Circular permuteins of flt3 ligand

Information

  • Patent Grant
  • 6660257
  • Patent Number
    6,660,257
  • Date Filed
    Tuesday, October 21, 1997
    27 years ago
  • Date Issued
    Tuesday, December 9, 2003
    21 years ago
Abstract
Disclosed are novel flt-3 receptor agonist proteins, DNAs which encode the flt-3 receptor agonist proteins, methods of making the flt-3 receptor agonist proteins and methods of using the flt-3 receptor agonist proteins.
Description




FIELD OF THE INVENTION




The present invention relates to human flt3 receptor agonists. These flt3 receptor agonists retain one or more activities of native flt3 ligand and may also show improved hematopoietic cell-stimulating activity and/or an improved activity profile which may include reduction of undesirable biological activities associated with native flt3 ligand and/or have improved physical properties which may include increased solubility, stability and refold efficiency.




BACKGROUND OF THE INVENTION




Colony stimulating factors which stimulate the differentiation and/or proliferation of bone marrow cells have generated much interest because of their therapeutic potential for restoring depressed levels of hematopoietic stem cell-derived cells. Colony stimulating factors in both human and murine systems have been identified and distinguished according to their activities. For example, granulocyte-CSF (G-CSF) and macrophage-CSF (M-CSF) stimulate the in vitro formation of neutrophilic granulocyte and macrophage colonies, respectively while GM-CSF and interleukin-3 (IL-3) have broader activities and stimulate the formation of both macrophage, neutrophilic and eosinophilic granulocyte colonies. Certain factors such as flt3 ligand are able to predominately affect stem cells.




Tyrosine kinase receptors are growth factor receptors that regulate the proliferation and differentiation of a number of cell. Certain tyrosine kinase receptors function within the hematopoietic system. Flt3 ligand (Rosnet et al.,


Oncogene


, 6:1641-1650, 1991) and flk-2 (Matthews et al.,


Cell


, 65:1143-1152, 1991) are forms of a tyrosine kinase receptor that is related to c-fms and c-kit receptors. The flk-2 and flt3 receptors are similar in amino acid sequence and vary at two amino acid residues in the extracellular domain and diverge in a 31 amino acid segment located near the C-terminus.




flt3 ligand is a hematopoietic growth factor which has the property of being able to regulate the growth and differentiation of hematopoietic progenitor and stem cells. Because of its ability to support the growth and proliferation of progenitor cells, flt3 receptor agonists have potential for therapeutic use in treating hematopoietic disorders such as aplastic anemia and myelodysplastic syndromes. Additionally, flt3 receptor agonists will be useful in restoring hematopoietic cells to normal amounts in those cases where the number of cells has been reduced due to diseases or to therapeutic treatments such as radiation and chemotherapy.




WO 94/28391 discloses the native flt3 ligand protein sequence and a cDNA sequence encoding the flt3 ligand, methods of expressing flt3 ligand in a host cell transfected with the cDNA and methods of treating patients with a hematopoietic disorder using flt3 ligand.




U.S. Pat. No. 5,554,512 is directed to human flt3 ligand as an isolated protein, DNA encoding the flt3 ligand, host cells transfected with cDNAs encoding flt3 ligand and methods for treating patients with flt3 ligand.




WO 94/26891 provides mammalian flt3 ligands, including an isolate that has an insertion of 29 amino acids, and fragments there of.




Rearrangement of Protein Sequences




In evolution, rearrangements of DNA sequences serve an important role in generating a diversity of protein structure and function. Gene duplication and exon shuffling provide an important mechanism to rapidly generate diversity and thereby provide organisms with a competitive advantage, especially since the basal mutation rate is low (Doolittle,


Protein Science


1:191-200, 1992).




The development of recombinant DNA methods has made it possible to study the effects of sequence transposition on protein folding, structure and function. The approach used in creating new sequences resembles that of naturally occurring pairs of proteins that are related by linear reorganization of their amino acid sequences (Cunningham, et al.,


Proc. Natl. Acad. Sci. U.S.A


. 76:3218-3222, 1979; Teather & Erfle,


J. Bacteriol


. 172: 3837-3841, 1990; Schimming et al.,


Eur. J. Biochem


. 204: 13-19, 1992; Yamiuchi and Minamikawa,


FEBS Lett


. 260:127-130, 1991: MacGregor et al.,


FEBS Lett


. 378:263-266, 1996). The first in vitro application of this type of rearrangement to proteins was described by Goldenberg and Creighton (


J. Mol. Biol


. 165:407-413, 1983). A new N-terminus is selected at an internal site (breakpoint) of the original sequence, the new sequence having the same order of amino acids as the original from the breakpoint until it reaches an amino acid that is at or near the original C-terminus. At this point the new sequence is joined, either directly or through an additional portion of sequence (linker), to an amino acid that is at or near the original N-terminus, and the new sequence continues with the same sequence as the original until it reaches a point that is at or near the amino acid that was N-terminal to the breakpoint site of the original sequence, this residue forming the new C-terminus of the chain.




This approach has been applied to proteins which range in size from 58 to 462 amino acids (Goldenberg & Creighton,


J. Mol. Biol


. 165:407-413, 1983; Li & Coffino,


Mol. Cell. Biol


. 13:2377-2383, 1993). The proteins examined have represented a broad range of structural classes, including proteins that contain predominantly α-helix (interleukin-4; Kreitman et al.,


Cytokine


7:311-318, 1995), β-sheet (interleukin-1; Horlick et al.,


Protein Eng


. 5:427-431, 1992), or mixtures of the two (yeast phosphoribosyl anthranilate isomerase; Luger et al.,


Science


243:206-210, 1989). Broad categories of protein function are represented in these sequence reorganization studies:





















Enzymes








T4 lysozyme




Zhang et al., Biochemistry








32:12311-12318 (1993); Zhang et








al., Nature Struct. Biol. 1:434-438








(1995)







dihydrofolate




Buchwalder et al., Biochemistry







reductase




31:1621-1630 (1994); Protasova et








al., Prot. Eng. 7:1373- 1377 (1995)







ribonuclease T1




Mullins et al., J. Am. Chem. Soc.








116:5529-5533 (1994); Garrett et








al., Protein Science 5:204-211








(1996)







Bacillus β-glucanse




Hahn et al., Proc. Natl. Acad. Sci.








U.S.A. 91:10417-10421 (1994)







aspartate




Yang & Schachman, Proc. Natl. Acad.







transcarbamoylase




Sci. U.S.A. 90:11980-11984 (1993)







phosphoribosyl




Luger et al., Science 243:206-210







anthranilate




(1989); Luger et al., Prot. Eng.







isomerase




3:249-258 (1990)







pepsin/pepsinogen




Lin et al., Protein Science 4:159-








166 (1995)







glyceraldehyde-3-




Vignais et al., Protein Science







phosphate dehydro-




4:994-1000 (1995)







genase







ornithine




Li & Coffino, Mol. Cell. Biol.







decarboxylase




13:2377- 2383 (1993)







yeast




Ritco-Vonsovici et al., Biochemistry







phosphoglycerate




34:16543-16551 (1995)







dehydrogenase







Enzyme Inhibitor







basic pancreatic




Goldenberg & Creighton, J. Mol.







trypsin inhibitor




Biol. 165:407-413 (1983)







Cytokines







interleukin-1β




Horlick et al., Protein Eng. 5:427-








431 (1992)







interleukin-4




Kreitman et al., Cytokine 7:311-








318 (1995)







Tyrosine Kinase







Recognition Domain







α-spectrin SH3




Viguera, et al., J.







domain




Mol. Biol. 247:670-681 (1995)







Transmembrane







Protein







omp A




Koebnik & Krämer, J. Mol. Biol.








250:617-626 (1995)







Chimeric Protein







interleukin-4-




Kreitman et al., Proc. Natl. Acad.







Pseudomonas




Sci. U.S.A. 91:6889-6893 (1994).







exotoxin fusion







molecule















The results of these studies have been highly variable. In many cases substantially lower activity, solubility or thermodynamic stability were observed (


E. coli


dihydrofolate reductase, aspartate transcarbamoylase, phosphoribosyl anthranilate isomerase, glyceraldehyde-3-phosphate dehydrogenase, ornithine decarboxylase, omp A, yeast phosphoglycerate dehydrogenase). In other cases, the sequence rearranged protein appeared to have many nearly identical properties as its natural counterpart (basic pancreatic trypsin inhibitor, T4 lysozyme, ribonuclease T1, Bacillus β-glucanase, interleukin-1β, α-spectrin SH3 domain, pepsinogen, interleukin-4). In exceptional cases, an unexpected improvement over some properties of the natural sequence was observed, e.g., the solubility and refolding rate for rearranged α-spectrin SH3 domain sequences, and the receptor affinity and anti-tumor activity of transposed interleukin-4-Pseudomonas exotoxin fusion molecule (Kreitman et al.,


Proc. Natl. Acad. Sci. U.S.A


. 91:6889-6893, 1994; Kreitman et al.,


Cancer Res


. 55:3357-3363, 1995).




The primary motivation for these types of studies has been to study the role of short-range and long-range interactions in protein folding and stability. Sequence rearrangements of this type convert a subset of interactions that are long-range in the original sequence into short-range interactions in the new sequence, and vice versa. The fact that many of these sequence rearrangements are able to attain a conformation with at least some activity is persuasive evidence that protein folding occurs by multiple folding pathways (Viguera, et al.,


J. Mol. Biol


. 247:670-681, 1995). In the case of the SH3 domain of α-spectrin, choosing new termini at locations that corresponded to β-hairpin turns resulted in proteins with slightly less stability, but which were nevertheless able to fold.




The positions of the internal breakpoints used in the studies cited here are found exclusively on the surface of proteins, and are distributed throughout the linear sequence without any obvious bias towards the ends or the middle (the variation in the relative distance from the original N-terminus to the breakpoint is ca. 10 to 80% of the total sequence length). The linkers connecting the original N- and C-termini in these studies have ranged from 0 to 9 residues. In one case (Yang & Schachman,


Proc. Natl. Acad. Sci. U.S.A


. 90:11980-11984, 1993), a portion of sequence has been deleted from the original C-terminal segment, and the connection made from the truncated C-terminus to the original N-terminus. Flexible hydrophilic residues such as Gly and Ser are frequently used in the linkers. Viguera, et al.(


J. Mol. Biol


. 247:670-681, 1995) compared joining the original N- and C-termini with 3-or 4-residue linkers; the 3-residue linker was less thermodynamically stable. Protasova et al. (


Protein Eng


. 7:1373-1377, 1994) used 3- or 5-residue linkers in connecting the original N-termini of


E. coli


dihydrofolate reductase; only the 3-residue linker produced protein in good yield.




SUMMARY OF THE INVENTION




The modified human flt3 receptor agonists of the present invention can be represented by the Formula:






X


1


−(L)


a


−X


2








wherein;




a is 0 or 1;




X


1


is a peptide comprising an amino acid sequence corresponding to the sequence of residues n+1 through J;




X


2


is a peptide comprising an amino acid sequence corresponding to the sequence of residues 1 through n;




n is an integer ranging from 1 to J-1; and




L is a linker.




In the formula above the constituent amino acids residues of human flt3 ligand are numbered sequentially 1 through J from the amino to the carboxyl terminus. A pair of adjacent amino acids within this protein may be numbered n and n+1 respectively where n is an integer ranging from 1 to J-1. The residue n+1 becomes the new N-terminus of the new flt3 receptor agonist and the residue n becomes the new C-terminus of the new flt3 receptor agonist.




The present invention relates to novel flt3 receptor agonists of the following formula:













ThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIleArg







                           10                            20













G1uLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGlnAsp






                           30                            40













GluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGluArgLeu






                           50                            60













LysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIleHis






                           70                            80













PheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGlnThrAsn






                           90                            100













IleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrpIleThr






                           110                           120













ArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThrLeuPro






                           130                           140













ProProTrpSerProArgProLeuGluAlaThrAlaProThrAlaProGlnProProLeu






                           150                           160













LeuLeuLeuLeuLeuLeuProValGlyLeuLeuLeuLeuAlaAlaAlaTrpCysLeuHis






                           170                           180













TrpGlnArgThrArgArgArgThrProArgProGlyGluGlnValProProValProSer






                           190                           200













ProGlnAspLeuLeuLeuValGluHis SEQ ID NO:145






                        209











wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;






















28-29




42-43




  93-94







29-30




64-65




  94-95







30-31




65-66




  95-96







31-32




66-67




  96-97







32-33




86-87




  97-98







34-35




87-88




  98-99







36-37




88-89




  99-100







37-38




89-90




100-101







38-39




90-91




101-102







39-40




91-92




102-103







40-41




92-93




respectively; and







41-42















additionally said flt3 receptor agonist polypeptide can be immediately preceded by (methionine


−1


), (alanine


−1


) or (methionine


−2


, alanine


−1


).




A preferred embodiment is human flt3 receptor agonist polypeptide, comprising a modified flt3 ligand amino acid sequence of the Formula:













ThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIleArg







                           10                            20













GluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGlnAsp






                           30                            40













GluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGluArgLeu






                           50                            60













LysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIleHis






                           70                            80













PheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGlnThrAsn






                           90                            100













IleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrpIleThr






                           110                           120













ArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThrLeu






                           130              SEQ ID NO:144











wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;






















28-29




42-43




 93-94







29-30




64-65




 94-95







30-31




65-66




 95-96







31-32




66-67




 96-97







32-33




86-87




 97-98







34-35




87-88




 98-99







36-37




88-89




 99-100







37-38




89-90




100-101







38-39




90-91




101-102







39-40




91-92




102-103







40-41




92-93




respectively; and







41-42















additionally said flt3 receptor agonist polypeptide can be immediately preceded by (methionine


−1


), (alanine


−1


) or (methionine


−2


, alanine


−1


)




The more preferred breakpoints at which new C-terminus and N-terminus can be made are 36-37, 37-38, 38-39, 39-40, 40-41, 41-42, 42-43, 64-65, 65-66, 66-67, 86-87, 87-88, 88-89, 89-90, 90-91, 91-92, 92-93, 93-94, 95,-96, 96-97, 97-98, 99-100 and 100-101




The most preferred breakpoints at which new C-terminus and N-terminus can be made are; 39-40, 65-66, 89-90, 99-100 and 100-101.




The flt3 receptor agonists of the present invention may contain amino acid substitutions, deletions and/or insertions. It is also intended that the flt3 receptor agonists of the present invention may also have amino acid deletions at either/or both the N- and C-termini of the original protein and or deletions from the new N-and/or C-termini of the sequence rearranged proteins in the formulas shown above.




The flt3 receptor agonists of the present invention may contain amino acid substitutions, deletions and/or insertions.




A preferred embodiment of the present invention the linker (L) joining the N-terminus to the C-terminus is a polypeptide selected from the group consisting of:




GlyGlyGlySer SEQ ID NO:38;




GlyGlyGlySerGlyGlyGlySer SEQ ID NO:39;




GlyGlyGlySerGlyGlyGlySerGlyGlyGlySer SEQ ID NO:40;




SerGlyGlySerGlyGlySer SEQ ID NO:41;




GluPheGlyAsnMet SEQ ID NO:42;




GluPheGlyGlyAsnMet SEQ ID NO:43;




GluPheGlyGlyAsnGlyGlyAsnMet SEQ ID NO:44;




GlyGlySerAspMetAlaGly SEQ ID NO:45;




SerGlyGlyAsnGly SEQ ID NO:46;




SerGlyGlyAsnGlySerGlyGlyAsnGly SEQ ID NO:47;




SerGlyGlyAsnGlySerGlyGlyAsnGlySerGlyGlyAsnGly SEQ ID NO:48;




SerGlyGlySerGlySerGlyGlySerGly SEQ ID NO:49;




SerGlyGlySerGlySerGlyGlySerGlySerGlyGlySerGly SEQ ID NO:50;




GlyGlyGlySerGlyGly SEQ ID NO:51;




GlyGlyGlySerGlyGlyGly SEQ ID NO:52;




GlyGlyGlySerGlyGlyGlySerGlyGly SEQ ID NO:53;




GlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGly SEQ ID NO:54;




GlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGlyGlyGly SEQ ID NO:55;




GlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGly GlyGlySerGly SEQ ID NO:56;




GlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGly GlyGlySerGlyGlyGlySerGlyGlyGlySerGly SEQ ID NO:148;




ProProProTrpSerProArgProLeuGlyAlaThrAlaProThrAlaGly GlnProProLeu SEQ ID NO:149;




ProProProTrpSerProArgProLeuGlyAlaThrAlaProThr SEQ ID NO:150; and




ValGluThrValPheHisArgValSerGlnAspGlyLeuLeuThrSer SEQ ID NO:151.




The present invention also encompasses recombinant human flt3 receptor agonists co-administered or sequentially with one or more additional colony stimulating factors (CSF) including, cytokines, lymphokines, interleukins, hematopoietic growth factors which include but are not limited to GM-CSF, G-CSF, c-mpl ligand (also known as TPO or MGDF), M-CSF, erythropoietin (FLT3), IL-1, IL-4, IL-2, IL-3, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, LIF, human growth hormone, B-cell growth factor, B-cell differentiation factor, eosinophil differentiation factor and stem cell factor (SCF) also known as steel factor or c-kit ligand (herein collectively referred to as “factors”). These co-administered mixtures may be characterized by having the usual activity of both of the peptides or the mixture may be further characterized by having a biological or physiological activity greater than simply the additive function of the presence of the flt3 receptor agonists or the second colony stimulating factor alone. The co-administration may also provide an enhanced effect on the activity or an activity different from that expected by the presence of the flt3 ligand or the second colony stimulating factor. The co-administration may also have an improved activity profile which may include reduction of undesirable biological activities associated with native human flt3 ligand. In addition to the list above, IL-3 variants taught in WO 94/12639 and WO 94/12638 fusion protein taught in WO 95/21197, and WO 95/21254 G-CSF receptor agonists disclosed in WO 97/12977, c-mpl receptor agonists disclosed in WO 97/12978, IL-3 receptor agonists disclosed in WO 97/12979 and multi-functional receptor agonists taught in WO 97/12985 can be co-administered with the polypeptides of the present invention. As used herein “IL-3 variants” refer to IL-3 variants taught in WO 94/12639 and WO 94/12638. As used herein “fusion proteins” refer to fusion protein taught in WO 95/21197, and WO 95/21254. As used herein “G-CSF receptor agonists” refer to G-CSF receptor agonists disclosed in WO 97/12978. As used herein “c-mpl receptor agonists” refer to c-mpl receptor agonists disclosed in WO 97/12978. As used herein “IL-3 receptor agonists” refer to IL-3 receptor agonists disclosed in WO 97/12979. As used herein “multi-functional receptor agonists” refer to multi-functional receptor agonists taught in WO 97/12985.




In addition, it is envisioned that in vitro uses would include the ability to stimulate bone marrow and blood cell activation and growth before the expanded cells are infused into patients. Another intended use is for the production of dendritic cells both in vivo and ex vivo.




BRIEF DESCRIPTION OF THE FIGURES





FIG. 1

schematically illustrates the sequence rearrangement of a protein. The N-terminus (N) and the C-terminus (C) of the native protein are joined through a linker, or joined directly. The protein is opened at a breakpoint creating a new N-terminus (new N) and a new C-terminus (new-C) resulting in a protein with a new linear amino acid sequence. A rearranged molecule may be synthesized de novo as linear molecule and not go through the steps of joining the original N-terminus and the C-terminus and opening of the protein at the breakpoint.





FIG. 2

shows a schematic of Method I, for creating new proteins in which the original N-terminus and C-terminus of the native protein are joined with a linker and different N-terminus and C-terminus of the protein are created. In the example shown the sequence rearrangement results in a new gene encoding a protein with a new N-terminus created at amino acid 97 of the original protein, the original C-terminus (a.a. 174) joined to the amino acid 11 (a.a. 1-10 are deleted) through a linker regionand a new C-terminus created at amino acid 96 of the original sequence.





FIG. 3

shows a schematic of Method II, for creating new proteins in which the original N-terminus and C-terminus of the native protein are joined without a linker and different N-terminus and C-terminus of the protein are created. In the example shown the sequence rearrangement results in a new gene encoding a protein with a new N-terminus created at amino acid 97 of the original protein, the original C-terminus (a.a. 174) joined to the original N-terminus and a new C-terminus created at amino acid 96 of the original sequence.





FIG. 4

shows a schematic of Method III, for creating new proteins in which the original N-terminus and C-terminus of the native protein are joined with a linker and different N-terminus and C-terminus of the protein are created. In the example shown the sequence rearrangement results in a new gene encoding a protein with a new N-terminus created at amino acid 97 of the original protein, the original C-terminus (a.a. 174) joined to amino acid 1 through a linker region and a new C-terminus created at amino acid 96 of the original sequence.





FIGS. 5



a


and


5




b


shows the DNA sequence encoding the 209 amino acid mature form of flt3 ligand from Lyman et al. (


Oncogene


11:1165-1172, 1995).





FIG. 6

shows the DNA sequence encoding the 134 amino acid soluble form of flt3 ligand from Lyman et al. (


Oncogene


11:1165-1172, 1995).





FIG. 7

shows the bioactivity of the flt3 receptor agonists pMON32320 and pMON32321 compared to recombinant native flt3 (Genzyme) and pMON30237 (1-134 form of the flt3 ligand expressed by mammalian cell (BHK) culture) in the MUTZ-2 cell proliferation assay. MT=mock transfection.











DETAILED DESCRIPTION OF THE INVENTION




Flt3 receptor agonists of the present invention may be useful in the treatment of diseases characterized by decreased levels of hematopoietic cells.




A flt3 receptor agonist may be useful in the treatment or prevention of hematopoietic disorders. Many drugs may cause bone marrow suppression or hematopoietic deficiencies. Examples of such drugs are AZT, DDI, alkylating agents and anti-metabolites used in chemotherapy, antibiotics such as chloramphenicol, penicillin, gancyclovir, daunomycin and sulfa drugs, phenothiazones, tranquilizers such as meprobamate, analgesics such as aminopyrine and dipyrone, anti-convulsants such as phenytoin or carbamazepine, antithyroids such as propylthiouracil and methimazole and diuretics. flt3 receptor agonists may be useful in preventing or treating the bone marrow suppression or hematopoietic deficiencies which often occur in patients treated with these drugs.




Hematopoietic deficiencies may also occur as a result of viral, microbial or parasitic infections, burns and as a result of treatment for renal disease or renal failure, e.g., dialysis. The present peptide may be useful in treating such hematopoietic deficiency.




Another aspect of the present invention provides plasmid DNA vectors for use in the method of expression of these novel flt3 receptor agonists. These vectors contain the novel DNA sequences described above which code for the novel polypeptides of the invention. Appropriate vectors which can transform host cells capable of expressing the flt3 receptor agonists include expression vectors comprising nucleotide sequences coding for the flt3 receptor agonists joined to transcriptional and translational regulatory sequences which are selected according to the host cells used. Vectors incorporating modified sequences as described above are included in the present invention and are useful in the production of the modified flt3 receptor agonist polypeptides. The vector employed in the method also contains selected regulatory sequences in operative association with the DNA coding sequences of the invention and capable of directing the replication and expression thereof in selected host cells.




As another aspect of the present invention, there is provided a novel method for producing the novel family of human flt3 receptor agonists. The method of the present invention involves culturing suitable cells or cell line, which has been transformed with a vector containing a DNA sequence coding for expression of the novel flt3 receptor agonist polypeptide. Suitable cells or cell lines may include various strains of bacteria such as


E. coli


, yeast, mammalian cells, or insect cells may be utilized as host cells in the method of the present invention.




Other aspects of the present invention are methods and therapeutic compositions for treating the conditions referred to above. Such compositions comprise a therapeutically effective amount of one or more of the flt3 receptor agonists of the present invention in a mixture with a pharmaceutically acceptable carrier. This composition can be administered either parenterally, intravenously or subcutaneously. When administered, the therapeutic composition for use in this invention is preferably in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such a parenterally acceptable protein solution, having due regard to pH, isotonicity, stability and the like, is within the skill of the art.




The dosage regimen involved in a method for treating the above-described conditions will be determined by the attending physician considering various factors which modify the action of drugs, e.g. the condition, body weight, sex and diet of the patient, the severity of any infection, time of administration and other clinical factors. Generally, a daily regimen may be in the range of 0.5-150 μg/kg of non-glycosylated flt3 receptor agonists protein per kilogram of body weight. Dosages would be adjusted relative to the activity of a given receptor agonist and it would not be unreasonable to note that dosage regimens may include doses as low as 0.1 microgram and as high as 1 milligram per kilogram of body weight per day. In addition, there may exist specific circumstances where dosages of flt3 receptor agonist would be adjusted higher or lower than the range of 0.5-150 micrograms per kilogram of body weight. These include co-administration with other CSF or growth factors; co-administration with chemotherapeutic drugs and/or radiation; the use of glycosylated flt3 receptor agonists; and various patient-related issues mentioned earlier in this section. As indicated above, the therapeutic method and compositions may also include co-administration with other human factors. A non-exclusive list of other appropriate hematopoietins, CSFs and interleukins for simultaneous or serial co-administration with the polypeptides of the present invention includes GM-CSF, G-CSF, c-mpl ligand (also known as TPO or MGDF), M-CSF, erythropoietin (EPO), IL-1, IL-4, IL-2, IL-3, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, LIF, human growth hormone, B-cell growth factor, B-cell differentiation factor, eosinophil differentiation factor and stem cell factor (SCF) also known as steel factor or c-kit ligand (herein collectively referred to as “factors”), or combinations thereof. In addition to the list above, IL-3 variants taught in WO 94/12639 and WO 94/12638 fusion protein taught in WO 95/21197, and WO 95/21254 G-CSF receptor agonists disclosed in WO 97/12977, c-mpl receptor agonists disclosed in WO 97/12978, IL-3 receptor agonists disclosed in WO 97/12979 and multi-functional receptor agonists taught in WO 97/12985 can be co-administered with the polypeptides of the present invention.




The flt3 receptor agonists of the present invention may be useful in the mobilization of hematopoietic progenitors and stem cells in peripheral blood. Peripheral blood derived progenitors have been shown to be effective in reconstituting patients in the setting of autologous marrow transplantation. Hematopoietic growth factors, including G-CSF and GM-CSF, have been shown to enhance the number of circulating progenitors and stem cells in the peripheral blood. This has simplified the procedure for peripheral stem cell collection and dramatically decreased the cost of the procedure by decreasing the number of pheresis required. The flt3 receptor agonist of the present invention may be useful in mobilization of stem cells and further enhance the efficacy of peripheral stem cell transplantation.




The flt3 receptor agonists of the present invention may also be useful in the ex vivo expansion of hematopoietic progenitors. Colony stimulating factors (CSFs), such as G-CSF, have been administered alone, co-administered with other CSFs, or in combination with bone marrow transplants subsequent to high dose chemotherapy to treat the neutropenia and which is often the result of such treatment. However the period of severe neutropenia may not be totally eliminated. The myeloid lineage, which is comprised of monocytes (macrophages), granulocytes (including neutrophils) and megakaryocytes, is critical in preventing infections and bleeding which can be life-threatening. Neutropenia may also be the result of disease, genetic disorders, drugs, toxins, radiation and many therapeutic treatments such as conventional oncology therapy.




Bone marrow transplants have been used to treat this patient population. However, several problems are associated with the use of bone marrow to reconstitute a compromised hematopoietic system including: 1) the number of stem cells in bone marrow or other tissues, such as spleen or peripheral blood, is limited, 2) Graft Versus Host Disease, 3) graft rejection and 4) possible contamination with tumor cells. Stem cells and progenitor cells make up a very small percentage of the nucleated cells in the bone marrow, spleen and peripheral blood. It is clear that a dose response exists such that a greater number of multipotential hematopoietic progenitors will enhance hematopoietic recovery. Therefore, the in vitro expansion of stem cells should enhance hematopoietic recovery and patient survival. Bone marrow from an allogeneic donor has been used to provide bone marrow for transplant. However, Graft Versus Host Disease and graft rejection limit bone marrow transplantation even in recipients with HLA-matched sibling donors. An alternative to allogeneic bone marrow transplants is autologous bone marrow transplants. In autologous bone marrow transplants, some of the patient's own marrow is harvested prior to myeloablative therapy, e.g. high dose chemotherapy, and is transplanted back into the patient afterwards. Autologous transplants eliminate the risk of Graft Versus Host Disease and graft rejection. However, autologous bone marrow transplants still present problems in terms of the limited number of stems cells in the marrow and possible contamination with tumor cells. The limited number of multipotential hematopoietic progenitors may be overcome by ex-vivo expansion of the multipotential hematopoietic progenitors. In addition, stem cells can be specifically isolated based on the presence of specific surface antigens such as CD34+ in order to decrease tumor cell contamination of the marrow graft.




The following patents contain further details on separating stem cells, CD34+ cells, culturing the cells with hematopoietic factors, the use of the cells for the treatment of patients with hematopoietic disorders and the use of hematopoietic factors for cell expansion and gene therapy.




5,061,620 relates to compositions comprising human hematopoietic stem cells provided by separating the stem cells from dedicated cells.




5,199,942 describes a method for autologous hematopoietic cell transplantation comprising: (1) obtaining hematopoietic progenitor cells from a patient; (2) ex-vivo expansion of cells with a growth factor selected from the group consisting of IL-3, flt3 ligand, c-kit ligand, GM CSF, IL-1, GM-CSF/IL-3 fusion protein and combinations thereof; (3) administering cellular preparation to a patient.




5,240,856 relates to a cell separator that includes an apparatus for automatically controlling the cell separation process.




WO 91/16116 describes devices and methods for selectively isolating and separating target cells from a mixture of cells.




WO 91/18972 describes methods for in vitro culturing of bone marrow, by incubating suspension of bone marrow cells, using a hollow fiber bioreactor.




WO 92/18615 relates to a process for maintaining and expanding bone marrow cells, in a culture medium containing specific mixtures of cytokines, for use in transplants.




WO 93/08268 describes a method for selectively expanding stem cells, comprising the steps of (a) separating CD34+ stem cells from other cells and (b) incubating the separated cells in a selective medium, such that the stem cells are selectively expanded.




WO 93/18136 describes a process for in vitro support of mammalian cells derived from peripheral blood.




WO 93/18648 relates to a composition comprising human neutrophil precursor cells with a high content of myeloblasts and promyelocytes for treating genetic or acquired neutropenia.




WO 94/08039 describes a method of enrichment for human hematopoietic stem cells by selection for cells which express c-kit protein.




WO 94/11493 describes a stem cell population that are CD34+ and small in size, which are isolated using a counterflow elutriation method.




WO 94/27698 relates to a method combining immunoaffinity separation and continuous flow centrifugal separation for the selective separation of a nucleated heterogeneous cell population from a heterogeneous cell mixture.




WO 94/25848 describes a cell separation apparatus for collection and manipulation of target cells.




The long term culturing of highly enriched CD34+ precursors of hematopoietic progenitor cells from human bone marrow in cultures containing IL-1α, IL-3, IL-6 or GM-CSF is discussed in Brandt et al (


J. Clin. Invest


. 86:932-941, 1990).




One aspect of the present invention provides a method for selective ex-vivo expansion of stem cells. The term “stem cell” refers to the multipotential hematopoietic cells as well as early myeloid progenitor and precursors cells which can be isolated from bone marrow, spleen or peripheral blood. The term “expansion” refers to the proliferation and differentiation of the cells. The present invention provides a method for selective ex-vivo expansion of stem cells, comprising the steps of; (a) separating stem cells from other cells, (b) culturing the separated stem cells with a selective medium which contains a flt3 receptor agonist and optionally a second colony stimulating factor, and (c) harvesting the cultured stems cells. Stem cells, as well as committed progenitor cells destined to become neutrophils, erythrocytes, platelets, etc., may be distinguished from most other cells by the presence or absence of particular progenitor marker antigens, such as CD34, that are present on the surface of these cells and/or by morphological characteristics. The phenotype for a highly enriched human stem cell fraction is reported as CD34+, Thy-1+ and lin−, but it is to be understood that the present invention is not limited to the expansion of this stem cell population. The CD34+ enriched human stem cell fraction can be separated by a number of reported methods, including affinity columns or beads, magnetic beads or flow cytometry using antibodies directed to surface antigens such as the CD34+. Further, physical separation methods such as counterflow elutriation may be used to enrich hematopoietic progenitors. The CD34+ progenitors are heterogeneous, and may be divided into several sub-populations characterized by the presence or absence of co-expression of different lineage associated cell surface associated molecules. The most immature progenitor cells do not express any known lineage associated markers, such as HLA-DR or CD38, but they may express CD90(thy-1). Other surface antigens such as CD33, CD38, CD41, CD71, HLA-DR or c-kit can also be used to selectively isolate hematopoietic progenitors. The separated cells can be incubated in selected medium in a culture flask, sterile bag or in hollow fibers. Various colony stimulating factors may be utilized in order to selectively expand cells. Representative factors that have been utilized for ex-vivo expansion of bone marrow include, c-kit ligand, IL-3, G-CSF, GM-CSF, IL-1, IL-6, IL-11, flt3 ligand or combinations thereof. The proliferation of the stem cells can be monitored by enumerating the number of stem cells and other cells, by standard techniques (e.g. hemacytometer, CFU, LTCIC) or by flow cytometry prior and subsequent to incubation.




Several methods for ex-vivo expansion of stem cells have been reported utilizing a number of selection methods and expansion using various colony stimulating factors including c-kit ligand (Brandt et al.,


Blood


83:1507-1514, 1994; McKenna et al.,


Blood


86:3413-3420, 1995), IL-3 (Brandt et al.,


Blood


83:1507-1514, 1994; Sato et al.,


Blood


82:3600-3609, 1993), G-CSF (Sato et al.,


Blood


82:3600-3609, 1993), GM-CSF (Sato et al.,


Blood


82:3600-3609, 1993), IL-1 (Muench et al.,


Blood


81:3463-3473, 1993), IL-6 (Sato et al.,


Blood


82:3600-3609, 1993), IL-11 (Lemoli et al.,


Exp. Hem


. 21:1668-1672, 1993; Sato et al.,


Blood


82:3600-3609, 1993), flt3 ligand (McKenna et al.,


Blood


86:3413 3420, 1995) and/or combinations thereof (Brandt et al.,


Blood


83:1507 1514, 1994; Haylock et al.,


Blood


80:1405-1412, 1992, Koller et al.,


Biotechnology


11:358-363, 1993; Lemoli et al.,


Exp. Hem


. 21:1668-1672, 1993), McKenna et al.,


Blood


86:3413-3420, 1995; Muench et al.,


Blood


81:3463-3473, 1993; Patchen et al.,


Biotherapy


7:13-26, 1994; Sato et al.,


Blood


82:3600-3609, 1993; Smith et al.,


Exp. Hem


. 21:870-877, 1993; Steen et al.,


Stem Cells


12:214-224, 1994; Tsujino et al.,


Exp. Hem


. 21:1379-1386, 1993). Among the individual colony stimulating factors, hIL-3 has been shown to be one of the most potent in expanding peripheral blood CD34+ cells (Sato et al.,


Blood


82:3600-3609, 1993; Kobayashi et al.,


Blood


73:1836-1841, 1989). However, no single factor has been shown to be as effective as the combination of multiple factors. The present invention provides methods for ex vivo expansion that utilize novel flt3 receptor agonists.




Another aspect of the invention provides methods of sustaining and/or expanding hematopoietic precursor cells which includes inoculating the cells into a culture vessel which contains a culture medium that has been conditioned by exposure to a stromal cell line such as HS-5 (WO 96/02662, Roecklein and Torok-Strob,


Blood


85:997-1105, 1995) that has been supplemented with a flt3 receptor agonist of the present invention.




It is also envisioned that uses of flt3 receptor agonists of the present invention would include blood banking applications, where the flt3 receptor agonists are given to a patent to increase the number of blood cells and blood products are removed from the patient, prior to some medical procedure, and the blood products are stored and transfused back into the patient after the medical procedure. Additionally, it is envisioned that uses of flt3 receptor agonists would include giving the flt3 receptor agonists to a blood donor prior to blood donation to increase the number of blood cells, thereby allowing the donor to safely give more blood.




Another projected clinical use of growth factors has been in the in vitro activation of hematopoietic progenitors and stem cells for gene therapy. Due to the long life-span of hematopoietic progenitor cells and the distribution of their daughter cells throughout the entire body, hematopoietic progenitor cells are good candidates for ex vivo gene transfection. In order to have the gene of interest incorporated into the genome of the hematopoietic progenitor or stem cell one needs to stimulate cell division and DNA replication. Hematopoietic stem cells cycle at a very low frequency which means that growth factors may be useful to promote gene transduction and thereby enhance the clinical prospects for gene therapy. Potential applications of gene therapy (review Crystal,


Science


270:404-410, 1995) include; 1) the treatment of many congenital metabolic disorders and immunodeficiencies (Kay and Woo,


Trends Genet


. 10:253-257, 1994), 2) neurological disorders (Friedmann,


Trends Genet


. 10:210-214, 1994), 3) cancer (Culver and Blaese,


Trends Genet


. 10:174-178, 1994) and 4) infectious diseases (Gilboa and Smith,


Trends Genet


. 10:139-144, 1994).




There are a variety of methods, known to those with skill in the art, for introducing genetic material into a host cell. A number of vectors, both viral and non-viral have been developed for transferring therapeutic genes into primary cells. Viral based vectors include; 1) replication deficient recombinant retrovirus (Boris-Lawrie and Temin,


Curr. Opin. Genet. Dev


. 3:102-109, 1993; Boris-Lawrie and Temin,


Annal. New York Acad. Sci


. 716:59-71, 1994; Miller,


Current Top. Microbiol. Immunol


. 158:1-24, 1992) and replication-deficient recombinant adenovirus (Berkner,


BioTechniques


6:616-629, 1988; Berkner,


Current Top. Microbiol. Immunol


. 158:39-66, 1992; Brody and Crystal,


Annal. New York Acad. Sci


. 716:90-103, 1994). Non-viral based vectors include protein/DNA complexes (Cristiano et al.,


PNAS USA


. 90:2122-2126, 1993; Curiel et al.,


PNAS USA


88:8850-8854, 1991; Curiel,


Annal. New York Acad. Sci


. 716:36-58, 1994), electroporation and liposome mediated delivery such as cationic liposomes (Farhood et al.,


Annal. New York Acad. Sci


. 716:23-35, 1994).




The present invention provides an improvement to the existing methods of expanding hematopoietic cells, into which new genetic material has been introduced, in that it provides methods utilizing flt3 receptor agonists that may have improved biological activity and/or physical properties.




Another intended use of the flt-3 receptor agonists of the present invention is for the generation of larger numbers of dendritic cells, from precursors, to be used as adjuvants for immunization. Dendritic cells play a crucial role in the immune system. They are the professional antigen-presenting cells most efficient in the activation of resting T cells and are the major antigen-presenting cells for activation of naive T cells in vivo and, thus, for initiation of primary immune responses. They efficiently internalize, process and present soluble tumor-specific antigens (Ag). Dendritic cells have the unique capacity to cluster naive T cells and to respond to Ag encounter by rapid up-regulation of the expression of major histocompatability complex (MHC) and co-stimulatory molecules, the production of cytokines and migration towards lymphatic organs. Since dendritic cells are of central importance for sensitizing the host against a neoantigen for CD4-dependent immune responses, they may also play a crucial role in the generation and regulation of tumor immunity.




Dendritic cells originate from a bone marrow CD34+ precursor common to granulocytes and macrophages, and the existence of a separate dendritic cell colony-forming unit (CFU-DC) that give rise to pure dendritic cell colonies has been established in humans. In addition, a post-CFU CD14+ intermediate has been described with the potential to differentiate along the dendritic cell or the macrophage pathway under distinct cytokine conditions. This bipotential precursor is present in the bone marrow, cord blood and peripheral blood. Dendritic cells can be isolated by the cell specific marker, CD83, which is expressed on mature dendritic cells, to delineate the maturation of cultured dendritic cells.




Dendritic cells based strategies provide a method for enhancing immune response against tumors and infectious agents. AIDS is another disease for which dendritic cell based therapies can be used, since dendritic cells can play a major role in promoting HIV-1 replication. An immunotherapy requires the generation of dendritic cells from cancer patients, their in vitro exposure to tumor Ag, derived from surgically removed tumor masses, and reinjection of these cells into the tumor patients. Relatively crude membrane preparations of tumor cells will suffice as sources of tumor antigen, avoiding the necessity for molecular identification of the tumor antigen. The tumor antigen may also be synthetic peptides, carbohydrates, or nucleic acid sequences. In addition, concomitant administration of cytokines such as the flt-3 receptor agonists of the present invention may further facilitate the induction of tumor immunity. It is foreseen that the immunotherapy can be in an in vivo setting, wherein the flt-3 receptor agonists of the present invention is administered to a patient, having a tumor, alone or with other hematopoietic growth factors to increase the number of dendritic cells and endogenous tumor antigen is presented on the dendritic cells. It is also envisioned that in vivo immunotherapy can be with exogenous antigen. It is also envisioned that the immunotherapy treatment may include the mobilization of dendritic cell precursors or mature dendritic, by administering the flt-3 receptor agonists of the present invention alone or with other hematopoietic growth factors to the patient, removing the dendritic cell precursors or mature dendritic cells from the patient, exposing the dendritic cells to antigen and returning the dendritic cells to the patient. Furthermore, the dendritic cells that have been removed can be cultured ex vivo with the flt-3 receptor agonists of the present invention alone or with other hematopoietic growth factors to increase the number of dendritic cells prior to exposure to antigen. Dendritic cells based strategies also provide a method for reducing the immune response in auto-immune diseases.




Studies on dendritic cells have been greatly hampered by difficulties in preparing the cells in sufficient numbers and in a reasonably pure form. In an ex-vivo cell expansion setting, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor-α (TNF-α) cooperate in the ex vivo generation of dendritic cells from hematopoietic progenitors (CD34+ cells) retrieved from bone marrow, cord blood, or peripheral blood and flk-2/flt-3 ligand and c-kit ligand (stem cell factor [SCF]) synergize to enhance the GM-CSF plus TNF-α induced generation of dendritic cells (Siena, S. et al.


Experimental Hematology


23:1463-1471, 1995). Also provide is a method of ex vivo expansion of dendritic cell precursors or mature dendritic cells using the flt-3 receptor agonists of the present invention to provide sufficient quantities of dendritic cells for immunotherapy.




Determination of the Linker




The length of the amino acid sequence of the linker can be selected empirically or with guidance from structural information, or by using a combination of the two approaches.




When no structural information is available, a small series of linkers can be prepared for testing using a design whose length is varied in order to span a range from 0 to 50 Å and whose sequence is chosen in order to be consistent with surface exposure (hydrophilicity, Hopp & Woods,


Mol. Immunol


. 20: 483-489, 1983; Kyte & Doolittle,


J. Mol. Biol


. 157:105-132, 1982; solvent exposed surface area, Lee & Richards,


J. Mol. Biol


. 55:379-400, 1971) and the ability to adopt the necessary conformation without deranging the configuration of the flt3 receptor agonist (conformationally flexible; Karplus & Schulz,


Naturwissenschaften


72:212-213, (1985). Assuming an average of translation of 2.0 to 3.8 Å per residue, this would mean the length to test would be between 0 to 30 residues, with 0 to 15 residues being the preferred range. Exemplary of such an empirical series would be to construct linkers using a cassette sequence such as Gly-Gly-Gly-Ser repeated n times, where n is 1, 2, 3 or 4. Those skilled in the art will recognize that there are many such sequences that vary in length or composition that can serve as linkers with the primary consideration being that they be neither excessively long nor short (cf., Sandhu,


Critical Rev. Biotech


. 12:437-462, 1992); if they are too long, entropy effects will likely destabilize the three-dimensional fold, and may also make folding kinetically impractical, and if they are too short, they will likely destabilize the molecule because of torsional or steric strain.




Those skilled in the analysis of protein structural information will recognize that using the distance between the chain ends, defined as the distance between the c-alpha carbons, can be used to define the length of the sequence to be used, or at least to limit the number of possibilities that must be tested in an empirical. selection of linkers. They will also recognize that it is sometimes the case that the positions of the ends of the polypeptide chain are ill-defined in structural models derived from x-ray diffraction or nuclear magnetic resonance spectroscopy data, and that when true, this situation will therefore need to be taken into account in order to properly estimate the length of the linker required. From those residues whose positions are well defined are selected two residues that are close in sequence to the chain ends, and the distance between their c-alpha carbons is used to calculate an approximate length for a linker between them. Using the calculated length as a guide, linkers with a range of number of residues (calculated using 2 to 3.8 Å per residue) are then selected. These linkers may be composed of the original sequence, shortened or lengthened as necessary, and when lengthened the additional residues may be chosen to be flexible and hydrophilic as described above; or optionally the original sequence may be substituted for using a series of linkers, one example being the Gly-Gly-Gly-Ser (SEQ ID NO:38) cassette approach mentioned above; or optionally a combination of the original sequence and new sequence having the appropriate total length may be used.




Determination of the Amino and Carboxyl Termini of flt3 Receptor Agonists




Sequences of flt3 receptor agonists capable of folding to biologically active states can be prepared by appropriate selection of the beginning (amino terminus) and ending (carboxyl terminus) positions from within the original polypeptide chain while using the linker sequence as described above. Amino and carboxyl termini are selected from within a common stretch of sequence, referred to as a breakpoint region, using the guidelines described below. A novel amino acid sequence is thus generated by selecting amino and carboxyl termini from within the same breakpoint region. In many cases the selection of the new termini will be such that the original position of the carboxyl terminus immediately preceded that of the amino terminus. However, those skilled in the art will recognize that selections of termini anywhere within the region may function, and that these will effectively lead to either deletions or additions to the amino or carboxyl portions of the new sequence.




It is a central tenet of molecular biology that the primary amino acid sequence of a protein dictates folding to the three-dimensional structure necessary for expression of its biological function. Methods are known to those skilled in the art to obtain and interpret three-dimensional structural information using x-ray diffraction of single protein crystals or nuclear magnetic resonance spectroscopy of protein solutions. Examples of structural information that are relevant to the identification of breakpoint regions include the location and type of protein secondary structure (alpha and 3-10 helices, parallel and anti-parallel beta sheets, chain reversals and turns, and loops; Kabsch & Sander,


Biopolymers


22: 2577-2637, 1983; the degree of solvent exposure of amino acid residues, the extent and type of interactions of residues with one another (Chothia,


Ann. Rev. Biochem


. 53:537-572; 1984) and the static and dynamic distribution of conformations along the polypeptide chain (Alber & Mathews,


Methods Enzymol


. 154: 511-533, 1987). In some cases additional information is known about solvent exposure of residues; one example is a site of post-translational attachment of carbohydrate which is necessarily on the surface of the protein. When experimental structural information is not available, or is not feasible to obtain, methods are also available to analyze the primary amino acid sequence in order to make predictions of protein tertiary and secondary structure, solvent accessibility and the occurrence of turns and loops. Biochemical methods are also sometimes applicable for empirically determining surface exposure when direct structural methods are not feasible; for example, using the identification of sites of chain scission following limited proteolysis in order to infer surface exposure (Gentile & Salvatore,


Eur. J. Biochem


. 218:603-621, 1993). Thus using either the experimentally derived structural information or predictive methods (e.g.,


Srinivisan


&


Rose Proteins: Struct., Funct


. &


Genetics


, 22: 81-99, 1995) the parental amino acid sequence is inspected to classify regions according to whether or not they are integral to the maintenance of secondary and tertiary structure. The occurrence of sequences within regions that are known to be involved in periodic secondary structure (alpha and 3-10 helices, parallel and anti-parallel beta sheets) are regions that should be avoided. Similarly, regions of amino acid sequence that are observed or predicted to have a low degree of solvent exposure are more likely to be part of the so-called hydrophobic core of the protein and should also be avoided for selection of amino and carboxyl termini. In contrast, those regions that are known or predicted to be in surface turns or loops, and especially those regions that are known not to be required for biological activity, are the preferred sites for location of the extremes of the polypeptide chain. Continuous stretches of amino acid sequence that are preferred based on the above criteria are referred to as a breakpoint region.












TABLE 1









OLIGONUCLEOTIDES
























NCOFLT




CTGACCATGGCNACCCAGGACTGCTCCTTCCAA SEQ ID NO:57;






HIND160




ACTGAAGCTTAGGGCTGACACTGCAGCTCCAG SEQ ID NO:58;






HIND165




ACTGAAGCTTACAGGGTTGAGGAGTCGGGCTG SEQ ID NO:59;






FL23For




GACTGCCATGGCNACYCAGGAYTGYTCYTTYCAACACAGCCCCATC







SEQ ID NO:60;






FH3AFor




GACTGCCATGGCNACYCAGGAYTGYTCYTTYCAACACAGCCCCATC







SEQ ID NO:61;






SCF.REV




TGTCCAAACTCATCAATGTATC SEQ ID NO:62;






39FOR




CATGGCCATGGCCGACGAGGAGCTCTGCGGGGGCCTCT SEQ ID NO:63;






39REV




GCTAGAAGCTTACTGCAGGTTGGAGGCCACGGTGAC SEQ ID NO:64;






65FOR




CATGGCCATGGCCTCCAAGATGCAAGGCTTGCTGGAGC SEQ ID NO:65;






65REV




GCTAGAAGCTTACCCAGCGACAGTCTTGAGCCGCTC SEQ ID NO:66;






89FOR




CATGGCCATGGCCCCCCCCAGCTGTCTTCGCTTCGT SEQ ID NO:67;






89REV




GCTAGAAGCTTAGGGCTGAAAGGCACATTTGGTGACA SEQ ID NO:68;






L5A




CCCTGTCTGGCGGCAACGGCACCCAGGACTGCTCCTTCCAAC







SEQ ID NO:69;






L10A




GCGGTAACGGCAGTGGAGGTAATGGCACCCAGGACTGCTCCTTCCAAC







SEQ ID NO:70;






L15A




ACGGCAGTGGTGGCAATGGGAGCGGCGGAAATGGAACCCAGGACTGCTCCT







TCCAAC SEQ ID NO:71;






L5B




GTGCCGTTGCCGCCAGACAGGGTTGAGGAGTCGGGCTG SEQ ID NO:72;






L10B




ATTACCTCCACTGCCGTTACCGCCTGACAGGGTTGAGGAGTCGGGCTG







SEQ ID NO:73;






L15B




GCTCCCATTGCCACCACTGCCGTTACCTCCAGACAGGGTTGAGGA







GTCGGGCTG SEQ ID NO:74;






L15C




GATGAGGATCCGGTGGCAATGGGAGCGGCGGAAATGGAACCCAGG







ACTGCTCCTTCCACC SEQ ID NO:75;






L15D




GATGACGGATCCGTTACCTCCAGACAGGGTTGAGGAGTCGGGCTG







SEQ ID NO:76;






L15E




GATGACGGATCCGGAGGTAATGGCACCCAGGACTGCTCCTTCCAAC







SEQ ID NO:77;






339FOR2




GACTGCCATGGCCGACGAGGAGCTCTGCG SEQ ID NO:78;






339REV2




GACTCAAGCTTACTGCAGGTTGGAGGCC SEQ ID NO:79;






339-10FOR3




GACTCGGGATCCGGAGGTTCTGGCACCCAGGACTGCTCC SEQ ID NO: 80;






339-15FOR2




GACTGGGATCCGGTGGCAGTGGGAGCGGCGGATCTGGAACC SEQ ID NO:81;






339REV3




GACTTGGGATCCACTACCTCCAGACAGGGTTGAGGAGTC SEQ ID NO:82;






FLN3




ACTGACGGATCCACCGCCCAGGGTTGAGGAGTCGGGCTG SEQ ID NO:83;






FLN7




ACTGACGGATCCACCTCCTGACCCACCGCCCAGGGTTGAGGAGTCGGGCTG







SEQ ID NO:84;






FLN11




ACTGACGGATCCACCTCCTGACCCACCTCCTGACCCACCGCCCAG







GGTTGAGGAGTCGGGCTG SEQ ID NO:85;






C-term




ACGTAAAGCTTACAGGGTTGAGGAGTCG SEQ ID NO:86;






FLC3




GTCAGTGGATCCGGAGGTACCCAGGACTGCTCCTTCCAAC SEQ ID NO:87;






FLC4




GTCAGTGGATCCGGAGGTGGCACCCAGGACTGCTCCTTCCAAC







SEQ ID NO:88;






FLC10




GTCAGTGGATCCGGAGGTGGCTCAGGGGGAGGTAGTGGTACCCAG







GACTGCTCCTTCCAAC SEQ ID NO:89;






Flt36




GTTGCCATGGCNTCNAAYCTGCARGAYGARGARCTGTGCGGGGGCCTCTGG







CGGCTG SEQ ID NO:90;






Flt37




GTTGCCATGGCNAAYCTGCARGAYGARGARCTGTGYGGGGGCCTCTGGCG







GCTGGTC SEQ ID NO:91;






Flt38




GTTGCCATGGCNCTGCARGAYGARGARCTGTGYGGYGGCCTCTGGCGGCTG







GTCCTG SEQ ID NO:92;






Flt39




GTTGCCATGGCNCARGAYGARGARCTGTGYGGYGGYCTCTGGCGGCTGGTC







CTGGCA SEQ ID NO:93;






Flt40




GTTGCCATGGCNGAYGARGARCTGTGYGGYGGYCTCTGGCGGCTGGTCCTG







GCACAG SEQ ID NO:94;






Flt41




GTTGCCATGGCNGARGARCTGTGYGGYGGYCTCTGGCGGCTGGTCCTGGCA







CAGCGC SEQ ID NO:95;






Flt42




GTTGCCATGGCNGARCTGTGYGGYGGYCTGTGGCGYCTGGTCCTGGCACAG







CGCTGG SEQ ID NO:96;






Flt43




GTTGCCATGGCNCTGTGYGGYGGYCTGTGGCGYCTGGTCCTGGCACAGCGC







TGGATG SEQ ID NO:97;






36REV




TATGCAAGCTTAGGCCACGGTGACTGGGTA SEQ ID NO:98;






37REV




TATGCAAGCTTAGGAGGCCACGGTGACTGG SEQ ID NO:99;






38REV




TATGCAAGCTTAGTTGGAGGCCACGGTGAC SEQ ID NO:100;






39REV




TATGCAAGCTTACAGGTTGGAGGCCACGGT SEQ ID NO:101;






4OREV




TATGCAAGCTTACTGCAGGTTGGAGGCCAC SEQ ID NO:102,






41REV




TATGCAAGCTTAGTCCTGCAGGTTGGAGGC SEQ ID NO:103;






42REV




TATGCAAGCTTACTCGTCCTGCAGGTTGGA SEQ ID NO:104;






43REV




TATGCAAGCTTACTCCTCGTCCTGCAGGTT SEQ ID NO:105;






















TABLE 2









DNA sequences























pMON30237.seq













GCCACCCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGC






TGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCA






CCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGCGCTCTGGCGG






CTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGGTC






CAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTTTGTCA






CCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACC






AACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAA






GCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTC






AGCCC SEQ ID NO:106;













pMON30238.seq













GCCACCCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGC






TGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCA






CCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGCGG






CTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGGTC






CAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTTTGTCA






CCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACC






AACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAA






GCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTC






AGCCCGACTCCTCAACCCTG SEQ ID NO:107;













pMON30239.seq













GCCACCCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGC






TGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCA






CCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGCGG






CTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGGTC






CAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTTTGTCA






CCAAATGTGCCTTTCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCC






TGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCC






CGACTCCTCAACCCTG SEQ ID NO:108;













pMON32329.seq













GGAACTCAGGATTGTTCTTTCCAACACAGCCCCATCTCCTCCGACTTCGC






TGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCA






CCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGCGG






CTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGGTC






CAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTTTGTCA






CCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACC






AACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAA






GCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTC






AGCCC SEQ ID NO:109;













pMON32330.seq













GGTACCCAGGATTGTTCTTTCCAACACAGCCCCATCTCCTCCGACTTCGC






TGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCA






CCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGCGG






CTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGGTC






CAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTTTGTCA






CCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACC






AACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAA






GCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTC






AGCCCGACTCCTCAACCCTG SEQ ID NO:110;













pMON32341.seq













GCCACTCAGGACTGTTCTTTCCAACACAGCCCCATCTCCTCCGACTTCGC






TGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCA






CCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGCGG






CTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGGTC






CAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTTTGTCA






CCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACC






AACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAA






GCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTC






AGCCC SEQ ID NO:111;













pMON32342.seq













GCCACTCAGGACTGCTCTTTTCAACACAGCCCCATCTCCTCCGACTTCGC






TGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCA






CCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGCGG






CTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGGTC






CAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTTTGTCA






CCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACC






AACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAA






GCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTC






AGCCCGACTCCTCAACCCTG SEQ ID NO:112;













pMON32320.seq













GCCGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCG






CTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGC






TGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAG






CCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT






GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC






AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC






CTGTCTGGAGGTAACGGATCCGGTGGCAATGGGAGCGGCGGAAATGGAAC






CCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGCTGTCA






AAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCACCGTG






GCCTCCAACCTGCAG SEQ ID NO:113;













pMON32321.seq













GCCGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCG






CTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGC






TGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAG






CCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT






GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC






AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC






CTGTCAGGCGGTAACGGCAGTGGAGGTAATGGCACCCAGGACTGCTCCTT






CCAACACAGCCCCATCTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTGT






CTGACTACCTGCTTCAAGATTACCCAGTCACCGTGGCCTCCAACCTGCAG






SEQ ID NO:114;













pMON32322.seq













GCCGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCG






CTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGC






TGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAG






CCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT






GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC






AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC






CTGTCTGGCGGCAACGGCACCCAGGACTGCTCCTTCCAACACAGCCCCAT






CTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTC






AAGATTACCCAGTCACCGTGGCCTCCAACCTGCAG SEQ ID NO:115;













pMON32323.seq













GCCTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTT






TGTCACCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCC






AGACCAACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCG






CTGAAGCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCA






GTGTCAGCCCGACTCCTCAACCCTGTCTGGAGGTAACGGATCCGGTGGCA






ATGGGAGCGGCGGAAATGGAACCCAGGACTGCTCCTTCCAACACAGCCCC






ATCTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCTGCT






TCAAGATTACCCAGTCACCGTGGCCTCCAACCTGCAGGACGAGGAGCTCT






GCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCGCTGGATGGAGCGGCTC






AAGACTGTCGCTGGG SEQ ID NO:116;













pMON32324.seq













GCCTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTT






TGTCACCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCC






AGACCAACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCG






CTGAAGCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCA






GTGTCAGCCCGACTCCTCAACCCTGTCTGGAGGTAACGGATCCGGAGGTA






ATGGCACCCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTC






GCTGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGT






CACCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGC






GGCTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGG






SEQ ID NO:117;













pMON32325.seq













GCCTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTT






TGTCACCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCC






AGACCAACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCG






CTGAAGCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCA






GTGTCAGCCCGACTCCTCAACCCTGTCTGGCGGCAACGGCACGCAGGACT






GCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGCTGTCAAAATCCGT






GAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCACCGTGGCCTCCAA






CCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCAC






AGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGG SEQ ID NO:118;













pMON32326.seq













GCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT






GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC






AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC






CTGTCTGGAGGTAACGGCAGTGGTGGCAATGGGAGCGGTGGAAATGGAAC






CCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGCTGTCA






AAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCACCGTG






GCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGT






CCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGA






TGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAA






TGTGCCTTTCAGCCC SEQ ID NO:119;













pMON32327.seq













GCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT






GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC






AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC






CTGTCAGGCGGTAACGGCAGTGGAGGTAATGGCACCCAGGACTGCTCCTT






CCAACACAGCCCCATCTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTGT






CTGACTACCTGCTTCAAGATTACCCAGTCACCGTGGCCTCCAACCTGCAG






GACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCGCTG






GATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGCTGG






AGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAGCCC






SEQ ID NO:120;













pMON32328.seq













GCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT






GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC






AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC






CTGTCTGGCGGCAACGGCACGCAGGACTGCTCCTTCCAACACAGCCCCAT






CTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTC






AAGATTACCCAGTCACCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGC






GGGGGCCTCTGGCGGCTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAA






GACTGTCGCTGGGTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGG






AGATACACTTTGTCACCAAATGTGCCTTTCAGCCC SEQ ID NO:121;













pMON32348.seq













GCCGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCG






CTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGC






TGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAG






CCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT






GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC






AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC






CTGTCTGGAGGTAGTGGATCCGGAGGTTCTGGCAACCCAGGACTGCTCCT






TCCAACACAGCCCCATCTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTG






TCTGACTACCTGCTTCAAGATTACCCAGTCACCGTGGCCTCCAACCTGCA






G SEQ ID NO:122;













pMON32350.seq













GCCGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCG






CTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGC






TGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAG






CCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT






GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC






AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC






CTGTCTGGAGGTAGTGGATCCGGTGGCAGTGGGAGCGGCGGATCTGGAAC






CCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGCTGTCA






AAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCACCGTG






GCCTCCAACCTGCAG SEQ ID NO:123;













FLT3N.seq













CCATGGCCACCCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGAC






TTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCC






AGTCACCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCT






GGCGGCTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGCT






GGGTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTT






TGTCACCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCC






AGACCAACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCG






CTGAAGCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCA






GTGTCAGCCCGACTCCTCAACCCTGGGCGGTGGATCC SEQ ID NO:124;













FLT3C.seq













GGATCCGGAGGTACCCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTC






CGACTTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATT






ACCCAGTCACCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGC






CTCTGGCGGCTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGT






CGCTGGGTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATAC






ACTTTGTCACCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTC






GTCCAGACCAACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGT






GGCGCTGAAGCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGC






TGCAGTGTCAGCCCGACTCCTCAACCCTGTAAGCTT EQ ID NO:125;













FLT7N.seq













CCATGGCCACCCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGAC






TTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCC






AGTCACCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCT






GGCGGCTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGCT






GGGTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTT






TGTCACCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCC






AGACCAACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCG






CTGAAGCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCA






GTGTCAGCCCGACTCCTCAACCCTGGGCGGTGGGTCAGGAGGTGGATCC






SEQ ID NO:126;













FLT4C.seq













GGATCCGGAGGTGGCACCCAGGACTGCTCCTTCCAACACAGCCCCATCTC






CTCCGACTTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAAG






ATTACCCAGTCACCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGG






GGCCTCTGGCGGCTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGAC






TGTCGCTGGGTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGA






TACACTTTGTCACCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGC






TTCGTCCAGACCAACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCT






GGTGGCGCTGAAGCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGG






AGCTGCAGTGTCAGCCCGACTCCTCAACCCTGTAAGCTT SEQ ID NO:127;













FLT11N.seq













CCATGGCCACCCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGAC






TTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCC






AGTCACCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCT






GGCGGCTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGCT






GGGTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTT






TGTCACCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCC






AGACCAACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCG






CTGAAGCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCA






GTGTCAGCCCGACTCCTCAACCCTGGGCGGTGGGTCAGGAGGTGGGTCAG






GAGGTGGATCC SEQ ID NO:128;













FLT10C.seq













GGATCCGGAGGTGGCTCAGGGGGAGGTAGTGGTACCCAGGACTGCTCCTT






CCAACACAGCCCCATCTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTGT






CTGACTACCTGCTTCAAGATTACCCAGTCACCGTGGCCTCCAACCTGCAG






GACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCGCTG






GATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGCTGG






AGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAGCCC






CCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCTGCA






GGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCCAGA






ACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACCCTG






TAAGCTT SEQ ID NO:129;













pMON32365.seq













GCCGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCG






CTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGC






TGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAG






CCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT






GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC






AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC






CTGGGCGGTGGATCCGGAGGTACCCAGGACTGCTCCTTCCAACACAGCCC






CATCTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCTGC






TTCAAGATTACCCAGTCACCGTGGCCTCCAACCTGCAG SEQ ID NO:130;













pMON32366.seq













GCCGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCG






CTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGC






TGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAG






CCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT






GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC






AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC






CTGGGCGGTGGATCCGGAGGTGGCACCCAGGACTGCTCCTTCCAACACAG






CCCCATCTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTGTCTGACTACC






TGCTTCAAGATTACCCAGTCACCGTGGCCTCCAACCTGCAG SEQ ID NO:131;













pMON32367.seq













GCCGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCG






CTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGC






TGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAG






CCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT






GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC






AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC






CTGGGCGGTGGGTCAGGAGGTGGATCCGGAGGTACCCAGGACTGCTCCTT






CCAACACAGCCCCATCTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTGT






CTGACTACCTGCTTCAAGATTACCCAGTCACCGTGGCCTCCAACCTGCAG






SEQ ID NO:132;













pMON32368.seq













GCCGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCG






CTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGC






TGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAG






CCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT






GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC






AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC






CTGGGCGGTGGATCCGGAGGTGGCTCAGGGGGAGGTAGTGGTACCCAGGA






CTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGCTGTCAAAATCC






GTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCACCGTGGCCTCC






AACCTGCAG SEQ ID NO:133;













pMON32369.seq













GCCGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCG






CTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGC






TGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAG






CCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT






GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC






AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC






CTGGGCGGTGGGTCAGGAGGTGGGTCAGGAGGTGGATCCGGAGGTGGCAC






CCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGCTGTCA






AAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCACCGTG






GCCTCCAACCTGCAG SEQ ID NO:134;













pMON32370.seq













GCCGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCG






CTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGC






TGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAG






CCCCCCCCCAGCTGCCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT






GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC






AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC






CTGGGCGGTGGGTCAGGAGGTGGGTCAGGAGGTGGATCCGGAGGTGGCTC






AGGGGGAGGTAGTGGTACCCAGGACTGCTCCTTCCAACACAGCCCCATCT






CCTCCGACTTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAA






GATTACCCAGTCACCGTGGCCTCCAACCTGCAG SEQ ID NO:135;













pMON35712.seq













GCCGATTACCCAGTCACCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGG






GCCTCTGGCGGCTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGC






TGGGTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTTTGTC






ACCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACA






TCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGAT






CACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCA






ACCCTGGGCGGTGGGTCAGGAGGTGGGTCAGGAGGTGGATCCGGAGGTGGCACCC






AGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGCTGTCAAAATCCG






TGAGCTGTCTGACTACCTGCTTCAA SEQ ID NO:136;













pMON35713.seq













GCCGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCC






TGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGG






CTTGCTGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAG






CCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCTGCAGG






AGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCCAGAACTTCTC






CCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACCCTGGGCGGTGGGTCA






GGAGGTGGGTCAGGAGGTGGATCCGGAGGTGGCACCCAGGACTGCTCCTTCCAAC






ACAGCCCCATCTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCT






GCTTCAAGATTACCCAGTCACCGTG SEQ ID NO:137;













pMON35714.seq













GCCGTCGCTGGGTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATAC






ACTTTGTCACCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCCA






GACCAACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAG






CCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCG






ACTCCTCAACCCTGGGCGGTGGGTCAGGAGGTGGGTCAGGAGGTGGATCCGGAGG






TGGCACCCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGCTGTC






AAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCACCGTGGCCT






CCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACA






GCGCTGGATGGAGCGGCTCAAGACT SEQ ID NO:138;













pMON35715.seq













GCCTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTTTGTCA






CCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACAT






CTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATC






ACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAA






CCCTGGGCGGTGGGTCAGGAGGTGGGTCAGGAGGTGGATCCGGAGGTGGCACCCA






GGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGCTGTCAAAATCCGT






GAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCACCGTGGCCTCCAACCTGC






AGGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCGCTGGAT






GGAGCGGCTCAAGACTGTCGCTGGG SEQ ID NO:139;













pMON35716.seq













GCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCTGCAGG






AGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCCAGAACTTCTC






CCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACCCTGGGCGGTGGGTCA






GGAGGTGGGTCAGGAGGTGGATCCGGAGGTGGCACCCAGGACTGCTCCTTCCAAC






ACAGCCCCATCTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCT






GCTTCAAGATTACCCAGTCACCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGC






GGGGGCCTCTGGCGGCTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTG






TCGCTGGGTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTT






TGTCACCAAATGTGCCTTTCAGCCC SEQ ID NO:140;













pMON 35717.seq













GCCCGCTTCGTCCAGACCAACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGC






TGGTGGCGCTGAAGCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCT






GCAGTGTCAGCCCGACTCCTCAACCCTGGGCGGTGGGTCAGGAGGTGGGTCAGGA






GGTGGATCCGGAGGTGGCACCCAGGACTGCTCCTTCCAACACAGCCCCATCTCCT






CCGACTTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCC






AGTCACCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGCGG






CTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGA






TGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGC






CTTTCAGCCCCCCCCCAGCTGTCTT SEQ ID NO:142;













pMON 35718.seq













GCCACCAACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCGCTGA






AGCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCC






CGACTCCTCAACCCTGGGCGGTGGGTCAGGAGGTGGGTCAGGAGGTGGATCCGGA






GGTGGCACCCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGCTG






TCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCACCGTGGC






CTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCA






CAGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGC






TGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAGCCCCC






CCCCAGCTGTCTTCGCTTCGTCCAG SEQ ID NO:143;






















TABLE 3









PROTEIN SEQUENCES























pMON30237 .pep













AlaThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIle






ArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGln






AspGluGluLeuCysGlyAlaLeuTrpArgLeuValLeuAlaGlnArgTrpMetGluArg






LeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIle






HisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGlnThr






AsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrpIle






ThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnPro SEQ ID NO:1;













pMON30238 .pep













AlaThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIle






ArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGln






AspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGluArg






LeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIle






HisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGlnThr






AsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrpIle






ThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThrLeu






SEQ ID NO:2;













pMON30239 .pep













AlaThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIle






ArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGln






AspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGluArg






LeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIle






HisPheValThrLysCysAlaPheGlnGluThrSerGluGlnLeuValAlaLeuLysPro






TrpIleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSer






ThrLeu SEQ ID NO:3;













pMON32329 .pep













GlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIle






ArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGln






AspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGluArg






LeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIle






HisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGlnThr






AsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrpIle






ThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnPro SEQ ID NO:4;













pMON32330 .pep













GlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIle






ArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGln






AspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGluArg






LeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIle






HisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGlnThr






AsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrpIle






ThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThrLeu






SEQ ID NO:5;













pMON3234l .pep













AlaThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIle






ArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGln






AspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGluArg






LeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIle






HisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGlnThr






AsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrpIle






ThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnPro SEQ ID NO:6;













pMON32342 .pep













AlaThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIle






ArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGln






AspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGluArg






LeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIle






HisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGlnThr






AsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrpIle






ThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThrLeu






SEQ ID NO:7;













pMON32320 .pep













AlaAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGlu






ArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGlu






IleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGln






ThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrp






IleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThr






LeuSerGlyGlyAsnGlySerGlyGlyAsnGlySerGlyGlyAsnGlyThrGlnAspCys






SerPheGlnHisSerProIleSerSerAspPheAlaValLysIleArgGluLeuSerAsp






TyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGln SEQ ID NO:8;













pMON32321 .pep













AlaAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGlu






ArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGlu






IleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGln






ThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrp






IleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThr






LeuSerGlyGlyAsnGlySerGlyGlyAsnGlyThrGlnAspCysSerPheGlnHisSer






ProIleSerSerAspPheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAsp






TyrProValThrValAlaSerAsnLeuGln SEQ ID NO:9;













pMON32322 .pep













AlaAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGlu






ArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGlu






IleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGln






ThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrp






IleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThr






LeuSerGlyGlyAsnGlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAsp






PheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrVal






AlaSerAsnLeuGln SEQ ID NO:10;













pMON32323 .pep













AlaSerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIleHisPheValThrLys






CysAlaPheGlnProProProSerCysLeuArgPheValGlnThrAsnIleSerArgLeu






LeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnPhe






SerArgCysLeuGluLeuGlnCysGlnProAspSerSerThrLeuSerGlyGlyAsnGly






SerGlyGlyAsnGlySerGlyGlyAsnGlyThrGlnAspCysSerPheGlnHisSerPro






IleSerSerAspPheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAspTyr






ProValThrValAlaSerAsnLeuGlnAspGluGluLeuCysGlyGlyLeuTrpArgLeu






ValLeuAlaGlnArgTrpMetGluArgLeuLysThrValAlaGly SEQ ID NO:11;













pMON32324 .pep













AlaSerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIleHisPheValThrLys






CysAlaPheGlnProProProSerCysLeuArgPheValGlnThrAsnIleSerArgLeu






LeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnPhe






SerArgCysLeuGluLeuGlnCysGlnProAspSerSerThrLeuSerGlyGlyAsnGly






SerGlyGlyAsnGlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPhe






AlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAla






SerAsnLeuGlnAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArg






TrpMetGluArgLeuLysThrValAlaGly SEQ ID NO:12;













pMON32325 .pep













AlaSerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIleHisPheValThrLys






CysAlaPheGlnProProProSerCysLeuArgPheValGlnThrAsnIleSerArgLeu






LeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnPhe






SerArgCysLeuGluLeuGlnCysGlnProAspSerSerThrLeuSerGlyGlyAsnGly






ThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIleArg






GluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGlnAsp






GluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGluArgLeu






LysThrValAlaGly SEQ ID NO:13;













pMON32326 .pep













AlaProProSerCysLeuArgPheValGlnThrAsnIleSerArgLeuLeuGlnGluThr






SerGluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnPheSerArgCysLeu






GluLeuGlnCysGlnProAspSerSerThrLeuSerGlyGlyAsnGlySerGlyGlyAsn






GlySerGlyGlyAsnGlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAsp






PheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrVal






AlaSerAsnLeuGlnAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGln






ArgTrpMetGluArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArg






ValAsnThrGluIleHisPheValThrLysCysAlaPheGlnPro SEQ ID NO:14;













pMON32327 .pep













AlaProProSerCysLeuArgPheValGlnThrAsnIleSerArgLeuLeuGlnGluThr






SerGluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnPheSerArgCysLeu






GluLeuGlnCysGlnProAspSerSerThrLeuSerGlyGlyAsnGlySerGlyGlyAsn






GlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIle






ArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGln






AspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGluArg






LeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIle






HisPheValThrLysCysAlaPheGlnPro SEQ ID NO:15;













pMON32328 .pep













AlaProProSerCysLeuArgPheValGlnThrAsnIleSerArgLeuLeuGlnGluThr






SerGluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnPheSerArgCysLeu






GluLeuGlnCysGlnProAspSerSerThrLeuSerGlyGlyAsnGlyThrGlnAspCys






SerPheGlnHisSerProIleSerSerAspPheAlaValLysIleArgGluLeuSerAsp






TyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGlnAspGluGluLeuCys






GlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGluArgLeuLysThrValAla






GlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIleHisPheValThrLys






CysAlaPheGlnPro SEQ ID NO:16;













pMON32348 .pep













AlaAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGlu






ArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGlu






IleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGln






ThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrp






IleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThr






LeuSerGlyGlySerGlySerGlyGlySerGlySerGlyGlySerGlyThrGlnAspCys






SerPheGlnHisSerProIleSerSerAspPheAlaValLysIleArgGluLeuSerAsp






TyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGln SEQ ID NO:17;













pMON32350 .pep













AlaAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGlu






ArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGlu






IleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGln






ThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrp






IleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThr






LeuSerGlyGlySerGlySerGlyGlySerGlyThrGlnAspCysSerPheGlnHisSer






ProIleSerSerAspPheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAsp






TyrProValThrValAlaSerAsnLeuGln SEQ ID NO:18;













FLT3N .pep













MetAlaThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLys






IleArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeu






GlnAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGlu






ArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGlu






IleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGln






ThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrp






IleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThr






LeuGlyGlyGlySer SEQ ID NO:19;













FLT3C .pep













GlySerGlyGlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAla






ValLysIleArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSer






AsnLeuGlnAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrp






MetGluArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsn






ThrGluIleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPhe






ValGlnThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLys






ProTrpIleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSer






SerThrLeu SEQ ID NO:20;













FLT7N .pep













MetAlaThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLys






IleArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeu






GlnAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGlu






ArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGlu






IleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGln






ThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrp






IleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThr






LeuGlyGlyGlySerGlyGlyGlySer SEQ ID NO:2l;













FLT4C .pep













GlySerGlyGlyGlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPhe






AlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAla






SerAsnLeuGlnAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArg






TrpMetGluArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgVal






AsnThrGluIleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArg






PheValGlnThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeu






LysProTrpIleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAsp






SerSerThrLeu SEQ ID NO:22;













FLT11N .pep













MetAlaThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLys






IleArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeu






GlnAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGlu






ArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGlu






IleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGln






ThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrp






IleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThr






LeuGlyGlyGlySerGlyGlyGlySerGlyGlyGlySer SEQ ID NO:23;













FLT10C .pep













GlySerGlyGlyGlySerGlyGlyGlySerGlyThrGlnAspCysSerPheGlnHisSer






ProIleSerSerAspPheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAsp






TyrProValThrValAlaSerAsnLeuGlnAspGluGluLeuCysGlyGlyLeuTrpArg






LeuValLeuAlaGlnArgTrpMetGluArgLeuLysThrValAlaGlySerLysMetGln






GlyLeuLeuGluArgValAsnThrGluIleHisPheValThrLysCysAlaPheGlnPro






ProProSerCysLeuArgPheValGlnThrAsnIleSerArgLeuLeuGlnGluThrSer






GluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnPheSerArgCysLeuGlu






LeuGlnCysGlnProAspSerSerThrLeu SEQ ID NO:24;













pMON32365 .pep













AlaAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGlu






ArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGlu






IleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGln






ThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrp






IleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThr






LeuGlyGlyGlySerGlyGlyThrGlnAspCysSerPheGlnHisSerProIleSerSer






AspPheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThr






ValAlaSerAsnLeuGln SEQ ID NO:25;













pMON32366 .pep













AlaAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGlu






ArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGlu






IleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGln






ThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrp






IleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThr






LeuGlyGlyGlySerGlyGlyGlyThrGlnAspCysSerPheGlnHisSerProIleSer






SerAspPheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAspTyrProVal






ThrValAlaSerAsnLeuGln SEQ ID NO:26;













pMON32367 .pep













AlaAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGlu






ArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGlu






IleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGln






ThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrp






IleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThr






LeuGlyGlyGlySerGlyGlyGlySerGlyGlyThrGlnAspCysSerPheGlnHisSer






ProIleSerSerAspPheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAsp






TyrProValThrValAlaSerAsnLeuGln SEQ ID NO:27;













pMON32368 .pep













AlaAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGlu






ArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGlu






IleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGln






ThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrp






IleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThr






LeuGlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGlyThrGlnAspCysSerPhe






GlnHisSerProIleSerSerAspPheAlaValLysIleArgGluLeuSerAspTyrLeu






LeuGlnAspTyrProValThrValAlaSerAsnLeuGln SEQ ID NO:28;













pMON32369 .pep













AlaAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGlu






ArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGlu






IleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGln






ThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrp






IleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThr






LeuGlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGlyGlyGlyThrGlnAspCys






SerPheGlnHisSerProIleSerSerAspPheAlaValLysIleArgGluLeuSerAsp






TyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGln SEQ ID NO:29;













pMON32370 .pep













AlaAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGlu






ArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGlu






IleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGln






ThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrp






IleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThr






LeuGlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGlyGlyGly






SerGlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLys






IleArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeu






Gln SEQ ID NO:30;













pMON35712 .pep













AlaAspTyrProValThrValAlaSerAsnLeuGlnAspGluGluLeuCysGlyGlyLeu






TrpArgLeuValLeuAlaGlnArgTrpMetGluArgLeuLysThrValAlaGlySerLys






MetGlnGlyLeuLeuGluArgValAsnThrGluIleHisPheValThrLysCysAlaPhe






GlnProProProSerCysLeuArgPheValGlnThrAsnIleSerArgLeuLeuGlnGlu






ThrSerGluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnPheSerArgCys






LeuGluLeuGlnCysGlnProAspSerSerThrLeuGlyGlyGlySerGlyGlyGlySer






GlyGlyGlySerGlyGlyGlyThrGlnAspCysSerPheGlnHisSerProIleSerSer






AspPheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGln SEQ ID NO:31;













pMON35713 .pep













AlaAlaSerAsnLeuGlnAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAla






GlnArgTrpMetGluArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGlu






ArgValAsnThrGluIleHisPheValThrLysCysAlaPheGlnProProProSerCys






LeuArgPheValGlnThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuVal






AlaLeuLysProTrpIleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGln






ProAspSerSerThrLeuGlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGlyGly






GlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIle






ArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrVal SEQ ID NO:32;













pMON35714 .pep













AlaValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIleHisPhe






ValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGlnThrAsnIle






SerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrpIleThrArg






GlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThrLeuGlyGly






GlySerGlyGlyGlySerGlyGlyGlySerGlyGlyGlyThrGlnAspCysSerPheGln






HisSerProIleSerSerAspPheAlaValLysIleArgGluLeuSerAspTyrLeuLeu






GlnAspTyrProValThrValAlaSerAsnLeuGlnAspGluGluLeuCysGlyGlyLeu






TrpArgLeuValLeuAlaGlnArgTrpMetGluArgLeuLysThr SEQ ID NO:33;













pMON35715 .pep













AlaSerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIleHisPheValThrLys






CysAlaPheGlnProProProSerCysLeuArgPheValGlnThrAsnIleSerArgLeu






LeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnPhe






SerArgCysLeuGluLeuGlnCysGlnProAspSerSerThrLeuGlyGlyGlySerGly






GlyGlySerGlyGlyGlySerGlyGlyGlyThrGlnAspCysSerPheGlnHisSerPro






IleSerSerAspPheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAspTyr






ProValThrValAlaSerAsnLeuGlnAspGluGluLeuCysGlyGlyLeuTrpArgLeu






ValLeuAlaGlnArgTrpMetGluArgLeuLysThrValAlaGly SEQ ID NO:34;













pMON35716 .pep













AlaProProSerCysLeuArgPheValGlnThrAsnIleSerArgLeuLeuGlnGluThr






SerGluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnPheSerArgCysLeu






GluLeuGlnCysGlnProAspSerSerThrLeuGlyGlyGlySerGlyGlyGlySerGly






GlyGlySerGlyGlyGlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAsp






PheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrVal






AlaSerAsnLeuGlnAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGln






ArgTrpMetGluArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArg






ValAsnThrGluIleHisPheValThrLysCysAlaPheGlnPro SEQ ID NO:35;













pMON35717 .pep













AlaArgPheValGlnThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuVal






AlaLeuLysProTrpIleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGln






ProAspSerSerThrLeuGlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGlyGly






GlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIle






ArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGln






AspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGluArg






LeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIle






HisPheValThrLysCysAlaPheGlnProProProSerCysLeu SEQ ID NO:36;













pMON35718 .pep













AlaThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysPro






TrpIleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSer






ThrLeuGlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGlyGlyGlyThrGlnAsp






CysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIleArgGluLeuSer






AspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGlnAspGluGluLeu






CysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGluArgLeuLysThrVal






AlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIleHisPheValThr






LysCysAlaPheGlnProProProSerCysLeuArgPheValGln SEQ ID NO:37;














Materials and Methods




Recombinant DNA Methods




Unless noted otherwise, all specialty chemicals were obtained from Sigma Co., (St. Louis, Mo.). Restriction endonucleases and T4 DNA ligase were obtained from New England Biolabs (Beverly, Mass.) or Boehringer Mannheim (Indianapolis, Ind.).




Transformation of


E. coli


Strains






E. coli


strains, such as DH5α™ (Life Technologies, Gaithersburg, Md.) and TGl (Amersham Corp., Arlington Heights, Ill.) are used for transformation of ligation reactions and are the source of plasmid DNA for transfecting mammalian cells.


E. coli


strains, such as MON105 and JM101, can be used for expressing the flt3 receptor agonist of the present invention in the cytoplasm or periplasmic space.




MON105 ATCC#55204: F−, lamda−,IN(rrnD, rrE)1, rpoD+, rpoH358




DH5α™: F−, phi80dlacZdeltaM15, delta(lacZYA-argF)U169, deoR, recA1, endal, hsdR17(rk−,mk+), phoA, supE441amda-,thi-1, gyrA96, relA1




TG1: delta(lac-pro), supE, thi-1, hsdD5/F′ (traD36, proA+B+, laciq, lacZdeltaM15)




DH5α™ Subcloning efficiency cells are purchased as competent cells and are ready for transformation using the manufacturer's protocol, while both


E. coli


strains TG1 and MON105 are rendered competent to take up DNA using a CaCl


2


method. Typically, 20 to 50 mL of cells are grown in LB medium (1% Bacto-tryptone, 0.5% Bacto-yeast extract, 150 mM NaCl) to a density of approximately 1.0 optical density unit at 600 nanometers (OD600) as measured by a Baush & Lomb Spectronic spectrophotometer (Rochester, N.Y.). The cells are collected by centrifugation and resuspended in one-fifth culture volume of CaCl


2


solution (50 mM CaCl


2


, 10 mM Tris-Cl, pH 7.4) and are held at 4° C. for 30 minutes. The cells are again collected by centrifugation and resuspended in one-tenth culture volume of CaCl


2


solution. Ligated DNA is added to 0.2mL of these cells, and the samples are held at 4° C. for 1 hour. The samples are shifted to 42° C. for two minutes and 1mL of LB is added prior to shaking the samples at 37° C. for one hour. Cells from these samples are spread on plates (LB medium plus 1.5% Bacto-agar) containing either ampicillin (100 micrograms/mL, ug/mL) when selecting for ampicillin-resistant transformants, or spectinomycin (75 ug/mL) when selecting for spectinomycin-resistant transformants. The plates are incubated overnight at 37° C. Single colonies are picked, grown in LB supplemented with appropriate antibiotic for 6-16 hours at 37° C. with shaking. Colonies are picked and inoculated into LB plus appropriate antibiotic (100 ug/mL ampicillin or 75 ug/mL spectinomycin) and are grown at 37° C. while shaking. Before harvesting the cultures, 1 ul of cells are analyzed by PCR for the presence of a flt3 receptor agonist gene. The PCR is carried out using a combination of primers that anneal to the flt3 receptor agonist gene and/or vector. After the PCR is complete, loading dye is added to the sample followed by electrophoresis as described earlier. A gene has been ligated to the vector when a PCR product of the expected size is observed.




Methods for Creation of Genes With new N-terminus/C-terminus




Method I. Creation of Genes With new N-terminus/C-terminus which Contain a Linker Region.




Genes with new N-terminus/C-terminus which contain a linker region separating the original C-terminus and N-terminus can be made essentially following the method described in L. S. Mullins, et al


J. Am. Chem. Soc


. 116, 5529-5533 (1994). Multiple steps of polymerase chain reaction (PCR) amplifications are used to rearrange the DNA sequence encoding the primary amino acid sequence of the protein. The steps are illustrated in FIG.


2


.




In the first step, the primer set (“new start” and “linker start”) is used to create and amplify, from the original gene sequence, the DNA fragment (“Fragment Start”) that contains the sequence encoding the new N-terminal portion of the new protein followed by the linker that connects the C-terminal and N-terminal ends of the original protein. In the second step, the primer set (“new stop” and “linker stop”) is used to create and amplify, from the original gene sequence, the DNA fragment (“Fragment Stop”) that encodes the same linker as used above, followed by the new C-terminal portion of the new protein. The “new start” and “new stop” primers are designed to include the appropriate restriction enzyme recognition sites which allow cloning of the new gene into expression plasmids. Typical PCR conditions are one cycle 95° C. melting for two minutes; 25 cycles 94° C. denaturation for one minute, 50° C. annealing for one minute and 72° C. extension for one minute; plus one cycle 72° C. extension for seven minutes. A Perkin Elmer GeneAmp PCR Core Reagents kit is used. A 100 ul reaction contains 100 pmole of each primer and one ug of template DNA; and 1×PCR buffer, 200 uM dGTP, 200 uM dATP, 200 uM dTTP, 200 uM dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM MgCl


2


. PCR reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, Conn.).




“Fragment Start” and “Fragment Stop”, which have complementary sequence in the linker region and the coding sequence for the two amino acids on both sides of the linker, are joined together in a third PCR step to make the full-length gene encoding the new protein. The DNA fragments “Fragment Start” and “Fragment Stop” are resolved on a 1% TAE gel, stained with ethidium bromide and isolated using a Qiaex Gel Extraction kit (Qiagen). These fragments are combined in equimolar quantities, heated at 70° C. for ten minutes and slow cooled to allow annealing through their shared sequence in “linker start” and “linker stop”. In the third PCR step, primers “new start” and “new stop” are added to the annealed fragments to create and amplify the full-length new N-terminus/C-terminus gene. Typical PCR conditions are one cycle 95° C. melting for two minutes; 25 cycles 94° C. denaturation for one minute, 60° C. annealing for one minute and 72° C. extension for one minute; plus one cycle 72° C. extension for seven minutes. A Perkin Elmer GeneAmp PCR Core Reagents kit is used. A 100 ul reaction contains 100 pmole of each primer and approximately 0.5 ug of DNA; and 1×PCR buffer, 200 uM dGTP, 200 uM DATP, 200 uM dTTP, 200 uM dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM MgCl


2


. PCR reactions are purified using a Wizard PCR Preps kit (Promega).




Method II. Creation of Genes With new N-terminus/C-terminus Without a Linker Region.




New N-terminus/C-terminus genes without a linker joining the original N-terminus and C-terminus can be made using two steps of PCR amplification and a blunt end ligation. The steps are illustrated in FIG.


3


. In the first step, the primer set (“new start” and “P-bl start”) is used to create and amplify, from the original gene sequence, the DNA fragment (“Fragment Start”) that contains the sequence encoding the new N-terminal portion of the new protein. In the second step, the primer set (“new stop” and “P-bl stop”) is used to create and amplify, from the original gene sequence, the DNA fragment (“Fragment Stop”) that contains the sequence encoding the new C-terminal portion of the new protein. The “new start” and “new stop” primers are designed to include appropriate restriction sites which allow cloning of the new gene into expression vectors. Typical PCR conditions are one cycle 95° C. melting for two minutes; 25 cycles 94° C. denaturation for one minute, 50° C. annealing for 45 seconds and 72° C. extension for 45 seconds. Deep Vent polymerase (New England Biolabs) is used to reduce the occurrence of overhangs in conditions recommended by the manufacturer. The “P-bl start” and “P-bl stop” primers are phosphorylated at the end to aid in the subsequent blunt end ligation of “Fragment Start” and “Fragment Stop” to each other. A 100 ul reaction contained 150 pmole of each primer and one ug of template DNA; and 1×Vent buffer (New England Biolabs), 300 uM dGTP, 300 uM DATP, 300 uM dTTP, 300 uM dCTP, and 1 unit Deep Vent polymerase. PCR reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, Conn.). PCR reaction products are purified using a Wizard PCR Preps kit (Promega).




The primers are designed to include appropriate restriction enzyme recognition sites which allow for the cloning of the new gene into expression vectors. Typically “Fragment Start” is designed to create a NcoI restriction site , and “Fragment Stop” is designed to create a HindIII restriction site. Restriction digest reactions are purified using a Magic DNA Clean-up System kit (Promega). Fragments Start and Stop are resolved on a 1% TAE gel, stained with ethidium bromide and isolated using a Qiaex Gel Extraction kit (Qiagen). These fragments are combined with and annealed to the ends of the ˜3800 base pair NcoI/HindIII vector fragment of pMON3934 by heating at 50° C. for ten minutes and allowed to slow cool. The three fragments are ligated together using T4 DNA ligase (Boehringer Mannheim). The result is a plasmid containing the full-length new N-terminus/C-terminus gene. A portion of the ligation reaction is used to transform


E. coli


strain DH5α cells (Life Technologies, Gaithersburg, Md.). Plasmid DNA is purified and sequence confirmed as below.




Method III. Creation of new N-terminus/C-terminus Genes by Tandem-duplication Method




New N-terminus/C-terminus genes can be made based on the method described in R. A. Horlick, et al


Protein Eng


. 5:427-431 (1992). Polymerase chain reaction (PCR) amplification of the new N-terminus/C-terminus genes is performed using a tandemly duplicated template DNA. The steps are illustrated in FIG.


4


.




The tandemly-duplicated template DNA is created by cloning and contains two copies of the gene separated by DNA sequence encoding a linker connecting the original C− and N-terminal ends of the two copies of the gene. Specific primer sets are used to create and amplify a full-length new N terminus/C-terminus gene from the tandemly-duplicated template DNA. These primers are designed to include appropriate restriction sites which allow for the cloning of the new gene into expression vectors. Typical PCR conditions are one cycle 95° C. melting for two minutes; 25 cycles 94° C. denaturation for one minute, 50° C. annealing for one minute and 72° C. extension for one minute; plus one cycle 72° C. extension for seven minutes. A Perkin Elmer GeneAmp PCR Core Reagents kit (Perkin Elmer Corporation, Norwalk, Conn.) is used. A 100 ul reaction contains 100 pmole of each primer and one ug of template DNA; and 1×PCR buffer, 200 uM dGTP, 200 uM DATP, 200 uM dTTP, 200 uM dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM MgCl


2


. PCR reactions are performed in a Model. 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, Conn.). PCR reactions are purified using a Wizard PCR Preps kit (Promega).




DNA Isolation and Characterization




Plasmid DNA can be isolated by a number of different methods and using commercially available kits known to those skilled in the art. A few such methods are shown herein. Plasmid DNA is isolated using the Promega Wizard™ Miniprep kit (Madison, Wis.), the Qiagen QIAwell Plasmid isolation kits (Chatsworth, Calif.) or Qiagen Plasmid Midi kit. These kits follow the same general procedure for plasmid DNA isolation. Briefly, cells are pelleted by centrifugation (5000×g), plasmid DNA released with sequential NaOH/acid treatment, and cellular debris is removed by centrifugation (10000×g). The supernatant (containing the plasmid DNA) is loaded onto a column containing a DNA-binding resin, the column is washed, and plasmid DNA eluted with TE. After screening for the colonies with the plasmid of interest, the


E. coli


cells are inoculated into 50-100 mLs of LB plus appropriate antibiotic for overnight growth at 37° C. in an air incubator while shaking. The purified plasmid DNA is used for DNA sequencing, further restriction enzyme digestion, additional subcloning of DNA fragments and transfection into mammalian,


E. coli


or other cells.




Sequence Confirmation




Purified plasmid DNA is resuspended in dH


2


O and quantitated by measuring the absorbance at 260/280 nm in a Bausch and Lomb Spectronic 601 UV spectrometer. DNA samples are sequenced using ABI PRISIM™ DyeDeoxy™ terminator sequencing chemistry (Applied Biosystems Division of Perkin Elmer Corporation, Lincoln City, Calif.) kits (Part Number 401388 or 402078) according to the manufacturers suggested protocol usually modified by the addition of 5% DMSO to the sequencing mixture. Sequencing reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, Conn.) following the recommended amplification conditions. Samples are purified to remove excess dye terminators with Centri-Sep™ spin columns (Princeton Separations, Adelphia, N.J.) and lyophilized. Fluorescent dye labeled sequencing reactions are resuspended in deionized formamide, and sequenced on denaturing 4.75% polyacrylamide-8M urea gels using an ABI Model 373A automated DNA sequencer. Overlapping DNA sequence fragments are analyzed and assembled into master DNA contigs using Sequencher DNA analysis software (Gene Codes Corporation, Ann Arbor, Mich.).




ExDression of flt3 Receptor Agonists in Mammalian Cells




Mammalian Cell Transfection/Production of Conditioned Media




The BHK-21 cell line can be obtained from the ATCC (Rockville, Md.). The cells are cultured in Dulbecco's modified Eagle media (DMEM/high-glucose), supplemented to 2mM (mM) L-glutamine and 10% fetal bovine serum (FBS). This formulation is designated BHK growth media. Selective media is BHK growth media supplemented with 453 units/mL hygromycin B (Calbiochem, San Diego, Calif.). The BHK-21 cell line was previously stably transfected with the HSV transactivating protein VP16, which transactivates the IE110 promoter found on the plasmid pMON3359 (See Hippenmeyer et al.,


Bio/Technology


, pp.1037-1041, 1993). The VP16 protein drives expression of genes inserted behind the IE110 promoter. BHK-21 cells expressing the transactivating protein VP16 are designated BHK-VP16. The plasmid pMON1118 (See Highkin et al.,


Poultry Sci


., 70: 970-981, 1991) expresses the hygromycin resistance gene from the SV40 promoter. A similar plasmid is available from ATCC, pSV2-hph.




BHK-VP16 cells are seeded into a 60 millimeter (mm) tissue culture dish at 3×10


5


cells per dish 24 hours prior to transfection. Cells are transfected for 16 hours in 3 mL of “OPTIMEM”™ (Gibco-BRL, Gaithersburg, Md.) containing 10 ug of plasmid DNA containing the gene of interest, 3 ug hygromycin resistance plasmid, pMON1118, and 80 ug of Gibco-BRL “LIPOFECTAMINE”™ per dish. The media is subsequently aspirated and replaced with 3 mL of growth media. At 48 hours post-transfection, media from each dish is collected and assayed for activity (transient conditioned media). The cells are removed from the dish by trypsin-EDTA, diluted 1:10 and transferred to 100 mm tissue culture dishes containing 10 mL of selective media. After approximately 7 days in selective media, resistant cells grow into colonies several millimeters in diameter. The colonies are removed from the dish with filter paper (cut to approximately the same size as the colonies and soaked in trypsin/EDTA) and transferred to individual wells of a 24 well plate containing 1 mL of selective media. After the clones are grown to confluence, the conditioned media is re-assayed, and positive clones are expanded into growth media.




Expression of flt3 Receptor Agonists in


E. coli








E. coli


strain MON105 or JM101 harboring the plasmid of interest are grown at 37° C. in M9 plus casamino acids medium with shaking in a air incubator Model G25 from New Brunswick Scientific (Edison, N.J.). Growth is monitored at OD600 until it reaches a value of 1, at which time nalidixic acid (10 milligrams/mL) in 0.1 N NaOH is added to a final concentration of 50 μg/mL. The cultures are then shaken at 37° C. for three to four additional hours. A high degree of aeration is maintained throughout culture period in order to achieve maximal production of the desired gene product. The cells are examined under a light microscope for the presence of inclusion bodies (IB). One mL aliquots of the culture are removed for analysis of protein content by boiling the pelleted cells, treating them with reducing buffer and electrophoresis via SDS-PAGE (see Maniatis et al. Molecular Cloning: A Laboratory Manual, 1982). The culture is centrifuged (5000×g) to pellet the cells.




Additional strategies for achieving high-level expression of genes in


E. coli


can be found in Savvas, C. M. (


Microbiological Reviews


60;512-538, 1996).




Inclusion Body Preparation, Extraction, Refolding, Dialysis, DEAE Chromatography, and Characterization of the flt3 Receptor Agonists Which Accumulate as Inclusion Bodies in


E. coli






Isolation of Inclusion Bodies:




The cell pellet from a 330 mL


E. coli


culture is resuspended in 15 mL of sonication buffer (10 mM 2-amino-2-(hydroxymethyl) 1,3-propanediol hydrochloride (Tris-HCl), pH 8.0+1 mM ethylenediaminetetraacetic acid (EDTA)). These resuspended cells are sonicated using the microtip probe of a Sonicator Cell Disruptor (Model W-375, Heat Systems-Ultrasonics, Inc., Farmingdale, N.Y.). Three rounds of sonication in sonication buffer followed by centrifugation are employed to disrupt the cells and wash the inclusion bodies (IB). The first round of sonication is a 3 minute burst followed bya 1 minute burst, and the final two rounds of sonication are for 1 minute each.




Extraction and refolding of proteins from inclusion body pellets:




Following the final centrifugation step, the IB pellet is resuspended in 10 mL of 50 mM Tris-HCl, pH 9.5, 8 M urea and 5 mM dithiothreitol (DTT) and stirred at room temperature for approximately 45 minutes to allow for denaturation of the expressed protein.




The extraction solution is transferred to a beaker containing 70 mL of 5mM Tris-HCl, pH 9.5 and 2.3 M urea and gently stirred while exposed to air at 4° C. for 18 to 48 hours to allow the proteins to refold. Refolding is monitored by analysis on a Vydac (Hesperia, Ca.) C18 reversed phase high pressure liquid chromatography (RP-HPLC) column (0.46×25 cm). A linear gradient of 40% to 65% acetonitrile, containing 0.1% trifluoroacetic acid (TFA), is employed to monitor the refold. This gradient is developed over 30 minutes at a flow rate of 1.5 mL per minute. Denatured proteins generally elute later in the gradient than the refolded proteins.




Purification:




Following the refold, contaminating


E. coli


proteins are removed by acid precipitation. The pH of the refold solution is titrated to between pH 5.0 and pH 5.2 using 15% (v/v) acetic acid (HOAc). This solution is stirred at 4° C. for 2 hours and then centrifuged for 20 minutes at 12,000×g to pellet any insoluble protein.




The supernatant from the acid precipitation step is dialyzed using a Spectra/Por 3 membrane with a molecular weight cut off (MWCO) of 3,500 daltons. The dialysis is against 2 changes of 4 liters (a 50-fold excess) of 10 mM Tris-HCl, pH 8.0 for a total of 18 hours. Dialysis lowers the sample conductivity and removes urea prior to DEAE chromatography. The sample is then centrifuged (20 minutes at 12,000×g) to pellet any insoluble protein following dialysis.




A Bio-Rad Bio-Scale DEAE2 column (7×52 mm) is used for ion exchange chromatography. The column is equilibrated in a buffer containing 10 mM Tris-HCl, pH 8.0. The protein is eluted using a 0-to-500 mM sodium chloride (NaCl) gradient, in equilibration buffer, over 45 column volumes. A flow rate of 1 mL per minute is used throughout the run. Column fractions (2 mL per fraction) are collected across the gradient and analyzed by RP HPLC on a Vydac (Hesperia, Ca.) C18 column (0.46×25 cm). A linear gradient of 40% to 65% acetonitrile, containing 0.1% trifluoroacetic acid (TFA), is employed. This gradient is developed over 30 minutes at a flow rate of 1.5 mL per minute. Pooled fractions are then dialyzed against 2 changes of 4 liters (50-to-500-fold excess) of 10 mM ammonium acetate (NH


4


Ac), pH 4.0 for a total of 18 hours. Dialysis is performed using a Spectra/Por 3 membrane with a MWCO of 3,500 daltons. Finally, the sample is sterile filtered using a 0.22, μm syringe filter (uStar LB syringe filter, Costar, Cambridge, Mass.), and stored at 4° C.




In some cases the folded proteins can be affinity purified using affinity reagents such as mAbs or receptor subunits attached to a suitable matrix. Alternatively, (or in addition) purification can be accomplished using any of a variety of chromatographic methods such as: ion exchange, gel filtration or hydrophobic chromatography or reversed phase HPLC.




These and other protein purification methods are described in detail in Methods in Enzymology, Volume 182 ‘Guide to Protein Purification’ edited by Murray Deutscher, Academic Press, San Diego, Calif. (1990).




Protein Characterization:




The purified protein is analyzed by RP-HPLC, electrospray mass spectrometry, and SDS-PAGE. The protein quantitation is done by amino acid composition, RP-HPLC, and Bradford protein determination. In some cases tryptic peptide mapping is performed in conjunction with electrospray mass spectrometry to confirm the identity of the protein.




Methylcellulose Assay




This assay reflects the ability of colony stimulating factors to stimulate normal bone marrow cells to produce different types of hematopoietic colonies in vitro (Bradley et al.,


Aust. Exp Biol. Sci


. 44:287-300, 1966), Pluznik et al.,


J. Cell Comp. Physio


66:319-324, 1965).




Methods Approximately 30 mL of fresh, normal, healthy bone marrow aspirate are obtained from individuals following informed consent. Under sterile conditions samples are diluted 1:5 with a 1×PBS (#14040.059 Life Technologies, Gaithersburg, MD.) solution in a 50 mL conical tube (#25339-50 Corning, Corning Md.). Ficoll (Histopaque 1077 Sigma H-8889) is layered under the diluted sample and centrifuged, 300×g for 30 min. The mononuclear cell band is removed and washed two times in 1×PBS and once with 1% BSA PBS (CellPro Co., Bothel, Wash.). Mononuclear cells are counted and CD34+ cells are selected using the Ceprate LC (CD34) Kit (CellPro Co., Bothel, Wash.) column. This fractionation is performed since all stem and progenitor cells within the bone marrow display CD34 surface antigen. Cultures are set up in triplicate with a final volume of 1.0 mL in a 35×10 mm petri dish (Nunc#174926). Culture medium is purchased from Terry Fox Labs. (HCC-4230 medium (Terry Fox Labs, Vancouver, B.C., Canada) and erythropoietin (Amgen, Thousand Oaks, Calif.) is added to the culture media. 3,000-10,000 CD34+ cells are added per dish. FLT3 receptor agonist proteins, in conditioned media from transfected mammalian cells or purified from conditioned media from transfected mammalian cells or


E. coli


, are added to give final concentrations ranging from 0.001 nM to 10 nM. Cultures are resuspended using a 3cc syringe and 1.0 mL is dispensed per dish. Control (baseline response) cultures received no colony stimulating factors. Positive control cultures received conditioned media (PHA stimulated human cells: Terry Fox Lab. H2400). Cultures are incubated at 37° C., 5% CO


2


in humidified air.




Hematopoietic colonies which are defined as greater than 50 cells are counted on the day of peak response (days 10-11) using a Nikon inverted phase microscope with a 40× objective combination. Groups of cells containing fewer than 50 cells are referred to as clusters. Alternatively colonies can be identified by spreading the colonies on a slide and stained or they can be picked, resuspended and spun onto cytospin slides for staining.




Human Cord Blood Hemopoietic Growth Factor Assays




Bone marrow cells are traditionally used for in vitro assays of hematopoietic colony stimulating factor (CSF) activity. However, human bone marrow is not always available, and there is considerable variability between donors. Umbilical cord blood is comparable to bone marrow as a source of hematopoietic stem cells and progenitors (Broxmeyer et al.,


PNAS USA


89:4109-113, 1992; Mayani et al.,


Blood


81:3252-3258, 1993). In contrast to bone marrow, cord blood is more readily available on a regular basis. There is also a potential to reduce assay variability by pooling cells obtained fresh from several donors, or to create a bank of cryopreserved cells for this purpose.




Methods




Mononuclear cells (MNC) are isolated from cord blood within 24 hr. of collection, using a standard density gradient (1.077 g/mL Histopaque). Cord blood MNC have been further enriched for stem cells and progenitors by several procedures, including immunomagnetic selection for CD14−, CD34+ cells; panning for SBA−, CD34+ fraction using coated flasks from Applied Immune Science (Santa Clara, Calif.); and CD34+ selection using a CellPro (Bothell, Wash.) avidin column. Either freshly isolated or cryopreserved CD34+ cell enriched fractions are used for the assay. Duplicate cultures for each serial dilution of sample (concentration range from 1 pM to 1204 pM) are prepared with 1×104 cells in 1ml of 0.9% methylcellulose containing medium without additional growth factors (Methocult H4230 from Stem Cell Technologies, Vancouver, BC.). In some experiments, Methocult H4330 containing erythropoietin (FLT3) was used instead of Methocult H4230, or Stem Cell Factor (SCF), 50 ng/mL (Biosource International, Camarillo, Calif.) was added. After culturing for 7-9 days, colonies containing >30 cells are counted.




MUTZ-2 Cell Proliferation Assay




A cell line such as MUTZ-2, which is a human myeloid leukemia cell line (German Collection of Microorganisms and Cell Cultures, DSM ACC 271), can be used to determine the cell proliferative activity of flt3 receptor agonists. MUTZ-2 cultures are maintained with recombinant native flt3 ligand (20-100 ng/mL) in the growth medium. Eighteen hours prior to assay set-up, MUTZ-2 cells are washed in IMDM medium (Gibco) three times and are resuspended in IMDM medium alone at a concentration of 0.5-0.7×10E6 cells/mL and incubated at 37° C. and 5%CO


2


to starve the cells of flt3 ligand. The day of the assay, standards and flt3 receptor agonists are diluted to two fold above desired final concentration in assay media in sterile tissue culture treated 96 well plates. Flt3 receptor agonists and standards are tested in triplicate. 50 μl of assay media is loaded into all wells except row A. 75 μl of the flt3 receptor agonists or standards are added to row A and 25 μl taken from that row and serial dilutions (1:3) performed on the rest of the plate (rows B through G). Row H remains as a media only control. The starved MUTZ-2 cells are washed two times in IMDM medium and resuspended in 50 μl assay media. 50 μl of cells are added to each well resulting in a final concentration of 0.25×10E6cells/mL. Assay plates containing cells are incubated at 37° C. and 5%CO


2


for 44hrs. Each well is then pulsed with 1 μCi/well of tritiated thymidine in a volume of 20 μl for four hours. Plates are then harvested and counted.




Transfected Cell Lines:




Cell lines, such as BHK or the murine pro B cell line Baf/3, can be transfected with a colony stimulating factor receptor, such as the human flt3 receptor which the cell line does not have. These transfected cell lines can be used to determine the activity of the ligand of which the receptor has been transfected.




EXAMPLE 1




Isolation of cDNA Encoding flt3 Ligand




Three flt3 ligand clones were amplified from human bone morrow poly A+ RNA (Clontech) using NCOFLT, HIND160, and HIND165 PCR primers (according to the manufacturer's suggested conditions). These amplified PCR products were gel purified and cloned into the BHK expression vector pMON5723 generating pMON30237 (NCOFLT+HIND160), pMON30238 (NCOFLT+HIND165), and a deletion clone pMON30239 (NCOFLT+HIND165). The deletion in pMON30239 is of amino acid residues 89 through 106 (the numbering of the residues is based on the sequence of native flt3 ligand as shown in

FIGS. 5



a


and


5




b


).




EXAMPLE 2




Sequence rearranged flt3 ligand were constructed using several methods and linker types. The first set of constructs containing the linker peptide (SerGlyGlyAsnGly(SEQ ID NO:46)X (where X=1, 2, or 3) with the breakpoints 39/40, 65/66, and 89/90 were made using a two step PCR process described by Mullins et al. in which the front half and the back half of each final sequence rearranged molecule is made separately in the first PCR step, then the paired products of the first reaction step are combined in a second PCR step and extended in the absence of exogenous primers. For example, to make the three 89/90 breakpoint precursor molecules with the SerGlyGlyAsnGly SEQ ID NO:46, SerGlyGlyAsnGlySerGlyGlyAsnGly SEQ ID NO: 47, and SerGlyGlyAsnGlySerGlyGlyAsnGlySerGlyGlyAsnGly SEQ ID NO:48 amino acid linkers (pMON32326, pMON32327 and pMON32328 respectively), six initial PCR products were generated. The following primer pairs were used in the first step PCR reaction: a) 89For/L5B; b) 89For/L10B; c) 89For/L15B; d) 89Rev/L5A; e) 89Rev/L10A; and f) 89Rev/L15A. The identical approach was used to make pMON32321 (39/40 breakpoint, primer pairs 39For/L10B and 39Rev/L10A) and pMON32325 (65/66 breakpoint, primer pairs 65For/L5B and 65Rev/L5A) precursors. Except as noted below, all subsequent PCR reactions utilized the components of the PCR Optimizer Kit (Invitrogen) and amplification conditions according to the manufacturers suggested protocol. Reactions were set up as follows: 50 pmole of each primer, 10 ul of 5×Buffer B [300 mM Tris-HCl (pH 8.5), 10 mM MgCl


2


, 75 mM (NH4)2SO4], 5 U Taq polymerase, and 100 ng of heat denatured DNA (in this example pMON30238) template were combined, and brought to 45 ul final volume with dH


2


O. Reactions were pre-incubated for 1-5 minute at 80° C., then 5 ul of 10 mM dNTP added to each reaction, and heat denatured for 2 minutes at 94° C. prior to amplification in a Perkin Elmer model 480 DNA thermal cycler. Seven DNA amplification cycles were done under the following conditions: heat denature for one minute at 94° C., two minutes annealing at 65° C., followed by a three minute extension at 72° C. Twenty three additional cycles consisting of a one minute heat denaturation at 94° C. followed by a four minute annealing/extension at 72° C. were done, followed by a final 7 minute extension cycle at 72° C. With the exception of pMON32328, the PCR amplification products were run out on a 1.2% TAE agarose gel, and the appropriate size bands (the major amplification product) were excised and purified using Geneclean II (Bio 101). Samples were resuspended in 10 ul dH


2


O. The amplification products for pMON32328 were purified directly using a Wizard PCR Clean UP kit (Promega), and DNA eluted in 50 ul dH


2


O.




The method to construct the precursors of pMON32322 (39/40 breakpoint, primer pairs 39For/L5B and 39Rev/L5A) was modified by increasing the amount of template to 1 ug, and by changing the PCR amplification conditions as follows: six cycles of 94° C., 1 minute, 65° C. for 2 minute, and 72° C. for 2½ minutes, followed by 15 cycles of 94° C. for 1 minute, 70° C. for 2 minutes, and 72° C. for 2 minutes, followed by a single 72° C. extension cycle for seven minutes.




The second PCR step utilized the gel-purified precursors from the first PCR step as a combination of primer/template as follows: 5 ul each of each precursor molecule (i.e. for pMON32328 the PCR products from primer pairs 89For/L5B and 89Rev/L5A), 10 ul of 5×Buffer B, 5 U of Taq polymerase, and 24 ul dH


2


O. The reactions were heated for five minutes at 80° C., 5 ul of 10 mM DNTP was added, and the reactions heat denatured for 94° C. for two minutes. DNA amplification conditions were as follows: 15 cycles of 94° C. for one minute, 69° C. for two minutes, followed then by a three minute extension at 72° C. To allow for complete extension, the last cycle was followed by a single extension step at 72° C. for seven minutes. The 80 deg incubation time was reduced to two minutes and the number of cycles was decreased to ten cycles for pMON32325 (PCR products 65For/L5B and 65Rev/L5A). PCR reaction products of the appropriate size were gel purified on a 1.2% TAE agarose gel using Geneclean II. For pMON32322 (39For/L5B and 39Rev/L5A) the annealing temperature was reduced to 68° C., and the extension time reduced to two minutes. In addition, the PCR product was purified using a Wizard PCR Clean Up kit (Promega) according to the suppliers suggested protocol. The second PCR step was modified for pMON32326 (PCR products of 89For/L15B and 89Rev/L15A) as follows. Three sets of PCR reactions were set up identically as above, except for the sample buffer type (either 5X buffer B, D, or J—PCR Optimizer Kit). Composition of buffers D and J differ from buffer B only by pH or [MgCl


2


]. The [MgCl


2


] for buffer D is 3.5 mM, whereas the pH of buffer J is 9.5. The protocol was modified by increasing the number of PCR cycles 20, and 15 ul aliquots were withdrawn at the end of cycles 10, 15 and 20. Five uls of each aliquot timepoint were analyzed for the presence of amplified material on a 1.2% TBE agarose gel. The remainder of the buffer B, D, and J PCR reaction mixtures were pooled and subsequently purified using the Wizard PCR Clean Up Kit protocol. The DNA was eluted in 50 ul dH


2


O.




The purified samples from the second step PCR reaction were digested with NcoI/HindIII using one of two standardized digestion conditions. For Geneclean II purified samples, 10 ul of DNA were digested in a 20 ul reaction with 7.5 U each of NcoI/HindIII for two hours at 37° C., and gel purified on a 1.1% TAE agarose gel again with Geneclean II. Ligation-ready samples were resuspended in 10 ul dH


2


O. For pMON32322, 20 ul of sample was digested in a 50 ul reaction volume with 20U each of NcoI and HindIII for 3 hour at 37° C. 0.1 volume 3M NaOAc (pH 5.5) and 2.5 volume of EtOH were added, mixed, and stored at −20° C. overnight. The DNA was recovered by pelleting for 20 minutes at 13,000 rpm @ 4° C. in a Sigma Mk 202 microfuge. The DNA pellet was rinsed with chilled 70% EtOH, lyophilized, and resuspended in 10 ul dH


2


O.




EXAMPLE 3




An alternate approach was used to construct pMON32320 (39/40 breakpoint, fifteen amino acid linker), pMON32323 (65/66 breakpoint, fifteen AA linker), and pMON32324 (65/66 breakpoint, ten amino acid linker). New primers (L15C, L15D, L15E) were designed to incorporate BamHI restriction site in the primer that was inframe to allow cloning into the BamHI site and maintain the proper reading frame. PCR reaction conditions for the first step were performed identically to that described for pMON32322, except that the following set of primer pairs were used: 65For/L15D and 65Rev/L15E (pMON32324); 39For/L15D and 39Rev/L15C (pMON32320); and 65For/L15D and 65Rev/L15C (pMON32323). The PCR reaction products were purified using a Wizard PCR Clean Up kit as described, and eluted in 50 ul dH2O. Samples were digested with either NcoI/BamHI (39For/L15D and 65For/L15D) or BamHI/HindIII (39Rev/L15C, 65Rev/L15C, and 65Rev/L15E). Restriction digests were performed as follows: 10 ul of purified PCR reaction products, 3 ul of 10×universal restriction buffer, 15 U of either NcoI or HindIII, 15 U of BamHI, in a final reaction volume of 30 ul. Reactions were incubated for 90 minutes at 37° C., and the PCR products gel purified on a 1.1% TAE agarose gel using Geneclean II. Ligation-ready DNA was resuspended in 10 ul dH


2


O.




Inserts were ligated to NcoI/HindIII digested pMON3977 (BHK mammalian expression vector) that had been treated with shrimp alkaline phosphatase (SAP) either in a three way (pMON32320, pMON32323, or pMON32324) or a two way (pMON32321, pMON32322, pMON32325, pMON32326, pMON32327 and pMON32328) ligation reaction as follows: 2.5 ul of insert (2 ul of each primer pair amplicon for pMON32320, pMON32323, and pMON32324) was added to 50 ng of vector in a ten ul reaction using standard ligation conditions. Two ul of each reaction was transformed with 100 ul of chemically competent DH5α cells (Gibco/BRL) following the manufacturers suggested protocol. Twenty five ul and 200 ul aliquots were plated out on LB plates containing 50 ug/mL ampicillin and incubated overnight. Isolated colonies were picked and DNA prepared from 50 mL overnight cultures using Qiagen DNA midiprep kits. DNA was quantitated by absorbance at A260/A280, and verified for correct insert size by agarose gel electrophoresis following digestion of 1 ug template with NcoI/HindIII restriction endonucleases. Samples containing inserts of the predicted size were sequenced in both orientations using vector-specific primers using an automated fluorescent DNA sequencer model 373A (Perkin Elmer ABI). Sequencing reactions were done in 20 ul reaction volumes using a Perkin Elmer model 480 DNA thermal cycler as follows: one ug of template, 3.2 pmole primer, 1 ul DMSO, 9.5 ul Taq terminator dyedeoxy premix ( Perkin Elmer ABI) were combined, and subjected to 25 cycles of sequencing amplification as follows: 30 seconds at 94° C., 15 second annealing at 50° C., followed by a four minute extension cycle at 60° C. Samples were purified using Centri-Sep spin columns (Princeton Separations) following the manufacturers suggested protocol, lyophilized, and submitted for sequence analysis. Samples containing the predicted amino acid sequence were selected for analysis and assigned p MON numbers.




EXAMPLE 4




A similar approach used to construct pMON32320, pMON32323, and pMON32324 was utilized to introduce the second linker type (SerGlyGlySerGly)X where x=2 or 3, into two sequence rearranged flt3 receptor agonists containing the 39/40 breakpoint (pMON32348 and 32350). The primer pairs were as follows: for pMON32348 the combinations of 339For2/339Rev3 and 339Rev2/339-10For3 and for pMON32350 the combinations of 339For2/339Rev3 and 339Rev2/339-15For3 were used to create three PCR amplification products. Each PCR amplification was set up as follows: to 100 ng of heat denatured pMON32320, 50 pmole of each primer pair, 10 ul of 5×Buffer B, 5 U of Taq polymerase and dH


2


O was added to a final volume of 45 ul. Reactions were pre-incubated as described before. Fifteen amplification cycles were done under the following conditions: heat denature at 94° C., one minute, followed by a two minute annealing step at 70° C., and a three minute extension at 72° C. After the last cycle, a single 72 deg extension step of 7 minutes was done. The PCR amplification products of primer pairs 339For2/339Rev3, 339Rev2/339-10For3, and 339Rev2/339-15For2 were purified using a Wizard PCR Clean Up kit (Promega), and eluted in 50 ul dH


2


O. NcoI/BamHI digests for the 339For2/339Rev3 primer pair as follows: 8 ul of DNA template was mixed with 2 ul universal restriction buffer and 10 U each of NcoI and BamHI in a 20 ul reaction volume, and incubated for 90 minutes at 37° C. The digestion products was purified using the Geneclean II direct purification protocol, and ligation ready DNA resuspended in 10 ul dH


2


O. The restriction digests and subsequent purification for the 339Rev2/339-10For3 and 339Rev2/339-15For2 amplification products were done identically as described for the 339For2/339Rev3 amplicon, except that 10 U of HindIII was substituted for NcoI. Standard ligations were done by adding to 50 ng NcoI/HindIII/SAP-treated, gel purified pMON3977, 0.5 ul 339For2/Rev3 amplicon, 1 ul of either 339Rev2/339-10For3 (pMON32348) or 339Rev2/339-15For3 (pMON32350) amplicons, 5U T4 DNA ligase, and 1 ul 10 X ligase buffer in a 10 ul reaction volume for 60 minutes at ambient temperature. Subsequent steps leading to final DNA sequence confirmation were done as described above.




EXAMPLE 5




A third type of linker, with a variable (GlyGlyGlySer(SEQ ID NO:46)X repeat motif, was incorporated into another set of sequence rearranged flt3 receptor agonists from modularly constructed templates. These linker lengths were;




6 AA linker (GlyGlyGlySerGlyGly SEQ ID NO:51),




7 AA linker (GlyGlyGlySerGlyGlyGly SEQ ID NO:52),




10 AA linker (GlyGlyGlySerGlyGlyGlySerGlyGly SEQ ID NO:53)




13 AA linker (GlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGly SEQ ID NO:54),




15 AA linker (GlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGlyGlyGly SEQ ID NO:55) ; and




21 AA linker (GlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGlyGly GlySerGly SEQ ID NO:56) amino acid residues. These modular templates, each comprising a dimer of hflt3 ligand separated by a BamHI-containing linker of unique length, were constructed as follows. Six intermediate PLASMID templates, FL3N, FL7N, FL11N, FL3C, FL4C, and FL10C, were constructed by PCR using paired primers and pMON30238 as template using cycling conditions similar to those employed for pMON32322. Per reaction, 50 pmole of each primer was added to 100 ng of heat-denatured template and the reactions assembled as described for pMON32322. Cycle conditions were as follows: seven cycles of 94° C., one minute; two minutes at 65° C., and 2.5 minutes at 72° C.; followed by ten cycles of one minute at 94° C., two minutes at 70° C., and 2.5 minutes at 72° C. A single seven minute extension at 72° C. completed the cycling reactions. The primer pairs used to construct each intermediate were; N-term/FLN3 (FL3N); N-term/FLN7 (FL7N); N-term/FLN11 (FL11N); C term/FLC3 (FL3C); C-term/FLC4 (FL4C); and C-term/FLC10 (FL10C). The PCR amplification products were purified with Wizard PCR Clean Up kits (Promega) and eluted in 50 ul dH


2


O. Purified DNA for the first subset, FL3N, FL7N, and FL11N, were digested with NcoI/BamHI, gel purified as described previously, and ligated to NcoI/BamHI/Sap-treated pSE420 vector DNA (Invitrogen). Intermediate templates of the second subset, FL3C, FL4C, and FL10C, were constructed in an identical manner except HindIII was utilized instead of NcoI. Subsequent steps leading to final DNA sequence confirmation were done as described above.




EXAMPLE 6




To make the next six templates, the two subsets of intermediates in pSE420 were digested with either NcoI/BamHI (FL3N, FL7N, FL11N-subset 1) or BamHI/HindIII (FL3C, FL4C, FL10C-subset 2) and gel purified using Geneclean II as described previously. One intermediate amplicon from each subset were ligated to NcoI/HindIII/SAP-treated pMON3977 per reaction and transformed in DH5α cells as described previously using the following combinations to generate specific linker lengths: six AA linker (FL3N and FL3C), seven AA linker (FL3N and FL4C), ten AA linker (FL7N and FL3C), thirteen AA linker (FL3N and FL10C), fifteen AA linker (FL11N and FL4C), and 21 AA linker (FL11N and FL10C). DNA was prepared 50 mL overnight cultures from single colonies from each of the six combination as described above, analyzed for correct insert size by NcoI/HindIII restriction analysis, and used as template.




Primer pairs 39For/39Rev (39/40 breakpoint); 65For/65Rev (65/66 breakpoint) and 89For/89Rev (89/90 breakpoint) were used to PCR amplify each templates as described for pMON32322, except 75 pmole of each primer was used. Amplification conditions were modified as follows: six cycles of 94° C. for one minute, 2 minutes at 70° C., 2.5 minutes at 72° C.; followed by nine cycles of 94° C. for one minute, and three minutes at 72° C. After the last cycle, a final extension of six minutes at 72° C. allowed ample time for full extension of products.




Samples were purified using a Wizard PCR Clean Up kit as described, and double digested with NcoI/HindIII. These amplification products were purified again using a Wizard PCR Clean Up kit. In addition, all six different linker length molecules for the 39/40 breakpoint were cloned into NcoI/HindIII/SAP-treated pMON3977 as single proteins (pMON32365, pMON32366, pMON32367, pMON32368, pMON32369 and 32370). Subsequent steps leading to final DNA sequence confirmation were done as described above.




EXAMPLE 7




Additional sequence rearranged Flt3 ligands were constructed using the dimer template intermediates previously described. For sequence rearranged Flt3 ligands having the fifteen amino acid linker (GlyGlyGlySer)


3


GlyGlyGly SEQ ID NO:55, the dimer intermediates Flt4C.seq and Flt11N.seq were used as the template in the PCR reaction. Five new breakpoints corresponding to Flt3 ligand amino acid residues 28/29, 34/35, 62/63, 94/95, and 98/99, were constructed using a PCR based approach using a PCR Optimizer kit (Invitrogen) and the following primer pairs; FL29For/FL29Rev, FL35For/FL35Rev, FL63For/FL63Rev, FL95For/FL95Rev, FL99For/FL99Rev. Amplification conditions were as follows: seven cycles of 94° C. for 1′, 62° C. for 2′, and 2.5′ at 70° C.; twelve cycles of 94° C. for 1′, 68° C. for 2′,and 70° C. for 2.5′; followed by a final cycle of 7′ at 72° C. PCR products corresponding to the predicted insert size were digested to completion with NcoI and HindIII, and gel purified as described previously using Gene Clean II (Bio 101) following the manufacturers suggested protocol. Samples were resuspended in 10 ul final volume with dH


2


O. Inserts were cloned as single genes into the mammalian expression vector pMON3977 (NcoI/HindIII/SAP treated) and designated pMON35712, pMON35713, pMON35714, pMON35715, pMON35716, pMON35717, pMON35718 respectively.




Additional techniques for the construction of the variant genes, recombinant protein expression , protein purification, protein characterization, biological activity determination can be found in WO 94/12639, WO 94/12638, WO 95/20976, WO 95/21197, WO 95/20977, WO 95/21254 and WO 96/23888 which are hereby incorporated by reference in their entirety.




All references, patents or applications cited herein are incorporated by reference in their entirety as if written herein.




Various other examples will be apparent to the person skilled in the art after reading the present disclosure without departing from the spirit and scope of the invention. It is intended that all such other examples be included within the scope of the appended claims.







151





135 amino acids


amino acid


single


linear




None



1
Ala Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe
1 5 10 15
Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro
20 25 30
Val Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Ala Leu
35 40 45
Trp Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr Val
50 55 60
Ala Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu Ile
65 70 75 80
His Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu Arg
85 90 95
Phe Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu Gln
100 105 110
Leu Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg Cys
115 120 125
Leu Glu Leu Gln Cys Gln Pro
130 135






140 amino acids


amino acid


single


linear




None



2
Ala Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe
1 5 10 15
Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro
20 25 30
Val Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly Leu
35 40 45
Trp Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr Val
50 55 60
Ala Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu Ile
65 70 75 80
His Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu Arg
85 90 95
Phe Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu Gln
100 105 110
Leu Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg Cys
115 120 125
Leu Glu Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu
130 135 140






122 amino acids


amino acid


single


linear




None



3
Ala Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe
1 5 10 15
Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro
20 25 30
Val Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly Leu
35 40 45
Trp Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr Val
50 55 60
Ala Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu Ile
65 70 75 80
His Phe Val Thr Lys Cys Ala Phe Gln Glu Thr Ser Glu Gln Leu Val
85 90 95
Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu Glu
100 105 110
Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu
115 120






135 amino acids


amino acid


single


linear




None



4
Gly Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe
1 5 10 15
Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro
20 25 30
Val Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly Leu
35 40 45
Trp Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr Val
50 55 60
Ala Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu Ile
65 70 75 80
His Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu Arg
85 90 95
Phe Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu Gln
100 105 110
Leu Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg Cys
115 120 125
Leu Glu Leu Gln Cys Gln Pro
130 135






140 amino acids


amino acid


single


linear




None



5
Gly Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe
1 5 10 15
Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro
20 25 30
Val Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly Leu
35 40 45
Trp Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr Val
50 55 60
Ala Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu Ile
65 70 75 80
His Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu Arg
85 90 95
Phe Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu Gln
100 105 110
Leu Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg Cys
115 120 125
Leu Glu Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu
130 135 140






135 amino acids


amino acid


single


linear




None



6
Ala Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe
1 5 10 15
Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro
20 25 30
Val Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly Leu
35 40 45
Trp Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr Val
50 55 60
Ala Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu Ile
65 70 75 80
His Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu Arg
85 90 95
Phe Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu Gln
100 105 110
Leu Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg Cys
115 120 125
Leu Glu Leu Gln Cys Gln Pro
130 135






140 amino acids


amino acid


single


linear




None



7
Ala Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe
1 5 10 15
Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro
20 25 30
Val Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly Leu
35 40 45
Trp Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr Val
50 55 60
Ala Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu Ile
65 70 75 80
His Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu Arg
85 90 95
Phe Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu Gln
100 105 110
Leu Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg Cys
115 120 125
Leu Glu Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu
130 135 140






155 amino acids


amino acid


single


linear




None



8
Ala Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val Leu Ala Gln
1 5 10 15
Arg Trp Met Glu Arg Leu Lys Thr Val Ala Gly Ser Lys Met Gln Gly
20 25 30
Leu Leu Glu Arg Val Asn Thr Glu Ile His Phe Val Thr Lys Cys Ala
35 40 45
Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe Val Gln Thr Asn Ile Ser
50 55 60
Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu Val Ala Leu Lys Pro Trp
65 70 75 80
Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu Glu Leu Gln Cys Gln Pro
85 90 95
Asp Ser Ser Thr Leu Ser Gly Gly Asn Gly Ser Gly Gly Asn Gly Ser
100 105 110
Gly Gly Asn Gly Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser
115 120 125
Ser Asp Phe Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln
130 135 140
Asp Tyr Pro Val Thr Val Ala Ser Asn Leu Gln
145 150 155






150 amino acids


amino acid


single


linear




None



9
Ala Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val Leu Ala Gln
1 5 10 15
Arg Trp Met Glu Arg Leu Lys Thr Val Ala Gly Ser Lys Met Gln Gly
20 25 30
Leu Leu Glu Arg Val Asn Thr Glu Ile His Phe Val Thr Lys Cys Ala
35 40 45
Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe Val Gln Thr Asn Ile Ser
50 55 60
Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu Val Ala Leu Lys Pro Trp
65 70 75 80
Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu Glu Leu Gln Cys Gln Pro
85 90 95
Asp Ser Ser Thr Leu Ser Gly Gly Asn Gly Ser Gly Gly Asn Gly Thr
100 105 110
Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe Ala Val
115 120 125
Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro Val Thr
130 135 140
Val Ala Ser Asn Leu Gln
145 150






145 amino acids


amino acid


single


linear




None



10
Ala Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val Leu Ala Gln
1 5 10 15
Arg Trp Met Glu Arg Leu Lys Thr Val Ala Gly Ser Lys Met Gln Gly
20 25 30
Leu Leu Glu Arg Val Asn Thr Glu Ile His Phe Val Thr Lys Cys Ala
35 40 45
Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe Val Gln Thr Asn Ile Ser
50 55 60
Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu Val Ala Leu Lys Pro Trp
65 70 75 80
Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu Glu Leu Gln Cys Gln Pro
85 90 95
Asp Ser Ser Thr Leu Ser Gly Gly Asn Gly Thr Gln Asp Cys Ser Phe
100 105 110
Gln His Ser Pro Ile Ser Ser Asp Phe Ala Val Lys Ile Arg Glu Leu
115 120 125
Ser Asp Tyr Leu Leu Gln Asp Tyr Pro Val Thr Val Ala Ser Asn Leu
130 135 140
Gln
145






155 amino acids


amino acid


single


linear




None



11
Ala Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu Ile His
1 5 10 15
Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe
20 25 30
Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu
35 40 45
Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu
50 55 60
Glu Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu Ser Gly Gly Asn Gly
65 70 75 80
Ser Gly Gly Asn Gly Ser Gly Gly Asn Gly Thr Gln Asp Cys Ser Phe
85 90 95
Gln His Ser Pro Ile Ser Ser Asp Phe Ala Val Lys Ile Arg Glu Leu
100 105 110
Ser Asp Tyr Leu Leu Gln Asp Tyr Pro Val Thr Val Ala Ser Asn Leu
115 120 125
Gln Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val Leu Ala Gln
130 135 140
Arg Trp Met Glu Arg Leu Lys Thr Val Ala Gly
145 150 155






150 amino acids


amino acid


single


linear




None



12
Ala Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu Ile His
1 5 10 15
Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe
20 25 30
Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu
35 40 45
Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu
50 55 60
Glu Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu Ser Gly Gly Asn Gly
65 70 75 80
Ser Gly Gly Asn Gly Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile
85 90 95
Ser Ser Asp Phe Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu
100 105 110
Gln Asp Tyr Pro Val Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu
115 120 125
Cys Gly Gly Leu Trp Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg
130 135 140
Leu Lys Thr Val Ala Gly
145 150






145 amino acids


amino acid


single


linear




None



13
Ala Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu Ile His
1 5 10 15
Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe
20 25 30
Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu
35 40 45
Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu
50 55 60
Glu Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu Ser Gly Gly Asn Gly
65 70 75 80
Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe Ala
85 90 95
Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro Val
100 105 110
Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly Leu Trp
115 120 125
Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr Val Ala
130 135 140
Gly
145






155 amino acids


amino acid


single


linear




None



14
Ala Pro Pro Ser Cys Leu Arg Phe Val Gln Thr Asn Ile Ser Arg Leu
1 5 10 15
Leu Gln Glu Thr Ser Glu Gln Leu Val Ala Leu Lys Pro Trp Ile Thr
20 25 30
Arg Gln Asn Phe Ser Arg Cys Leu Glu Leu Gln Cys Gln Pro Asp Ser
35 40 45
Ser Thr Leu Ser Gly Gly Asn Gly Ser Gly Gly Asn Gly Ser Gly Gly
50 55 60
Asn Gly Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp
65 70 75 80
Phe Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr
85 90 95
Pro Val Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly
100 105 110
Leu Trp Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr
115 120 125
Val Ala Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu
130 135 140
Ile His Phe Val Thr Lys Cys Ala Phe Gln Pro
145 150 155






150 amino acids


amino acid


single


linear




None



15
Ala Pro Pro Ser Cys Leu Arg Phe Val Gln Thr Asn Ile Ser Arg Leu
1 5 10 15
Leu Gln Glu Thr Ser Glu Gln Leu Val Ala Leu Lys Pro Trp Ile Thr
20 25 30
Arg Gln Asn Phe Ser Arg Cys Leu Glu Leu Gln Cys Gln Pro Asp Ser
35 40 45
Ser Thr Leu Ser Gly Gly Asn Gly Ser Gly Gly Asn Gly Thr Gln Asp
50 55 60
Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe Ala Val Lys Ile
65 70 75 80
Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro Val Thr Val Ala
85 90 95
Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val
100 105 110
Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr Val Ala Gly Ser Lys
115 120 125
Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu Ile His Phe Val Thr
130 135 140
Lys Cys Ala Phe Gln Pro
145 150






145 amino acids


amino acid


single


linear




None



16
Ala Pro Pro Ser Cys Leu Arg Phe Val Gln Thr Asn Ile Ser Arg Leu
1 5 10 15
Leu Gln Glu Thr Ser Glu Gln Leu Val Ala Leu Lys Pro Trp Ile Thr
20 25 30
Arg Gln Asn Phe Ser Arg Cys Leu Glu Leu Gln Cys Gln Pro Asp Ser
35 40 45
Ser Thr Leu Ser Gly Gly Asn Gly Thr Gln Asp Cys Ser Phe Gln His
50 55 60
Ser Pro Ile Ser Ser Asp Phe Ala Val Lys Ile Arg Glu Leu Ser Asp
65 70 75 80
Tyr Leu Leu Gln Asp Tyr Pro Val Thr Val Ala Ser Asn Leu Gln Asp
85 90 95
Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val Leu Ala Gln Arg Trp
100 105 110
Met Glu Arg Leu Lys Thr Val Ala Gly Ser Lys Met Gln Gly Leu Leu
115 120 125
Glu Arg Val Asn Thr Glu Ile His Phe Val Thr Lys Cys Ala Phe Gln
130 135 140
Pro
145






155 amino acids


amino acid


single


linear




None



17
Ala Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val Leu Ala Gln
1 5 10 15
Arg Trp Met Glu Arg Leu Lys Thr Val Ala Gly Ser Lys Met Gln Gly
20 25 30
Leu Leu Glu Arg Val Asn Thr Glu Ile His Phe Val Thr Lys Cys Ala
35 40 45
Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe Val Gln Thr Asn Ile Ser
50 55 60
Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu Val Ala Leu Lys Pro Trp
65 70 75 80
Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu Glu Leu Gln Cys Gln Pro
85 90 95
Asp Ser Ser Thr Leu Ser Gly Gly Ser Gly Ser Gly Gly Ser Gly Ser
100 105 110
Gly Gly Ser Gly Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser
115 120 125
Ser Asp Phe Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln
130 135 140
Asp Tyr Pro Val Thr Val Ala Ser Asn Leu Gln
145 150 155






150 amino acids


amino acid


single


linear




None



18
Ala Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val Leu Ala Gln
1 5 10 15
Arg Trp Met Glu Arg Leu Lys Thr Val Ala Gly Ser Lys Met Gln Gly
20 25 30
Leu Leu Glu Arg Val Asn Thr Glu Ile His Phe Val Thr Lys Cys Ala
35 40 45
Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe Val Gln Thr Asn Ile Ser
50 55 60
Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu Val Ala Leu Lys Pro Trp
65 70 75 80
Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu Glu Leu Gln Cys Gln Pro
85 90 95
Asp Ser Ser Thr Leu Ser Gly Gly Ser Gly Ser Gly Gly Ser Gly Thr
100 105 110
Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe Ala Val
115 120 125
Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro Val Thr
130 135 140
Val Ala Ser Asn Leu Gln
145 150






145 amino acids


amino acid


single


linear




None



19
Met Ala Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp
1 5 10 15
Phe Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr
20 25 30
Pro Val Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly
35 40 45
Leu Trp Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr
50 55 60
Val Ala Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu
65 70 75 80
Ile His Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu
85 90 95
Arg Phe Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu
100 105 110
Gln Leu Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg
115 120 125
Cys Leu Glu Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu Gly Gly Gly
130 135 140
Ser
145






143 amino acids


amino acid


single


linear




None



20
Gly Ser Gly Gly Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser
1 5 10 15
Ser Asp Phe Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln
20 25 30
Asp Tyr Pro Val Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys
35 40 45
Gly Gly Leu Trp Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu
50 55 60
Lys Thr Val Ala Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn
65 70 75 80
Thr Glu Ile His Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser
85 90 95
Cys Leu Arg Phe Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr
100 105 110
Ser Glu Gln Leu Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe
115 120 125
Ser Arg Cys Leu Glu Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu
130 135 140






149 amino acids


amino acid


single


linear




None



21
Met Ala Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp
1 5 10 15
Phe Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr
20 25 30
Pro Val Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly
35 40 45
Leu Trp Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr
50 55 60
Val Ala Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu
65 70 75 80
Ile His Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu
85 90 95
Arg Phe Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu
100 105 110
Gln Leu Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg
115 120 125
Cys Leu Glu Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu Gly Gly Gly
130 135 140
Ser Gly Gly Gly Ser
145






144 amino acids


amino acid


single


linear




None



22
Gly Ser Gly Gly Gly Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile
1 5 10 15
Ser Ser Asp Phe Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu
20 25 30
Gln Asp Tyr Pro Val Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu
35 40 45
Cys Gly Gly Leu Trp Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg
50 55 60
Leu Lys Thr Val Ala Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val
65 70 75 80
Asn Thr Glu Ile His Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro
85 90 95
Ser Cys Leu Arg Phe Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu
100 105 110
Thr Ser Glu Gln Leu Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn
115 120 125
Phe Ser Arg Cys Leu Glu Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu
130 135 140






153 amino acids


amino acid


single


linear




None



23
Met Ala Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp
1 5 10 15
Phe Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr
20 25 30
Pro Val Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly
35 40 45
Leu Trp Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr
50 55 60
Val Ala Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu
65 70 75 80
Ile His Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu
85 90 95
Arg Phe Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu
100 105 110
Gln Leu Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg
115 120 125
Cys Leu Glu Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu Gly Gly Gly
130 135 140
Ser Gly Gly Gly Ser Gly Gly Gly Ser
145 150






150 amino acids


amino acid


single


linear




None



24
Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Thr Gln Asp Cys Ser
1 5 10 15
Phe Gln His Ser Pro Ile Ser Ser Asp Phe Ala Val Lys Ile Arg Glu
20 25 30
Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro Val Thr Val Ala Ser Asn
35 40 45
Leu Gln Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val Leu Ala
50 55 60
Gln Arg Trp Met Glu Arg Leu Lys Thr Val Ala Gly Ser Lys Met Gln
65 70 75 80
Gly Leu Leu Glu Arg Val Asn Thr Glu Ile His Phe Val Thr Lys Cys
85 90 95
Ala Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe Val Gln Thr Asn Ile
100 105 110
Ser Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu Val Ala Leu Lys Pro
115 120 125
Trp Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu Glu Leu Gln Cys Gln
130 135 140
Pro Asp Ser Ser Thr Leu
145 150






146 amino acids


amino acid


single


linear




None



25
Ala Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val Leu Ala Gln
1 5 10 15
Arg Trp Met Glu Arg Leu Lys Thr Val Ala Gly Ser Lys Met Gln Gly
20 25 30
Leu Leu Glu Arg Val Asn Thr Glu Ile His Phe Val Thr Lys Cys Ala
35 40 45
Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe Val Gln Thr Asn Ile Ser
50 55 60
Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu Val Ala Leu Lys Pro Trp
65 70 75 80
Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu Glu Leu Gln Cys Gln Pro
85 90 95
Asp Ser Ser Thr Leu Gly Gly Gly Ser Gly Gly Thr Gln Asp Cys Ser
100 105 110
Phe Gln His Ser Pro Ile Ser Ser Asp Phe Ala Val Lys Ile Arg Glu
115 120 125
Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro Val Thr Val Ala Ser Asn
130 135 140
Leu Gln
145






147 amino acids


amino acid


single


linear




None



26
Ala Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val Leu Ala Gln
1 5 10 15
Arg Trp Met Glu Arg Leu Lys Thr Val Ala Gly Ser Lys Met Gln Gly
20 25 30
Leu Leu Glu Arg Val Asn Thr Glu Ile His Phe Val Thr Lys Cys Ala
35 40 45
Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe Val Gln Thr Asn Ile Ser
50 55 60
Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu Val Ala Leu Lys Pro Trp
65 70 75 80
Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu Glu Leu Gln Cys Gln Pro
85 90 95
Asp Ser Ser Thr Leu Gly Gly Gly Ser Gly Gly Gly Thr Gln Asp Cys
100 105 110
Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe Ala Val Lys Ile Arg
115 120 125
Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro Val Thr Val Ala Ser
130 135 140
Asn Leu Gln
145






150 amino acids


amino acid


single


linear




None



27
Ala Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val Leu Ala Gln
1 5 10 15
Arg Trp Met Glu Arg Leu Lys Thr Val Ala Gly Ser Lys Met Gln Gly
20 25 30
Leu Leu Glu Arg Val Asn Thr Glu Ile His Phe Val Thr Lys Cys Ala
35 40 45
Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe Val Gln Thr Asn Ile Ser
50 55 60
Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu Val Ala Leu Lys Pro Trp
65 70 75 80
Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu Glu Leu Gln Cys Gln Pro
85 90 95
Asp Ser Ser Thr Leu Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Thr
100 105 110
Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe Ala Val
115 120 125
Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro Val Thr
130 135 140
Val Ala Ser Asn Leu Gln
145 150






153 amino acids


amino acid


single


linear




None



28
Ala Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val Leu Ala Gln
1 5 10 15
Arg Trp Met Glu Arg Leu Lys Thr Val Ala Gly Ser Lys Met Gln Gly
20 25 30
Leu Leu Glu Arg Val Asn Thr Glu Ile His Phe Val Thr Lys Cys Ala
35 40 45
Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe Val Gln Thr Asn Ile Ser
50 55 60
Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu Val Ala Leu Lys Pro Trp
65 70 75 80
Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu Glu Leu Gln Cys Gln Pro
85 90 95
Asp Ser Ser Thr Leu Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly
100 105 110
Ser Gly Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp
115 120 125
Phe Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr
130 135 140
Pro Val Thr Val Ala Ser Asn Leu Gln
145 150






155 amino acids


amino acid


single


linear




None



29
Ala Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val Leu Ala Gln
1 5 10 15
Arg Trp Met Glu Arg Leu Lys Thr Val Ala Gly Ser Lys Met Gln Gly
20 25 30
Leu Leu Glu Arg Val Asn Thr Glu Ile His Phe Val Thr Lys Cys Ala
35 40 45
Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe Val Gln Thr Asn Ile Ser
50 55 60
Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu Val Ala Leu Lys Pro Trp
65 70 75 80
Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu Glu Leu Gln Cys Gln Pro
85 90 95
Asp Ser Ser Thr Leu Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly
100 105 110
Ser Gly Gly Gly Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser
115 120 125
Ser Asp Phe Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln
130 135 140
Asp Tyr Pro Val Thr Val Ala Ser Asn Leu Gln
145 150 155






161 amino acids


amino acid


single


linear




None



30
Ala Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val Leu Ala Gln
1 5 10 15
Arg Trp Met Glu Arg Leu Lys Thr Val Ala Gly Ser Lys Met Gln Gly
20 25 30
Leu Leu Glu Arg Val Asn Thr Glu Ile His Phe Val Thr Lys Cys Ala
35 40 45
Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe Val Gln Thr Asn Ile Ser
50 55 60
Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu Val Ala Leu Lys Pro Trp
65 70 75 80
Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu Glu Leu Gln Cys Gln Pro
85 90 95
Asp Ser Ser Thr Leu Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly
100 105 110
Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Thr Gln Asp Cys Ser Phe
115 120 125
Gln His Ser Pro Ile Ser Ser Asp Phe Ala Val Lys Ile Arg Glu Leu
130 135 140
Ser Asp Tyr Leu Leu Gln Asp Tyr Pro Val Thr Val Ala Ser Asn Leu
145 150 155 160
Gln






155 amino acids


amino acid


single


linear




None



31
Ala Asp Tyr Pro Val Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu
1 5 10 15
Cys Gly Gly Leu Trp Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg
20 25 30
Leu Lys Thr Val Ala Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val
35 40 45
Asn Thr Glu Ile His Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro
50 55 60
Ser Cys Leu Arg Phe Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu
65 70 75 80
Thr Ser Glu Gln Leu Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn
85 90 95
Phe Ser Arg Cys Leu Glu Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu
100 105 110
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Thr
115 120 125
Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe Ala Val
130 135 140
Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln
145 150 155






155 amino acids


amino acid


single


linear




None



32
Ala Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg
1 5 10 15
Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr Val Ala Gly
20 25 30
Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu Ile His Phe
35 40 45
Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe Val
50 55 60
Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu Val
65 70 75 80
Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu Glu
85 90 95
Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu Gly Gly Gly Ser Gly Gly
100 105 110
Gly Ser Gly Gly Gly Ser Gly Gly Gly Thr Gln Asp Cys Ser Phe Gln
115 120 125
His Ser Pro Ile Ser Ser Asp Phe Ala Val Lys Ile Arg Glu Leu Ser
130 135 140
Asp Tyr Leu Leu Gln Asp Tyr Pro Val Thr Val
145 150 155






155 amino acids


amino acid


single


linear




None



33
Ala Val Ala Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr
1 5 10 15
Glu Ile His Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys
20 25 30
Leu Arg Phe Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser
35 40 45
Glu Gln Leu Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser
50 55 60
Arg Cys Leu Glu Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu Gly Gly
65 70 75 80
Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Thr Gln Asp
85 90 95
Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe Ala Val Lys Ile
100 105 110
Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro Val Thr Val Ala
115 120 125
Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val
130 135 140
Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr
145 150 155






155 amino acids


amino acid


single


linear




None



34
Ala Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu Ile His
1 5 10 15
Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe
20 25 30
Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu
35 40 45
Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu
50 55 60
Glu Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu Gly Gly Gly Ser Gly
65 70 75 80
Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Thr Gln Asp Cys Ser Phe
85 90 95
Gln His Ser Pro Ile Ser Ser Asp Phe Ala Val Lys Ile Arg Glu Leu
100 105 110
Ser Asp Tyr Leu Leu Gln Asp Tyr Pro Val Thr Val Ala Ser Asn Leu
115 120 125
Gln Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val Leu Ala Gln
130 135 140
Arg Trp Met Glu Arg Leu Lys Thr Val Ala Gly
145 150 155






155 amino acids


amino acid


single


linear




None



35
Ala Pro Pro Ser Cys Leu Arg Phe Val Gln Thr Asn Ile Ser Arg Leu
1 5 10 15
Leu Gln Glu Thr Ser Glu Gln Leu Val Ala Leu Lys Pro Trp Ile Thr
20 25 30
Arg Gln Asn Phe Ser Arg Cys Leu Glu Leu Gln Cys Gln Pro Asp Ser
35 40 45
Ser Thr Leu Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly
50 55 60
Gly Gly Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp
65 70 75 80
Phe Ala Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr
85 90 95
Pro Val Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly
100 105 110
Leu Trp Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr
115 120 125
Val Ala Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu
130 135 140
Ile His Phe Val Thr Lys Cys Ala Phe Gln Pro
145 150 155






155 amino acids


amino acid


single


linear




None



36
Ala Arg Phe Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser
1 5 10 15
Glu Gln Leu Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser
20 25 30
Arg Cys Leu Glu Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu Gly Gly
35 40 45
Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Thr Gln Asp
50 55 60
Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe Ala Val Lys Ile
65 70 75 80
Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro Val Thr Val Ala
85 90 95
Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val
100 105 110
Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr Val Ala Gly Ser Lys
115 120 125
Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu Ile His Phe Val Thr
130 135 140
Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu
145 150 155






155 amino acids


amino acid


single


linear




None



37
Ala Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu Val
1 5 10 15
Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu Glu
20 25 30
Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu Gly Gly Gly Ser Gly Gly
35 40 45
Gly Ser Gly Gly Gly Ser Gly Gly Gly Thr Gln Asp Cys Ser Phe Gln
50 55 60
His Ser Pro Ile Ser Ser Asp Phe Ala Val Lys Ile Arg Glu Leu Ser
65 70 75 80
Asp Tyr Leu Leu Gln Asp Tyr Pro Val Thr Val Ala Ser Asn Leu Gln
85 90 95
Asp Glu Glu Leu Cys Gly Gly Leu Trp Arg Leu Val Leu Ala Gln Arg
100 105 110
Trp Met Glu Arg Leu Lys Thr Val Ala Gly Ser Lys Met Gln Gly Leu
115 120 125
Leu Glu Arg Val Asn Thr Glu Ile His Phe Val Thr Lys Cys Ala Phe
130 135 140
Gln Pro Pro Pro Ser Cys Leu Arg Phe Val Gln
145 150 155






4 amino acids


amino acid


single


linear




None



38
Gly Gly Gly Ser
1






8 amino acids


amino acid


single


linear




None



39
Gly Gly Gly Ser Gly Gly Gly Ser
1 5






12 amino acids


amino acid


single


linear




None



40
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
1 5 10






7 amino acids


amino acid


single


linear




None



41
Ser Gly Gly Ser Gly Gly Ser
1 5






5 amino acids


amino acid


single


linear




None



42
Glu Phe Gly Asn Met
1 5






6 amino acids


amino acid


single


linear




None



43
Glu Phe Gly Gly Asn Met
1 5






9 amino acids


amino acid


single


linear




None



44
Glu Phe Gly Gly Asn Gly Gly Asn Met
1 5






7 amino acids


amino acid


single


linear




None



45
Gly Gly Ser Asp Met Ala Gly
1 5






5 amino acids


amino acid


single


linear




None



46
Ser Gly Gly Asn Gly
1 5






10 amino acids


amino acid


single


linear




None



47
Ser Gly Gly Asn Gly Ser Gly Gly Asn Gly
1 5 10






15 amino acids


amino acid


single


linear




None



48
Ser Gly Gly Asn Gly Ser Gly Gly Asn Gly Ser Gly Gly Asn Gly
1 5 10 15






10 amino acids


amino acid


single


linear




None



49
Ser Gly Gly Ser Gly Ser Gly Gly Ser Gly
1 5 10






15 amino acids


amino acid


single


linear




None



50
Ser Gly Gly Ser Gly Ser Gly Gly Ser Gly Ser Gly Gly Ser Gly
1 5 10 15






6 amino acids


amino acid


single


linear




None



51
Gly Gly Gly Ser Gly Gly
1 5






7 amino acids


amino acid


single


linear




None



52
Gly Gly Gly Ser Gly Gly Gly
1 5






10 amino acids


amino acid


single


linear




None



53
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly
1 5 10






13 amino acids


amino acid


single


linear




None



54
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly
1 5 10






15 amino acids


amino acid


single


linear




None



55
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly
1 5 10 15






21 amino acids


amino acid


single


linear




None



56
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
1 5 10 15
Gly Gly Gly Ser Gly
20






33 base pairs


nucleic acid


single


linear



57
CTGACCATGG CNACCCAGGA CTGCTCCTTC CAA 33






32 base pairs


nucleic acid


single


linear



58
ACTGAAGCTT AGGGCTGACA CTGCAGCTCC AG 32






32 base pairs


nucleic acid


single


linear



59
ACTGAAGCTT ACAGGGTTGA GGAGTCGGGC TG 32






46 base pairs


nucleic acid


single


linear



60
GACTGCCATG GCNACYCAGG AYTGYTCYTT YCAACACAGC CCCATC 46






46 base pairs


nucleic acid


single


linear



61
GACTGCCATG GCNACYCAGG AYTGYTCYTT YCAACACAGC CCCATC 46






22 base pairs


nucleic acid


single


linear



62
TGTCCAAACT CATCAATGTA TC 22






38 base pairs


nucleic acid


single


linear



63
CATGGCCATG GCCGACGAGG AGCTCTGCGG GGGCCTCT 38






36 base pairs


nucleic acid


single


linear



64
GCTAGAAGCT TACTGCAGGT TGGAGGCCAC GGTGAC 36






38 base pairs


nucleic acid


single


linear



65
CATGGCCATG GCCTCCAAGA TGCAAGGCTT GCTGGAGC 38






36 base pairs


nucleic acid


single


linear



66
GCTAGAAGCT TACCCAGCGA CAGTCTTGAG CCGCTC 36






36 base pairs


nucleic acid


single


linear



67
CATGGCCATG GCCCCCCCCA GCTGTCTTCG CTTCGT 36






37 base pairs


nucleic acid


single


linear



68
GCTAGAAGCT TAGGGCTGAA AGGCACATTT GGTGACA 37






42 base pairs


nucleic acid


single


linear



69
CCCTGTCTGG CGGCAACGGC ACCCAGGACT GCTCCTTCCA AC 42






48 base pairs


nucleic acid


single


linear



70
GCGGTAACGG CAGTGGAGGT AATGGCACCC AGGACTGCTC CTTCCAAC 48






57 base pairs


nucleic acid


single


linear



71
ACGGCAGTGG TGGCAATGGG AGCGGCGGAA ATGGAACCCA GGACTGCTCC TTCCAAC 57






38 base pairs


nucleic acid


single


linear



72
GTGCCGTTGC CGCCAGACAG GGTTGAGGAG TCGGGCTG 38






48 base pairs


nucleic acid


single


linear



73
ATTACCTCCA CTGCCGTTAC CGCCTGACAG GGTTGAGGAG TCGGGCTG 48






54 base pairs


nucleic acid


single


linear



74
GCTCCCATTG CCACCACTGC CGTTACCTCC AGACAGGGTT GAGGAGTCGG GCTG 54






60 base pairs


nucleic acid


single


linear



75
GATGAGGATC CGGTGGCAAT GGGAGCGGCG GAAATGGAAC CCAGGACTGC TCCTTCCACC 60






45 base pairs


nucleic acid


single


linear



76
GATGACGGAT CCGTTACCTC CAGACAGGGT TGAGGAGTCG GGCTG 45






46 base pairs


nucleic acid


single


linear



77
GATGACGGAT CCGGAGGTAA TGGCACCCAG GACTGCTCCT TCCAAC 46






29 base pairs


nucleic acid


single


linear



78
GACTGCCATG GCCGACGAGG AGCTCTGCG 29






28 base pairs


nucleic acid


single


linear



79
GACTCAAGCT TACTGCAGGT TGGAGGCC 28






39 base pairs


nucleic acid


single


linear



80
GACTCGGGAT CCGGAGGTTC TGGCACCCAG GACTGCTCC 39






41 base pairs


nucleic acid


single


linear



81
GACTGGGATC CGGTGGCAGT GGGAGCGGCG GATCTGGAAC C 41






39 base pairs


nucleic acid


single


linear



82
GACTTGGGAT CCACTACCTC CAGACAGGGT TGAGGAGTC 39






39 base pairs


nucleic acid


single


linear



83
ACTGACGGAT CCACCGCCCA GGGTTGAGGA GTCGGGCTG 39






51 base pairs


nucleic acid


single


linear



84
ACTGACGGAT CCACCTCCTG ACCCACCGCC CAGGGTTGAG GAGTCGGGCT G 51






63 base pairs


nucleic acid


single


linear



85
ACTGACGGAT CCACCTCCTG ACCCACCTCC TGACCCACCG CCCAGGGTTG AGGAGTCGGG 60
CTG 63






28 base pairs


nucleic acid


single


linear



86
ACGTAAAGCT TACAGGGTTG AGGAGTCG 28






40 base pairs


nucleic acid


single


linear



87
GTCAGTGGAT CCGGAGGTAC CCAGGACTGC TCCTTCCAAC 40






43 base pairs


nucleic acid


single


linear



88
GTCAGTGGAT CCGGAGGTGG CACCCAGGAC TGCTCCTTCC AAC 43






60 base pairs


nucleic acid


single


linear



89
GTCAGTGGAT CCGGAGGTGG CTCAGGGGGA GGTAGTGGTA CCCAGGACTG CTCCTTCCAC 60






57 base pairs


nucleic acid


single


linear



90
GTTGCCATGG CNTCNAAYCT GCARGAYGAR GARCTGTGCG GGGGCCTCTG GCGGCTG 57






57 base pairs


nucleic acid


single


linear



91
GTTGCCATGG CNAAYCTGCA RGAYGARGAR CTGTGYGGGG GCCTCTGGCG GCTGGTC 57






57 base pairs


nucleic acid


single


linear



92
GTTGCCATGG CNCTGCARGA YGARGARCTG TGYGGYGGCC TCTGGCGGCT GGTCCTG 57






57 base pairs


nucleic acid


single


linear



93
GTTGCCATGG CNCARGAYGA RGARCTGTGY GGYGGYCTCT GGCGGCTGGT CCTGGCA 57






57 base pairs


nucleic acid


single


linear



94
GTTGCCATGG CNGAYGARGA RCTGTGYGGY GGYCTCTGGC GGCTGGTCCT GGCACAG 57






57 base pairs


nucleic acid


single


linear



95
GTTGCCATGG CNGARGARCT GTGYGGYGGY CTCTGGCGGC TGGTCCTGGC ACAGCGC 57






57 base pairs


nucleic acid


single


linear



96
GTTGCCATGG CNGARCTGTG YGGYGGYCTG TGGCGYCTGG TCCTGGCACA GCGCTGG 57






57 base pairs


nucleic acid


single


linear



97
GTTGCCATGG CNCTGTGYGG YGGYCTGTGG CGYCTGGTCC TGGCACAGCG CTGGATG 57






30 base pairs


nucleic acid


single


linear



98
TATGCAAGCT TAGGCCACGG TGACTGGGTA 30






30 base pairs


nucleic acid


single


linear



99
TATGCAAGCT TAGGAGGCCA CGGTGACTGG 30






30 base pairs


nucleic acid


single


linear



100
TATGCAAGCT TAGTTGGAGG CCACGGTGAC 30






30 base pairs


nucleic acid


single


linear



101
TATGCAAGCT TACAGGTTGG AGGCCACGGT 30






30 base pairs


nucleic acid


single


linear



102
TATGCAAGCT TACTGCAGGT TGGAGGCCAC 30






30 base pairs


nucleic acid


single


linear



103
TATGCAAGCT TAGTCCTGCA GGTTGGAGGC 30






30 base pairs


nucleic acid


single


linear



104
TATGCAAGCT TACTCGTCCT GCAGGTTGGA 30






30 base pairs


nucleic acid


single


linear



105
TATGCAAGCT TACTCCTCGT CCTGCAGGTT 30






405 base pairs


nucleic acid


single


linear



106
GCCACCCAGG ACTGCTCCTT CCAACACAGC CCCATCTCCT CCGACTTCGC TGTCAAAATC 60
CGTGAGCTGT CTGACTACCT GCTTCAAGAT TACCCAGTCA CCGTGGCCTC CAACCTGCAG 120
GACGAGGAGC TCTGCGGGGC GCTCTGGCGG CTGGTCCTGG CACAGCGCTG GATGGAGCGG 180
CTCAAGACTG TCGCTGGGTC CAAGATGCAA GGCTTGCTGG AGCGCGTGAA CACGGAGATA 240
CACTTTGTCA CCAAATGTGC CTTTCAGCCC CCCCCCAGCT GTCTTCGCTT CGTCCAGACC 300
AACATCTCCC GCCTCCTGCA GGAGACCTCC GAGCAGCTGG TGGCGCTGAA GCCCTGGATC 360
ACTCGCCAGA ACTTCTCCCG GTGCCTGGAG CTGCAGTGTC AGCCC 405






420 base pairs


nucleic acid


single


linear



107
GCCACCCAGG ACTGCTCCTT CCAACACAGC CCCATCTCCT CCGACTTCGC TGTCAAAATC 60
CGTGAGCTGT CTGACTACCT GCTTCAAGAT TACCCAGTCA CCGTGGCCTC CAACCTGCAG 120
GACGAGGAGC TCTGCGGGGG CCTCTGGCGG CTGGTCCTGG CACAGCGCTG GATGGAGCGG 180
CTCAAGACTG TCGCTGGGTC CAAGATGCAA GGCTTGCTGG AGCGCGTGAA CACGGAGATA 240
CACTTTGTCA CCAAATGTGC CTTTCAGCCC CCCCCCAGCT GTCTTCGCTT CGTCCAGACC 300
AACATCTCCC GCCTCCTGCA GGAGACCTCC GAGCAGCTGG TGGCGCTGAA GCCCTGGATC 360
ACTCGCCAGA ACTTCTCCCG GTGCCTGGAG CTGCAGTGTC AGCCCGACTC CTCAACCCTG 420






366 base pairs


nucleic acid


single


linear



108
GCCACCCAGG ACTGCTCCTT CCAACACAGC CCCATCTCCT CCGACTTCGC TGTCAAAATC 60
CGTGAGCTGT CTGACTACCT GCTTCAAGAT TACCCAGTCA CCGTGGCCTC CAACCTGCAG 120
GACGAGGAGC TCTGCGGGGG CCTCTGGCGG CTGGTCCTGG CACAGCGCTG GATGGAGCGG 180
CTCAAGACTG TCGCTGGGTC CAAGATGCAA GGCTTGCTGG AGCGCGTGAA CACGGAGATA 240
CACTTTGTCA CCAAATGTGC CTTTCAGGAG ACCTCCGAGC AGCTGGTGGC GCTGAAGCCC 300
TGGATCACTC GCCAGAACTT CTCCCGGTGC CTGGAGCTGC AGTGTCAGCC CGACTCCTCA 360
ACCCTG 366






405 base pairs


nucleic acid


single


linear



109
GGAACTCAGG ATTGTTCTTT CCAACACAGC CCCATCTCCT CCGACTTCGC TGTCAAAATC 60
CGTGAGCTGT CTGACTACCT GCTTCAAGAT TACCCAGTCA CCGTGGCCTC CAACCTGCAG 120
GACGAGGAGC TCTGCGGGGG CCTCTGGCGG CTGGTCCTGG CACAGCGCTG GATGGAGCGG 180
CTCAAGACTG TCGCTGGGTC CAAGATGCAA GGCTTGCTGG AGCGCGTGAA CACGGAGATA 240
CACTTTGTCA CCAAATGTGC CTTTCAGCCC CCCCCCAGCT GTCTTCGCTT CGTCCAGACC 300
AACATCTCCC GCCTCCTGCA GGAGACCTCC GAGCAGCTGG TGGCGCTGAA GCCCTGGATC 360
ACTCGCCAGA ACTTCTCCCG GTGCCTGGAG CTGCAGTGTC AGCCC 405






420 base pairs


nucleic acid


single


linear



110
GGTACCCAGG ATTGTTCTTT CCAACACAGC CCCATCTCCT CCGACTTCGC TGTCAAAATC 60
CGTGAGCTGT CTGACTACCT GCTTCAAGAT TACCCAGTCA CCGTGGCCTC CAACCTGCAG 120
GACGAGGAGC TCTGCGGGGG CCTCTGGCGG CTGGTCCTGG CACAGCGCTG GATGGAGCGG 180
CTCAAGACTG TCGCTGGGTC CAAGATGCAA GGCTTGCTGG AGCGCGTGAA CACGGAGATA 240
CACTTTGTCA CCAAATGTGC CTTTCAGCCC CCCCCCAGCT GTCTTCGCTT CGTCCAGACC 300
AACATCTCCC GCCTCCTGCA GGAGACCTCC GAGCAGCTGG TGGCGCTGAA GCCCTGGATC 360
ACTCGCCAGA ACTTCTCCCG GTGCCTGGAG CTGCAGTGTC AGCCCGACTC CTCAACCCTG 420






405 base pairs


nucleic acid


single


linear



111
GCCACTCAGG ACTGTTCTTT CCAACACAGC CCCATCTCCT CCGACTTCGC TGTCAAAATC 60
CGTGAGCTGT CTGACTACCT GCTTCAAGAT TACCCAGTCA CCGTGGCCTC CAACCTGCAG 120
GACGAGGAGC TCTGCGGGGG CCTCTGGCGG CTGGTCCTGG CACAGCGCTG GATGGAGCGG 180
CTCAAGACTG TCGCTGGGTC CAAGATGCAA GGCTTGCTGG AGCGCGTGAA CACGGAGATA 240
CACTTTGTCA CCAAATGTGC CTTTCAGCCC CCCCCCAGCT GTCTTCGCTT CGTCCAGACC 300
AACATCTCCC GCCTCCTGCA GGAGACCTCC GAGCAGCTGG TGGCGCTGAA GCCCTGGATC 360
ACTCGCCAGA ACTTCTCCCG GTGCCTGGAG CTGCAGTGTC AGCCC 405






420 base pairs


nucleic acid


single


linear



112
GCCACTCAGG ACTGCTCTTT TCAACACAGC CCCATCTCCT CCGACTTCGC TGTCAAAATC 60
CGTGAGCTGT CTGACTACCT GCTTCAAGAT TACCCAGTCA CCGTGGCCTC CAACCTGCAG 120
GACGAGGAGC TCTGCGGGGG CCTCTGGCGG CTGGTCCTGG CACAGCGCTG GATGGAGCGG 180
CTCAAGACTG TCGCTGGGTC CAAGATGCAA GGCTTGCTGG AGCGCGTGAA CACGGAGATA 240
CACTTTGTCA CCAAATGTGC CTTTCAGCCC CCCCCCAGCT GTCTTCGCTT CGTCCAGACC 300
AACATCTCCC GCCTCCTGCA GGAGACCTCC GAGCAGCTGG TGGCGCTGAA GCCCTGGATC 360
ACTCGCCAGA ACTTCTCCCG GTGCCTGGAG CTGCAGTGTC AGCCCGACTC CTCAACCCTG 420






465 base pairs


nucleic acid


single


linear



113
GCCGACGAGG AGCTCTGCGG GGGCCTCTGG CGGCTGGTCC TGGCACAGCG CTGGATGGAG 60
CGGCTCAAGA CTGTCGCTGG GTCCAAGATG CAAGGCTTGC TGGAGCGCGT GAACACGGAG 120
ATACACTTTG TCACCAAATG TGCCTTTCAG CCCCCCCCCA GCTGTCTTCG CTTCGTCCAG 180
ACCAACATCT CCCGCCTCCT GCAGGAGACC TCCGAGCAGC TGGTGGCGCT GAAGCCCTGG 240
ATCACTCGCC AGAACTTCTC CCGGTGCCTG GAGCTGCAGT GTCAGCCCGA CTCCTCAACC 300
CTGTCTGGAG GTAACGGATC CGGTGGCAAT GGGAGCGGCG GAAATGGAAC CCAGGACTGC 360
TCCTTCCAAC ACAGCCCCAT CTCCTCCGAC TTCGCTGTCA AAATCCGTGA GCTGTCTGAC 420
TACCTGCTTC AAGATTACCC AGTCACCGTG GCCTCCAACC TGCAG 465






450 base pairs


nucleic acid


single


linear



114
GCCGACGAGG AGCTCTGCGG GGGCCTCTGG CGGCTGGTCC TGGCACAGCG CTGGATGGAG 60
CGGCTCAAGA CTGTCGCTGG GTCCAAGATG CAAGGCTTGC TGGAGCGCGT GAACACGGAG 120
ATACACTTTG TCACCAAATG TGCCTTTCAG CCCCCCCCCA GCTGTCTTCG CTTCGTCCAG 180
ACCAACATCT CCCGCCTCCT GCAGGAGACC TCCGAGCAGC TGGTGGCGCT GAAGCCCTGG 240
ATCACTCGCC AGAACTTCTC CCGGTGCCTG GAGCTGCAGT GTCAGCCCGA CTCCTCAACC 300
CTGTCAGGCG GTAACGGCAG TGGAGGTAAT GGCACCCAGG ACTGCTCCTT CCAACACAGC 360
CCCATCTCCT CCGACTTCGC TGTCAAAATC CGTGAGCTGT CTGACTACCT GCTTCAAGAT 420
TACCCAGTCA CCGTGGCCTC CAACCTGCAG 450






435 base pairs


nucleic acid


single


linear



115
GCCGACGAGG AGCTCTGCGG GGGCCTCTGG CGGCTGGTCC TGGCACAGCG CTGGATGGAG 60
CGGCTCAAGA CTGTCGCTGG GTCCAAGATG CAAGGCTTGC TGGAGCGCGT GAACACGGAG 120
ATACACTTTG TCACCAAATG TGCCTTTCAG CCCCCCCCCA GCTGTCTTCG CTTCGTCCAG 180
ACCAACATCT CCCGCCTCCT GCAGGAGACC TCCGAGCAGC TGGTGGCGCT GAAGCCCTGG 240
ATCACTCGCC AGAACTTCTC CCGGTGCCTG GAGCTGCAGT GTCAGCCCGA CTCCTCAACC 300
CTGTCTGGCG GCAACGGCAC CCAGGACTGC TCCTTCCAAC ACAGCCCCAT CTCCTCCGAC 360
TTCGCTGTCA AAATCCGTGA GCTGTCTGAC TACCTGCTTC AAGATTACCC AGTCACCGTG 420
GCCTCCAACC TGCAG 435






465 base pairs


nucleic acid


single


linear



116
GCCTCCAAGA TGCAAGGCTT GCTGGAGCGC GTGAACACGG AGATACACTT TGTCACCAAA 60
TGTGCCTTTC AGCCCCCCCC CAGCTGTCTT CGCTTCGTCC AGACCAACAT CTCCCGCCTC 120
CTGCAGGAGA CCTCCGAGCA GCTGGTGGCG CTGAAGCCCT GGATCACTCG CCAGAACTTC 180
TCCCGGTGCC TGGAGCTGCA GTGTCAGCCC GACTCCTCAA CCCTGTCTGG AGGTAACGGA 240
TCCGGTGGCA ATGGGAGCGG CGGAAATGGA ACCCAGGACT GCTCCTTCCA ACACAGCCCC 300
ATCTCCTCCG ACTTCGCTGT CAAAATCCGT GAGCTGTCTG ACTACCTGCT TCAAGATTAC 360
CCAGTCACCG TGGCCTCCAA CCTGCAGGAC GAGGAGCTCT GCGGGGGCCT CTGGCGGCTG 420
GTCCTGGCAC AGCGCTGGAT GGAGCGGCTC AAGACTGTCG CTGGG 465






450 base pairs


nucleic acid


single


linear



117
GCCTCCAAGA TGCAAGGCTT GCTGGAGCGC GTGAACACGG AGATACACTT TGTCACCAAA 60
TGTGCCTTTC AGCCCCCCCC CAGCTGTCTT CGCTTCGTCC AGACCAACAT CTCCCGCCTC 120
CTGCAGGAGA CCTCCGAGCA GCTGGTGGCG CTGAAGCCCT GGATCACTCG CCAGAACTTC 180
TCCCGGTGCC TGGAGCTGCA GTGTCAGCCC GACTCCTCAA CCCTGTCTGG AGGTAACGGA 240
TCCGGAGGTA ATGGCACCCA GGACTGCTCC TTCCAACACA GCCCCATCTC CTCCGACTTC 300
GCTGTCAAAA TCCGTGAGCT GTCTGACTAC CTGCTTCAAG ATTACCCAGT CACCGTGGCC 360
TCCAACCTGC AGGACGAGGA GCTCTGCGGG GGCCTCTGGC GGCTGGTCCT GGCACAGCGC 420
TGGATGGAGC GGCTCAAGAC TGTCGCTGGG 450






435 base pairs


nucleic acid


single


linear



118
GCCTCCAAGA TGCAAGGCTT GCTGGAGCGC GTGAACACGG AGATACACTT TGTCACCAAA 60
TGTGCCTTTC AGCCCCCCCC CAGCTGTCTT CGCTTCGTCC AGACCAACAT CTCCCGCCTC 120
CTGCAGGAGA CCTCCGAGCA GCTGGTGGCG CTGAAGCCCT GGATCACTCG CCAGAACTTC 180
TCCCGGTGCC TGGAGCTGCA GTGTCAGCCC GACTCCTCAA CCCTGTCTGG CGGCAACGGC 240
ACGCAGGACT GCTCCTTCCA ACACAGCCCC ATCTCCTCCG ACTTCGCTGT CAAAATCCGT 300
GAGCTGTCTG ACTACCTGCT TCAAGATTAC CCAGTCACCG TGGCCTCCAA CCTGCAGGAC 360
GAGGAGCTCT GCGGGGGCCT CTGGCGGCTG GTCCTGGCAC AGCGCTGGAT GGAGCGGCTC 420
AAGACTGTCG CTGGG 435






465 base pairs


nucleic acid


single


linear



119
GCCCCCCCCA GCTGTCTTCG CTTCGTCCAG ACCAACATCT CCCGCCTCCT GCAGGAGACC 60
TCCGAGCAGC TGGTGGCGCT GAAGCCCTGG ATCACTCGCC AGAACTTCTC CCGGTGCCTG 120
GAGCTGCAGT GTCAGCCCGA CTCCTCAACC CTGTCTGGAG GTAACGGCAG TGGTGGCAAT 180
GGGAGCGGTG GAAATGGAAC CCAGGACTGC TCCTTCCAAC ACAGCCCCAT CTCCTCCGAC 240
TTCGCTGTCA AAATCCGTGA GCTGTCTGAC TACCTGCTTC AAGATTACCC AGTCACCGTG 300
GCCTCCAACC TGCAGGACGA GGAGCTCTGC GGGGGCCTCT GGCGGCTGGT CCTGGCACAG 360
CGCTGGATGG AGCGGCTCAA GACTGTCGCT GGGTCCAAGA TGCAAGGCTT GCTGGAGCGC 420
GTGAACACGG AGATACACTT TGTCACCAAA TGTGCCTTTC AGCCC 465






450 base pairs


nucleic acid


single


linear



120
GCCCCCCCCA GCTGTCTTCG CTTCGTCCAG ACCAACATCT CCCGCCTCCT GCAGGAGACC 60
TCCGAGCAGC TGGTGGCGCT GAAGCCCTGG ATCACTCGCC AGAACTTCTC CCGGTGCCTG 120
GAGCTGCAGT GTCAGCCCGA CTCCTCAACC CTGTCAGGCG GTAACGGCAG TGGAGGTAAT 180
GGCACCCAGG ACTGCTCCTT CCAACACAGC CCCATCTCCT CCGACTTCGC TGTCAAAATC 240
CGTGAGCTGT CTGACTACCT GCTTCAAGAT TACCCAGTCA CCGTGGCCTC CAACCTGCAG 300
GACGAGGAGC TCTGCGGGGG CCTCTGGCGG CTGGTCCTGG CACAGCGCTG GATGGAGCGG 360
CTCAAGACTG TCGCTGGGTC CAAGATGCAA GGCTTGCTGG AGCGCGTGAA CACGGAGATA 420
CACTTTGTCA CCAAATGTGC CTTTCAGCCC 450






435 base pairs


nucleic acid


single


linear



121
GCCCCCCCCA GCTGTCTTCG CTTCGTCCAG ACCAACATCT CCCGCCTCCT GCAGGAGACC 60
TCCGAGCAGC TGGTGGCGCT GAAGCCCTGG ATCACTCGCC AGAACTTCTC CCGGTGCCTG 120
GAGCTGCAGT GTCAGCCCGA CTCCTCAACC CTGTCTGGCG GCAACGGCAC GCAGGACTGC 180
TCCTTCCAAC ACAGCCCCAT CTCCTCCGAC TTCGCTGTCA AAATCCGTGA GCTGTCTGAC 240
TACCTGCTTC AAGATTACCC AGTCACCGTG GCCTCCAACC TGCAGGACGA GGAGCTCTGC 300
GGGGGCCTCT GGCGGCTGGT CCTGGCACAG CGCTGGATGG AGCGGCTCAA GACTGTCGCT 360
GGGTCCAAGA TGCAAGGCTT GCTGGAGCGC GTGAACACGG AGATACACTT TGTCACCAAA 420
TGTGCCTTTC AGCCC 435






451 base pairs


nucleic acid


single


linear



122
GCCGACGAGG AGCTCTGCGG GGGCCTCTGG CGGCTGGTCC TGGCACAGCG CTGGATGGAG 60
CGGCTCAAGA CTGTCGCTGG GTCCAAGATG CAAGGCTTGC TGGAGCGCGT GAACACGGAG 120
ATACACTTTG TCACCAAATG TGCCTTTCAG CCCCCCCCCA GCTGTCTTCG CTTCGTCCAG 180
ACCAACATCT CCCGCCTCCT GCAGGAGACC TCCGAGCAGC TGGTGGCGCT GAAGCCCTGG 240
ATCACTCGCC AGAACTTCTC CCGGTGCCTG GAGCTGCAGT GTCAGCCCGA CTCCTCAACC 300
CTGTCTGGAG GTAGTGGATC CGGAGGTTCT GGCAACCCAG GACTGCTCCT TCCAACACAG 360
CCCCATCTCC TCCGACTTCG CTGTCAAAAT CCGTGAGCTG TCTGACTACC TGCTTCAAGA 420
TTACCCAGTC ACCGTGGCCT CCAACCTGCA G 451






465 base pairs


nucleic acid


single


linear



123
GCCGACGAGG AGCTCTGCGG GGGCCTCTGG CGGCTGGTCC TGGCACAGCG CTGGATGGAG 60
CGGCTCAAGA CTGTCGCTGG GTCCAAGATG CAAGGCTTGC TGGAGCGCGT GAACACGGAG 120
ATACACTTTG TCACCAAATG TGCCTTTCAG CCCCCCCCCA GCTGTCTTCG CTTCGTCCAG 180
ACCAACATCT CCCGCCTCCT GCAGGAGACC TCCGAGCAGC TGGTGGCGCT GAAGCCCTGG 240
ATCACTCGCC AGAACTTCTC CCGGTGCCTG GAGCTGCAGT GTCAGCCCGA CTCCTCAACC 300
CTGTCTGGAG GTAGTGGATC CGGTGGCAGT GGGAGCGGCG GATCTGGAAC CCAGGACTGC 360
TCCTTCCAAC ACAGCCCCAT CTCCTCCGAC TTCGCTGTCA AAATCCGTGA GCTGTCTGAC 420
TACCTGCTTC AAGATTACCC AGTCACCGTG GCCTCCAACC TGCAG 465






437 base pairs


nucleic acid


single


linear



124
CCATGGCCAC CCAGGACTGC TCCTTCCAAC ACAGCCCCAT CTCCTCCGAC TTCGCTGTCA 60
AAATCCGTGA GCTGTCTGAC TACCTGCTTC AAGATTACCC AGTCACCGTG GCCTCCAACC 120
TGCAGGACGA GGAGCTCTGC GGGGGCCTCT GGCGGCTGGT CCTGGCACAG CGCTGGATGG 180
AGCGGCTCAA GACTGTCGCT GGGTCCAAGA TGCAAGGCTT GCTGGAGCGC GTGAACACGG 240
AGATACACTT TGTCACCAAA TGTGCCTTTC AGCCCCCCCC CAGCTGTCTT CGCTTCGTCC 300
AGACCAACAT CTCCCGCCTC CTGCAGGAGA CCTCCGAGCA GCTGGTGGCG CTGAAGCCCT 360
GGATCACTCG CCAGAACTTC TCCCGGTGCC TGGAGCTGCA GTGTCAGCCC GACTCCTCAA 420
CCCTGGGCGG TGGATCC 437






436 base pairs


nucleic acid


single


linear



125
GGATCCGGAG GTACCCAGGA CTGCTCCTTC CAACACAGCC CCATCTCCTC CGACTTCGCT 60
GTCAAAATCC GTGAGCTGTC TGACTACCTG CTTCAAGATT ACCCAGTCAC CGTGGCCTCC 120
AACCTGCAGG ACGAGGAGCT CTGCGGGGGC CTCTGGCGGC TGGTCCTGGC ACAGCGCTGG 180
ATGGAGCGGC TCAAGACTGT CGCTGGGTCC AAGATGCAAG GCTTGCTGGA GCGCGTGAAC 240
ACGGAGATAC ACTTTGTCAC CAAATGTGCC TTTCAGCCCC CCCCCAGCTG TCTTCGCTTC 300
GTCCAGACCA ACATCTCCCG CCTCCTGCAG GAGACCTCCG AGCAGCTGGT GGCGCTGAAG 360
CCCTGGATCA CTCGCCAGAA CTTCTCCCGG TGCCTGGAGC TGCAGTGTCA GCCCGACTCC 420
TCAACCCTGT AAGCTT 436






449 base pairs


nucleic acid


single


linear



126
CCATGGCCAC CCAGGACTGC TCCTTCCAAC ACAGCCCCAT CTCCTCCGAC TTCGCTGTCA 60
AAATCCGTGA GCTGTCTGAC TACCTGCTTC AAGATTACCC AGTCACCGTG GCCTCCAACC 120
TGCAGGACGA GGAGCTCTGC GGGGGCCTCT GGCGGCTGGT CCTGGCACAG CGCTGGATGG 180
AGCGGCTCAA GACTGTCGCT GGGTCCAAGA TGCAAGGCTT GCTGGAGCGC GTGAACACGG 240
AGATACACTT TGTCACCAAA TGTGCCTTTC AGCCCCCCCC CAGCTGTCTT CGCTTCGTCC 300
AGACCAACAT CTCCCGCCTC CTGCAGGAGA CCTCCGAGCA GCTGGTGGCG CTGAAGCCCT 360
GGATCACTCG CCAGAACTTC TCCCGGTGCC TGGAGCTGCA GTGTCAGCCC GACTCCTCAA 420
CCCTGGGCGG TGGGTCAGGA GGTGGATCC 449






439 base pairs


nucleic acid


single


linear



127
GGATCCGGAG GTGGCACCCA GGACTGCTCC TTCCAACACA GCCCCATCTC CTCCGACTTC 60
GCTGTCAAAA TCCGTGAGCT GTCTGACTAC CTGCTTCAAG ATTACCCAGT CACCGTGGCC 120
TCCAACCTGC AGGACGAGGA GCTCTGCGGG GGCCTCTGGC GGCTGGTCCT GGCACAGCGC 180
TGGATGGAGC GGCTCAAGAC TGTCGCTGGG TCCAAGATGC AAGGCTTGCT GGAGCGCGTG 240
AACACGGAGA TACACTTTGT CACCAAATGT GCCTTTCAGC CCCCCCCCAG CTGTCTTCGC 300
TTCGTCCAGA CCAACATCTC CCGCCTCCTG CAGGAGACCT CCGAGCAGCT GGTGGCGCTG 360
AAGCCCTGGA TCACTCGCCA GAACTTCTCC CGGTGCCTGG AGCTGCAGTG TCAGCCCGAC 420
TCCTCAACCC TGTAAGCTT 439






461 base pairs


nucleic acid


single


linear



128
CCATGGCCAC CCAGGACTGC TCCTTCCAAC ACAGCCCCAT CTCCTCCGAC TTCGCTGTCA 60
AAATCCGTGA GCTGTCTGAC TACCTGCTTC AAGATTACCC AGTCACCGTG GCCTCCAACC 120
TGCAGGACGA GGAGCTCTGC GGGGGCCTCT GGCGGCTGGT CCTGGCACAG CGCTGGATGG 180
AGCGGCTCAA GACTGTCGCT GGGTCCAAGA TGCAAGGCTT GCTGGAGCGC GTGAACACGG 240
AGATACACTT TGTCACCAAA TGTGCCTTTC AGCCCCCCCC CAGCTGTCTT CGCTTCGTCC 300
AGACCAACAT CTCCCGCCTC CTGCAGGAGA CCTCCGAGCA GCTGGTGGCG CTGAAGCCCT 360
GGATCACTCG CCAGAACTTC TCCCGGTGCC TGGAGCTGCA GTGTCAGCCC GACTCCTCAA 420
CCCTGGGCGG TGGGTCAGGA GGTGGGTCAG GAGGTGGATC C 461






457 base pairs


nucleic acid


single


linear



129
GGATCCGGAG GTGGCTCAGG GGGAGGTAGT GGTACCCAGG ACTGCTCCTT CCAACACAGC 60
CCCATCTCCT CCGACTTCGC TGTCAAAATC CGTGAGCTGT CTGACTACCT GCTTCAAGAT 120
TACCCAGTCA CCGTGGCCTC CAACCTGCAG GACGAGGAGC TCTGCGGGGG CCTCTGGCGG 180
CTGGTCCTGG CACAGCGCTG GATGGAGCGG CTCAAGACTG TCGCTGGGTC CAAGATGCAA 240
GGCTTGCTGG AGCGCGTGAA CACGGAGATA CACTTTGTCA CCAAATGTGC CTTTCAGCCC 300
CCCCCCAGCT GTCTTCGCTT CGTCCAGACC AACATCTCCC GCCTCCTGCA GGAGACCTCC 360
GAGCAGCTGG TGGCGCTGAA GCCCTGGATC ACTCGCCAGA ACTTCTCCCG GTGCCTGGAG 420
CTGCAGTGTC AGCCCGACTC CTCAACCCTG TAAGCTT 457






438 base pairs


nucleic acid


single


linear



130
GCCGACGAGG AGCTCTGCGG GGGCCTCTGG CGGCTGGTCC TGGCACAGCG CTGGATGGAG 60
CGGCTCAAGA CTGTCGCTGG GTCCAAGATG CAAGGCTTGC TGGAGCGCGT GAACACGGAG 120
ATACACTTTG TCACCAAATG TGCCTTTCAG CCCCCCCCCA GCTGTCTTCG CTTCGTCCAG 180
ACCAACATCT CCCGCCTCCT GCAGGAGACC TCCGAGCAGC TGGTGGCGCT GAAGCCCTGG 240
ATCACTCGCC AGAACTTCTC CCGGTGCCTG GAGCTGCAGT GTCAGCCCGA CTCCTCAACC 300
CTGGGCGGTG GATCCGGAGG TACCCAGGAC TGCTCCTTCC AACACAGCCC CATCTCCTCC 360
GACTTCGCTG TCAAAATCCG TGAGCTGTCT GACTACCTGC TTCAAGATTA CCCAGTCACC 420
GTGGCCTCCA ACCTGCAG 438






441 base pairs


nucleic acid


single


linear



131
GCCGACGAGG AGCTCTGCGG GGGCCTCTGG CGGCTGGTCC TGGCACAGCG CTGGATGGAG 60
CGGCTCAAGA CTGTCGCTGG GTCCAAGATG CAAGGCTTGC TGGAGCGCGT GAACACGGAG 120
ATACACTTTG TCACCAAATG TGCCTTTCAG CCCCCCCCCA GCTGTCTTCG CTTCGTCCAG 180
ACCAACATCT CCCGCCTCCT GCAGGAGACC TCCGAGCAGC TGGTGGCGCT GAAGCCCTGG 240
ATCACTCGCC AGAACTTCTC CCGGTGCCTG GAGCTGCAGT GTCAGCCCGA CTCCTCAACC 300
CTGGGCGGTG GATCCGGAGG TGGCACCCAG GACTGCTCCT TCCAACACAG CCCCATCTCC 360
TCCGACTTCG CTGTCAAAAT CCGTGAGCTG TCTGACTACC TGCTTCAAGA TTACCCAGTC 420
ACCGTGGCCT CCAACCTGCA G 441






450 base pairs


nucleic acid


single


linear



132
GCCGACGAGG AGCTCTGCGG GGGCCTCTGG CGGCTGGTCC TGGCACAGCG CTGGATGGAG 60
CGGCTCAAGA CTGTCGCTGG GTCCAAGATG CAAGGCTTGC TGGAGCGCGT GAACACGGAG 120
ATACACTTTG TCACCAAATG TGCCTTTCAG CCCCCCCCCA GCTGTCTTCG CTTCGTCCAG 180
ACCAACATCT CCCGCCTCCT GCAGGAGACC TCCGAGCAGC TGGTGGCGCT GAAGCCCTGG 240
ATCACTCGCC AGAACTTCTC CCGGTGCCTG GAGCTGCAGT GTCAGCCCGA CTCCTCAACC 300
CTGGGCGGTG GGTCAGGAGG TGGATCCGGA GGTACCCAGG ACTGCTCCTT CCAACACAGC 360
CCCATCTCCT CCGACTTCGC TGTCAAAATC CGTGAGCTGT CTGACTACCT GCTTCAAGAT 420
TACCCAGTCA CCGTGGCCTC CAACCTGCAG 450






459 base pairs


nucleic acid


single


linear



133
GCCGACGAGG AGCTCTGCGG GGGCCTCTGG CGGCTGGTCC TGGCACAGCG CTGGATGGAG 60
CGGCTCAAGA CTGTCGCTGG GTCCAAGATG CAAGGCTTGC TGGAGCGCGT GAACACGGAG 120
ATACACTTTG TCACCAAATG TGCCTTTCAG CCCCCCCCCA GCTGTCTTCG CTTCGTCCAG 180
ACCAACATCT CCCGCCTCCT GCAGGAGACC TCCGAGCAGC TGGTGGCGCT GAAGCCCTGG 240
ATCACTCGCC AGAACTTCTC CCGGTGCCTG GAGCTGCAGT GTCAGCCCGA CTCCTCAACC 300
CTGGGCGGTG GATCCGGAGG TGGCTCAGGG GGAGGTAGTG GTACCCAGGA CTGCTCCTTC 360
CAACACAGCC CCATCTCCTC CGACTTCGCT GTCAAAATCC GTGAGCTGTC TGACTACCTG 420
CTTCAAGATT ACCCAGTCAC CGTGGCCTCC AACCTGCAG 459






465 base pairs


nucleic acid


single


linear



134
GCCGACGAGG AGCTCTGCGG GGGCCTCTGG CGGCTGGTCC TGGCACAGCG CTGGATGGAG 60
CGGCTCAAGA CTGTCGCTGG GTCCAAGATG CAAGGCTTGC TGGAGCGCGT GAACACGGAG 120
ATACACTTTG TCACCAAATG TGCCTTTCAG CCCCCCCCCA GCTGTCTTCG CTTCGTCCAG 180
ACCAACATCT CCCGCCTCCT GCAGGAGACC TCCGAGCAGC TGGTGGCGCT GAAGCCCTGG 240
ATCACTCGCC AGAACTTCTC CCGGTGCCTG GAGCTGCAGT GTCAGCCCGA CTCCTCAACC 300
CTGGGCGGTG GGTCAGGAGG TGGGTCAGGA GGTGGATCCG GAGGTGGCAC CCAGGACTGC 360
TCCTTCCAAC ACAGCCCCAT CTCCTCCGAC TTCGCTGTCA AAATCCGTGA GCTGTCTGAC 420
TACCTGCTTC AAGATTACCC AGTCACCGTG GCCTCCAACC TGCAG 465






483 base pairs


nucleic acid


single


linear



135
GCCGACGAGG AGCTCTGCGG GGGCCTCTGG CGGCTGGTCC TGGCACAGCG CTGGATGGAG 60
CGGCTCAAGA CTGTCGCTGG GTCCAAGATG CAAGGCTTGC TGGAGCGCGT GAACACGGAG 120
ATACACTTTG TCACCAAATG TGCCTTTCAG CCCCCCCCCA GCTGCCTTCG CTTCGTCCAG 180
ACCAACATCT CCCGCCTCCT GCAGGAGACC TCCGAGCAGC TGGTGGCGCT GAAGCCCTGG 240
ATCACTCGCC AGAACTTCTC CCGGTGCCTG GAGCTGCAGT GTCAGCCCGA CTCCTCAACC 300
CTGGGCGGTG GGTCAGGAGG TGGGTCAGGA GGTGGATCCG GAGGTGGCTC AGGGGGAGGT 360
AGTGGTACCC AGGACTGCTC CTTCCAACAC AGCCCCATCT CCTCCGACTT CGCTGTCAAA 420
ATCCGTGAGC TGTCTGACTA CCTGCTTCAA GATTACCCAG TCACCGTGGC CTCCAACCTG 480
CAG 483






465 base pairs


nucleic acid


single


linear



136
GCCGATTACC CAGTCACCGT GGCCTCCAAC CTGCAGGACG AGGAGCTCTG CGGGGGCCTC 60
TGGCGGCTGG TCCTGGCACA GCGCTGGATG GAGCGGCTCA AGACTGTCGC TGGGTCCAAG 120
ATGCAAGGCT TGCTGGAGCG CGTGAACACG GAGATACACT TTGTCACCAA ATGTGCCTTT 180
CAGCCCCCCC CCAGCTGTCT TCGCTTCGTC CAGACCAACA TCTCCCGCCT CCTGCAGGAG 240
ACCTCCGAGC AGCTGGTGGC GCTGAAGCCC TGGATCACTC GCCAGAACTT CTCCCGGTGC 300
CTGGAGCTGC AGTGTCAGCC CGACTCCTCA ACCCTGGGCG GTGGGTCAGG AGGTGGGTCA 360
GGAGGTGGAT CCGGAGGTGG CACCCAGGAC TGCTCCTTCC AACACAGCCC CATCTCCTCC 420
GACTTCGCTG TCAAAATCCG TGAGCTGTCT GACTACCTGC TTCAA 465






465 base pairs


nucleic acid


single


linear



137
GCCGCCTCCA ACCTGCAGGA CGAGGAGCTC TGCGGGGGCC TCTGGCGGCT GGTCCTGGCA 60
CAGCGCTGGA TGGAGCGGCT CAAGACTGTC GCTGGGTCCA AGATGCAAGG CTTGCTGGAG 120
CGCGTGAACA CGGAGATACA CTTTGTCACC AAATGTGCCT TTCAGCCCCC CCCCAGCTGT 180
CTTCGCTTCG TCCAGACCAA CATCTCCCGC CTCCTGCAGG AGACCTCCGA GCAGCTGGTG 240
GCGCTGAAGC CCTGGATCAC TCGCCAGAAC TTCTCCCGGT GCCTGGAGCT GCAGTGTCAG 300
CCCGACTCCT CAACCCTGGG CGGTGGGTCA GGAGGTGGGT CAGGAGGTGG ATCCGGAGGT 360
GGCACCCAGG ACTGCTCCTT CCAACACAGC CCCATCTCCT CCGACTTCGC TGTCAAAATC 420
CGTGAGCTGT CTGACTACCT GCTTCAAGAT TACCCAGTCA CCGTG 465






465 base pairs


nucleic acid


single


linear



138
GCCGTCGCTG GGTCCAAGAT GCAAGGCTTG CTGGAGCGCG TGAACACGGA GATACACTTT 60
GTCACCAAAT GTGCCTTTCA GCCCCCCCCC AGCTGTCTTC GCTTCGTCCA GACCAACATC 120
TCCCGCCTCC TGCAGGAGAC CTCCGAGCAG CTGGTGGCGC TGAAGCCCTG GATCACTCGC 180
CAGAACTTCT CCCGGTGCCT GGAGCTGCAG TGTCAGCCCG ACTCCTCAAC CCTGGGCGGT 240
GGGTCAGGAG GTGGGTCAGG AGGTGGATCC GGAGGTGGCA CCCAGGACTG CTCCTTCCAA 300
CACAGCCCCA TCTCCTCCGA CTTCGCTGTC AAAATCCGTG AGCTGTCTGA CTACCTGCTT 360
CAAGATTACC CAGTCACCGT GGCCTCCAAC CTGCAGGACG AGGAGCTCTG CGGGGGCCTC 420
TGGCGGCTGG TCCTGGCACA GCGCTGGATG GAGCGGCTCA AGACT 465






465 base pairs


nucleic acid


single


linear



139
GCCTCCAAGA TGCAAGGCTT GCTGGAGCGC GTGAACACGG AGATACACTT TGTCACCAAA 60
TGTGCCTTTC AGCCCCCCCC CAGCTGTCTT CGCTTCGTCC AGACCAACAT CTCCCGCCTC 120
CTGCAGGAGA CCTCCGAGCA GCTGGTGGCG CTGAAGCCCT GGATCACTCG CCAGAACTTC 180
TCCCGGTGCC TGGAGCTGCA GTGTCAGCCC GACTCCTCAA CCCTGGGCGG TGGGTCAGGA 240
GGTGGGTCAG GAGGTGGATC CGGAGGTGGC ACCCAGGACT GCTCCTTCCA ACACAGCCCC 300
ATCTCCTCCG ACTTCGCTGT CAAAATCCGT GAGCTGTCTG ACTACCTGCT TCAAGATTAC 360
CCAGTCACCG TGGCCTCCAA CCTGCAGGAC GAGGAGCTCT GCGGGGGCCT CTGGCGGCTG 420
GTCCTGGCAC AGCGCTGGAT GGAGCGGCTC AAGACTGTCG CTGGG 465






465 base pairs


nucleic acid


single


linear



140
GCCCCCCCCA GCTGTCTTCG CTTCGTCCAG ACCAACATCT CCCGCCTCCT GCAGGAGACC 60
TCCGAGCAGC TGGTGGCGCT GAAGCCCTGG ATCACTCGCC AGAACTTCTC CCGGTGCCTG 120
GAGCTGCAGT GTCAGCCCGA CTCCTCAACC CTGGGCGGTG GGTCAGGAGG TGGGTCAGGA 180
GGTGGATCCG GAGGTGGCAC CCAGGACTGC TCCTTCCAAC ACAGCCCCAT CTCCTCCGAC 240
TTCGCTGTCA AAATCCGTGA GCTGTCTGAC TACCTGCTTC AAGATTACCC AGTCACCGTG 300
GCCTCCAACC TGCAGGACGA GGAGCTCTGC GGGGGCCTCT GGCGGCTGGT CCTGGCACAG 360
CGCTGGATGG AGCGGCTCAA GACTGTCGCT GGGTCCAAGA TGCAAGGCTT GCTGGAGCGC 420
GTGAACACGG AGATACACTT TGTCACCAAA TGTGCCTTTC AGCCC 465






465 base pairs


nucleic acid


single


linear



141
GCCCGCTTCG TCCAGACCAA CATCTCCCGC CTCCTGCAGG AGACCTCCGA GCAGCTGGTG 60
GCGCTGAAGC CCTGGATCAC TCGCCAGAAC TTCTCCCGGT GCCTGGAGCT GCAGTGTCAG 120
CCCGACTCCT CAACCCTGGG CGGTGGGTCA GGAGGTGGGT CAGGAGGTGG ATCCGGAGGT 180
GGCACCCAGG ACTGCTCCTT CCAACACAGC CCCATCTCCT CCGACTTCGC TGTCAAAATC 240
CGTGAGCTGT CTGACTACCT GCTTCAAGAT TACCCAGTCA CCGTGGCCTC CAACCTGCAG 300
GACGAGGAGC TCTGCGGGGG CCTCTGGCGG CTGGTCCTGG CACAGCGCTG GATGGAGCGG 360
CTCAAGACTG TCGCTGGGTC CAAGATGCAA GGCTTGCTGG AGCGCGTGAA CACGGAGATA 420
CACTTTGTCA CCAAATGTGC CTTTCAGCCC CCCCCCAGCT GTCTT 465






465 base pairs


nucleic acid


single


linear



142
GCCACCAACA TCTCCCGCCT CCTGCAGGAG ACCTCCGAGC AGCTGGTGGC GCTGAAGCCC 60
TGGATCACTC GCCAGAACTT CTCCCGGTGC CTGGAGCTGC AGTGTCAGCC CGACTCCTCA 120
ACCCTGGGCG GTGGGTCAGG AGGTGGGTCA GGAGGTGGAT CCGGAGGTGG CACCCAGGAC 180
TGCTCCTTCC AACACAGCCC CATCTCCTCC GACTTCGCTG TCAAAATCCG TGAGCTGTCT 240
GACTACCTGC TTCAAGATTA CCCAGTCACC GTGGCCTCCA ACCTGCAGGA CGAGGAGCTC 300
TGCGGGGGCC TCTGGCGGCT GGTCCTGGCA CAGCGCTGGA TGGAGCGGCT CAAGACTGTC 360
GCTGGGTCCA AGATGCAAGG CTTGCTGGAG CGCGTGAACA CGGAGATACA CTTTGTCACC 420
AAATGTGCCT TTCAGCCCCC CCCCAGCTGT CTTCGCTTCG TCCAG 465






134 amino acids


amino acid


single


linear




None



143
Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe Ala
1 5 10 15
Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro Val
20 25 30
Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly Leu Trp
35 40 45
Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr Val Ala
50 55 60
Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu Ile His
65 70 75 80
Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe
85 90 95
Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu
100 105 110
Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu
115 120 125
Glu Leu Gln Cys Gln Pro
130






139 amino acids


amino acid


single


linear




None



144
Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe Ala
1 5 10 15
Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro Val
20 25 30
Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly Leu Trp
35 40 45
Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr Val Ala
50 55 60
Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu Ile His
65 70 75 80
Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe
85 90 95
Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu
100 105 110
Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu
115 120 125
Glu Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu
130 135






209 amino acids


amino acid


single


linear




None



145
Thr Gln Asp Cys Ser Phe Gln His Ser Pro Ile Ser Ser Asp Phe Ala
1 5 10 15
Val Lys Ile Arg Glu Leu Ser Asp Tyr Leu Leu Gln Asp Tyr Pro Val
20 25 30
Thr Val Ala Ser Asn Leu Gln Asp Glu Glu Leu Cys Gly Gly Leu Trp
35 40 45
Arg Leu Val Leu Ala Gln Arg Trp Met Glu Arg Leu Lys Thr Val Ala
50 55 60
Gly Ser Lys Met Gln Gly Leu Leu Glu Arg Val Asn Thr Glu Ile His
65 70 75 80
Phe Val Thr Lys Cys Ala Phe Gln Pro Pro Pro Ser Cys Leu Arg Phe
85 90 95
Val Gln Thr Asn Ile Ser Arg Leu Leu Gln Glu Thr Ser Glu Gln Leu
100 105 110
Val Ala Leu Lys Pro Trp Ile Thr Arg Gln Asn Phe Ser Arg Cys Leu
115 120 125
Glu Leu Gln Cys Gln Pro Asp Ser Ser Thr Leu Pro Pro Pro Trp Ser
130 135 140
Pro Arg Pro Leu Glu Ala Thr Ala Pro Thr Ala Pro Gln Pro Pro Leu
145 150 155 160
Leu Leu Leu Leu Leu Leu Pro Val Gly Leu Leu Leu Leu Ala Ala Ala
165 170 175
Trp Cys Leu His Trp Gln Arg Thr Arg Arg Arg Thr Pro Arg Pro Gly
180 185 190
Glu Gln Val Pro Pro Val Pro Ser Pro Gln Asp Leu Leu Leu Val Glu
195 200 205
His






402 base pairs


nucleic acid


single


linear



146
ACCCAGGACT GCTCCTTCCA ACACAGCCCC ATCTCCTCCG ACTTCGCTGT CAAAATCCGT 60
GAGCTGTCTG ACTACCTGCT TCAAGATTAC CCAGTCACCG TGGCCTCCAA CCTGCAGGAC 120
GAGGAGCTCT GCGGGGGCCT CTGGCGGCTG GTCCTGGCAC AGCGCTGGAT GGAGCGGCTC 180
AAGACTGTCG CTGGGTCCAA GATGCAAGGC TTGCTGGAGC GCGTGAACAC GGAGATACAC 240
TTTGTCACCA AATGTGCCTT TCAGCCCCCC CCCAGCTGTC TTCGCTTCGT CCAGACCAAC 300
ATCTCCCGCC TCCTGCAGGA GACCTCCGAG CAGCTGGTGG CGCTGAAGCC CTGGATCACT 360
CGCCAGAACT TCTCCCGGTG CCTGGAGCTG CAGTGTCAGC CC 402






630 base pairs


nucleic acid


single


linear



147
ACCCAGGACT GCTCCTTCCA ACACAGCCCC ATCTCCTCCG ACTTCGCTGT CAAAATCCGT 60
GAGCTGTCTG ACTACCTGCT TCAAGATTAC CCAGTCACCG TGGCCTCCAA CCTGCAGGAC 120
GAGGAGCTCT GCGGGGGCCT CTGGCGGCTG GTCCTGGCAC AGCGCTGGAT GGAGCGGCTC 180
AAGACTGTCG CTGGGTCCAA GATGCAAGGC TTGCTGGAGC GCGTGAACAC GGAGATACAC 240
TTTGTCACCA AATGTGCCTT TCAGCCCCCC CCCAGCTGTC TTCGCTTCGT CCAGACCAAC 300
ATCTCCCGCC TCCTGCAGGA GACCTCCGAG CAGCTGGTGG CGCTGAAGCC CTGGATCACT 360
CGCCAGAACT TCTCCCGGTG CCTGGAGCTG CAGTGTCAGC CCGACTCCTC AACCCTGCCA 420
CCCCCATGGA GTCCCCGGCC CCTGGAGGCC ACAGCCCCGA CAGCCCCGCA GCCCCCTCTG 480
CTCCTCCTAC TGCTGCTGCC CGTGGGCCTC CTGCTGCTGG CCGCTGCCTG GTGCCTGCAC 540
TGGCAGAGGA CGCGGCGGAG GACACCCCGC CCTGGGGAGC AGGTGCCCCC CGTCCCCAGT 600
CCCCAGGACC TGCTGCTTGT GGAGCACTGA 630






29 amino acids


amino acid


single


linear



148
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
1 5 10 15
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly
20 25






21 amino acids


amino acid


single


linear



149
Pro Pro Pro Trp Ser Pro Arg Pro Leu Gly Ala Thr Ala Pro Thr Ala
1 5 10 15
Gly Gln Pro Pro Leu
20






15 amino acids


amino acid


single


linear



150
Pro Pro Pro Trp Ser Pro Arg Pro Leu Gly Ala Thr Ala Pro Thr
1 5 10 15






16 amino acids


amino acid


single


linear



151
Val Glu Thr Val Phe His Arg Val Ser Gln Asp Gly Leu Leu Thr Ser
1 5 10 15







Claims
  • 1. A human flt-3 receptor agonist polypeptide, comprising a modified flt-3 ligand amino acid sequence selected from the group consisting of:(a) the sequence of SEQ ID NO: 144; and (b) a polypeptide comprising residues 1-132 of SEQ ID NO: 144; wherein said modification comprises the linear rearrangement of the sequences of (a) or (b); wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and new C- and N-termini are created between the amino acid residue pairs of SEQ ID NO: 144 selected from the group consisting of:28-29, 29-30, 30-31, 31-32, 32-33, 34-35, 36-37, 37-38, 38-39, 40-41, 41-42, 42-43, 64-65, 65-66, 66-67, 86-87, 88-89, 89-90, 90-91, 91-92, 92-93, 93-94, 94-95, 95-96, 96-97, 97-98, 98-99, 99-100, 100-101, 101-102, and 102-103; and wherein optionally said flt-3 receptor agonist polypeptide is immediately preceded by (methionine−1), (alanine−1) or (methionine−2, alanine−1).
  • 2. The flt-3 receptor agonist polypeptide, as recited in claim 1, wherein said linker is selected from the group consisting of;GlyGlyGlySer SEQ ID NO:38; GlyGlyGlySerGlyGlyGlySer SEQ ID NO:39; GlyGlyGlySerGlyGlyGlySerGlyGlyGlySer SEQ ID NO:40; SerGlyGlySerGlyGlySer SEQ ID NO:41; GluPheGlyAsnMet SEQ ID NO:42; GluPheGlyGlyAsriMet SEQ ID NO:43; GluPheGlyGlyAsnGlyGlyAsnMet SEQ ID NO:443 GlyGlySerAspMetAlaGly SEQ ID NO:45; SerGlyGlyAsnGly SEQ ID NO:46; SerGlyGlyAsnGlySerGlyGlyAsnGly SEQ ID NO:47; SerGlyGlyAsnGlySerGlyGlyAsnGlySerGlyGlyAsnGly SEQ ID NO:48; SerGlyGlySerGlySerGlyGlySerGly SEQ ID NO:49; SerGlyGlySerGlySerGlyGlySerGlySerGlyGlySerGly SEQ ID NO:50; GlyGlyGlySerGlyGly SEQ ID NO:51; GlyGlyGlySerGlyGlyGly SEQ ID NO:52; GlyGlyGlySerGlyGlyGlySerGlyGly SEQ ID NO:53; GlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGly SEQ ID NO:54; GlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGlyGlyGly SEQ ID NO:55; GlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGly GlyGlySerGly SEQ ID NO:56; GlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGly GlyGlySerGlyGlyGlySerGlyGlyGlySerGly SEQ ID NO:148; ProProProTrpSerProArgProLeuGlyAlaThrAlaProThrAlaGly GlnProProLeu SEQ ID NO:149; ProProProTrpSerProArgProLeuGlyAlaThrAlaProThr SEQ ID NO:150; and ValGluThrValPheHisArgValSerGlnAspGlyLeuLeuThrSer SEQ ID NO:151.
  • 3. The flt-3 receptor agonist polypeptide, as recited in claim 1, selected from the group consisting of;AlaAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMETGlu ArgLeuLysThrValAlaGlySerLysMETGlnGlyLeuLeuGluArgValAsnThrGlu IleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgpheValGln ThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrp IleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThr LeuSerGlyGlyAsnGlySerGlyGlyAsnGlySerGlyGlyAsnGlyThrGlnAspCys SerPheGlnHisSerProIleSerSerAspPheAlaValLysIleArgGluLeuSerAsp TyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGln SEQ ID NO:8; AlaAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMETGlu ArgLeuLysThrValAlaGlySerLysMETGlnGlyLeuLeuGluArgValAsnThrGlu IleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGln ThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrp IleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThr LeuSerGlyGlyAsnGlySerGlyGlyAsnGlyThrGlnAspCysSerPheGlnHisSer ProIleSerSerAspPheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAsp TyrProValThrValAlaSerAsnLeuGln SEQ ID NO:9; AlaAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMETGlu ArgLeuLysThrValAlaGlySerLysMETGlnGlyLeuLeuGluArgValAsnThrGlu IleHisPheValThrLysCysAlaPheGlnProProProSerCysLeuArgpheValGln ThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrp IleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThr LeuSerGlyGlyAsnGlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAsp PheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrVal AlaSerAsnLeuGln SEQ ID NO:10; AlaSerLysMETGlnGlyLeuLeuGluArgValAsnThrGluIleHisPheValThrLys CysAlaPheGlnProProProSerCysLeuArgPheValGlnThrAsnIleSerArgLeu LeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnPhe SerArgCysLeuGluLeuGlnCysGlnProAspSerSerThrLeuSerGlyGlyAsnGly SerGlyGlyAsnGlySerGlyGlyAsnGlyThrGlnAspCysSerPheGlnHisSerPro IleSerSerAspPheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAspTyr ProValThrValAlaSerAsnLeuGlnAspGluGluLeuCysGlyGlyLeuTrpArgLeu ValLeuAlaGlnArgTrpMETGluArgLeuLysThrValAlaGly SEQ ID NO:11; AlaSerLysMETGlnGlyLeuLeuGluArgValAsnThrGluIleHisPheValThrLys CysAlaPheGlnProProProSerCysLeuArgPheValGlnThrAsnIleSerArgLeu LeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnphe SerArgCysLeuGluLeuGlnCysGlnProAspSerSerThrLeuSerGlyGlyAsnGly SerGlyGlyAsnGlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAspphe AlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAla SerAsnLeuGlnAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArg TrpMETGluArgLeuLysThrValAlaGly SEQ ID NO:12 AlaSerLysMETGlnGlyLeuLeuGluArgValAsnThrGluIleHisPheValThrLys CysAlaPheGlnProProProSerCysLeuArgPheValGlnThrAsnIleSerArgLeu LeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnPhe SerArgCysLeuGluLeuGlnCysGlnProAspSerSerThrLeuSerGlyGlyAsnGly ThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIleArg GluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGlnAsp GluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMETGluArgLeu LysThrValAlaGly SEQ ID NO:13; AlaProProSerCysLeuArgPheValGlnThrAsnIleSerArgLeuLeuGlnGluThr SerGluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnPheSerArgCysLeu GluLeuGlnCysGlnProAspSerSerThrLeuSerGlyGlyAsnGlySerGlyGlyAsn GlySerGlyGlyAsnGlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAsp PheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrVal AlaSerAsnLeuGlnAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGln ArgTrpMETGluArgLeuLysThrValAlaGlySerLysMETGlnGlyLeuLeuGluArg ValAsnThrGluIleHisPheValThrLysCysAlaPheGlnPro SEQ ID NO:14; AlaProProSerCysLeuArgPheValGlnThrAsnIleSerArgLeuLeuGlnGluThr SerGluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnPheSerArgCysLeu GluLeuGlnCysGlnProAspSerSerThrLeuSerGlyGlyAsnGlySerGlyGlyAsn GlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIle ArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGln AspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMETGluArg LeuLysThrValAlaGlySerLysMETGlnGlyLeuLeuGluArgValAsnThrGluIle HisPheValThrLysCysAlaPheGlnPro SEQ ID NO:15; AlaProProSerCysLeuArgPheValGlnThrAsnIleSerArgLeuLeuGlnGluThr SerGluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnPheSerArgCysLeu GluLeuGlnCysGlnProAspSerSerThrLeuSerGlyGlyAsnGlyThrGlnAspCys SerPheGlnHisSerProIleSerSerAspPheAlaValLysIleArgGluLeuSerAsp TyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGlnAspGluGluLeuCys GlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMETGluArgLeuLysThrValAla GlySerLysMETGlnGlyLeuLeuGluArgValAsnThrGluIleHisPheValThrLys CysAlaPheGlnPro SEQ ID NO:16; AlaAspTyrProValThrValAlaSerAsnLeuGlnAspGluGluLeuCysGlyGlyLeu TrpArgLeuValLeuAlaGlnArgTrpMetGluArgLeuLysThrValAlaGlySerLys MetGlnGlyLeuLeuGluArgValAsnThrGluIleHisPheValThrLysCysAlaPhe GlnProProProSerCysLeuArgPheValGlnThrAsnIleSerArgLeuLeuGlnGlu ThrSerGluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnPheSerArgCys LeuGluLeuGlnCysGlnProAspSerSerThrLeuGlyGlyGlySerGlyGlyGlySer GlyGlyGlySerGlyGlyGlyThrGlnAspCysSerPheGlnHisSerProIleSerSer AspPheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGln SEQ ID NO:31; AlaAlaSerAsnLeuGlnAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAla GlnArgTrpMetGluArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGlu ArgvalAsnThrGluIleHisPheValThrLysCysAlaPheGlnProProProSerCys LeuArgPheValGlnThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuVal AlaLeuLysProTrpIleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGln ProAspSerSerThrLeuGlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGlyGly GlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIle ArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrVal SEQ ID NO:32; AlaValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIleHisPhe ValThrLysCysAlaPheGlnProProProSerCysLeuArgPheValGlnThrAsnIle SerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrpIleThrArg GlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSerThrLeuGlyGly GlySerGlyGlyGlySerGlyGlyGlySerGlyGlyGlyThrGlnAspCysSerPheGln HisSerProIleSerSerAspPheAlaValLysIleArgGluLeuSerAspTyrLeuLeu GlnAspTyrProValThrValAlaSerAsnLeuGlnAspGluGluLeuCysGlyGlyLeu TrpArgLeuValLeuAlaGlnArgTrpMetGluArgLeuLysThr SEQ ID NO:33; AlaSerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIleHisPheValThrLys CysAlaPheGlnProProProSerCysLeuArgPhevalGlnThrAsnIleSerArgLeu LeuGlnGluThrSerGluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnPhe SerArgCysLeuGluLeuGlnCysGlnProAspSerSerThrLeuGlyGlyGlySerGly GlyGlySerGlyGlyGlySerGlyGlyGlyThrGlnAspCysSerPheGlnHisSerPro IleSerSerAspPheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAspTyr ProValThrValAlaSerAsnLeuGlnAspGluGluLeuCysGlyGlyLeuTrpArgLeu ValLeuAlaGlnArgTrpMetGluArgLeuLysThrValAlaGly SEQ ID NO:34; AlaProProSerCysLeuArgPheValGlnThrAsnIleSerArgLeuLeuGlnGluThr SerGluGlnLeuValAlaLeuLysProTrpIleThrArgGlnAsnPheSerArgCysLeu GluLeuGlnCysGlnProAspSerSerThrLeuGlyGlyGlySerGlyGlyGlySerGly GlyGlySerGlyGlyGlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAsp PheAlaValLysIleArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrVal AlaSerAsnLeuGlnAspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGln ArgTrpMetGluArgLeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArg ValAsnThrGluIleHisPheValThrLysCysAlaPheGlnPro SEQ ID NO:35; AlaArgPheValGlnThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuVal AlaLeuLysProTrpIleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGln ProAspSerSerThrLeuGlyGlyGlySerGlyClyGlySerGlyGlyGlySerGlyGly GlyThrGlnAspCysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIle ArgGluLeuSerAspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGln AspGluGluLeuCysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGluArg LeuLysThrValAlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIle HisPheValThrLysCysAlaPheGlnProProProSerCysLeu SEQ ID NO:36; AlaThrAsnIleSerArgLeuLeuGlnGluThrSerGluGlnLeuValAlaLeuLysPro TrpIleThrArgGlnAsnPheSerArgCysLeuGluLeuGlnCysGlnProAspSerSer ThrLeuGlyGlyGlySerGlyGlyGlySerGlyGlyGlySerGlyGlyGlyThrGlnAsp CysSerPheGlnHisSerProIleSerSerAspPheAlaValLysIleArgGluLeuSer AspTyrLeuLeuGlnAspTyrProValThrValAlaSerAsnLeuGlnAspGluGluLeu CysGlyGlyLeuTrpArgLeuValLeuAlaGlnArgTrpMetGluArgLeuLysThrVal AlaGlySerLysMetGlnGlyLeuLeuGluArgValAsnThrGluIleHisPheValThr LysCysAlaPheGlnProProProSerCysLeuArgPheValGln SEQ ID NO:37.
  • 4. A nucleic acid molecule, comprising a sequence encoding the flt-3 receptor agonist polypeptide of claim 1.
  • 5. A nucleic acid molecule, comprising a sequence encoding the flt-3 receptor agonist polypeptide of claim 2.
  • 6. A nucleic acid molecule, comprising a sequence encoding the flt-3 receptor agonist polypeptide of claim 3.
  • 7. A nucleic acid molecule, comprising a sequence encoding the flt-3 receptor agonist polypeptide of claim 6, selected from the group consisting of:GCCGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCG CTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGC TGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAG CCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC CTGTCTGGAGGTAACGGATCCGGTGGCAATGGGAGCGGCGGAAATGGAAC CCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGCTGTCA AAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCACCGTG GCCTCCAACCTGCAG SEQ ID NO:113; GCCGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCG CTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGC TGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAG CCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC CTGTCAGGCGGTAACGGCAGTGGAGGTAATGGCACCCAGGACTGCTCCTT CCAACACAGCCCCATCTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTGT CTGACTACCTGCTTCAAGATTACCCAGTCACCGTGGCCTCCAACCTGCAG SEQ ID NO:114; GCCGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCG CTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGC TGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAG CCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC CTGTCTGGCGGCAACGGCACCCAGGACTGCTCCTTCCAACACAGCCCCAT CTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTC AAGATTACCCAGTCACCGTGGCCTCCAACCTGCAG SEQ ID NO:115; GCCTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTT TGTCACCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCC AGACCAACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCG CTGAAGCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCA GTGTCAGCCCGACTCCTCAACCCTGTCTGGAGGTAACGGATCCGGTGGCA ATGGGAGCGGCGGAAATGGAACCCAGGACTGCTCCTTCCAACACAGCCCC ATCTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCTGCT TCAAGATTACCCAGTCACCGTGGCCTCCAACCTGCAGGACGAGGAGCTCT GCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCGCTGGATGGAGCGGCTC AAGACTGTCGCTGGG SEQ ID NO:116; GCCTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTT TGTCACCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCC AGACCAACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCG CTGAAGCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCA GTGTCAGCCCGACTCCTCAACCCTGTCTGGAGGTAACGGATCCGGAGGTA ATGGCACCCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTC GCTGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGT CACCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGC GGCTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGG SEQ ID NO:117; GCCTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTT TGTCACCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCC AGACCAACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCG CTGAAGCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCA GTGTCAGCCCGACTCCTCAACCCTGTCTGGCGGCAACGGCACGCAGGACT GCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGCTGTCAAAATCCGT GAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCACCGTGGCCTCCAA CCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCAC AGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGG SEQ ID NO:118; GCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC CTGTCTGGAGGTAACGGCAGTGGTGGCAATGGGAGCGGTGGAAATGGAAC CCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGCTGTCA AAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCACCGTG GCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGT CCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGA TGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAA TGTGCCTTTCAGCCC SEQ ID NO:119; GCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC CTGTCAGGCGGTAACGGCAGTGGAGGTAATGGCACCCAGGACTGCTCCTT CCAACACAGCCCCATCTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTGT CTGACTACCTGCTTCAAGATTACCCAGTCACCGTGGCCTCCAACCTGCAG GACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCGCTG GATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGCTGG AGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAGCCC SEQ ID NO:120; GCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCT GCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCC AGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACC CTGTCTGGCGGCAACGGCACGCAGGACTGCTCCTTCCAACACAGCCCCAT CTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTC AAGATTACCCAGTCACCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGC GGGGGCCTCTGGCGGCTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAA GACTGTCGCTGGGTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGG AGATACACTTTGTCACCAAATGTGCCTTTCAGCCC SEQ ID NO:121; GCCGATTACCCAGTCACCGTGGCCTCCAACCTGCAGGACGAGGAGCCTGCCGGGG GCCTCTGGCGGCTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGC TGGGTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTTTGTC ACCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACA TCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGAT CACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCA ACCCTGGGCGGTGGGTCAGGAGGTGGGTCAGGAGGTGGATCCGGAGGTGGCACCC AGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGCTGTCAAAATCCG TGAGCTGTCTGACTACCTGCTTCAA SEQ ID NO:136; GCCGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCC TGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGG CTTGCTGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAAATGTGCCTTTCAG CCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCTGCAGG AGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCCAGAACTTCTC CCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACCCTGGGCGGTGGGTCA GGAGGTGGGTCAGGAGGTGGATCCGGAGGTGGCACCCAGGACTGCTCCTTCCAAC ACAGCCCCATCTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCT GCTTCAAGATTACCCAGTCACCGTG SEQ ID NO:137; GCCGTCGCTGGGTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATAC ACTTTGTCACCAAATGTGCCTTTCAGCCCCCCCCCAGCTGTCTTCGCTTCGTCCA GACCAACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAG CCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCG ACTCCTCAACCCTGGGCGGTGGGTCAGGAGGTGGGTCAGGAGGTGGATCCGGAGG TGGCACCCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGCTGTC AAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCACCGTGGCCT CCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACA GCGCTGGATGGAGCGGCTCAAGACT SEQ ID NO:138; GCCTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTTTGTCA CCAAATGTGCCTTTCAGCCcCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACAT CTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATC ACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAA CCCTGGGCGGTGGGTCAGGAGGTGGGTCAGGAGGTGGATCCGGAGGTGGCACCCA GGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGCTGTCAAAATCCGT GAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCACCGTGGCCTCCAACCTGC AGGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCACAGCGCTGGAT GGAGCGGCTCAAGACTGTCGCTGGG SEQ ID NO:139; GCCCCCCCCAGCTGTCTTCGCTTCGTCCAGACCAACATCTCCCGCCTCCTGCAGG AGACCTCCGAGCAGCTGGTGGCGCTGAAGCCCTGGATCACTCGCCAGAACTTCTC CCGGTGCCTGGAGCTGCAGTGTCAGCCCGACTCCTCAACCCTGGGCGGTGGGTCA GGAGGTGGGTCAGGAGGTGGATCCGGAGGTGGCACCCAGGACTGCTCCTTCCAAC ACAGCCCCATCTCCTCCGACTTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCT GCTTCAAGATTACCCAGTCACCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGC GGGGGCCTCTGGCGGCTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTG TCGCTGGGTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTT TGTCACCAAATGTGCCTTTCAGCCC SEQ ID NO:140; GCCCGCTTCGTCCAGACCAACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGC TGGTGGCGCTGAAGCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCT GCAGTGTCAGCCCGACTCCTCAACCCTGGGCGGTGGGTCAGGAGGTGGGTCAGGA GGTGGATCCGGAGGTGGCACCCAGGACTGCTCCTTCCAACACAGCCCCATCTCCT CCGACTTCGCTGTCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCC AGTCACCGTGGCCTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGCGG CTGGTCCTGGCACAGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGA rTGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGC CTTTCAGCCCCCCCCCAGCTGTCTT SEQ ID NO:142; GCCACCAACATCTCCCGCCTCCTGCAGGAGACCTCCGAGCAGCTGGTGGCGCTGA AGCCCTGGATCACTCGCCAGAACTTCTCCCGGTGCCTGGAGCTGCAGTGTCAGCC CGACTCCTCAACCCTGGGCGGTGGGTCAGGAGGTGGGTCAGGAGGTGGATCCGGA GGTGGCACCCAGGACTGCTCCTTCCAACACAGCCCCATCTCCTCCGACTTCGCTG TCAAAATCCGTGAGCTGTCTGACTACCTGCTTCAAGATTACCCAGTCACCGTGGC CTCCAACCTGCAGGACGAGGAGCTCTGCGGGGGCCTCTGGCGGCTGGTCCTGGCA CAGCGCTGGATGGAGCGGCTCAAGACTGTCGCTGGGTCCAAGATGCAAGGCTTGC TGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAATGTGCCTTTCAGCCCCC CCCCAGCTGTCTTCGCTTCGTCCAG SEQ ID NO:143.
  • 8. A method of producing a flt3 receptor agonist polypeptide comprising: growing under suitable nutrient conditions, a host cell transformed or transfected with a replicable vector comprising said nucleic acid molecule of claim 4, 5, 6 or 7 in a manner allowing expression of said flt3 receptor agonist polypeptide and recovering said flt3 receptor agonist polypeptide.
  • 9. A composition comprising; a polypeptide of claim 1, 2, or 3 and a pharmaceutically acceptable carrier.
  • 10. A composition comprising; a polypeptide of claim 1, 2, or 3 a factor selected from the group consisting of: a colony stimulating factor, a cytokine, a lymphokine, an interleukin, and a hematopoietic growth factor; and a pharmaceutically acceptable carrier.
  • 11. The composition according to claim 10 wherein said factor is selected from the group consisting of: GM-CSF, G-CSF, c-mpl ligand, M-CSF, IL-1, IL4, IL-2, IL-3, IL-5, IL-6, IL-7, IL-8, L-9, IL-10, IL-11, IL-12, IL-13, IL-15, LIF, flt3 ligand, and EPO.
Parent Case Info

The present application claims priority under Title 35, United States Code, §119 of U.S. Provisional application Serial No. 60/030,094, filed Oct. 25, 1996.

US Referenced Citations (2)
Number Name Date Kind
5554512 Lyman et al. Sep 1996 A
5635599 Pastan et al. Jun 1997 A
Foreign Referenced Citations (6)
Number Date Country
0 627 487 May 1994 EP
WO9426891 Nov 1994 WO
WO9428391 Dec 1994 WO
WO9524469 Sep 1995 WO
WO9527732 Oct 1995 WO
WO9712985 Apr 1997 WO
Non-Patent Literature Citations (27)
Entry
M. Kotzmann et al., European Journal of Clinical Investigation, 1996. 26:1175-1181.*
Reeke et al, “Three-Dimensional Structure of Favin: Saccharide Binding-Cyclic Permutation in Leguminous Lectins”, Science, Nov. 28, 1986, vol. 234 pp 1108-1111.
Luger et al, “An 8-fold Ba Barrel Protein with Redundant Folding Possibilites”, Protein Engineering, Vol 3 pp 249-258 (1990).
Cunningham et al, “Favion versus concanavalin A: Circularly permuted amino acid sequences”, Proc. Natl. Acad. Sci. USA, Jul. 1979, vol. 76, No. 7, pp. 3218-3222.
Protasova et al, Circularly permuted dihydrofolate reductase of E.coli has functional activity and a destabilized tertiary structure:, Protein Engineering, 1994, vol. 7, No. 11, pp. 1373-1777.
Zhang et al, “Circular Permutation of T4 Lysozyme”, Biochemistry, Vol 32, No. 46, 1993.
Luger et al, “Correct Folding of Circularly Permuted Variants of a Ba Barrel Enzyme in Vivo”, Science, Vol 234(1989).
Hahn et al, “Native-like in vivo folding of a circularly permuted jellyroll protein shown by crystal structure analysis”, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 10417-10421.
Lin et al, “Rearranging the domains of pepsinogen”, Protein Science, 1995, Vol 4, pp 159-166.
Yang et al, “Aspartate transcarbamoylase containing circularly permuted catalytic polypeptide chains”, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 11980-11984.
Vignai et al, “Circular permutation within the coenzyme binding domain of the tetrameric glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus”, Protein Science, 1995, Vol 4., pp. 994-1000.
Goldenberg et al, “Circular and Circularly Permuted Forms of Bovine Pancreatic Trypsin Inhibitor”, J. Mol. Biol. 1983, vol. 165, pp. 407-413.
Hemperly et al, “Circular permutation of amino acid sequences among legume lectins”, TIBS, 1983, pp. 100-102.
Kreitman et al, “Circularly permuted interleukin 4 retains proliferative and binding activity”, Cytokine, 1995, vol. 7, No. 4, pp. 311-318.
Li et al, “Degradation of Ornithine Decarboxylase”, Mol. and Cel. Biol. 1993, vol. 13, No. 4, pp. 2377-2383.
Ritco et al, “Is the Continuity of the Domains Required for the Correct Folding of a Two-Domain Protein?”, Biochemistry, 1995, vol. 34, pp. 16543-16551.
Garrett et al, “Are turns required for the folding of ribonuclease T1?”, Protein Science, 1996, Vol 5., pp. 204-211.
Komar et al, “Kinetics of translation” FEBS Letters, 1995 vol. 376, pp. 195-198.
MacGregor et al, “A circularly permuted a-amylase-type”, FEBS Letters, 1996, vol. 378, pp. 263-266.
Koebnik et al, “Membrane Assembly of Circulary Permuted Variants”, JMB, 1995, vol. 250, pp. 617-626.
Buchwalder et al, “A fully active variant of Dihydrofolate Reductase with a circularly permuted sequence”, Biochemistry, 1992, vol. 31, pp. 1621-1630.
Viguera et al, “The order of secondary structure elements”, J. Mol. Biol., 1995, vol. 247, pp. 670-681.
Mullins et al. “Transposition of Protein Sequences: Circular Permutation of Ribonuclease T1”, J. Am. Chem. Soc., 1994, vol. 116, pp. 5529-5533.
Horlick et al, “Permuteins of interleukin 1B—a simplified approach for the construction of permutated proteins having new termini”, Protein Engineering, USA, 1992, vol. 5, pp. 427-431.
Kreitman et al, “A circularly permuted recombinant interleukin 4 toxin with increase activity”, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 6889-6893.
Hannum et al, “Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs”, Nature, 1994, vol. 368, pp. 643-648.
Lyman et al, “Cloning of the Human Homologue of the Murine flt3 Ligand: A Growth Factor for Early Hematopoietic Progenitor Cells”, The AM. Soc. of Hematology, USA, 1994, pp. 2795-2801.
Provisional Applications (1)
Number Date Country
60/030094 Oct 1996 US