Cleaning showers and tile walls and floors in commercial or institutional restrooms is often the most time consuming and labor intensive aspect of a cleaning professional's daily routine. Cleaning procedures for such projects typically involve three basic steps: 1) apply a cleaning agent to the surface to be cleaned, 2) scrub the surface with an abrasive pad, and 3) rinse the surface with a hose or bucket. This process may be time consuming and may cause fatigue in the cleaning professional. As a result, shortcuts are often taken, leading to unclean surfaces.
Conventional cleaning equipment typically lacks the ability to deliver a controlled stream of water, cleaning solution, and/or other fluid to flush dirt and/or soap residue from the surface. Furthermore, many facilities have converted plumbing fixtures to “low flow” as a means of water conservation. These fixtures reduce the efficiency of cleaning procedures that require water to rinse surfaces. Typically, water flow brushes offer single direction pivoting or fixed-angle heads that are bulky and not ideal for cleaning showers, tile walls, or floors in restrooms and other facilities. Additionally, conventional products that do offer dual pivoting heads include flexible tubing that bends and flexes as the head pivots. This tubing can kink up or separate completely, preventing a strong, reliable flow of fluid. Additionally, the flexing and bending of these tubes as the heads pivot causes the flexible tubing to wear out over time, causing leaks and a reduction of fluid pressure. Flexible tubes also require one or more adapters to connect various tubing and port sizes throughout a cleaning device, thus increasing the cost and complexity of the cleaning devices.
Embodiments of the invention provide cleaning devices that direct water and/or other cleaning fluids through a pivotable joint to a cleaning element. The cleaning devices are configured such that the cleaning element may pivot relative to a shaft about at least two substantially orthogonal axes, enabling easy cleaning of floors, ceilings, and walls. The cleaning device utilizes a liquid conducting universal (LCU) joint to provide the rotation. The LCU joint defines a rigid, but pivotable path for the fluid, thus eliminating the need for flexible tubing that may wear out and/or leak over time. Additionally, the LCU joints described herein may eliminate the need for size adaptors for various sizes of flexible tubing.
In one aspect, a cleaning device is provided. The cleaning device may include a shaft having a proximal end and a distal end. The proximal end may be configured to interface with a fluid source. The shaft may include a fluid conduit extending along a length of the shaft. The cleaning device may also include a mounting configured to removably couple to a cleaning element. The mounting frame may define a frame interior in communication with one or more fluid apertures. The cleaning device may further include a liquid conducting universal (LCU) joint coupled with the mounting and the distal end of the shaft such that the mounting is pivotally coupled with the shaft.
The LCU joint may include a nozzle coupled to the distal end of the shaft such that an interior of the nozzle is in fluid communication with the fluid conduit. The nozzle may include a first nozzle mating feature and a second nozzle mating feature positioned on an opposite side of the nozzle as the first nozzle mating feature. The first nozzle mating feature and the second nozzle mating feature each define nozzle apertures.
The LCU joint may also include a first rotational element having a first top mating feature and a first bottom mating feature. The first top mating feature may be rotatably coupled with the first nozzle mating feature such that the first rotational element is rotatable about a radial axis of the first nozzle mating feature. The first rotational element may define a first conduit that extends between the first top mating feature and the first bottom mating feature. The LCU joint may further include a second rotational element having a second top mating feature and a second bottom mating feature. The second top may be rotatably coupled with the second nozzle mating feature such that the second rotational element is rotatable about a radial axis of the second nozzle mating feature. The second rotational element may define a second conduit that extends between the second top mating feature and the second bottom mating feature.
The LCU joint may include a first connector coupled with the mounting. The first connector may define a first connector conduit in fluid communication with a first connector mating feature and the one or more fluid apertures. The LCU joint may also include a second connector coupled with the mounting. The second connector may include a second connector conduit in fluid communication with a second connector mating feature and the one or more fluid apertures.
The LCU joint may further include a rotatable fluid port having a first port mating feature and a second port mating feature. The first port mating feature may be rotatably coupled with the first bottom mating feature and the second port mating feature may be rotatably coupled with the second bottom mating feature such that the rotatable fluid port is rotatable about a radial axis of the first bottom mating feature and the second bottom mating feature. The rotatable fluid port may also include a third port mating feature and a fourth port mating feature positioned on an opposite side of the rotatable fluid port as the third port mating feature. The third port mating feature may be rotatably coupled with the first connector mating feature and the fourth port mating feature may be rotatably coupled with the second connector mating feature such that the first connector and second connector are rotatable about a radial axis of the third port mating feature and the fourth port mating feature.
The radial axis of the third port mating feature and the fourth port mating feature may be substantially orthogonal to the radial axis of the first bottom mating feature and the second bottom mating feature such that the mounting is pivotable relative to the shaft about two substantially orthogonal axes. The fluid conduit, the interior of the nozzle, the nozzle apertures, the first conduit and the second conduit, the rotatable fluid port, the first connector conduit and the second connector conduit, the frame interior, and the one or more fluid apertures may define a rigid fluid path configured to direct a fluid from the fluid source to the cleaning element. The rigid fluid path may enable the rotation of the mounting relative to the shaft without bending any components that define the rigid fluid path.
In another aspect, a cleaning device may include a shaft having a proximal end and a distal end. The proximal end may be configured to interface with a fluid source. The shaft may include a fluid conduit extending along a length of the shaft. The cleaning device may also include a mounting configured to removably couple to a cleaning element. The mounting frame may define a frame interior in communication with one or more fluid apertures. The cleaning device may further include a liquid conducting universal (LCU) joint coupled with the mounting and the distal end of the shaft such that the mounting is pivotally coupled with the shaft.
The LCU joint may include a nozzle coupled to the distal end of the shaft such that an interior of the nozzle is in fluid communication with the fluid conduit. The nozzle may include a nozzle mating feature. The nozzle mating feature may define a nozzle aperture. The LCU joint may also include a rotational element having a first mating feature and a second mating feature. The first mating feature may be rotatably coupled with the nozzle mating feature such that the rotational element is rotatable about a radial axis of the nozzle mating feature. The rotational element may define a conduit that extends between the first mating feature and the second mating feature.
The LCU joint may further include a connector coupled with the mounting. The connector may define a connector conduit in fluid communication with a connector mating feature and the one or more fluid apertures. The LCU joint may include a rotatable fluid port comprising a first port mating feature and a second port mating feature. The first port mating feature may be rotatably coupled with the second mating feature such that the rotatable fluid port is rotatable about a radial axis of the second mating feature. The second port mating feature may be rotatably coupled with the connector mating feature such that the connector is rotatable about a radial axis of the second port mating feature
The radial axis of the second port mating feature may be substantially orthogonal to the radial axis of the second mating feature such that the mounting is pivotable relative to the shaft about two substantially orthogonal axes. The fluid conduit, the interior of the nozzle, the nozzle aperture, the conduit, the rotatable fluid port, the connector conduit, the frame interior, and the one or more fluid apertures may define a rigid fluid path configured to direct a fluid from the fluid source to the cleaning element. The rigid fluid path may enable the rotation of the mounting relative to the shaft without bending any components that define the rigid fluid path.
In another aspect, a cleaning device may include a shaft having a proximal end and a distal end. The proximal end may be configured to interface with a fluid source. The shaft may include a fluid conduit extending along a length of the shaft. The cleaning device may also include a mounting configured to removably couple to a cleaning element. The mounting frame may define a frame interior in communication with one or more fluid apertures. The cleaning device may further include a liquid conducting universal (LCU) joint coupled with the mounting and the distal end of the shaft such that the mounting is pivotally coupled with the shaft.
The LCU joint may include a nozzle coupled to the distal end of the shaft such that an interior of the nozzle is in fluid communication with the fluid conduit. The nozzle may include a nozzle mating feature. The nozzle mating feature may define a nozzle aperture. The LCU joint may also include a rotational element having a first mating feature and a second mating feature. The first mating feature may be rotatably coupled with the nozzle mating feature such that the rotational element is rotatable about a radial axis of the nozzle mating feature. The rotational element may define a conduit that extends between the first mating feature and the second mating feature. The LCU joint may further include a connector coupled with the mounting. The connector may define a connector conduit in fluid communication with a connector mating feature and the one or more fluid apertures. The connector mating feature may be rotatably coupled with the second mating feature such that the connector element is rotatable about a radial axis of the second mating feature.
The radial axis of the nozzle mating feature may be substantially orthogonal to the radial axis of the second mating feature such that the cleaning element mounting is pivotable relative to the shaft about two substantially orthogonal axes. The fluid conduit, the interior of the nozzle, the nozzle aperture, the conduit, the connector conduit, the frame interior, and the one or more fluid apertures may define a rigid fluid path configured to direct a fluid from the fluid source to the cleaning element. The rigid fluid path may enable the rotation of the mounting relative to the shaft without bending any components that define the rigid fluid path.
In another aspect, A cleaning device may include a shaft having a proximal end and a distal end. The proximal end may be configured to interface with a fluid source. The shaft may include a fluid conduit extending along a length of the shaft. The cleaning device may also include a conduit coupled with the distal end of the shaft such that the conduit is rotatable about a first axis of the conduit. The cleaning device may further include a mounting frame coupled with the conduit and configured to rotate about a second axis of the conduit. The mounting frame may be configured to removably couple to a cleaning element. The mounting frame may define a frame interior in communication with one or more fluid apertures. The first axis may be substantially orthogonal to the second axis such that the mounting frame is pivotable relative to the shaft about two degrees of freedom. The fluid conduit, the conduit, the connector conduit, the frame interior, and the one or more fluid apertures may define a rigid fluid path configured to direct a fluid from the fluid source to the cleaning element. The rigid fluid path may enable the rotation of the mounting frame relative to the shaft without bending any components that define the rigid fluid path.
A further understanding of the nature and advantages of various embodiments may be realized by reference to the following figures. In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
Embodiments of the invention are directed to dual-pivoting cleaning devices that deliver a fluid to a surface to be cleaned. The cleaning devices utilize a liquid conducting universal (LCU) joint that enables dual-axis rotation while defining a fluid path entirely within components of the LCU joint such that no flexible tubing or other shape changing components are needed to direct fluid to a cleaning element. The fluid path itself may change shape as the LCU joint is rotated, and the components thereof may rotate relative to one another, but the components do not bend or flex. Each of the LCU joint components may be rigidly formed such that there is no wear due to flexing pieces. This prevents leaks and damage of the cleaning device. The LCU joint may direct the fluid to a cleaning element, such as a brush, sponge, or abrasive pad. The cleaning element may be removably coupled with a frame such that cleaning elements may be interchanged, removed for cleaning and/or replacement, and/or removed for any other purpose. By making the cleaning elements interchangeable, the cleaning device becomes more versatile. The cleaning device may be used to clean various surfaces. For example, soft bristles or a soft pad may be used to wash a vehicle, a push broom attachment may be used to clean a garage or driveway, and an abrasive brush or pad may be used to clean bathroom and/or industrial surfaces.
The embodiments described herein relate to lightweight cleaning devices that can withstand the high demands of cleaning showers and institutional restrooms and/or locker rooms by allowing the user to combine continuous water flow and/or flow of a cleaning solution with the aggressive scrubbing power of a dual-pivoting, position-maintaining brush. The cleaning devices provide mechanical leverage to users, allowing the user to reach high and low while the water and/or cleaning solution effortlessly rinses filth and debris to a floor drain. The cleaning devices described herein are robust, capable of withstanding continuous force attributed with scrubbing, and the tubeless design of the LCU joint prevents leaks and increases the durability of the cleaning devices.
The dual-pivoting cleaning devices described herein may include a shaft that defines a fluid conduit such that a hose or other fluid source may be attached to the cleaning device. For example, a threaded connector that interfaces with a hose connector may be used to connect the fluid source. In other embodiments, a self-sealing quick connect mechanism may be utilized such that a hose or other fluid source may be quickly snapped into place. Such a connector may enable the cleaning device to be used in multiple rooms and with different fluid sources without a user needing to constantly screw and unscrew hoses from the cleaning device. Quick connect mechanisms may be designed to receive a standard or other size of hose and align the hose with the fluid conduit of the cleaning device. The fluid conduit of the shaft may be sized to control a fluid pressure, as well as a maximum weight of the fluid within the cleaning device to ensure that the cleaning device is lightweight for easy use. In some embodiments, the shaft may be insulated, such as by having a rubber or other synthetic layer that may protect a user from high temperature water flowing through the cleaning device.
The cleaning device and components thereof may be formed of rigid materials, such as metals, plastics, and/or other synthetics. The materials may be selected based on considerations such as cost, weight, durability, ease of manufacturing, and the like. In joint locations, such as where rotatable components are joined, O-rings, gaskets, and/or other seals may be provided to help ensure that the fluid path remains leak-free. The components of the cleaning device may be injection molded, 3-D printed, and/or otherwise formed. The size of the cleaning device and components thereof may be sized to match the needs of a particular application. The components may be removably coupled with one another, such as by using snap connectors, threaded connectors, other rotatable coupling methods, and/or other coupling methods such that the cleaning device may be removed for easy cleaning and/or replacement.
While discussed largely in relation to cleaning applications, the LCU joint described herein may be useful in other applications. Any applications that involve transporting a fluid through a movable joint, or applications where strength, balance, and flexibility are desirable, may benefit from utilizing the LCU joints described herein. For example, steam, paint, finish, solvents, degreasers, and/or other fluids may be applied using the LCU joint and/or a shaft and an applicator. The LCU joint may also be useful in conducting electricity through a pivot point where traditional wiring would be subject to excessive wear or foreign debris. The LCU joint may also be useful in hydraulic mechanisms as an alternative to flexible hoses.
Turning now to
The shaft 102 may be extendable such that it may be shortened and/or lengthened to meet the needs of a particular application and/or user. For example, the shaft 102 may telescope and lock to a desired length. Shaft 102 may be formed from any rigid material, such as a metal, a plastic, and/or another synthetic material. Oftentimes the shaft 102 may include a heat insulating material, such as a rubber or other polymer to insulate the shaft 102. This helps maintain a temperature of fluid within the shaft 102, as well as to prevent a surface of the shaft 102 from becoming too hot or cold for a user to hold. The heat insulating material may extend along the entire length of the shaft and/or may be disposed only at a handle 110 of the shaft 102.
The shaft 102 may include handle 110, which may be disposed near the proximal end 104. Handle 110 may include a flow actuator 112 configured to control a flow of the fluid through the fluid conduit. Handle 110 may also include a chemical reservoir 114 that may allow an additional fluid, such as a cleaning fluid to be used along with fluid from the fluid source or hose 108. The chemical reservoir 114 may be in fluid communication with the fluid conduit using one or more valves that may be controlled by a reservoir actuator or chemical release button 118. Upon actuation of the chemical release button 118, a volume of fluid within the chemical reservoir 114 may be introduced into the fluid flowing within the fluid conduit of shaft 102. The volume may be a measured amount for each actuation or the chemical may be continually introduced to the fluid conduit while the valve is open. When not actuated, the chemical release button 118 allows the valve to close and seal the chemical reservoir 114 from the fluid conduit. The fluid from the fluid source and/or the chemical reservoir 114 may pass through the fluid conduit, through an LCU joint 120, and into a head, mounting, or frame 122 of the cleaning device 100. The fluid may be ejected out of one or more fluid apertures or ports 124 defined by the frame 122. In some embodiments, the ports 124 may eject the fluid directly onto the surface to be cleaned, while in other embodiments, the ports 124 may eject the fluid onto or through a cleaning element 130 mounted on the frame 122. Cleaning element 130 may be an abrasive pad, a brush, a sponge, a mop head, a broom head, and/or other cleaning material. The frame 122 may be coupled with the cleaning element 130 using a hook and loop fastener, a snap connector, a magnetic connector, other removable fastening mechanisms, and/or combinations thereof.
The chemical reservoir 114 may be filled with a cleaning solution by removing a reservoir cap 126 to gain access to the chemical reservoir 114. Reservoir cap 126 may snap on, screw on, or otherwise be removably coupled to a port of the chemical reservoir 114. In some embodiments, a window 128 may be provided that allows the user to view an amount of the cleaning solution within the chemical reservoir 114. As noted above, chemical release button 118 may open a valve to introduce the cleaning solution into the fluid flowing within the fluid conduit of shaft 102. In some embodiments, the valve is configured such that when open, a low pressure area created by the flow from the fluid source or hose 108 draws the cleaning solution from the chemical reservoir 114 into the fluid conduit.
In some embodiments, the fluid ports 124 may each include an adjustable valve that controls a pressure of the fluid. For example, the valve may serve as a nozzle that reduces a diameter of an opening of the aperture to increase fluid pressure. The adjustable valves may include several different settings, such that a user may rotate or otherwise manipulate each adjustable valve to achieve a desired fluid pressure. In some embodiments, the fluid ports 124 may be configured to soak the cleaning element 130 with the fluid, while in other embodiments, the fluid ports 124 may eject the fluid through the cleaning element 130 and onto the surface to be cleaned. As one example, the fluid ports 124 may be configured to direct the fluid through corresponding apertures defined by the cleaning element 130 such that the fluid is applied directly to a surface to be cleaned.
LCU joint 500 may also include one or more rotational elements 514, each having a top mating feature 516 and a bottom mating feature 518. The top mating feature 516 may be rotatably coupled with the first nozzle mating feature 504 or the second nozzle mating feature 506 such that the rotational elements 514 are rotatable about the radial axis 508 of the first nozzle mating feature 504 and second nozzle mating feature 506. The rotational elements 514 may define a conduit 520 that extends between the top mating feature 516 and the first bottom mating feature 518. In embodiments with only a single rotational element 514, the nozzle 502 may include only a single nozzle mating feature 504. In other embodiments, two rotational elements 514 may be included, with only one of them defining a fluid path. The non-fluid conducting rotational element may be used to provide a symmetrical design and/or to provide extra strength and support during rotation of the LCU joint 500.
LCU joint 500 may include one or more connectors 522 that may be coupled with a frame of a cleaning device. Each connector 522 may define a connector conduit 524 in fluid communication with a connector mating feature 526 and one or more fluid apertures of a mounting frame of a cleaning device. The LCU joint 500 may also include a rotatable fluid port 528 that includes a first port mating feature 530 and a second port mating feature 532. The first port mating feature 530 may be rotatably coupled with a bottom mating feature 518 of one of the rotational elements 514 and the second port mating feature 532 may be rotatably coupled with a bottom mating feature 518 of another of the rotational elements 514 such that the rotatable fluid port 528 is rotatable about a radial axis 534 of the bottom mating features 518 of the rotational element 514. The rotatable fluid port 528 may also include a third port mating feature 536 and a fourth port mating feature 538 positioned on an opposite side of the rotatable fluid port 528 as the third port mating feature 536. Thus, the rotatable fluid port 528 may be x-shaped, with a radial axis of the two segments of the x being orthogonal or substantially orthogonal to one another. The third port mating feature 536 and fourth port mating feature 538 may each be rotatably coupled with a connector mating feature 526 such that the connectors 522 are rotatable about a radial axis 540 of the third port mating feature 536 and the fourth port mating feature 538. The radial axis 540 may be substantially orthogonal to the radial axis of the bottom mating features 518 such that the frame of the cleaning device is pivotable relative to the shaft about at least two substantially orthogonal axes.
The LCU joint 500 defines part of a rigid fluid path that helps direct fluid from a fluid source, such as hose 108, to one or more fluid apertures of a frame of the cleaning device. The rigid fluid path may include the fluid conduit of a shaft, the interior 512 of the nozzle 502, the nozzle apertures 510, the conduits 520 of rotational elements 514, the rotatable fluid port 528, the connector conduits 524, and the one or more fluid apertures define a rigid fluid path configured to direct a fluid from the fluid source to the cleaning element. Such a fluid path enables the rotation of the frame relative to the shaft without bending any components that define the rigid fluid path. The components may rotate relative to one another, thus changing a shape of the fluid path, but none of the individual components bend to a different shape.
The various mating features of the LCU joint may include tubes configured to insert into apertures. It will be appreciated that the position of tubes and apertures shown in
In some embodiments, O-rings, gaskets, and/or other seals may be included within the juncture of mounting features to ensure that the fluid path defined by the LCU joint is leak-proof and can maintain fluid pressure. In some embodiments, gears, ratchet mechanisms, and/or other friction force and/or normal force enhancing mechanisms may be included at these junctures to help maintain the frame at a desired position and to prevent the frame and cleaning element from flopping around. For example, a spur gear coupled to and/or formed on a tube may mesh with an internal ring gear within an aperture. The spur gear may rotate within the internal ring gear when sufficient force is applied by the user, but friction and normal force from the intermeshed teeth may help prevent the frame and cleaning element from flopping around.
As noted above, an LCU joint may be asymmetrical, with one or more of the components being singularly used. As one example, an LCU joint may include a nozzle and other components as described in
In another embodiment shown in
It should be noted that the systems and devices discussed above are intended merely to be examples. It must be stressed that various embodiments may omit, substitute, or add various procedures or components as appropriate. Also, features described with respect to certain embodiments may be combined in various other embodiments. Different aspects and elements of the embodiments may be combined in a similar manner. Also, it should be emphasized that technology evolves and, thus, many of the elements are examples and should not be interpreted to limit the scope of the invention.
Specific details are given in the description to provide a thorough understanding of the embodiments. However, it will be understood by one of ordinary skill in the art that the embodiments may be practiced without these specific details. For example, well-known structures and techniques have been shown without unnecessary detail in order to avoid obscuring the embodiments. This description provides example embodiments only, and is not intended to limit the scope, applicability, or configuration of the invention. Rather, the preceding description of the embodiments will provide those skilled in the art with an enabling description for implementing embodiments of the invention. Various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the invention.
Having described several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the invention. For example, the above elements may merely be a component of a larger system, wherein other rules may take precedence over or otherwise modify the application of the invention. Also, a number of steps may be undertaken before, during, or after the above elements are considered. Accordingly, the above description should not be taken as limiting the scope of the invention.
This application claims the benefit of priority to and is a continuation of U.S. patent application Ser. No. 14/937,159, filed Nov. 10, 2015, entitled “Cleaning Device With Liquid Conducting Universal Joint” which is herein incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5988920 | Kunkler | Nov 1999 | A |
7806351 | Bakas | Oct 2010 | B1 |
8205293 | Rosenzweig | Jun 2012 | B2 |
8677552 | Krebs | Mar 2014 | B2 |
9155440 | Nuttall | Oct 2015 | B2 |
20020166906 | Coles | Nov 2002 | A1 |
20020194693 | Wu | Dec 2002 | A1 |
20120222227 | Johnson | Sep 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 14937159 | Nov 2015 | US |
Child | 15225383 | US |