This disclosure relates generally to a clamping structure. More particularly, the disclosure relates to a clamping structure for power electronic components.
Power electronic components are commonly used on integrated circuit modules (ICMs) or printed circuit boards (PCBs). Often, heat dissipation is a challenging issue especially when there are numerous power electronic components mounted in close proximity to one another on an ICM or a PCB. In some cases, due to differences in the height dimension of multiple power electronic components on an ICM or PCB, some of the power electronic components may not align well with a thermal pad or heat sink pad for optimum heat transfer for optimum heat dissipation. Thus, it would be desirable to mitigate height differences and/or close proximity issues of the multiple power electronic components mounted on a printed circuit board (PCB) to optimize heat dissipation. In one example, the PCB is an integrated circuit module (ICM).
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
Disclosed is a clamping structure for improved heat dissipation of power electronic components. According to one aspect, a clamping structure, including a base defined by a height, the base including a first end and a second end, wherein the first end and the second end are on opposite sides of one another; a first end wall situated on the first end of the base and a second end wall situated on the second end of the base; and at least one wall partition situated on the base between the first end wall and the second end wall to form the border of a first receiving area with the first end wall; wherein the first receiving area is generally rectangular or generally square in shape and includes two openings on two sides not bordered by either the at least one wall partition or the first end wall.
According to another aspect, a clamping structure, including a base defined by a height, the base including a first end and a second end, wherein the first end and the second end are on opposite sides of one another; a first end wall situated on the first end of the base and a second end wall situated on the second end of the base; and at least three wall partitions situated on the base between the first end wall and the second end wall, wherein each of the at least three wall partitions are equally spaced from each other; wherein a first of the at least three wall partitions and the first end wall defines a first receiving area, the first of the at least three wall partitions and a second of the at least three wall partitions defines a second receiving area, the second of the at least three wall partitions and a third of the at least three wall partitions defines a third receiving area, and the third of the at least three wall partitions and the second end wall defines a fourth receiving area; and wherein the first, second, third and fourth receiving areas are generally rectangular or generally square in shape and each of the receiving areas includes two openings on opposite sides of each other.
According to another aspect, a clamping structure, including a base defined by a height, the base including a first end and a second end, wherein the first end and the second end are on opposite sides of one another; a first end wall situated on the first end of the base and a second end wall situated on the second end of the base; and at least one wall partition situated on the base between the first end wall and the second end wall to form the border of a first receiving area with the first end wall; wherein the first receiving area is generally elliptical in shape and includes an opening for connecting at least one electrical lead to a power electronic component housed within the first receiving area.
Advantages of the present disclosure may include better physical contact between a power electronic component and a thermal pad or heat dissipation pad, and improvement in heat dissipation for the power electronic component.
It is understood that other aspects will become readily apparent to those skilled in the art from the following detailed description, wherein it is shown and described various aspects by way of illustration. The drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
The detailed description set forth below in connection with the appended drawings is intended as a description of various aspects of the present disclosure and is not intended to represent the only aspects in which the present disclosure may be practiced. Each aspect described in this disclosure is provided merely as an example or illustration of the present disclosure, and should not necessarily be construed as preferred or advantageous over other aspects. The detailed description includes specific details for the purpose of providing a thorough understanding of the present disclosure. However, it will be apparent to those skilled in the art that the present disclosure may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the present disclosure. Acronyms and other descriptive terminology may be used merely for convenience and clarity and are not intended to limit the scope of the present disclosure.
The plurality of receiving areas 150 house power electronic components, for example, insulated gate bipolar transistors (IGBTs), switching components, etc. In one example, the power electronic components include an insulated gate bipolar transistor (IGBT). One skilled in the art would understand that other types of electronic components (even though not mentioned herein) may be housed within the receiving areas and still be within the scope and spirit of the present disclosure.
In the example illustrated in
In another example, the receiving area may be generally elliptical or circular in shape.
In one example, the height (b) of the base as shown in
In one example, the clamping structure 100 is a single piece structure. In one example, the clamping structure 100 is composed of an insulation material, for example, a polymer. In one example, the clamping structure 100 is composed of one or more of the following material: rubber, plastic, polymer insulators, silicone rubber insulators or combination thereof. One skilled in the art would understand that the list of materials disclosed herein for the clamping structure is not an exclusive list and that other materials (whether it is an insulating material or a conductive material) may be used depending on the particular application.
In one example, the clamping structure 100 sits on top of a printed circuit board (PCB) 350. In one example, the PCB is an integrated circuit module (ICM). In this example, the power electronic components 310 are elevated from the PCB by being housed in the receiving area 150 of the clamping structure 100.
Also shown in
Although
The previous description of the disclosed aspects is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects without departing from the spirit or scope of the disclosure.