan 2010 | A1 |
20100011329 | Becker et al. | Jan 2010 | A1 |
20100011330 | Becker et al. | Jan 2010 | A1 |
20100011331 | Becker et al. | Jan 2010 | A1 |
20100011332 | Becker et al. | Jan 2010 | A1 |
20100011333 | Becker et al. | Jan 2010 | A1 |
20100012981 | Becker et al. | Jan 2010 | A1 |
20100012982 | Becker et al. | Jan 2010 | A1 |
20100012983 | Becker et al. | Jan 2010 | A1 |
20100012984 | Becker et al. | Jan 2010 | A1 |
20100012985 | Becker et al. | Jan 2010 | A1 |
20100012986 | Becker et al. | Jan 2010 | A1 |
20100017766 | Becker et al. | Jan 2010 | A1 |
20100017767 | Becker et al. | Jan 2010 | A1 |
20100017768 | Becker et al. | Jan 2010 | A1 |
20100017769 | Becker et al. | Jan 2010 | A1 |
20100017770 | Becker et al. | Jan 2010 | A1 |
20100017771 | Becker et al. | Jan 2010 | A1 |
20100017772 | Becker et al. | Jan 2010 | A1 |
20100019280 | Becker et al. | Jan 2010 | A1 |
20100019281 | Becker et al. | Jan 2010 | A1 |
20100019282 | Becker et al. | Jan 2010 | A1 |
20100019283 | Becker et al. | Jan 2010 | A1 |
20100019284 | Becker et al. | Jan 2010 | A1 |
20100019285 | Becker et al. | Jan 2010 | A1 |
20100019286 | Becker et al. | Jan 2010 | A1 |
20100019287 | Becker et al. | Jan 2010 | A1 |
20100019288 | Becker et al. | Jan 2010 | A1 |
20100019308 | Chan et al. | Jan 2010 | A1 |
20100023906 | Becker et al. | Jan 2010 | A1 |
20100023907 | Becker et al. | Jan 2010 | A1 |
20100023908 | Becker et al. | Jan 2010 | A1 |
20100023911 | Becker et al. | Jan 2010 | A1 |
20100025731 | Becker et al. | Feb 2010 | A1 |
20100025732 | Becker et al. | Feb 2010 | A1 |
20100025733 | Becker et al. | Feb 2010 | A1 |
20100025734 | Becker et al. | Feb 2010 | A1 |
20100025735 | Becker et al. | Feb 2010 | A1 |
20100025736 | Becker et al. | Feb 2010 | A1 |
20100032722 | Becker et al. | Feb 2010 | A1 |
20100032723 | Becker et al. | Feb 2010 | A1 |
20100032724 | Becker et al. | Feb 2010 | A1 |
20100032726 | Becker et al. | Feb 2010 | A1 |
20100037194 | Becker et al. | Feb 2010 | A1 |
20100037195 | Becker et al. | Feb 2010 | A1 |
20100096671 | Becker et al. | Apr 2010 | A1 |
20100115484 | Frederick | May 2010 | A1 |
20100203689 | Bernstein et al. | Aug 2010 | A1 |
20100224943 | Kawasaki | Sep 2010 | A1 |
20100229140 | Werner et al. | Sep 2010 | A1 |
20100232212 | Anderson et al. | Sep 2010 | A1 |
20100252865 | Van Der Zanden | Oct 2010 | A1 |
20100252896 | Smayling | Oct 2010 | A1 |
20100264468 | Xu | Oct 2010 | A1 |
20100270681 | Bird et al. | Oct 2010 | A1 |
20100287518 | Becker | Nov 2010 | A1 |
20100301482 | Schultz et al. | Dec 2010 | A1 |
20110014786 | Sezginer | Jan 2011 | A1 |
20110016909 | Mirza et al. | Jan 2011 | A1 |
20110108890 | Becker et al. | May 2011 | A1 |
20110108891 | Becker et al. | May 2011 | A1 |
20110154281 | Zach | Jun 2011 | A1 |
20110207298 | Anderson et al. | Aug 2011 | A1 |
20110260253 | Inaba | Oct 2011 | A1 |
20110298025 | Haensch et al. | Dec 2011 | A1 |
20110317477 | Liaw | Dec 2011 | A1 |
20120012932 | Perng et al. | Jan 2012 | A1 |
20120118854 | Smayling | May 2012 | A1 |
20120131528 | Chen | May 2012 | A1 |
20120273841 | Quandt et al. | Nov 2012 | A1 |
20120299065 | Shimizu | Nov 2012 | A1 |
20130065389 | Kagawa | Mar 2013 | A1 |
20130097574 | Balabanov et al. | Apr 2013 | A1 |
20130162293 | Lilja | Jun 2013 | A1 |
20130200465 | Becker et al. | Aug 2013 | A1 |
20130200469 | Becker et al. | Aug 2013 | A1 |
20130207198 | Becker et al. | Aug 2013 | A1 |
20130207199 | Becker et al. | Aug 2013 | A1 |
20130254732 | Kornachuk et al. | Sep 2013 | A1 |
20140197543 | Kornachuk et al. | Jul 2014 | A1 |
20150249041 | Becker et al. | Sep 2015 | A1 |
20150270218 | Becker et al. | Sep 2015 | A1 |
20160079159 | Kornachuk et al. | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
0102644 | Jul 1989 | EP |
0788166 | Aug 1997 | EP |
1394858 | Mar 2004 | EP |
1670062 | Jun 2006 | EP |
1833091 | Aug 2007 | EP |
1730777 | Sep 2007 | EP |
2251901 | Nov 2010 | EP |
2860920 | Apr 2005 | FR |
58-182242 | Oct 1983 | JP |
58-215827 | Dec 1983 | JP |
61-182244 | Aug 1986 | JP |
S61-202451 | Sep 1986 | JP |
S62-047148 | Feb 1987 | JP |
563-310136 | Dec 1988 | JP |
H01284115 | Nov 1989 | JP |
03-165061 | Jul 1991 | JP |
H05152937 | Jun 1993 | JP |
H05211437 | Aug 1993 | JP |
H05218362 | Aug 1993 | JP |
H07-153927 | Jun 1995 | JP |
2684980 | Jul 1995 | JP |
1995-302706 | Nov 1995 | JP |
09-282349 | Oct 1997 | JP |
1997-09289251 | Nov 1997 | JP |
10-116911 | May 1998 | JP |
1999-045948 | Feb 1999 | JP |
2000-164811 | Jun 2000 | JP |
2001-068558 | Mar 2001 | JP |
2001-168707 | Jun 2001 | JP |
2001-306641 | Nov 2001 | JP |
2002-026125 | Jan 2002 | JP |
2002-026296 | Jan 2002 | JP |
2002-184870 | Jun 2002 | JP |
2001-056463 | Sep 2002 | JP |
2002-258463 | Sep 2002 | JP |
2002-289703 | Oct 2002 | JP |
2001-272228 | Mar 2003 | JP |
2003-100872 | Apr 2003 | JP |
2003-264231 | Sep 2003 | JP |
2004-013920 | Jan 2004 | JP |
2004-200300 | Jul 2004 | JP |
2004-241529 | Aug 2004 | JP |
2004-342757 | Dec 2004 | JP |
2005-020008 | Jan 2005 | JP |
2003-359375 | May 2005 | JP |
2005-123537 | May 2005 | JP |
2005-135971 | May 2005 | JP |
2005-149265 | Jun 2005 | JP |
2005-183793 | Jul 2005 | JP |
2005-203447 | Jul 2005 | JP |
2005-268610 | Sep 2005 | JP |
2006-073696 | Mar 2006 | JP |
2005-114752 | Oct 2006 | JP |
2006-303022 | Nov 2006 | JP |
2007-012855 | Jan 2007 | JP |
2007-013060 | Jan 2007 | JP |
2007-043049 | Feb 2007 | JP |
2007-141971 | Jun 2007 | JP |
2011-515841 | May 2011 | JP |
10-0417093 | Jun 1997 | KR |
10-1998-087485 | Dec 1998 | KR |
1998-0084215 | Dec 1998 | KR |
10-1999-0057943 | Jul 1999 | KR |
2000-0005660 | Jan 2000 | KR |
10-2000-0028830 | May 2000 | KR |
10-2002-0034313 | May 2002 | KR |
10-2002-0070777 | Sep 2002 | KR |
2003-0022006 | Mar 2003 | KR |
2004-0005609 | Jan 2004 | KR |
10-2005-0030347 | Mar 2005 | KR |
2005-0037965 | Apr 2005 | KR |
2006-0108233 | Oct 2006 | KR |
386288 | Apr 2000 | TW |
200423404 | Nov 2004 | TW |
200426632 | Dec 2004 | TW |
200534132 | Oct 2005 | TW |
200620017 | Jun 2006 | TW |
200630838 | Sep 2006 | TW |
200709309 | Mar 2007 | TW |
200709565 | Mar 2007 | TW |
200811704 | Mar 2008 | TW |
200947567 | Nov 2009 | TW |
WO 2005104356 | Nov 2005 | WO |
WO 2006014849 | Feb 2006 | WO |
WO 2006052738 | May 2006 | WO |
WO 2006090445 | Aug 2006 | WO |
WO 2007014053 | Feb 2007 | WO |
WO 2007063990 | Jun 2007 | WO |
WO 2007103587 | Sep 2007 | WO |
WO 2009054936 | Apr 2009 | WO |
Entry |
---|
U.S. Appl. No. 60/625,342, Pileggi et al., filed May 25, 2006. |
Acar, et al., “A Linear-Centric Simulation Framework for Parametric Fluctuations”, 2002, IEEE, Carnegie Mellon University USA, pp. 1-8, Jan. 28, 2002. |
Amazawa, et al., “Fully Planarized Four-Level Interconnection with Stacked VLAS Using CMP of Selective CVD-A1 and Insulator and its Application to Quarter Micron Gate Array LSIs”, 1995, IEEE, Japan, pp. 473-476, Dec. 10, 1995. |
Axelrad et al. “Efficient Full-Chip Yield Analysis Methodology for OPC-Corrected VLSI Design”, 2000, International Symposium on Quality Electronic Design (ISQED), Mar. 20, 2000. |
Balasinski et al. “Impact of Subwavelength CD Tolerance on Device Performance”, 2002, SPIE vol. 4692, Jul. 11, 2002. |
Burkhardt, et al., “Dark Field Double Dipole Lithography (DDL) for Back-End-Of-Line Processes”, 2007, SPIE Proceeding Series, vol. 6520; Mar. 26, 2007. |
Capetti, et al., “Sub k1=0.25 Lithography with Double Patterning Technique for 45nm Technology Node Flash Memory Devices at λ=193nm”, 2007, SPIE Proceeding Series, vol. 6520; Mar. 27, 2007. |
Capodieci, L., et al., “Toward a Methodology for Manufacturability-Driven Design Rule Exploration,” DAC 2004, Jun. 7, 2004, San Diego, CA. |
Chandra, et al., “An Interconnect Channel Design Methodology for High Performance Integrated Circuits”, 2004, IEEE, Carnegie Mellon University, pp. 16, Feb. 16, 2004. |
Cheng, et al., “Feasibility Study of Splitting Pitch Technology on 45nm Contact Patterning with 0.93 NA”, 2007, SPIE Proceeding Series, vol. 6520; Feb. 25, 2007. |
Chow, et al., “The Design of a SRAM-Based Field-Programmable Gate Array-Part II: Circuit Design and Layout”, 1999, IEEE, vol. 7 #3 pp. 321-330, Sep. 1, 1999. |
Clark et al. “Managing Standby and Active Mode Leakage Power in Deep Sub-Micron Design”, Aug. 9, 2004, ACM. |
Cobb et al. “Using OPC to Optimize for Image Slope and Improve Process Window”, 2003, SPIE vol. 5130, Apr. 16, 2003. |
Devgan “Leakage Issues in IC Design: Part 3”, 2003, ICCAD, Nov. 9, 2003. |
DeVor, et al., “Statistical Quality Design and Control”, 1992, Macmillan Publishing Company, pp. 264-267, Jan. 3, 1992. |
Dictionary.com, “channel,” in Collins English Dictionary—Complete & Unabridged 10th Edition. Source location: HarperCollins Publishers. Sep. 3, 2009. |
Dusa, et al. “Pitch Doubling Through Dual Patterning Lithography Challenges in Integration and Litho Budgets”, 2007, SPIE Proceeding Series, vol. 6520; Feb. 25, 2007. |
El-Gamal, “Fast, Cheap and Under Control: The Next Implementation Fabric”, Jun. 2, 2003, ACM Press, pp. 354-355. |
Firedberg, et al., “Modeling Within-Field Gate Length Spatial Variation for Process-Design Co-Optimization,” 2005 Proc. of SPIE vol. 5756, pp. 178-188, Feb. 27, 2005. |
Frankel, “Quantum State Control Interference Lithography and Trim Double Patterning for 32-16nm Lithography”, 2007, SPIE Proceeding Series, vol. 6520; Feb. 27, 2007. |
Garg, et al. “ Lithography Driven Layout Design”, 2005, IEEE VLSI Design 2005, Jan. 3, 2005. |
Grobman et al. “Reticle Enhancement Technology Trends: Resource and Manufacturability Implications for the Implementation of Physical Designs” Apr. 1, 2001, ACM. |
Grobman et al. “Reticle Enhancement Technology: Implications and Challenges for Physical Design” Jun. 18, 2001, ACM. |
Gupta et al. “ Enhanced Resist and Etch CD Control by Design Perturbation”, Oct. 4, 2006, Society of Photo-Optical Instrumentation Engineers. |
Gupta et al. “A Practical Transistor-Level Dual Threshold Voltage Assignment Methodology”, 2005, Sixth International Symposium on Quality Electronic Design (ISQED), Mar. 21, 2005. |
Gupta et al. “Detailed Placement for Improved Depth of Focus and CD Control”, 2005, ACM, Jan. 18, 2005. |
Gupta et al. “Joining the Design and Mask Flows for Better and Cheaper Masks”, Oct. 14, 2004, Society of Photo-Optical Instrumentation Engineers. |
Gupta et al. “Manufacturing-Aware Physical Design”, ICCAD 2003, Nov. 9, 2003. |
Gupta et al. “Selective Gate-Length Biasing for Cost-Effective Runtime Leakage Control”, Jun. 7, 2004, ACM. |
Gupta et al. “Wafer Topography-Aware Optical Proximity Correction for Better DOF Margin and CD Control”, Apr. 13, 2005, SPIE. |
Gupta, Puneet, et al., “Manufacturing-aware Design Methodology for Assist Feature Correctness,” SPIE vol. 5756, May 13, 2005. |
Ha et al., “Reduction in the Mask Error Factor by Optimizing the Diffraction Order of a Scattering Bar in Lithography,” Journal of the Korean Physical Society, vol. 46, No. 5, May 5, 2005, pp. 1213-1217. |
Hakko, et al., “Extension of the 2D-TCC Technique to Optimize Mask Pattern Layouts,” 2008 Proc. of SPIE vol. 7028, 11 pages, Apr. 16, 2008. |
Halpin et al., “Detailed Placement with Net Length Constraints,” Publication Year 2003, Proceedings of the 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, pp. 22-27, Jun. 30, 2003. |
Hayashida, et al., “Manufacturable Local Interconnect technology Fully Compatible with Titanium Salicide Process”, Jun. 11, 1991, VMIC Conference. |
Heng, et al., “A VLSI Artwork Legalization Technique Base on a New Criterion of Minimum Layout Perturbation”, Proceedings of 1997 International Symposium on Physical Design, pp. 116-121, Apr. 14, 1997. |
Heng, et al., “Toward Through-Process Layout Quality Metrics”, Mar. 3, 2005, Society of Photo-Optical Instrumentation Engineers. |
Hu, et al., “Synthesis and Placement Flow for Gain-Based Programmable Regular Fabrics”, Apr. 6, 2003, ACM Press, pp. 197-203. |
Hur et al., “Mongrel: Hybrid Techniques for Standard Cell Placement,” Publication Year 2000, IEEE/ACM International Conference on Computer Aided Design, ICCAD-2000, pp. 165-170, Nov. 5, 2000. |
Hutton, et al., “A Methodology for FPGA to Structured-ASIC Synthesis and Verification”, 2006, EDAA, pp. 64-69, Mar. 6, 2006. |
Intel Core Microarchitecture White Paper “Introducing the 45 nm Next-Generation Intel Core Microarchitecture,” Intel Corporation, 2007 (best available publication date). |
Jayakumar, et al., “A Metal and Via Maskset Programmable VLSI Design Methodology using PLAs”, 2004, IEEE, pp. 590-594, Nov. 7, 2004. |
Jhaveri, T. et al., Maximization of Layout Printability/Manufacturability by Extreme Layout Regularity, Proc. of the SPIE vol. 6156, Feb. 19, 2006. |
Kang, S.M., Metal-Metal Matrix (M3) for High-Speed Mos VLSI Layout, IEEE Trans. on CAD, vol. CAD-6, No. 5, Sep. 1, 1987. |
Kawashima, et al., “Mask Optimization for Arbitrary Patterns with 2D-TCC Resolution Enhancement Technique,” 2008 Proc. of SPIE vol. 6924, 12 pages, Feb. 24, 2008. |
Kheterpal, et al., “Design Methodology for IC Manufacturability Based on Regular Logic-Bricks”, DAC, Jun. 13, 2005, IEEE/AMC, vol. 6520. |
Kheterpal, et al., “Routing Architecture Exploration for Regular Fabrics”, DAC, Jun. 7, 2004, ACM Press, pp. 204-207. |
Kim, et al., “Double Exposure Using 193nm Negative Tone Photoresist”, 2007, SPIE Proceeding Series, vol. 6520; Feb. 25, 2007. |
Kim, et al., “Issues and Challenges of Double Patterning Lithography in DRAM”, 2007, SPIE Proceeding Series, vol. 6520; Feb. 25, 2007. |
Koorapaty, et al., “Exploring Logic Block Granularity for Regular Fabrics”, 2004, IEEE, pp. 1-6, Feb. 16, 2004. |
Koorapaty, et al., “Heterogeneous Logic Block Architectures for Via-Patterned Programmable Fabric”, 13th International Conference on Field Programmable Logic and Applications (FPL) 2003, Lecture Notes in Computer Science (LNCS), Sep. 1, 2003, Springer-Verlag, vol. 2778, pp. 426-436. |
Koorapaty, et al., “Modular, Fabric-Specific Synthesis for Programmable Architectures”, 12th International Conference on Field Programmable Logic and Applications (FPL_2002, Lecture Notes in Computer Science (LNCS)), Sep. 2, 2002, Springer-Verlag, vol. 2438 pp. 132-141. |
Kuh et al., “Recent Advances in VLSI Layout,” Proceedings of the IEEE, vol. 78, Issue 2, pp. 237-263, Feb. 1, 1990. |
Lavin et al. “Backend DAC Flows for “Restrictive Design Rules””, 2004, IEEE, Nov. 7, 2004. |
Li, et al., “A Linear-Centric Modeling Approach to Harmonic Balance Analysis”, 2002, IEEE, pp. 1-6, Mar. 4, 2002. |
Li, et al., “Nonlinear Distortion Analysis Via Linear-Centric Models”, 2003, IEEE, pp. 897-903, Jan. 21, 2003. |
Liebmann et al., “Integrating DfM Components into a Cohesive Design-to-Silicon Solution,” Proc. SPIE 5756, Design and Process Integration for Microelectronic Manufacturing III, Feb. 27, 2005. |
Liebmann et al., “Optimizing Style Options for Sub-Resolution Assist Features,” Proc. of SPIE vol. 4346, Feb. 25, 2001, pp. 141-152. |
Liebmann, et al., “High-Performance Circuit Design for the RET-Enabled 65nm Technology Node”, Feb. 26, 2004, SPIE Proceeding Series, vol. 5379 pp. 20-29. |
Liebmann, L. W., Layout Impact of Resolution Enhancement Techniques: Impediment or Opportunity?, International Symposium on Physical Design, Apr. 6, 2003. |
Liu et al., “Double Patterning with Multilayer Hard Mask Shrinkage for Sub 0.25 k1 Lithography,” Proc. SPIE 6520, Optical Microlithography XX, Feb. 25, 2007. |
Mansfield et al., “Lithographic Comparison of Assist Feature Design Strategies,” Proc. of SPIE vol. 4000, Feb. 27, 2000, pp. 63-76. |
Miller, “Manufacturing-Aware Design Helps Boost IC Yield”, Sep. 9, 2004, http://www.eetimes.com/showArticle.jhtml?articleID=47102054. |
Mishra, P., et al., “FinFET Circuit Design,” Nanoelectronic Circuit Design, pp. 23-54, Dec. 21, 2010. |
Mo, et al., “Checkerboard: A Regular Structure and its Synthesis, International Workshop on Logic and Synthesis”, Department of Electrical Engineering and Computer Sciences, UC Berkeley, California, pp. 1-7, Jun. 1, 2003. |
Mo, et al., “PLA-Based Regular Structures and Their Synthesis”, Department of Electrical Engineering and Computer Sciences, IEEE, pp. 723-729, Jun. 1, 2003. |
Mo, et al., “Regular Fabrics in Deep Sub-Micron Integrated-Circuit Design”, Kluwer Academic Publishers, Entire Book, Jun. 1, 2002. |
Moore, Samuel K., “Intel 45-nanometer Penryn Processors Arrive,” Nov. 13, 2007, IEEE Spectrum, http://spectrum.ieee.org/semiconductors/design/intel-45nanometer-penryn-processors-arrive. |
Mutoh et al. “1-V Power Supply High-Speed Digital Circuit Technology with Multithreshold-Voltage CMOS”, 1995, IEEE, Aug. 1, 1995. |
Op de Beek, et al., “Manufacturability issues with Double Patterning for 50nm half pitch damascene applications, using RELACS® shrink and corresponding OPC”, 2007, SPIE Proceeding Series, vol. 6520; Feb. 25, 2007. |
Or-Bach, “Programmable Circuit Fabrics”, Sep. 18, 2001, e-ASIC, pp. 1-36. |
Otten, et al., “Planning for Performance”, DAC 1998, ACM Inc., pp. 122-127, Jun. 15, 1998. |
Pack et al. “Physical & Timing Verification of Subwavelength-Scale Designs-Part I: Lithography Impact on MOSFETs”, 2003, SPIE vol. 5042, Feb. 23, 2003. |
Pandini, et al., “Congestion-Aware Logic Synthesis”, 2002, IEEE, pp. 1-8, Mar. 4, 2002. |
Pandini, et al., “Understanding and Addressing the Impact of Wiring Congestion During Technology Mapping”, ISPD Apr. 7, 2002, ACM Press, pp. 131-136. |
Patel, et al., “An Architectural Exploration of Via Patterned Gate Arrays, ISPD 2003”, Apr. 6, 2003, pp. 184-189. |
Pham, D., et al., “FINFET Device Junction Formation Challenges,” 2006 International Workshop on Junction Technology, pp. 73-77, Aug. 1, 2006. |
Pileggi, et al., “Exploring Regular Fabrics to Optimize the Performance-Cost Trade-Offs, Proceedings of the 40th ACM/IEEE Design Automation (DAC) 2003”, Jun. 2, 2003, ACM Press, pp. 782-787. |
Poonawala, et al., “ILT for Double Exposure Lithography with Conventional and Novel Materials”, 2007, SPIE Proceeding Series, vol. 6520; Feb. 25, 2007. |
Qian et al. “Advanced Physical Models for Mask Data Verification and Impacts on Physical Layout Synthesis” 2003 IEEE, Mar. 24, 2003. |
Ran, et al., “An Integrated Design Flow for a Via-Configurable Gate Array”, 2004, IEEE, pp. 582-589, Nov. 7, 2004. |
Ran, et al., “Designing a Via-Configurable Regular Fabric”, Custom Integrated Circuits Conference (CICC). Proceedings of the IEEE, Oct. 1, 2004, pp. 423-426. |
Ran, et al., “On Designing Via-Configurable Cell Blocks for Regular Fabrics” Proceedings of the Design Automation Conference (DAC) 2004, Jun. 7, 2004, ACM Press, s 198-203. |
Ran, et al., “The Magic of a Via-Configurable Regular Fabric”, Proceedings of the IEEE International Conference on Computer Design (ICCD) Oct. 11, 2004. |
Ran, et al., “Via-Configurable Routing Architectures and Fast Design Mappability Estimation for Regular Fabrics”, 2005, IEEE, pp. 25-32, Sep. 1, 2006. |
Reis, et al., “Physical Design Methodologies for Performance Predictability and Manufacturability”, Apr. 14, 2004, ACM Press, pp. 390-397. |
Robertson, et al., “The Modeling of Double Patterning Lithographic Processes”, 2007, SPIE Proceeding Series, vol. 6520; Feb. 25, 2007. |
Rosenbluth, et al., “Optimum Mask and Source Patterns to Print a Given Shape,” 2001 Proc. of SPIE vol. 4346, pp. 486-502, Feb. 25, 2001. |
Rovner, “Design for Manufacturability in Via Programmable Gate Arrays”, May 1, 2003, Graduate School of Carnegie Mellon University. |
Sengupta, “An Integrated CAD Framework Linking VLSI Layout Editors and Process Simulators”, 1998, Thesis for Rice University, pp. 1-101, Nov. 1, 1998. |
Sengupta, et al., “An Integrated CAD Framework Linking VLSI Layout Editors and Process Simulators”, 1996, SPIE Proceeding Series, vol. 2726; pp. 244-252, Mar. 10, 1996. |
Sherlekar, “Design Considerations for Regular Fabrics”, Apr. 18, 2004, ACM Press, pp. 97-102. |
Shi et al., “Understanding the Forbidden Pitch and Assist Feature Placement,” Proc. of SPIE vol. 4562, pp. 968-979, Mar. 11, 2002. |
Smayling et al., “APF Pitch Halving for 22 nm Logic Cells Using Gridded Design Rules,” Proceedings of SPIE, USA, vol. 6925, Jan. 1, 2008, pp. 69251E-1-69251E-7. |
Socha, et al., “Simultaneous Source Mask Optimization (SMO),” 2005 Proc. of SPIE vol. 5853, pp. 180-193, Apr. 13, 2005. |
Sreedhar et al. “ Statistical Yield Modeling for Sub-Wavelength Lithography”, 2008 IEEE, Oct. 28, 2008. |
Stapper, “Modeling of Defects in Integrated Circuit Photolithographic Patterns”, Jul. 1, 1984, IBM, vol. 28 #4, pp. 461-475. |
Taylor, et al., “Enabling Energy Efficiency in Via-Patterned Gate Array Devices”, Jun. 7, 2004, ACM Press, pp. 874-877. |
Tian et al. “Model-Based Dummy Feature Placement for Oxide Chemical_Mechanical Polishing Manufacturability” IEEE, vol. 20, Issue 7, Jul. 1, 2001. |
Tong, et al., “Regular Logic Fabrics for a Via Patterned Gate Array (VPGA), Custom Integrated Circuits Conference”, Sep. 21, 2003, Proceedings of the IEEE, pp. 53-56. |
Vanleenhove, et al., “A Litho-Only Approach to Double Patterning”, 2007, SPIE Proceeding Series, vol. 6520; Feb. 25, 2007. |
Wang, et al., “Performance Optimization for Gridded-Layout Standard Cells”, vol. 5567 SPIE, Sep. 13, 2004. |
Wang, J. et al., Standard Cell Layout with Regular Contact Placement, IEEE Trans. on Semicon. Mfg., vol. 17, No. 3, Aug. 9, 2004. |
Webb, Clair, “45nm Design for Manufacturing,” Intel Technology Journal, vol. 12, Issue 02, Jun. 17, 2008, ISSN 1535-864X, pp. 121-130. |
Webb, Clair, “Layout Rule Trends and Affect upon CPU Design”, vol. 6156 SPIE, Feb. 19, 2006. |
Wenren, et al., “The Improvement of Photolithographic Fidelity of Two-dimensional Structures Though Double Exposure Method”, 2007, SPIE Proceeding Series, vol. 6520; Feb. 25, 2007. |
Wilcox, et al., “Design for Manufacturability: A Key to Semiconductor Manufacturing Excellence”, 1998 IEEE, pp. 308-313, Sep. 23, 1998. |
Wong, et al., “Resolution Enhancement Techniques and Design for Manufacturability: Containing and Accounting for Variabilities in Integrated Circuit Creation,” J. Micro/Nanolith. MEMS MOEMS, Sep. 27, 2007, vol. 6(3), 2 pages. |
Wu, et al., “A Study of Process Window Capabilities for Two-dimensional Structures under Double Exposure Condition”, 2007, SPIE Proceeding Series, vol. 6520; Feb. 25, 2007. |
Xiong, et al., “The Constrained Via Minimization Problem for PCB and VLSI Design”, 1988 ACM Press/IEEE, pp. 573-578, Jun. 12, 1998. |
Yamamaoto, et al., “New Double Exposure Technique without Alternating Phase Shift Mask”, SPIE Proceeding Series, vol. 6520; Feb. 25, 2007. |
Yamazoe, et al., “Resolution Enhancement by Aerial Image Approximation with 2D-TCC,” 2007 Proc. of SPIE vol. 6730, 12 pages, Sep. 17, 2007. |
Yang, et al., “Interconnection Driven VLSI Module Placement Based on Quadratic Programming and Considering Congestion Using LFFPrinciples”, 2004 IEEE, pp. 1243-1247, Jun. 27, 2004. |
Yao, et al., “Multilevel Routing With Redundant Via Insertion”, Oct. 23, 2006, IEEE, pp. 1148-1152. |
Yu, et al., “True Process Variation Aware Optical Proximity Correction with Variational Lithography Modeling and Model Calibration,” J. Micro/Nanolith. MEMS MOEMS, Sep. 11, 2007, vol. 6(3), 16 pages. |
Zheng, et al. “Modeling and Analysis of Regular Symmetrically Structured Power/Ground Distribution Networks”, DAC, Jun. 10, 2002, ACM Press, pp. 395-398. |
Zhu, et al., “A Stochastic Integral Equation Method for Modeling the Rough Surface Effect on Interconnect Capacitance”, 2004 IEEE, Nov. 7, 2004. |
Zhu, et al., “A Study of Double Exposure Process Design with Balanced Performance Parameters for Line/Space Applications”, 2007, SPIE Proceeding Series, vol. 6520; Feb. 25, 2007. |
Zuchowski, et al., “A Hybrid ASIC and FPGA Architecture”, 2003 IEEE, pp. 187-194, Nov. 10, 2002. |
Alam, Syed M. et al., “A Comprehensive Layout Methodology and Layout-Specific Circuit Analyses for Three-Dimensional Integrated Circuits,” Mar. 21, 2002. |
Alam, Syed M. et al., “Layout-Specific Circuit Evaluation in 3-D Integrated Circuits,” May 1, 2003. |
Aubusson, Russel, “Wafer-Scale Integration of Semiconductor Memory,” Apr. 1, 1979. |
Bachtold, “Logic Circuits with Carbon,” Nov. 9, 2001. |
Baker, R. Jacob, “CMOS: Circuit Design, Layout, and Simulation (2nd Edition),” Nov. 1, 2004. |
Baldi et al., “A Scalable Single Poly EEPROM Cell for Embedded Memory Applications,” pp. 1-4, Fig. 1, Sep. 1, 1997. |
Cao, Ke, “Design for Manufacturing (DFM) in Submicron VLSI Design,” Aug. 1, 2007. |
Capodieci, Luigi, “From Optical Proximity Correction to Lithography-Driven Physical Design (1996-2006): 10 years of Resolution Enhancement Technology and the roadmap enablers for the next decade,” Proc. SPIE 6154, Optical Microlithography XIX, 615401, Mar. 20, 2006. |
Chang, Leland et al., “Stable SRAM Cell Design for the 32 nm Node and Beyond,” Jun. 16, 2005. |
Cheung, Peter, “Layout Design,” Apr. 4, 2004. |
Chinnery, David, “Closing the Gap Between ASIC & Custom: Tools and Techniques for High-Performance ASIC Design,” Jun. 30, 2002. |
Chou, Dyiann et al., “Line End Optimization through Optical Proximity Correction (OPC): A Case Study,” Feb. 19, 2006. |
Clein, Dan, “CMOS IC Layout: Concepts, Methodologies, and Tools,” Dec. 22, 1999. |
Cowell, “Exploiting Non-Uniform Access Time,” Jul. 1, 2003. |
Das, Shamik, “Design Automation and Analysis of Three-Dimensional Integrated Circuits,” May 1, 2004. |
Dehaene, W. et al., “Technology-Aware Design of SRAM Memory Circuits,” Mar. 1, 2007. |
Deng, Liang et al., “Coupling-aware Dummy Metal Insertion for Lithography,” p. 1, col. 2, Jan. 23, 2007. |
Devoivre et al., “Validated 90nm CMOS Technology Platform with Low-k Copper Interconnects for Advanced System-on-Chip (SoC),” Jul. 12, 2002. |
Enbody, R. J., “Near-Optimal n-Layer Channel Routing,” Jun. 29, 1986. |
Ferretti, Marcos et al., “High Performance Asynchronous ASIC Back-End Design Flow Using Single-Track Full-Buffer Standard Cells,” Apr. 23, 2004. |
Garg, Manish et al., “Litho-driven Layouts for Reducing Performance Variability,” p. 2, Figs. 2b-2c, May 23, 2005. |
Greenway, Robert et al., “32nm 1-D Regular Pitch SRAM Bitcell Design for Interference-Assisted Lithography,” Oct. 6, 2008. |
Gupta et al., “Modeling Edge Placement Error Distribution in Standard Cell Library,” Feb. 23, 2006. |
Grad, Johannes et al., “A standard cell library for student projects,” Proceedings of the 2003 IEEE International Conference on Microelectronic Systems Education, Jun. 2, 2003. |
Hartono, Roy et al., “Active Device Generation for Automatic Analog Layout Retargeting Tool,” May 13, 2004. |
Hartono, Roy et al., “IPRAIL—Intellectual Property Reuse-based Analog IC Layout Automation,” Mar. 17, 2003. |
Hastings, Alan, “The Art of Analog Layout (2nd Edition),” Jul. 4, 2005. |
Hurat et al., “A Genuine Design Manufacturability Check for Designers,” Feb. 19, 2006. |
Institute of Microelectronic Systems, “Digital Subsystem Design,” Oct. 13, 2006. |
Ishida, M. et al., “A Novel 6T-SRAM Cell Technology Designed with Rectangular Patterns Scalable beyond 0.18 pm Generation and Desirable for Ultra High Speed Operation,” IEDM 1998, Dec. 6, 1998. |
Jakusovszky, “Linear IC Parasitic Element Simulation Methodology,” Oct. 1, 1993. |
Jangkrajarng, Nuttorn et al., “Template-Based Parasitic-Aware Optimization and Retargeting of Analog and RF Integrated Circuit Layouts,” Nov. 5, 2006. |
Kahng, Andrew B., “Design Optimizations DAC-2006 DFM Tutorial, part V),” Jul. 24, 2006. |
Kang, Sung-Mo et al., “CMOS Digital Integrated Circuits Analysis & Design,” Oct. 29, 2002. |
Kottoor, Mathew Francis, “Development of a Standard Cell Library based on Deep Sub-Micron SCMOS Design Rules using Open Source Software (MS Thesis),” Aug. 1, 2005. |
Kubicki, “Intel 65nm and Beyond (or Below): IDF Day 2 Coverage (available at http://www.anandtech.com/show/1468/4),” Sep. 9, 2004. |
Kuhn, Kelin J., “Reducing Variation in Advanced Logic Technologies: Approaches to Process and Design for Manufacturability of Nanoscale CMOS,” p. 27, Dec. 12, 2007. |
Kurokawa, Atsushi et al., “Dummy Filling Methods for Reducing Interconnect Capacitance and No. of Fills, Proc. of ISQED,” pp. 586-591, Mar. 21, 2005. |
Lavin, Mark, “Open Access Requirements from RDR Design Flows,” Nov. 11, 2004. |
Liebmann, Lars et al., “Layout Methodology Impact of Resolution Enhancement Techniques,” pp. 5-6, Apr. 6, 2003. |
Liebmann, Lars et al., “TCAD development for lithography resolution enhancement,” Sep. 1, 2001. |
Lin, Chung-Wei et al., “Recent Research and Emerging Challenges in Physical Design for Manufacturability/Reliability,” Jan. 26, 2007. |
Mccullen, Kevin W., “Layout Techniques for Phase Correct and Gridded Wiring,” pp. 13, 17, Fig. 5, Dec. 1, 2006. |
Mosis, “Design Rules Mosis Scalable CMOS (SCMOS) (Revision 8.00),” Oct. 4, 2004. |
Mosis, “Mosis Scalable CMOS (SCMOS) Design Rules (Revision 7.2),” Jan. 1, 1995. |
Muta et al., “Manufacturability-Aware Design of Standard Cells,” pp. 2686-2690, Figs. 3, 12, Dec. 1, 2007. |
Na, Kee-Yeol et al., “A Novel Single Polysilicon EEPROM Cell With a Polyfinger Capacitor,” Nov. 30, 2007. |
Pan et al., “Redundant Via Enhanced Maze Routing for Yield Improvement,” DAC 2005, Jan. 18, 2005. |
Park, Tae Hong, “Characterization and Modeling of Pattern Dependencies in Copper Interconnects for Integrated Circuits,” Ph.D. Thesis, MIT, May 24, 2002. |
Patel, Chetan, “An Architectural Exploration of Via Patterned Gate Arrays (CMU Master's Project),” May 1, 2003. |
Pease, R. Fabian et al., “Lithography and Other Patterning Techniques for Future Electronics,” IEEE 2008, vol. 96, Issue 2, Jan. 16, 2008. |
Serrano, Diego Emilio, Pontificia Universidad Javeriana Facultad De Ingenieria, Departamento De Electronica, “Diseno De Multiplicador 4 X 8 en VLSI, Introduccion al VLSI,” 2006 (best available publication date). |
Pramanik, “Impact of layout on variability of devices for sub 90nm technologies,” 2004 (best available publication date). |
Pramanik, Dipankar et al., “Lithography-driven layout of logic cells for 65-nm node (SPIE Proceedings vol. 5042),” Jul. 10, 2003. |
Roy et al., “Extending Aggressive Low-K1 Design Rule Requirements for 90 and 65 Nm Nodes Via Simultaneous Optimization of Numerical Aperture, Illumination and Optical Proximity Correction,” J.Micro/Nanolith, MEMS MOEMS, 4(2), 023003, Apr. 26, 2005. |
Saint, Christopher et al., “IC Layout Basics: A Practical Guide,” Chapter 3, Nov. 5, 2001. |
Saint, Christopher et al., “IC Mask Design: Essential Layout Techniques,” May 24, 2002. |
Scheffer, “Physical CAD Changes to Incorporate Design for Lithography and Manufacturability,” Feb. 4, 2004. |
Smayling, Michael C., “Part 3: Test Structures, Test Chips, In-Line Metrology & Inspection,” Jul. 24, 2006. |
Spence, Chris, “Full-Chip Lithography Simulation and Design Analysis: How OPC is changing IC Design, Emerging Lithographic Technologies IX,” May 6, 2005. |
Subramaniam, Anupama R., “Design Rule Optimization of Regular layout for Leakage Reduction in Nanoscale Design,” pp. 474-478, Mar. 24, 2008. |
Tang, C. W. et al., “A compact large signal model of LDMOS,” Solid-State Electronics 46(2002) 2111-2115, May 17, 2002. |
Taylor, Brian et al., “Exact Combinatorial Optimization Methods for Physical Design of Regular Logic Bricks,” Jun. 8, 2007. |
Tian, Ruiqi et al., “Dummy Feature Placement for Chemical-Mechanical Uniformity in a Shallow Trench Isolation Process,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 21, No. 1, pp. 63-71, Jan. 1, 2002. |
Tian, Ruiqi et al., “Proximity Dummy Feature Placement and Selective Via Sizing for Process Uniformity in a Trench-First-Via-Last Dual-Inlaid Metal Process,” Proc. of IITC, pp. 48-50, Jun. 6, 2001. |
Torres, J. A. et al., “RET Compliant Cell Generation for sub-130nm Processes,” SPIE vol. 4692, Mar. 6, 2002. |
Uyemura, John P., “Introduction to VLSI Circuits and Systems,” Chapters 2, 3, 5, and Part 3, Jul. 30, 2001. |
Uyemura, John, “Chip Design for Submicron VLSI: CMOS Layout and Simulation,” Chapters 2-5, 7-9, Feb. 8, 2005. |
Verhaegen et al., “Litho Enhancements for 45nm-nod MuGFETs,” Aug. 1, 2005. |
Wong, Ban P., “Bridging the Gap between Dreams and Nano-Scale Reality (DAC-2006 DFM Tutorial),” Jul. 28, 2006. |
Wang, Dunwei et al., “Complementary Symmetry Silicon Nanowire Logic: Power-Efficient Inverters with Gain,” Aug. 17, 2006. |
Wang, Jun et al., “Effects of grid-placed contacts on circuit performance,” pp. 135-139, Figs. 2, 4-8, Feb. 28, 2003. |
Wang, Jun et al., “Standard cell design with regularly placed contacts and gates (SPIE vol. 5379),” Feb. 22, 2004. |
Wang, Jun et al., “Standard cell design with resolution-enhancement-technique-driven regularly placed contacts and gates,” J. Micro/Nanolith, MEMS MOEMS, 4(1), 013001, Mar. 16, 2005. |
Watson, Bruce, “Challenges and Automata Applications in Chip-Design Software,” pp. 38-40, Jul. 16, 2007. |
Weste, Neil et al., “Cmos VLSI Design: A Circuits and Systems Perspective, 3rd Edition,” May 21, 2004. |
Wingerden, Johannes van, “Experimental verification of improved printability for litho-driven designs,” Mar. 14, 2005. |
Wong, Alfred K., “Microlithography: Trends, Challenges, Solutions and Their Impact on Design,” Micro IEEE vol. 23, Issue 2, Apr. 29, 2003. |
Xu, Gang, “Redundant-Via Enhanced Maze Routing for Yield Improvement,” Proceedings of ASP-DAC 2005, Jan. 18, 2005. |
Yang, Jie, “Manufacturability Aware Design,” pp. 93, 102, Fig. 5.2, Jan. 16, 2008. |
Yongshun, Wang et al., “Static Induction Devices with Planar Type Buried Gate,” Chinese Journal of Semiconductors, vol. 25, No. 2, Feb. 1, 2004. |
Zobrist, George (editor), “Progress in Computer Aided VLSI Design: Implementations (Ch. 5),” Ablex Publishing Corporation, Feb. 1, 1990. |
Petley, Graham, “VLSI and ASIC Technology Standard Cell Library Design,” from website www.vlsitechnology.org, Jan. 11, 2005. |
Liebmann, Lars, et al., “Layout Optimization at the Pinnacle of Optical Lithography,” Design and Process Integration for Microelectronic Manufacturing II, Proceedings of SPIE vol. 5042, Jul. 8, 2003. |
Kawasaki, H., et al., “Challenges and Solutions of FinFET Integration in an SRAM Cell and a Logic Circuit for 22 nm node and beyond,” Electron Devices Meeting (IEDM), 2009 IEEE International, IEEE, Piscataway, NJ, USA, Dec. 7, 2009, pp. 1-4. |
Number | Date | Country | |
---|---|---|---|
20170272080 A1 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
61174408 | Apr 2009 | US | |
60781288 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12435672 | May 2009 | US |
Child | 14181556 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14181556 | Feb 2014 | US |
Child | 15614973 | US | |
Parent | 11683402 | Mar 2007 | US |
Child | 12212562 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12212562 | Sep 2008 | US |
Child | 12435672 | US |