1. Field of the Invention
The present invention relates to a cleaning method of coloring device of optical fiber, and a coloring device of optical fiber.
2. Description of the Related Art
A resin coating of an optical fiber is colored in different colors among optical fibers to identify each of the optical fibers. Coloring of optical fibers is performed by passing them through a coloring device. Generally, optical fibers are colored by using one coloring device, even though they are supposed to be coated in different colors. After a certain optical fiber is coated with a certain color, the coloring device is cleaned to wash out the ink, the ink of another color is supplied to the device, and another optical fiber is colored. By cleaning the coloring device like this, mixing of inks of different colors is prevented, thereby achieving a coating of a desired color.
Meanwhile, there has been disclosed a resin coating device that forms a high-quality resin coating in a state of having a drawing speed set high in a process of forming a resin coating on an optical fiber. The resin coating device includes a nipple, a first die, and a second die to sequentially pass optical fibers therethrough. A resin pool is formed at an external periphery of the nipple, and resin path is formed between the nipple and the first and the second dies. An optical fiber passing hole of the second die has a tapered part having an internal diameter of the hole reduced toward a passing direction of the optical fiber. According to this resin coating device, when a resin is supplied to the resin pool from outside, the resin is supplied to an external periphery of an optical fiber through the resin path and is coated onto the optical fiber. In this case, because the optical fiber passing hole of the second die has the tapered part, the resin can be coated stably. Such a structure of the resin coating device is also considered to be effective in performing high-quality coloring in a state where a passage speed of the optical fiber is set high in the coloring device.
A cleaning method of a coloring device of an optical fiber according to one aspect of the present invention, the coloring device having a nipple, a first die, and a second die through which the optical fiber is sequentially passed, and a frame having an ink pool formed between an external periphery of the nipple and the frame while having an ink supply opening and a cleaning-liquid discharge opening linked to the ink pool, an ink flow path being formed among the nipple and the first and the second dies, and the optical fiber passing hole of the second die having a tapered part of which internal diameter reduces toward a passing direction of the optical fiber, the cleaning method includes: first cleaning which includes supplying a cleaning-liquid to the coloring device from the optical fiber passing hole of the nipple and the ink supply opening, and discharging the cleaning-liquid from the cleaning-liquid discharge opening; and second cleaning which includes supplying a cleaning-liquid to the coloring device from the optical fiber passing hole of the nipple and the ink supply opening, and discharging the cleaning-liquid from the optical fiber passing hole of the second die.
A coloring device of an optical fiber according to another aspect of the present invention includes: a nipple having a first optical fiber passing hole that passes the optical fiber therethrough; a first die positioned underneath the nipple and having a second optical fiber passing hole communicating (connecting) with the first optical fiber passing hole and a plurality of notches at an external periphery; a second die positioned underneath the first die and having a third optical fiber passing hole having a tapered part communicating (connecting) with the second optical fiber passing hole and having an internal diameter of the tapered part reduced toward a passing direction of the optical fiber; and a frame that forms an ink pool between an external periphery of the nipple and the frame and has an ink supply opening and a cleaning-liquid discharge opening linked to the ink pool, wherein ink flow paths are formed among the nipple and the first and the second dies, and a communication (connection) hole structure is formed to sequentially communicate (connect) with the ink pool, the ink flow path, and the tapered-part inside by the plurality of notches of the first die.
The above and other features, advantages, and technical and industrial significance of this invention will be better understood by reading the following detailed description of presently preferred embodiments of the invention, when considered in connection with the accompanying drawings.
Exemplary embodiments of a cleaning method of a coloring device of an optical fiber and a coloring device of an optical fiber according to the present invention will be explained below in detail with reference to the accompanying drawings. The present invention is not limited to the embodiments.
The nipple 1 has an optical fiber passing hole 1a through which an optical fiber is passed. The optical fiber passing hole 1a has a tapered part 1b of which internal diameter reduces toward a passing direction of an optical fiber.
The first die 2 is positioned under the nipple 1, and has a disk shape held by being sandwiched between the frame 4 and the second die 3. The first die 2 has an optical fiber passing hole 2a communicating with the optical fiber passing hole 1a. The first die 2 has plural notches 2b at an external periphery thereof, thus forming projections 2c while forming a gear shape. A region outside a broken line L is sandwiched between the frame 4 and the second die 3. A maximum width W of each of the projections 2c in a circumferential direction is preferably equal to or less than 3 millimeters, for example. When the width W is equal to or smaller than 3 millimeters, little ink remains after cleaning in a region sandwiched between the frame 4 of the projections 2c of the first die 2 and the second die 3, and a sufficient cleaning performance can be secured.
An area of a region A inside the broken line L that excludes a region sandwiched between the frame 4 and the second die 3 out of each of the notches 2b, that is, an area S of the region A of a communication (connection) hole structure 5e which will be described later on, is preferably equal to or smaller than 1.0 times an area of the optical fiber passing hole 2a, for example. In a second cleaning process, which will be described later on, a cleaning-liquid flows to a tapered part 3d through the optical fiber passing hole 2a of the first die 2 and the communication (connection) hole structure 5e. When the area S per one communication (connection) hole structure 5e exceeds a certain predetermined size, an ink remaining in the tapered part 3d flows backward to an ink pool 5a, which will be described later on, together with the cleaning-liquid, to pollute the cleaning-liquid in the ink pool 5a, thereby decreasing the cleaning effect.
The second die 3 is positioned under the first die 2, and has an optical fiber passing hole 3a communicating with the optical fiber passing hole 2a. The optical fiber passing hole 3a has a first internal-diameter part 3b, a second internal-diameter part 3c, and the tapered part 3d of which internal diameter reduces toward a passing direction of an optical fiber. The first die 2 is held within the first internal-diameter part 3b of the second die 3.
The frame 4 is positioned between the nipple 1 and the first die 2 and the second die 3, and has approximately a cylindrical shape. The ink pool 5a is formed at an external periphery of the nipple 1 by an internal wall 4a of the frame 4 and an external peripheral wall 1c of the nipple 1. The frame 4 has an ink supply opening 4b and a cleaning-liquid discharge opening 4c formed to be linked to the ink pool 5a.
The frame 4 has an ink flow path 5b formed by arranging a gap between the nipple 1 and the first die 2. An ink flow path 5c is formed between the first die 2 and the second die 3 in the inside of the second internal-diameter part 3c. The communication (connection) hole structure 5e is formed to sequentially communicate with the ink pool 5a, the ink flow path 5c, and a tapered-part inside Sd. The communication (connection) hole structure 5e is provided with holes formed by the first internal-diameter part 3b of the second die 3 and the notches 2b of the first die 2.
An example of a usage method of the coloring device 10 is explained next. First, an ink of a desired color is supplied from the ink supply opening 4b to the coloring device 10. At this time, a flow path connected to the outside of the cleaning-liquid discharge opening 4c is blocked in advance, thereby preventing the ink from flowing outside the coloring device 10 from the cleaning-liquid discharge opening 4c.
Next, a resin-coated optical fiber is sequentially passed through the optical fiber passing holes 1a to 3a of the nipple 1, the first die 2, the second die 3, respectively at a high speed of 1,500 m/minute or more, for example, while an ink is being supplied, whereby the optical fiber is colored. The viscosity of the ink used in this case is preferably equal to or less than 3 Pa·s within the coloring device 10, considering coating properties of the ink onto the optical fiber. In the present usage method, the temperature of ink is a room temperature, and the ink can be heated to adjust the viscosity of the ink.
After finishing coloring the optical fiber in this way, the coloring device 10 is cleaned in the following process.
First, as shown in
An organic solvent such as ethylalcohol, acetone, and MEK (methylethylketon) is generally used for the cleaning-liquid of the ink. Among them, ethylalcohol is preferable from a viewpoint of toxicity, handling, and economics. In the first embodiment, ethylalcohol of a relatively low solubility is used for the cleaning-liquid 34, thereby obtaining the cleaning effect. Needless to mention, a higher cleaning effect is obtained when a solvent such as acetone or MEK, which has a higher solubility, is used for the cleaning-liquid 34.
In the coloring device 10 shown in
Next, in the second cleaning process, the valve V3 is closed while the valve V4 is opened. The cleaning-liquid 34 is then discharged from the optical fiber passing hole 3a, flows through a pipe as indicated by an arrow Ar4, and is stored as the waste liquid 36 in the tank 35. In the coloring device 10, the ink pool 5a is isolated from the tapered-part inside 5d (see
By cleaning particularly the ink pool 5a in the first cleaning process in this way, the cleaning efficiency of the tapered-part inside 5d is further improved in the subsequent second cleaning process because the cleaning-liquid 34 passing through the ink pool 5a is in a clean state without inks being mixed. In the second cleaning process, a flow rate of the cleaning-liquid 34 flowing through the tapered-part inside 5d can be increased by not discharging the cleaning-liquid 34 from the cleaning-liquid discharge opening 4c, which is preferable. In the first cleaning process and the second cleaning process, the coloring device 10 can be heated because cleaning properties can be improved when the viscosity of the ink reduces. In this case, the temperature of the coloring device 10 is preferably equal to or less than a boiling point of the cleaning-liquid 34 so as to avoid boiling of the cleaning-liquid 34.
Next, as shown in
Next, in the second cleaning-liquid discharge process, the valve V3 is closed, while the valve V4 is opened. The cleaning-liquid 34 is then discharged from the optical fiber passing hole 3a, flows through a pipe as indicated by an arrow Ar6, and is stored as the waste liquid 36 in the tank 35. As a result, the cleaning-liquid 34 particularly within the tapered-part inside 5d can be sufficiently discharged. In the first cleaning-liquid discharge process and the second cleaning-liquid discharge process, a sufficient pressure of the air supplied to discharge the cleaning-liquid 34 from the coloring device 10 is equal to or greater than 0.2 megapascal at a gauge pressure. Heated air can be supplied for quick drying of the cleaning-liquid 34.
As explained above, the cleaning-liquid 34 particularly within the ink pool 5a is discharged in the first cleaning-liquid discharge process, and the cleaning-liquid 34 particularly within the tapered-part inside 5d is discharged in the second cleaning-liquid discharge process, whereby the cleaning-liquid 34 can be discharged efficiently. For example, when the cleaning-liquid 34 is attempted to be discharged simultaneously from the cleaning-liquid discharge opening 4c and the optical fiber passing hole 3a by simultaneously opening the valve V3 and the valve V4, an air pressure becomes low in the ink pool 5a, and the cleaning-liquid cannot be sufficiently discharged from the tapered-part inside 5d, or it takes time for the discharge.
While each of the first and second cleaning processes and the first and second cleaning-liquid discharge processes can be performed once, the coloring device 10 can be cleaned more sufficiently by performing each sequence of the first cleaning process to the second cleaning-liquid discharge process for plural times, such repeating the sequence three times, for example.
After the last second cleaning-liquid discharge process is finished, the valves V3 to V5 are closed, thereby completing the cleaning of the coloring device 10. The coloring process described above is performed for the next coloring by changing the ink color.
According to the cleaning method described above, the coloring device 10 can be cleaned quickly, a cleaning time can be shortened, and the amount of a cleaning-liquid used can be reduced substantially. Because this cleaning process is performed each time when a color coated onto an optical fiber is changed, there is a huge effect in time reduction in the processing and reduction in the amount of cleaning-liquid used. Therefore, according to the cleaning method described above, the productivity of the optical fiber can be improved and manufacturing costs can be reduced substantially.
Meanwhile, in the coloring device 10, as shown in
Next, as an example of the present invention, the sequence of the above-described processes from the first cleaning process to second cleaning-liquid discharge process were performed on the coloring device in the configuration shown in
Further, although the coloring device 10 shown in
According to the above-described embodiment, the coloring device of an optical fiber can be washed quickly, and therefore the productivity of optical fibers can be improved and manufacturing costs can be reduced.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2009-063479 | Mar 2009 | JP | national |
This application is a continuation of U.S. application Ser. No. 12/893,668, filed Sep. 29, 2010, which is a continuation of and claims the benefit of priority of PCT International Application No. PCT/JP2010/050183, filed on Jan. 8, 2010, which claims the benefit of priority from Japanese Patent Application No. 2009-063479, filed Mar. 16, 2009, the entire contents of each of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12893668 | Sep 2010 | US |
Child | 13942353 | US | |
Parent | PCT/JP10/50183 | Jan 2010 | US |
Child | 12893668 | US |