M. Kotzmann et al., European Journal of Clinical Investigation, 1996. 26:1175-1181.* |
Reeke et al, “Three-Dimensional Structure of Favin: Saccharide Binding-Cyclic Permutation in Leguminous Lectins”, Science, Nov. 28, 1986, vol. 234 pp 1108-1111. |
Luger et al, “An 8-fold Ba Barrel Protein with Redundant Folding Possibilites”, Protein Engineering, Vol 3 pp 249-258 (1990). |
Cunningham et al, “Favion versus concanavalin A: Circularly permuted amino acid sequences”, Proc. Natl. Acad. Sci. USA, Jul. 1979, vol. 76, No. 7, pp. 3218-3222. |
Protasova et al, Circularly permuted dihydrofolate reductase of E.coli has functional activity and a destabilized tertiary structure:, Protein Engineering, 1994, vol. 7, No. 11, pp. 1373-1777. |
Zhang et al, “Circular Permutation of T4 Lysozyme”, Biochemistry, Vol 32, No. 46, 1993. |
Luger et al, “Correct Folding of Circularly Permuted Variants of a Ba Barrel Enzyme in Vivo”, Science, Vol 234(1989). |
Hahn et al, “Native-like in vivo folding of a circularly permuted jellyroll protein shown by crystal structure analysis”, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 10417-10421. |
Lin et al, “Rearranging the domains of pepsinogen”, Protein Science, 1995, Vol 4, pp 159-166. |
Yang et al, “Aspartate transcarbamoylase containing circularly permuted catalytic polypeptide chains”, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 11980-11984. |
Vignai et al, “Circular permutation within the coenzyme binding domain of the tetrameric glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus”, Protein Science, 1995, Vol 4., pp. 994-1000. |
Goldenberg et al, “Circular and Circularly Permuted Forms of Bovine Pancreatic Trypsin Inhibitor”, J. Mol. Biol. 1983, vol. 165, pp. 407-413. |
Hemperly et al, “Circular permutation of amino acid sequences among legume lectins”, TIBS, 1983, pp. 100-102. |
Kreitman et al, “Circularly permuted interleukin 4 retains proliferative and binding activity”, Cytokine, 1995, vol. 7, No. 4, pp. 311-318. |
Li et al, “Degradation of Ornithine Decarboxylase”, Mol. and Cel. Biol. 1993, vol. 13, No. 4, pp. 2377-2383. |
Ritco et al, “Is the Continuity of the Domains Required for the Correct Folding of a Two-Domain Protein?”, Biochemistry, 1995, vol. 34, pp. 16543-16551. |
Garrett et al, “Are turns required for the folding of ribonuclease T1?”, Protein Science, 1996, Vol 5., pp. 204-211. |
Komar et al, “Kinetics of translation” FEBS Letters, 1995 vol. 376, pp. 195-198. |
MacGregor et al, “A circularly permuted a-amylase-type”, FEBS Letters, 1996, vol. 378, pp. 263-266. |
Koebnik et al, “Membrane Assembly of Circulary Permuted Variants”, JMB, 1995, vol. 250, pp. 617-626. |
Buchwalder et al, “A fully active variant of Dihydrofolate Reductase with a circularly permuted sequence”, Biochemistry, 1992, vol. 31, pp. 1621-1630. |
Viguera et al, “The order of secondary structure elements”, J. Mol. Biol., 1995, vol. 247, pp. 670-681. |
Mullins et al. “Transposition of Protein Sequences: Circular Permutation of Ribonuclease T1”, J. Am. Chem. Soc., 1994, vol. 116, pp. 5529-5533. |
Horlick et al, “Permuteins of interleukin 1B—a simplified approach for the construction of permutated proteins having new termini”, Protein Engineering, USA, 1992, vol. 5, pp. 427-431. |
Kreitman et al, “A circularly permuted recombinant interleukin 4 toxin with increase activity”, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 6889-6893. |
Hannum et al, “Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs”, Nature, 1994, vol. 368, pp. 643-648. |
Lyman et al, “Cloning of the Human Homologue of the Murine flt3 Ligand: A Growth Factor for Early Hematopoietic Progenitor Cells”, The AM. Soc. of Hematology, USA, 1994, pp. 2795-2801. |