The subject disclosure generally relates to dust collection, and more specifically to facilitating dust collection within a circular saw apparatus via a multistage filtration system.
When using conventional power saws, the release of airborne dust and particulate matter resulting from cutting a work piece is problematic. Health hazards associated with breathing in such dust is particularly problematic. Development of wet cutting devices is one solution to dust abatement, wherein water is applied at a blade cutting edge where dust is entrained to a fluid and directed to a holding area. While most wet cutting methods work relatively well, they create additional problems of waste water pollution and environmental concerns. Conventional masonry and tile saws, for instance, typically have a tub or pan of water with a pump that supplies water to the cutting head. While the saw is cutting, the water is sprayed and dispersed around the saw cutting area. Therefore, because this water can drip, spray, and potentially spill, the power saw cannot be placed in close proximity to where the actual masonry and or tile installation is taking place. The user thus spends a significant amount of time walking back and forth between the power saw and the installation area.
Accordingly, a dry operated power saw which prevents dust from escaping into the environment is desirable. To this end, it should be noted that the above-described deficiencies are merely intended to provide an overview of some of the problems of conventional systems, and are not intended to be exhaustive. Other problems with the state of the art and corresponding benefits of some of the various non-limiting embodiments may become further apparent upon review of the following detailed description.
A simplified summary is provided herein to help enable a basic or general understanding of various aspects of exemplary, non-limiting embodiments that follow in the more detailed description and the accompanying drawings. This summary is not intended, however, as an extensive or exhaustive overview. Instead, the sole purpose of this summary is to present some concepts related to some exemplary non-limiting embodiments in a simplified form as a prelude to the more detailed description of the various embodiments that follow.
In accordance with one or more embodiments and corresponding disclosure, various non-limiting aspects are described in connection with a dust collection system. In one such aspect, an apparatus to facilitate dust collection is disclosed. Within such embodiment, the apparatus includes a vacuum source, a circular saw blade, and a worktable comprising a center slot axially aligned to the circular saw blade. Here, the center slot includes an air flow channel proximate to an anticipated point of contact between the circular saw blade and a workpiece. The vacuum source is then configured to provide a focused negative pressure beneath the worktable via the air flow channel.
In a further aspect, another apparatus to facilitate dust collection is disclosed. For this embodiment, the apparatus includes a housing comprising a vacuum source and a multistage filter. The apparatus further includes a circular saw blade and a worktable comprising a center slot axially aligned to the circular saw blade. Here, the vacuum source is configured to provide a negative pressure beneath the worktable at the center slot, and the multistage filter is configured to collect airborne dust drawn by the negative pressure from an area proximate to the center slot.
In yet another aspect, an apparatus to facilitate dust collection is disclosed, which includes a vacuum source, a circular saw blade, and a worktable. For this embodiment, the worktable comprises a center slot axially aligned to the circular saw blade, and the vacuum source is configured to provide a first negative pressure beneath the worktable at the center slot. The vacuum source is then further configured to provide a second negative pressure via an auxiliary port.
In another aspect, a dust collection apparatus is disclosed, which includes a vacuum source configured to provide a negative pressure, and a multistage filter configured to collect airborne dust drawn by the negative pressure. For this embodiment, the dust collection apparatus includes a dust tray having a shared dust containment area in which the shared dust containment area is a single compartment configured to receive the airborne dust collected by the multistage filter directly from each of a plurality of stages of the multistage filter.
In a further aspect, a dust collection apparatus is disclosed, which includes a filter, a filter housing configured to house the filter, and an inlet coupled to the filter housing. For this example, the inlet is configured to receive a flow of airborne dust drawn by a negative pressure, and is further configured to mitigate an impact of the airborne dust on the filter.
Other embodiments and various non-limiting examples, scenarios and implementations are described in more detail below.
Various non-limiting embodiments are further described with reference to the accompanying drawings in which:
The various embodiments disclosed herein are directed towards dust collection within a circular saw apparatus via a multistage filtration system. In
Various configurations of the apparatus 100 are contemplated and disclosed herein. For instance, in a first contemplated configuration, the worktable 120 is configured to slide above the housing 110. (See e.g.,
A chop saw configuration of the apparatus 100 is also contemplated. (See e.g.,
In another aspect of the disclosure, a table saw configuration is also contemplated. (See e.g.,
Exemplary embodiments for the disclosed saw apparatus in which the worktable is a sliding table are now discussed in further detail. In
With respect to the housing 210, it is contemplated that a multistage filter may be included. Here, for example, such multistage filter may include a rotatable filter 217 coupled to a cyclonic filter 216. A vacuum source 212 attached to the rotatable filter 217 is then configured to create an air flow through the rotatable filter 217 and the cyclonic filter 216. During use, as the worktable 220 slides over the housing 210, this air flow provides a negative pressure just below the center slot 226, wherein dust proximate to the center slot 226 is drawn through the louvers 224 towards the filters and subsequently collected into the dust container 213.
In an aspect of the disclosure, it is noted that the suction force below the center slot 226 may be diminished if the louvers 224 are obstructed. Indeed, if a substantial number of louvers 224 are obstructed (e.g., by a large work piece), such obstruction may result in an inadequate amount of suction force to collect dust. As a result, dust will undesirably remain above the worktable 220, rather than drawn below the center slot 226.
To circumvent this problem, the configuration in
Referring next to
It should be noted that particular parameters of the apparatus 200 may be changed, as desired, to provide different performance characteristics and/or to cut different types of work pieces (e.g., different material, different dimensions, etc.). For instance, as illustrated, the heavy debris chute 215 and each of the louvers 234 are angled so as to avoid having dust particles “bounce” back up through the louvers 234. In a particular embodiment, however, the louvers 234 may be coupled to a lever that uniformly adjusts the louvers 234 to be angled between a particular range (e.g., between 30 degrees and 45 degrees). It is contemplated that various other parameters may also be adjusted including, for example, the spacing between each of the louvers 234, the rotations per minute (RPM) of the circular saw blade 230, and/or the suction force provided by the vacuum source 212.
As previously stated, aspects disclosed herein provide a system in which dust may be collected via any of a plurality of filters. Here, for instance, an exemplary path traversed by dust drawn through the louvers 234 is provided in
In a particular embodiment, rotatable filter 217 is a cylindrical filter media having a plurality of pleated segments about a cylindrical surface, as shown. The rotatable filter 217 further comprises a filter cleaning flap 218 secured to a lateral partitioning wall at an interior of the rotatable filter 217, wherein the filter cleaning flap 218 contacts the pleated segments when the filter cleaning knob is rotated. Moreover, as the rotatable filter 217 rotates, the filter cleaning flap 218 removes dust from the pleated segments, which falls into fine particle compartment 260.
As illustrated, dust may also be drawn via the vacuum inlet 233. As previously stated, a first end of a conduit 235 may be inserted into the vacuum inlet 233, whereas the other end of the conduit 235 is connected to a vacuum port 218 on the housing 210. Here, if there is an inadequate amount of suction force below the center slot 226, dust is drawn up towards the vacuum inlet 233 where it then travels through the conduit 235 and subsequently through the filters within the housing 210.
In another aspect of the disclosure, aspects for minimizing vacuum flow loss are contemplated. For instance, as illustrated in
Referring next to
With respect to the housing 310 of apparatus 300, it should be appreciated that the components therein are substantially similar to the corresponding components of the housing 210 of apparatus 200. For instance, housing 310 also includes a multistage filter, which comprises a rotatable filter 317 coupled to a cyclonic filter 316, wherein a vacuum source 312 attached to the rotatable filter 317 is again configured to create an air flow through the rotatable filter 317 and cyclonic filter 316. During use, this air flow provides a negative pressure just below the center slot 326 so that dust is drawn through the center slot 326 towards the filters and subsequently collected into the dust container 313. In particular, heavy debris drawn through the center slot 326 falls through the heavy debris chute 315 and into the dust container 313, whereas lighter dust particles are pulled towards the cyclonic filters 316. As these lighter dust particles travel above the cyclonic filters 316, some dust is pulled down into the dust container 313, whereas finer dust particles continue towards the rotatable filter 317.
In addition to pulling dust down through the center slot 326, however, the apparatus 300 is configured to pull dust back towards a scoop 323, as shown. Within such embodiment, vacuum source 312 thus provides a suction force both through the center slot 326 and through the scoop 323. To this end, dust drawn through the scoop 323 travels through the vacuum port 318 and towards the filters. Here, it should be appreciated that the scoop 323 may be comprised of brush or finger-like material. A fence 321 may also be included, as shown.
Referring next to
With respect to the remaining components of the housing 410, it should be appreciated that these components are substantially similar to the corresponding components of the housing 210 of apparatus 200. For instance, housing 410 also includes a multistage filter, which comprises a rotatable filter 417 coupled to a cyclonic filter 416, wherein a vacuum source 412 attached to the rotatable filter 417 is again configured to create an air flow through the rotatable filter 417 and cyclonic filter 416. During use, this air flow provides a negative pressure just below the center slot 426 so that dust is drawn through the center slot 426 towards the filters and subsequently collected into the dust container 413. In particular, heavy debris drawn through the center slot 426 falls through the heavy debris chute 415 and into the dust container 413, whereas lighter dust particles are pulled towards the cyclonic filters 416. As these lighter dust particles travel above the cyclonic filters 416, some dust is pulled down into the dust container 413, whereas finer dust particles continue towards the rotatable filter 417.
Referring next to
By properly aligning air flow channel 527 with the anticipated point of contact 532 between the circular saw blade 530 and a workpiece 570, it has been discovered that a significant cooling of the circular saw blade 530 is achieved. Namely, because the circular saw blade 530 can get very hot at the anticipated point of contact 532 during use, utilizing the focused negative pressure 528 to cool the circular saw blade 530 at the anticipated point of contact 532 is particularly desirable.
For embodiments where a sliding worktable is used, other configurations are contemplated. In
For this particular embodiment, however, worktable 620 is configured to slide towards the circular saw blade 630, wherein the center slot 626 comprises a plurality of louvers 624 that individually form the air flow channel 627. Moreover, the air flow channel 627 sequentially varies according to which of the plurality of louvers 624 is proximate to the anticipated point of contact 632 as the worktable 620 slides towards the circular saw blade 630.
In an aspect of the disclosure, it has been discovered that the magnitude of the magnitude of the focused negative pressure 628 is inversely proportional to the aperture size of the air flow channel 627. Accordingly, by reducing the size of the gaps between individual louvers 624, the magnitude of the focused negative pressure 628 will increase. In order to toggle this magnitude, it is contemplated that removable louver inserts of various sizes may be used.
Illustrations 710 and 720 further demonstrate this reduction in gap size, wherein illustration 710 shows worktable 620 without insert 680, whereas illustration 720 shows worktable 620 with insert 680. As illustrated, in addition to the reduction in size of gaps 625, the particular gap corresponding to air channel 627 has also been reduced in size by using insert 680. Therefore, the focused negative pressure 628 at air channel 627 in illustration 720 is greater than the focused negative pressure 628 at air channel 627 in illustration 710.
In a further aspect of the disclosure, it has been discovered that circular saw blades are more likely to overheat when they are not stabilized. Accordingly, various aspects for stabilizing a circular saw blade to minimize wobbling during use are contemplated. In a particular contemplated aspect, blade stabilizing rollers are coupled to a circular saw blade, as shown in
As previously mentioned, various aspects directed towards utilizing a multistage filter are contemplated, such as aforementioned apparatus 200. In a particular embodiment, an apparatus is disclosed which includes a housing comprising a vacuum source and a multistage filter. The apparatus further includes a circular saw blade and a worktable comprising a center slot axially aligned to the circular saw blade. Here, the vacuum source is configured to provide a negative pressure beneath the worktable at the center slot, and the multistage filter is configured to collect airborne dust drawn by the negative pressure from an area proximate to the center slot.
For some countries, the actual removal of dust from the apparatus disclosed herein is problematic. Accordingly, various aspects for a specialized removable dust tray are contemplated, as illustrated in
As previously mentioned, various aspects directed towards utilizing an auxiliary port are contemplated, such as aforementioned apparatus 200. In a particular embodiment, an apparatus is disclosed, which includes a vacuum source, a circular saw blade, and a worktable. For this embodiment, the worktable comprises a center slot axially aligned to the circular saw blade, and the vacuum source is configured to provide a first negative pressure beneath the worktable at the center slot. The vacuum source is then further configured to provide a second negative pressure via an auxiliary port.
For some configurations, it may be desirable to divert dust via a different dust path. For instance,
Various aspects disclosed herein are directed towards a portable electronic dust extractor configured for heavy duty dust extraction (e.g., capable of removing 50 lbs of dust in 30 seconds). In a first aspect, it is contemplated that the portable electronic dust extractor may be equipped with a multi-stage filter, wherein each of the respective filter chambers are coupled to a shared dust containment area. Accordingly, unlike conventional multi-stage filters in which a separate dust containment area is provided for each filter chamber, the dust extractor disclosed herein allows for the monitoring and cleaning of a single dust containment area.
In another aspect, a moveable barrier is placed between at least one multi-stage filter chamber and the shared dust containment area. In a particular embodiment, it is contemplated that the moveable barrier is placed between the shared dust containment area and a filter chamber corresponding to a cylindrical filter. During operation of the dust extractor, the moveable barrier is closed to facilitate air flow, wherein the closed moveable barrier isolates the cylindrical filter from the shareable dust containment area. When operation has stopped, however, it is contemplated that the moveable barrier will function as a dump door for dust collected by the cylindrical filter. To this end, it is further contemplated that the dump door may be automated so that it automatically opens and closes according to whether the dust extractor is being operated.
In
Referring next to
It should be noted that, by utilizing a shared dust containment area 1242 rather than a compartmentalized dust tray (e.g., dust tray 900, which includes dust compartment 910, 920, and 930), more power is needed to generate the same air flow. Accordingly, in order to emulate a compartmentalized operation of the multistage filter 1230, it is contemplated that each of the plurality of stages 1232, 1234, 1236, and 1238 may include a barrier, as illustrated in
In
During operation, dust particles will also begin to collect at each of the moveable barriers 1233, 1235, 1237, and 1239, as shown. Once operation has ceased (i.e., when the vacuum source 1220 is in an “idle” mode), it is contemplated that each of the moveable barriers 1233, 1235, 1237, and 1239 will open so as to allow the accumulated dust to empty into the shared dust containment area 1242 below. An illustration of such scenario 1500 is provide in
Referring next to
In
In a further aspect, because embodiments disclosed herein may be configured for heavy duty dust extraction, various filter protecting mechanisms are contemplated. For instance, with respect to the aforementioned cylindrical filter (e.g., rotatable filter 1317), it is anticipated that the high-speed impact of dust with such filters would cause significant wear and tear.
In a first exemplary embodiment, rather than channeling air flow directly at the cylindrical filter, air flow is looped around an outer housing of the filter so as to protect the filter, as illustrated in
Alternatively, or in addition to, a mesh (e.g., an aluminum mesh) may be placed upstream from the rotatable filter 1417 so as to slow down dust that approaches the rotatable filter 1417. In
The word “exemplary” is used herein to mean serving as an example, instance, or illustration. For the avoidance of doubt, the subject matter disclosed herein is not limited by such examples. In addition, any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs, nor is it meant to preclude equivalent exemplary structures and techniques known to those of ordinary skill in the art. Furthermore, to the extent that the terms “includes,” “has,” “contains,” and other similar words are used in either the detailed description or the claims, for the avoidance of doubt, such terms are intended to be inclusive in a manner similar to the term “comprising” as an open transition word without precluding any additional or other elements.
The aforementioned systems have been described with respect to interaction between several components. It can be appreciated that such systems and components can include those components or specified sub-components, some of the specified components or sub-components, and/or additional components, and according to various permutations and combinations of the foregoing. Sub-components can also be implemented as components coupled to other components rather than included within parent components (hierarchical). Additionally, it is noted that one or more components may be combined into a single component providing aggregate functionality or divided into several separate sub-components, and any one or more middle layers may be provided to couple to such sub-components in order to provide integrated functionality. Any components described herein may also interact with one or more other components not specifically described herein but generally known by those of skill in the art.
In view of the exemplary systems described supra, methodologies that may be implemented in accordance with the disclosed subject matter can be appreciated with reference to the various figures. While for purposes of simplicity of explanation, the methodologies are described as a series of steps, it is to be understood and appreciated that the disclosed subject matter is not limited by the order of the steps, as some steps may occur in different orders and/or concurrently with other steps from what is described herein. Moreover, not all disclosed steps may be required to implement the methodologies described hereinafter.
While the various embodiments have been described in connection with the exemplary embodiments of the various figures, it is to be understood that other similar embodiments may be used or modifications and additions may be made to the described embodiment for performing the same function without deviating there from. Therefore, the present invention should not be limited to any single embodiment.
This application is a continuation-in-part application of U.S. patent application Ser. No. 16/273,058, filed Feb. 11, 2019, entitled “CIRCULAR SAW APPARATUS WITH INTEGRATED MULTISTAGE FILTRATION SYSTEM,” which is a divisional application of U.S. patent application Ser. No. 15/253,865, filed Aug. 31, 2016, entitled “CIRCULAR SAW APPARATUS WITH INTEGRATED MULTISTAGE FILTRATION SYSTEM,” which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/212,372, filed Aug. 31, 2015, entitled “CIRCULAR SAW APPARATUS WITH INTEGRATED MULTISTAGE FILTRATION SYSTEM”. The entire contents of each of the above applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62212372 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15253865 | Aug 2016 | US |
Child | 16273058 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16273058 | Feb 2019 | US |
Child | 16364070 | US |