1. Field
This application relates to climate control, and more specifically, to climate controlled beds (e.g., adjustable beds, stationary beds, etc.) assemblies and other seating assemblies.
2. Description of the Related Art
Temperature-conditioned and/or ambient air for environmental control of living or working space is typically provided to relatively extensive areas, such as entire buildings, selected offices, suites of rooms within a building or the like. In the case of enclosed areas, such as homes, offices, libraries and the like, the interior space is typically cooled or heated as a unit. There are many situations, however, in which more selective or restrictive air temperature modification is desirable. For example, it is often desirable to provide an individualized climate control for a bed or other seating device so that desired heating or cooling can be achieved. For example, a bed situated within a hot, poorly-ventilated environment can be uncomfortable to the occupant. Furthermore, even with normal air-conditioning, on a hot day, the bed occupant's back and other pressure points may remain sweaty while lying down. In the winter time, it is highly desirable to have the ability to quickly warm the bed of the occupant to facilitate the occupant's comfort, especially where heating units are unlikely to warm the indoor space as quickly. Therefore, a need exists to provide improved designs of adjustable (e.g., reclinable) and/or stationary climate-controlled bed assemblies.
According to some embodiments, a climate controlled bed or other seating assembly (e.g., seat, chair, etc.) comprises an upper portion or mattress having at least one fluid distribution member (e.g., spacer fabric) that is in fluid communication with the at least one internal passageway of the upper portion, wherein the at least one fluid distribution member is configured to at least partially distribute fluid within the fluid distribution member. In some embodiments, the internal passageway terminates at or near a bottom surface of the upper portion or mattress. The bed or other seating assembly additionally includes one or more inlays or interlays (or inlay or interlay components) or intermediate layers positioned between the upper portion (or mattress) and a foundation. In some embodiments, the inlay or interlay component comprises at least one fluid module. For example, at least one fluid module is positioned at least partially within the interlay component. In some embodiments, the fluid module comprises a fluid transfer device (e.g., blower, fan, etc.) that is configured to selectively transfer air or other fluid through at least one outlet located along or near (e.g., above or below) a top (e.g., a top surface) of the interlay component.
According to some embodiments, when the upper portion is properly positioned relative to the interlay component, the at least one outlet of the interlay is generally aligned and in fluid communication with the at least one internal passageway of the upper portion or mattress. In one embodiment, the interlay component comprises at least one fluid channel that extends to an edge of the at least one interlay component, wherein such a fluid channel is in fluid communication with an inlet of a fluid module. In other embodiments, the inlet of a fluid module is in fluid communication with an opening or window along the bottom of the interlay, either in addition to or in lieu of the inlet channel. In some embodiments, when the bed or other seating assembly is in use, air is delivered from an environment surrounding the bed to the inlet of the at least one fluid module at least in part through the at least one fluid channel of the interlay component. In one embodiment, air or other fluid discharged by the fluid module is transferred through the outlet and an internal passageway of the upper portion to one or more fluid distribution members of the assembly.
According to some embodiments, a fluid module is embedded, at least partially, within a recess of the interlay or inlay component. In one embodiment, a fluid module further comprises a thermal and/or environmental conditioning device (e.g., thermoelectric device, convective heater, another type of heating or cooling device or component, a dehumidifying device, etc.). In some embodiments, the interlay component additionally comprises at least one waste channel extending from one or more fluid modules to an edge (e.g., foot-end edge, head-end edge, side edge, etc.) of the interlay component and thus the bed or other seating assembly into which the interlay is incorporated. In some embodiments, the bed further comprises at least one conduit extending at least partially through both the opening of the interlay component and an internal passageway of the upper portion or mattress.
According to some embodiments, the bed or other seating assembly comprises two, three, four or more fluid modules. In some embodiments, each fluid module comprises its own outlet that is configured to align and be placed in fluid communication with a passageway of the adjacent mattress or upper portion. According to some embodiments, the bed or other seating assembly comprises a fixed, non-adjustable bed assembly, an adjustable, reclinable bed (e.g., wherein the upper portion and the at least one interlay component are configured to bend along an angle when the bed is adjusted while still permitting air to be delivered from the at least one fluid module to the at least one fluid distribution member of the upper portion), a futon, a sofa, a chair and/or any other type of seating assembly.
According to some embodiments, the foundation or lower portion of the bed or other seating assembly is configured to selectively bend together with the upper portion and the interlay or inlay component, the upper portion or mattress and/or any other portion or component of the assembly. In some embodiments, the foundation comprises a plurality of segments that facilitate in allowing the foundation to bend. In one embodiment, such segments are separated by gaps or spaces that permit air or other fluid to flow into one or more fluid modules of the interlay component from or near the bottom of the foundation (or space defined therein). In one embodiment, the interlay component is temporarily or permanently secured to the upper portion using one or more adhesives, mechanical fasteners or any other type of attachment device, feature or method. In other embodiments, the interlay component is separate and detached or selectively detachable from the upper portion.
According to some embodiments, an adjustable climate controlled bed comprises an upper portion comprising at least one fluid distribution member, wherein the fluid distribution member is in fluid communication with the at least one internal passageway of the upper portion and wherein the at least one fluid distribution member is configured to at least partially distribute fluid within the at least one fluid distribution member. In some embodiments, the at least one internal passageway terminates at a rear surface of the upper portion. The adjustable bed further comprises a lower portion configured to be positioned below the upper portion and to generally support the upper portion, the lower portion comprising a lower support member and an intermediate support member. In some embodiments, the intermediate support member is positioned above the lower support member and is generally secured to the lower support member. In one embodiment, the lower support member comprises at least one opening extending through the lower support member, wherein at least one fluid module is configured to be positioned below the lower support member. In some embodiments, the at least one fluid module is configured to be in fluid communication with the at least one opening of the lower support member.
According to some embodiments, the at least one intermediate support member comprises at least one slotted cavity or opening that at least partially aligns with the at least one opening of the lower support member, a size of the at least one slotted cavity being larger than a size of the at least one opening of the lower support member when viewed from above. In some embodiments, the at least one internal passageway of the upper portion generally aligns with the at least one slotted cavity of the intermediate support member when the upper portion is properly positioned on the lower portion. In some embodiments, the at least one internal passageway is configured to move relative to the at least one slotted cavity while a position of the adjustable bed is modified during use. In some embodiments, the at least one internal passageway remains aligned with and in fluid communication with the at least one slotted cavity regardless of the relative movement of the at least one internal passageway and the at least one slotted cavity in order to maintain the at least one internal passageway in fluid communication with the at least one slotted cavity, the at least one opening of the lower support member and the at least one fluid module.
According to some embodiments, the fluid distribution member comprises a spacer material (e.g., a spacer fabric). In some embodiments, the at least one slotted cavity of the intermediate support member comprises a total of two, three, four or more slotted cavities. In some embodiments, the at least one fluid module comprises at least fluid transfer device (e.g., blower, fan, pump, etc.). In some embodiments, the at least one fluid module is configured to environmentally and/or thermally condition (e.g., heat, cool, dehumidify, etc.) air or fluid passing therethrough. In some embodiments, the at least one fluid module comprises at least one thermoelectric device (e.g., Peltier circuit). In some embodiments, the at least one fluid module comprises at least one convective heater and/or any other heating and/or cooling device.
According to some embodiments, the fluid distribution member is divided into at least two (e.g., two, three, four, more than four) hydraulically isolated zones, wherein each of the zones comprises a spacer material (e.g., spacer fabric) or other fluid distribution member. According to some embodiments, each of the zones is in fluid communication with a different fluid module, so that each zone can be separately controlled. In some embodiments, the fluid distribution member is divided into at least two zones using sew seams, stitching, glue beads, a window pane design, other fluid barrier and/or other feature, device or member. In some embodiments, the at least one fluid module is secured directly to a rear surface of the lower portion. In one embodiment, the at least one fluid module is separate from the lower portion, wherein the at least one fluid module is placed in fluid communication with the at least one opening of the lower support member using at least one fluid conduit. In some embodiments, the lower portion is secured to a movable frame. In some embodiments, the upper portion comprises at least one of foam, springs, latex, a comfort layer and/or any other component, device, layer and/or material.
According to certain arrangements, a climate controlled bed includes an upper portion comprising a core with a top core surface and a bottom core surface. The core includes at least one passageway extending from the top core surface to the bottom core surface. The upper portion of the bed further includes at least one fluid distribution member positioned above the core, wherein the fluid distribution member is in fluid communication with at least one passageway of the core. The fluid distribution member is configured to at least partially distribute fluid within said fluid distribution member. The upper portion of the bed further comprises at least one comfort layer positioned adjacent to the fluid distribution member. The bed also includes a lower portion configured to support the upper portion and at least one fluid module configured to selectively transfer air to or from the fluid distribution member of the upper portion. In some arrangements, the fluid module includes a fluid transfer device and a thermoelectric device for selectively thermally conditioning fluids being transferred by the fluid transfer device.
According to some embodiments, a climate controlled bed includes an upper portion comprising a core having a top core surface and a bottom core surface. The core includes one or more passageways extending from the top core surface to the bottom core surface. The upper portion of the bed further includes at least one fluid distribution member, having one or more spacers, in fluid communication with the passageway of the core and at least one comfort layer positioned adjacent to the fluid distribution member. In some embodiments, the bed additionally includes a lower portion configured to support the upper portion and at least one fluid module configured to selectively transfer air to or from the fluid distribution member of the upper portion.
In some embodiments, the spacer comprises a spacer fabric, a spacer material and/or any other member that is configured to generally allow fluid to pass therethrough. In one embodiment, the spacer is generally positioned within a recess of the fluid distribution member. In other arrangements, the upper portion further comprises a barrier layer positioned underneath the spacer, the barrier layer being generally impermeable to fluids. In some embodiments, the barrier layer comprises a tight woven fabric, a film and/or the like.
According to some arrangements, the fluid distribution member is divided into at least two hydraulically isolated zones, each of said zones comprising a spacer. In one embodiment, each of the zones is in fluid communication with a different fluid module, so that each zone can be separately controlled. In other embodiments, the fluid distribution member is divided into two or more zones using sew seams, stitching, glue beads and/or any other flow blocking member or features.
In some arrangements, the fluid module is positioned within an interior of the lower portion of the bed. In one embodiment, the fluid module comprises a blower, fan or other fluid transfer device. In other embodiments, the fluid module additionally comprises a thermoelectric device configured to selectively heat or cool fluid being transferred by the fluid transfer device.
According to some embodiments, a passageway insert is generally positioned within at least one of the passageways of the core. In one embodiment, a passageway insert comprises one or more bellows, liners (e.g., fabric liners), coatings (e.g., liquid coatings), films and/or the like. In other arrangements, the lower portion includes a top surface comprising at least one lower portion opening being configured to align with and be in fluid communication with a passageway of the core. In one arrangement, one of the lower portion opening and the passageway comprises a fitting, the fitting being adapted to fit within the other of the lower portion opening and the passageway when the lower portion and the upper portion of are properly aligned.
In some embodiments, the comfort layer comprises a quilt layer or other cushioned material. In some arrangements, the core comprises closed-cell foam and/or other types of foam. In other arrangements, the fluid distribution member comprises foam. In one embodiment, the comfort layer is generally positioned above the fluid distribution member. In other arrangements, an additional comfort layer is generally positioned between the fluid distribution member and the core. In some embodiments, the bed further includes one or more flow diverters located adjacent to the fluid distribution member, wherein the flow diverters are configured to improve the distribution of a volume of air within an interior of the fluid distribution member.
According to some embodiments, the bed additionally includes a main controller configured to control at least the operation of the fluid module. In other arrangements, the climate controlled bed assembly further comprises one or more temperature sensors configured to detect a temperature of a fluid being transferred by the fluid module. In other embodiments, the bed assembly can include one or more humidity sensors and/or other types of sensors configured to detect a property of a fluid, either in lieu of or in addition to a temperature sensor. In one embodiment, the bed additionally includes at least one remote controller configured to allow a user to selectively adjust at least one operating parameter of the bed. In some arrangements, the remote controller is wireless. In other embodiments, the remote controller is hardwired to one or more portions or components of the bed. In some arrangements, a single upper portion is positioned generally on top of at least two lower portions. In some embodiments, the fluid module is configured to deliver air or other fluid toward an occupant positioned on the bed. In other arrangements, the fluid module is configured to draw air or other fluid away an occupant positioned on the bed.
According to other embodiments, a climate controlled bed includes an upper portion comprising a core with a top core surface and a bottom core surface, a passageway configured to deliver fluid from one of the top core surface and the bottom core surface to the other of the top core surface and the bottom core surface, one or more fluid distribution members in fluid communication with the passageway and at least one comfort layer positioned adjacent to the fluid distribution member. In one embodiment, the fluid distribution member includes one or more spacers. The climate controlled bed further includes a lower portion configured to support the upper portion and at least one fluid module configured to selectively transfer air to or from the fluid distribution member of the upper portion through the passageway. In some embodiments, passageway is routed through the core. In other arrangements, the passageway is external or separate from the core, or is routed around the core.
In accordance with some embodiments of the present inventions, a climate controlled bed comprises a cushion member having an outer surface comprising a first side for supporting an occupant and a second side, the first side and the second side generally facing in opposite directions, the cushion member having at least one recessed area along its first side or its second side. In one embodiment, the bed further includes a support structure having a top side configured to support the cushion member, a bottom side and an interior space generally located between the top side and the bottom side, the top side and the bottom side of the support structure generally facing in opposite directions, a flow conditioning member at least partially positioned with the recessed area of the cushion member, an air-permeable topper member positioned along the first side of the cushion member and a fluid temperature regulation system. The fluid temperature regulation system includes a fluid transfer device, a thermoelectric device (TED) and a conduit system generally configured to transfer a fluid from the fluid transfer device to the thermoelectric device. The fluid temperature regulation system is configured to receive a volume of fluid and deliver it to the flow conditioning member and the topper member.
In one embodiment, a temperature control member for use in a climate controlled bed includes a resilient cushion material comprising at least one recessed area along its surface, at least one layer of a porous material, the layer being configured to at least partially fit within the recessed area of the cushion and a topper member being positioned adjacent to the cushion and the layer of porous material, the topper member being configured to receive a volume of air that is discharged from the layer of porous material towards an occupant.
According to some embodiments, a bed comprises a substantially impermeable mattress, having a first side and a second side, the first side and the second side being generally opposite of one another, the mattress comprising at least one opening extending from the first side to the second side, a flow conditioning member positioned along the first side of the mattress and being in fluid communication with the opening in mattress, at least one top layer being positioned adjacent to the flow conditioning member, wherein the flow conditioning member is generally positioned between the mattress and the at least one top layer and a fluid transfer device and a thermoelectric unit that are in fluid communication with the opening in the mattress and the flow conditioning member.
In accordance with some embodiments of the present inventions, a climate controlled bed comprises a cushion member having a first side for supporting an occupant and a second side, the first side and the second side generally facing in opposite directions, a support structure having a top side configured to support the cushion member, a bottom side and an interior space generally located between the top side and the bottom side, the top side and the bottom side of the support structure generally facing in opposite directions, at least one flow conditioning member at least partially positioned on the first side of the cushion member, wherein the flow conditioning member is configured to provide a conditioned fluid to both the occupant's front and back sides when the occupant is laying on the cushion member in the supine position and a fluid temperature regulation system.
The climate controlled bed can also have an air-permeable distribution layer positioned on the flow conditioning member proximate the occupant and configured to provide conditioned fluid to both the occupant's front and back sides, when the occupant is laying on the cushion member in the supine position, and an air-impermeable layer that can be generally positioned along the part of the at least one flow conditioning member and can be configured to provide conditioned fluid to the front side of the occupant, when the occupant is laying on the cushion member in the supine position and along the opposite side of the at least one flow conditioning member from the air-permeable distribution layer. The fluid temperature regulation system can have a fluid transfer device, a thermoelectric device and a conduit system generally configured to transfer a fluid from the fluid transfer device to the thermoelectric device. The fluid temperature regulation system can be configured to receive a volume of fluid and deliver it to the flow conditioning member and through the air-permeable distribution layer to the occupant.
According to some embodiments, the flow conditioning member can be configured to substantially surround an occupant. In certain embodiments, the bed can have a fluid barrier configured to minimize fluid communication between a fluid inlet and a waste fluid outlet of the fluid temperature regulation system, wherein the fluid barrier can isolate a first region of the interior space of the support structure from a second region, wherein the fluid inlet and waste fluid outlet are within different regions of the support structure or one is within the interior space and one is outside of the interior space.
In one embodiment, a bed includes a substantially impermeable mattress, having a first side and a second side, the first side and the second side being generally opposite of one another, the mattress comprising at least two openings extending from the first side to the second side, a first set of at least one flow conditioning member positioned along the first side of the mattress, a second set of at least one flow conditioning member positioned only partially on the first side of the mattress, each set being in fluid communication with a group of at least one of the at least two openings in the mattress to the exclusion of the other set, at least one distribution layer being positioned adjacent to the flow conditioning members, wherein the first set is generally positioned between the mattress and the at least one distribution layer, an air impermeable layer, wherein the second set is positioned between the air impermeable layer and the at least one distribution layer, the at least one distribution layer or layers either folded other itself or positioned adjacent to one another when an occupant is not in the bed and surrounding the occupant when the occupant is in the bed, a fluid transfer device, a first set at least one thermoelectric unit and a second set of at least one thermoelectric unit, each set of thermoelectric units in fluid communication with a corresponding set of at least one flow conditioning members.
According to some embodiments, a climate controlled bed can have a conditioning region. The conditioning region can comprise a central fluid conditioning region, a fluid conditioning member, a fluid distribution member and a fluid impermeable member. The conditioning region can provide conditioned fluid to the central fluid conditioning region from multiple sides and angles of the condition region, including a top side and a bottom side. The central fluid conditioning region can generally conform to the shape of an object within the central fluid conditioning region. The fluid conditioning member can surround the central fluid conditioning region. The fluid distribution member can be along a surface of the fluid conditioning member and can also surround the central fluid conditioning region. The fluid impermeable member can be along part of a surface of the fluid condition member and can form a top side of the conditioning region.
These and other features, aspects and advantages of the present inventions are described with reference to drawings of certain preferred embodiments, which are intended to illustrate, but not to limit, the present inventions. It is to be understood that the attached drawings are provided for the purpose of illustrating concepts of the present inventions and may not be to scale.
This application is generally directed to climate control systems for beds or other seating assemblies. The climate control system and the various systems and features associated with it are described herein in the context of bed assemblies (e.g., air chamber beds, adjustable beds, inner-spring beds, spring-free beds, memory foam beds, full foam beds, hospital beds, other medical beds, futons, sofas, reclining chairs, etc.) because they have particular utility in that context. However, the climate control system and the methods described herein, as well as their various systems and features, can be used in other contexts as well, such as, for example, but without limitation, seat assemblies for automobiles, trains, planes, motorcycles, buses, other types of vehicles, wheelchairs, other types of medical chairs, beds and seating assemblies, sofas, task chairs, office chairs, other types of chairs and/or the like.
The various embodiments described and illustrated herein, and equivalents thereof, generally disclose improved devices, assemblies and methods for supplying ambient and/or thermally conditioned air or other fluids to one or more portions of a bed assembly. As discussed in greater detail herein, as a result of such embodiments, air or other fluids can be conveyed to and/or from an occupant in a more efficient manner. For example, the various embodiments disclosed herein can provide simpler climate controlled seating assemblies that provide one or more operational benefits or advantages (e.g., quieter operation, operation with less vibration, more streamlined configurations that are capable of accommodating fixed and adjustable assemblies, etc.). In addition, the embodiments disclosed herein can provide improved fluid movement to, through and/or from a climate controlled bed or seating assembly.
With reference to the perspective views of
With continued reference to
As illustrated in
With reference to
With continued reference to
A fluid module can include a fluid transfer device (e.g., blower, fan, etc.), a thermal conditioning device (e.g., a Peltier device, other thermoelectric device or TED, a convective heater, a heat pump, another type of heating and/or cooling device or component, etc.), a dehumidifier and/or any other type of conditioning device. Some embodiments of a fluid module comprise one or more conduits to place the various components of the fluid module and other portions of the bed 10 in fluid communication with each other and/or the like. The various components of a fluid module can be included within a single housing or can be separated from one another but fluidly connected (e.g., using one or more conduits). Accordingly, thermally or environmentally conditioned air (and/or ventilated or ambient air) can be directed toward the lower portion L and/or the upper portion 20 by the one or more fluid modules. In any of the embodiments disclosed herein, or equivalents thereof, the fluid module can include a heating, cooling and/or other conditioning (e.g., temperature, humidity, etc.) device that is not a thermoelectric device. For example, such a conditioning device can include a convective heater, a heat pump, a dehumidifier and/or the like.
Additional information regarding thermoelectric devices, convective heaters and other conditioning devices is provided in U.S. patent application Ser. No. 11/047,077, filed on Jan. 31, 2005 and issued as U.S. Pat. No. 7,587,901 on Sep. 15, 2009, U.S. patent application Ser. No. 12/049,120, filed Mar. 14, 2008 and issued as U.S. Pat. No. 8,143,554 on Mar. 27, 2012, U.S. patent application Ser. No. 12/695,602, filed Jan. 28, 2010 and published as U.S. Publication No. 2010/0193498 on Aug. 5, 2010, and U.S. patent application Ser. No. 13/289,923, filed Nov. 4, 2011 and published as U.S. Publication No. 2012/0114512 on May 10, 2012 the entireties of all of which are hereby incorporated by reference herein and made a part of the present application.
In some embodiments, one or more fluid modules are fixedly or removably secured to the rear surface of the lower support member 40. For example, a fluid module can be attached to a rear surface (e.g., the surface that generally faces toward the ground when the bed 10 is generally horizontally positioned) and/or to the segmented section 42 so as to generally or completely align an outlet of the fluid module to the fluid passage or opening 48. Thus, air or other fluid can be selectively delivered through the lower support member 40 (e.g., toward and through the intermediate support member 60 and the upper support member or mattress 20 of the bed assembly 10). In some embodiments, each fluid passage or opening 48 is placed in fluid communication with at least one fluid module. In some embodiments, a single fluid module can be configured to deliver air or other fluid to two or more passages or openings 48 of the lower support member 40. Further, in some arrangements, two or more fluid modules can be placed in fluid communication with a single fluid passage 48, as desired or required. In other embodiments, however, one or more fluid modules can be positioned, at least partially, within an intermediate layer or interlay of a climate controlled bed or other seating assembly.
The fluid modules can be secured directly to the rear surface of the lower support member 40 (e.g., to one or more of the segmented sections 42). Alternatively, the fluid modules can be attached to another portion of the bed's foundation or another portion of the bed assembly (e.g., a frame that holds or otherwise supports the lower support member 40, an interlay or inlay component, etc.). The fluid modules can be powered using any one of a number of power sources, such as, for example, a power cord (e.g., in electrical communication with an AC plug or power generator), one or more batteries and/or the like.
One embodiment of an intermediate support member or interlay 60 is illustrated in
With continued reference to
As depicted in the arrangement of
With continued reference to
The upper portion can comprise one or more materials to provide the desired or required firmness, feel, comfort and/or other characteristics to the bed assembly 10. For example, the bed 10 can include one or more layers of foam (e.g., viscoelastic foam, polyurethane foam, coconut foam, memory foam, other thermoplastics or cushioning materials and/or the like), latex, other thermoplastic materials, pillow layers, other comfort layers and/or the like. In some embodiments, the bed comprises springs (e.g., coil springs, air springs, etc.), air or fluid tubes or containers and/or any other component, device or feature.
Accordingly, the internal passage(s) 24 of the upper portion or mattress 20 can remain in fluid communication with the slotted opening or cavity 64 of the intermediate support member and the fluid passage or opening 48 of the lower support member 40. Thus, air or other fluid can be continuously delivered to the upper portion 20 of the bed assembly 10 while the adjustable bed is in use (e.g., even while the bed is being adjusted).
Additional Interlay or Inlay Embodiments
In some embodiments, as illustrated in
In some embodiments, as disclosed herein, an intermediate layer comprises one or more fluid channels or ducts (e.g., for receiving and moving air, other gases and/or other fluids to specific locations of the bed or other seating assembly), spaces configured to receive and house a fluid module (e.g., a blower or other fluid transfer device, a thermoelectric device, convective heater and/or any other heating, cooling or ventilation device, etc.), wiring, wire harnesses and/or other electrical components, sensors and/or the like. In any of the embodiments disclosed herein, a fluid module can comprise one or more portions. For example, in some arrangements, the blower, fan or other fluid transfer device can be included within a single housing or enclosure with one or more other components (e.g., a thermoelectric device, a convective heater, another type of thermal conditioning device, a controller, one or more sensors, etc.). Alternatively, however, two or more components of a fluid transfer and conditioning system can be separated (e.g., not positioned within a single housing or enclosure). For instance, the blower or fluid transfer device can be in a first housing or enclosure, while the thermal conditioning device (e.g., thermoelectric device, convective heater, etc.) is set apart from the blower. In such embodiments, the components can be placed in fluid communication with one another via one or more conduits, channels, ducts, passages and/or the like, as required.
The use of an intermediate layer in a climate controlled bed or other seating assembly can offer one or more advantages related to the manufacture and/or use of the bed or other seating assembly. For example, an intermediate layer that houses a fluid module, fluid ducts or channels and/or other components of a climate or environmental conditioning system can simplify the design, manufacture, assembly, transport and/or other aspects of the environmentally-conditioned bed or other seating assembly. Further, the intermediate layer or interlay component can be used to advantageously house (e.g., at least partially) the fluid module, ducts or fluid channels, wire harnesses, wiring, power supplies, controllers, sensors and/or other components without the need for install such items in adjacent portions of the bed or other seating assembly (e.g., lower support, upper portion or mattress, etc.). In some embodiments, such configurations can permit a climate controlled bed assembly with limited space (e.g., limited space below the mattress or upper member, limited space around or near the assembly, etc.) to accommodate one or more fluid modules. In addition, such configurations can reduce the overall noise and/or vibration associated with operating the fluid modules (e.g., blower or other fluid transfer device).
In any of the embodiments disclosed herein, the intermediate or inlay layer includes one or more fluid channels configured to permit fluid (e.g., heated, cooled or ventilated fluid discharged by a fluid module, waste fluid, etc.). Accordingly, such channels or other passages are in fluid communication with one or more fluid modules. In any of the embodiments disclosed herein, a fluid module can include a fluid transfer device (e.g., fan or blower), a thermal conditioning device (e.g., a thermoelectric device, a convective heater, another type of fluid heating or cooling device, etc.), one or more sensors (e.g., temperature sensors, humidity sensors, condensation sensors, etc.), controllers and/or the like. In some embodiments, the blower or other fluid transfer device is included within a single housing as a thermal conditioning device and/or one or more other components of the module. Alternatively, however, the blower or other fluid transfer device can be separated from one or more other components of the fluid module (e.g., a thermoelectric device, convective heater or other thermal conditioning device). In such embodiments, one or more ducts, conduits or other fluid lines can be used to deliver air or other fluid from the fluid transfer device to, near or past the thermal conditioning device and/or other components of the fluid module.
Further, as noted and illustrated in some of the embodiments disclosed herein, the intermediate layer or inlay can be shaped, sized, designed and otherwise configured to accommodate one or more fluid modules directly therein. Such a configuration can provide one or more benefits and other advantages to the climate controlled seating assembly, such as, for example, space saving advantages, simplification of the assembly's overall design, quieter, smoother and/or otherwise more enhanced or improved operation of the system (e.g., reduced noise and/or vibration created by the operating fluid modules, better fluid transfer to, through and away from the assembly, etc.) and/or the like. Alternatively, however, one or more fluid modules are not located within or near the intermediate layer or inlay, requiring fluid from such fluid modules to be routed to one or more inlets of the channel(s) of the intermediate layer or inlay. Regardless of its exact orientation, configuration and overall design, the intermediate layer or inlay can receive and strategically route inlet air and/or air discharged by one or more fluid modules (e.g., heated, cooled or ventilated fluid intended to be delivered through one or more openings of the adjacent mattress or upper layer toward a seated occupant). The channels of the intermediate layer or inlay can also be used to receive and strategically route other fluid streams created by the fluid modules. For example, the inlay can comprise one or more channels that receive and route to select portions of the inlay, and thus the seating assembly, waste air created by one or more thermoelectric devices or other thermal conditioning devices of the assembly's climate control system. As discussed in greater detail herein, the intermediate layer or inlay can also be used to strategically and advantageously accommodate one or more wire harnesses for placing the fluid modules and/or other electric components of the system in power and/or data communication with a power supply, controller and/or the like.
According to some embodiments, the fluid channels of the intermediate layer or inlay of a bed or other seating assembly are configured to selectively route thermally conditioned (and/or ventilated) air or other fluid to one or more fluid inlets of the adjacent mattress or upper portion of the bed or other seating assembly. Accordingly, fluid can be delivered through the mattress or other upper portion of the assembly and toward one or more seated occupants.
One embodiment of an intermediate layer, interlay or inlay 160, 160′ configured for use in a climate controlled seating assembly (such as the fixed or adjustable beds of
With continued reference to
In some embodiments, and for any of the bed or other seating assemblies disclosed herein, only a portion of the air that is delivered to the fluid modules originates from the inlet channels of the inlay or interlay component 160, 160′. For example, at least some or even a majority of the volume of inlet air that is transferred by the fluid modules can come from the space underneath the interlay component (e.g., from the foundation or other area below the interlay component and through the windows or openings 182 along the rear side of the inlay component). In fact, in some embodiments, the inlet channels 122, 124 of the inlay are configured to serve merely as supplemental conduits of inlet air. In some arrangements, one reason for this is because the edges of the interlay inlet channels can become blocked, at least partially, by blankets, sheets or other portions of a bed or other items placed adjacent to the bed (e.g., chests, other furniture, etc.). Thus, the bottom of the bed assembly can provide a more reliable and consistent source of inlet air to the fluid modules.
With continued reference to
According to some embodiments, as illustrated in
Regardless of their exact design and other details, fluid modules 100 having a waste stream (e.g., such as fluid modules that comprise one or more thermoelectric devices or similar heating or cooling devices) can be configured to discharge such a waste stream in one or more waste conduits or channels 112, 114 of the inlay or interlay component. As illustrated in the embodiment of
With continued reference to
According to some embodiments, the channels, wire harness slots, fluid module recesses and/or other openings of the inlay component 160, 160′ are manufactured into the desired shape using molding techniques (e.g., injection molding). Alternatively, however, such openings can be created by selectively removing portions of a base material (e.g., larger foam block or layer). In other embodiments, one or more layers or portions can be selectively attached to a base layer 161 so as to create the channels 122, 124, 112, 114, recesses, slots 132 and/or other openings within the inlay component, as desired or required. For example, smaller foam components can be secured to one or more base foam layers 161 using adhesives, fasteners and/or any other type of connection method or device.
As illustrated in
With reference to the top view of the inlay component illustrated in
One embodiment of a foundation or lower portion 140 for a bed assembly (e.g., a non-adjustable bed) is illustrated in
With continued reference to
In other embodiments, the channels can begin and/or terminate along the sides of the inlay, either in lieu of or in addition to the head-end or foot-end, as desired or required. In yet other arrangements, one or more channels of an inlay can meet, combine or otherwise be placed in fluid communication with one another. By way of example, the inlay embodiment illustrated in
Regardless of the exact design and configuration of the intermediate layer, interlay or inlay (or a component thereof), the outlets (e.g., discharge ends of the fluid modules, conduits in fluid communication with the discharge ends of the fluid modules, etc.) that extend to, near or above the top of the interlay (e.g., the upper interlay surface) are advantageously adapted to generally align with corresponding passages of the adjacent mattress or upper portion of the bed assembly. According to some embodiments, as illustrated in
As illustrated schematically in
In any of the embodiments disclosed herein, the intermediate layer, interlay or inlay can be secured, either temporarily or permanently, to the foundation and/or the mattress or upper portion of the bed or other seating assembly bottom or primary foundation (or lower support member) and a top or secondary foundation (or intermediate support member). The various components of the assembly can be held relative to each other using one or more attachment devices or methods, such as, for example, stitching, zippers, hook-and-loop connections, buttons, straps, bands, other fasteners, adhesives and/or the like.
To assist in the description of the disclosed embodiments, words such as upward, upper, downward, lower, vertical, horizontal, upstream, downstream, top, bottom, soft, rigid, simple, complex and others have and used above to discuss various embodiments and to describe the accompanying figures. It will be appreciated, however, that the illustrated embodiments, or equivalents thereof, can be located and oriented in a variety of desired positions, and thus, should not be limited by the use of such relative terms.
Although these inventions have been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and obvious modifications and equivalents thereof. In addition, while the number of variations of the inventions have been shown and described in detail, other modifications, which are within the scope of these inventions, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the inventions. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another in order to perform varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims.
This application claims the priority benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/602,332, filed Feb. 23, 2012, the entirety of which is hereby incorporated by reference herein. The disclosure of U.S. patent application Ser. No. 11/872,657, filed on Oct. 15, 2007 and issued as U.S. Pat. No. 8,065,763 on Nov. 29, 2011, and U.S. patent application Ser. No. 12/505,355, filed on Jul. 17, 2009 and issued as U.S. Pat. No. 8,181,290 on May 22, 2012, are hereby incorporated by reference herein and made a part of the present application.
Number | Name | Date | Kind |
---|---|---|---|
96989 | Somes | Nov 1869 | A |
771461 | Clifford | Oct 1904 | A |
2461432 | Mitchell | Feb 1949 | A |
2462984 | Maddison | Mar 1949 | A |
2493067 | Goldsmith | Jan 1950 | A |
2512559 | Williams | Jun 1950 | A |
2782834 | Vigo | Feb 1957 | A |
2791956 | Guest | May 1957 | A |
2931286 | Fry, Sr. et al. | Apr 1960 | A |
2976700 | Jackson | Mar 1961 | A |
3030145 | Kottemann | Apr 1962 | A |
3039817 | Taylor | Jun 1962 | A |
3136577 | Richard | Jun 1964 | A |
3137523 | Karner | Jun 1964 | A |
3209380 | Watsky | Oct 1965 | A |
3266064 | Figman | Aug 1966 | A |
3529310 | Olmo | Sep 1970 | A |
3550523 | Segal | Dec 1970 | A |
3653083 | Lapidus | Apr 1972 | A |
3928876 | Starr | Dec 1975 | A |
4413857 | Hayashi | Nov 1983 | A |
4423308 | Callaway et al. | Dec 1983 | A |
4563387 | Takagi et al. | Jan 1986 | A |
4671567 | Frobose | Jun 1987 | A |
4685727 | Cremer et al. | Aug 1987 | A |
4712832 | Antolini et al. | Dec 1987 | A |
4777802 | Feher | Oct 1988 | A |
4793651 | Inagaki et al. | Dec 1988 | A |
4825488 | Bedford | May 1989 | A |
4853992 | Yu | Aug 1989 | A |
4905475 | Tuomi | Mar 1990 | A |
4923248 | Feher | May 1990 | A |
4981324 | Law | Jan 1991 | A |
4997230 | Spitalnick | Mar 1991 | A |
5002336 | Feher | Mar 1991 | A |
5016304 | Ryhiner | May 1991 | A |
5077709 | Feher | Dec 1991 | A |
5102189 | Saito et al. | Apr 1992 | A |
5106161 | Meiller | Apr 1992 | A |
5117638 | Feher | Jun 1992 | A |
5125238 | Ragan et al. | Jun 1992 | A |
5265599 | Stephenson et al. | Nov 1993 | A |
5335381 | Chang | Aug 1994 | A |
5367728 | Chang | Nov 1994 | A |
5372402 | Kuo | Dec 1994 | A |
5382075 | Shih | Jan 1995 | A |
5385382 | Single, II et al. | Jan 1995 | A |
5416935 | Nieh | May 1995 | A |
5419489 | Burd | May 1995 | A |
5433741 | Truglio | Jul 1995 | A |
5448788 | Wu | Sep 1995 | A |
5473783 | Allen | Dec 1995 | A |
5493742 | Klearman | Feb 1996 | A |
5584084 | Klearman et al. | Dec 1996 | A |
5597200 | Gregory et al. | Jan 1997 | A |
5613729 | Summer, Jr. | Mar 1997 | A |
5613730 | Buie et al. | Mar 1997 | A |
5626021 | Karunasiri et al. | May 1997 | A |
5626386 | Lush | May 1997 | A |
5640728 | Graebe | Jun 1997 | A |
5642539 | Kuo | Jul 1997 | A |
5645314 | Liou | Jul 1997 | A |
5675852 | Watkins | Oct 1997 | A |
5692952 | Chih-Hung | Dec 1997 | A |
5715695 | Lord | Feb 1998 | A |
5850741 | Feher | Dec 1998 | A |
5871151 | Fiedrich | Feb 1999 | A |
5887304 | von der Heyde | Mar 1999 | A |
5902014 | Dinkel et al. | May 1999 | A |
5921314 | Schuller et al. | Jul 1999 | A |
5921858 | Kawai et al. | Jul 1999 | A |
5924766 | Esaki et al. | Jul 1999 | A |
5924767 | Pietryga | Jul 1999 | A |
5927817 | Ekman et al. | Jul 1999 | A |
5934748 | Faust et al. | Aug 1999 | A |
5948303 | Larson | Sep 1999 | A |
5963997 | Hagopian | Oct 1999 | A |
6003950 | Larsson | Dec 1999 | A |
6006524 | Park | Dec 1999 | A |
6019420 | Faust et al. | Feb 2000 | A |
6048024 | Wallman | Apr 2000 | A |
6052853 | Schmid | Apr 2000 | A |
6059018 | Yoshinori et al. | May 2000 | A |
6062641 | Suzuki et al. | May 2000 | A |
6073998 | Siarkowski et al. | Jun 2000 | A |
6079485 | Esaki et al. | Jun 2000 | A |
6085369 | Feher | Jul 2000 | A |
6109688 | Wurz et al. | Aug 2000 | A |
6119463 | Bell | Sep 2000 | A |
6145925 | Eksin et al. | Nov 2000 | A |
6148457 | Sul | Nov 2000 | A |
6161241 | Zysman | Dec 2000 | A |
6171333 | Nelson et al. | Jan 2001 | B1 |
6186592 | Orizaris et al. | Feb 2001 | B1 |
6189966 | Faust et al. | Feb 2001 | B1 |
6189967 | Short | Feb 2001 | B1 |
6196627 | Faust et al. | Mar 2001 | B1 |
6206465 | Faust et al. | Mar 2001 | B1 |
6223539 | Bell | May 2001 | B1 |
6263530 | Feher | Jul 2001 | B1 |
6291803 | Fourrey | Sep 2001 | B1 |
6336237 | Schmid | Jan 2002 | B1 |
6341395 | Chao | Jan 2002 | B1 |
6425527 | Smole | Jul 2002 | B1 |
6487739 | Harker | Dec 2002 | B1 |
6493888 | Salvatini et al. | Dec 2002 | B1 |
6493889 | Kocurek | Dec 2002 | B2 |
6497720 | Augustine et al. | Dec 2002 | B1 |
6509704 | Brown | Jan 2003 | B1 |
6511125 | Gendron | Jan 2003 | B1 |
6541737 | Eksin et al. | Apr 2003 | B1 |
6546576 | Lin | Apr 2003 | B1 |
RE38128 | Gallup et al. | Jun 2003 | E |
6581224 | Yoon | Jun 2003 | B2 |
6581225 | Imai | Jun 2003 | B1 |
6596018 | Endo et al. | Jul 2003 | B2 |
6598251 | Habboub et al. | Jul 2003 | B2 |
6604785 | Bargheer et al. | Aug 2003 | B2 |
6606754 | Flick | Aug 2003 | B1 |
6606866 | Bell | Aug 2003 | B2 |
6619736 | Stowe et al. | Sep 2003 | B2 |
6626488 | Pfahler | Sep 2003 | B2 |
6629724 | Ekern et al. | Oct 2003 | B2 |
6644735 | Bargheer et al. | Nov 2003 | B2 |
6676207 | Rauh et al. | Jan 2004 | B2 |
6684437 | Koenig | Feb 2004 | B2 |
6687937 | Harker | Feb 2004 | B2 |
6700052 | Bell | Mar 2004 | B2 |
6708352 | Salvatini et al. | Mar 2004 | B2 |
6711767 | Klamm | Mar 2004 | B2 |
6730115 | Heaton | May 2004 | B1 |
6761399 | Bargheer et al. | Jul 2004 | B2 |
6764502 | Bieberich | Jul 2004 | B2 |
6772825 | Lachenbuch et al. | Aug 2004 | B2 |
6782574 | Totton et al. | Aug 2004 | B2 |
6786541 | Haupt et al. | Sep 2004 | B2 |
6786545 | Bargheer et al. | Sep 2004 | B2 |
6808230 | Buss et al. | Oct 2004 | B2 |
6828528 | Stowe et al. | Dec 2004 | B2 |
6840576 | Ekern et al. | Jan 2005 | B2 |
6841957 | Brown | Jan 2005 | B2 |
6855158 | Stolpmann | Feb 2005 | B2 |
6855880 | Feher | Feb 2005 | B2 |
6857697 | Brennan et al. | Feb 2005 | B2 |
6857954 | Luedtke | Feb 2005 | B2 |
6871365 | Flick et al. | Mar 2005 | B2 |
6893086 | Bajic et al. | May 2005 | B2 |
6904629 | Wu | Jun 2005 | B2 |
6907739 | Bell | Jun 2005 | B2 |
6954944 | Feher | Oct 2005 | B2 |
6967309 | Wyatt et al. | Nov 2005 | B2 |
6976734 | Stoewe | Dec 2005 | B2 |
6977360 | Weiss | Dec 2005 | B2 |
6990701 | Litvak | Jan 2006 | B1 |
7036163 | Schmid | May 2006 | B2 |
7036575 | Rodney et al. | May 2006 | B1 |
7040710 | White et al. | May 2006 | B2 |
7052091 | Bajic et al. | May 2006 | B2 |
7063163 | Steele et al. | Jun 2006 | B2 |
7070231 | Wong | Jul 2006 | B1 |
7070232 | Minegishi et al. | Jul 2006 | B2 |
7100978 | Ekern et al. | Sep 2006 | B2 |
7108319 | Hartwich et al. | Sep 2006 | B2 |
7114771 | Lofy et al. | Oct 2006 | B2 |
7124593 | Feher | Oct 2006 | B2 |
7131689 | Brennan et al. | Nov 2006 | B2 |
7134715 | Fristedt et al. | Nov 2006 | B1 |
7147279 | Bevan et al. | Dec 2006 | B2 |
7168758 | Bevan et al. | Jan 2007 | B2 |
7178344 | Bell | Feb 2007 | B2 |
7181786 | Schoettle | Feb 2007 | B2 |
7201441 | Stoewe et al. | Apr 2007 | B2 |
7272936 | Feher | Sep 2007 | B2 |
7296315 | Totton et al. | Nov 2007 | B2 |
7338117 | Iqbal et al. | Mar 2008 | B2 |
7356912 | Iqbal et al. | Apr 2008 | B2 |
7370911 | Bajic et al. | May 2008 | B2 |
7425034 | Bajic et al. | Sep 2008 | B2 |
7462028 | Cherala et al. | Dec 2008 | B2 |
7469432 | Chambers | Dec 2008 | B2 |
7475464 | Lofy et al. | Jan 2009 | B2 |
7478869 | Lazanja et al. | Jan 2009 | B2 |
7480950 | Feher | Jan 2009 | B2 |
7506938 | Brennan et al. | Mar 2009 | B2 |
7555792 | Heaton | Jul 2009 | B2 |
7587901 | Petrovski | Sep 2009 | B2 |
7591507 | Giffin et al. | Sep 2009 | B2 |
7640754 | Wolas | Jan 2010 | B2 |
7665803 | Wolas | Feb 2010 | B2 |
7708338 | Wolas | May 2010 | B2 |
RE41765 | Gregory et al. | Sep 2010 | E |
7827620 | Feher | Nov 2010 | B2 |
7827805 | Comiskey et al. | Nov 2010 | B2 |
7862113 | Knoll | Jan 2011 | B2 |
7866017 | Knoll | Jan 2011 | B2 |
7877827 | Marquette et al. | Feb 2011 | B2 |
7892271 | Schock et al. | Feb 2011 | B2 |
7908687 | Ward et al. | Mar 2011 | B2 |
7914611 | Vrzalik et al. | Mar 2011 | B2 |
7937789 | Feher | May 2011 | B2 |
7963594 | Wolas | Jun 2011 | B2 |
7966835 | Petrovski | Jun 2011 | B2 |
7996936 | Marquette et al. | Aug 2011 | B2 |
8065763 | Brykalski et al. | Nov 2011 | B2 |
8104295 | Lofy | Jan 2012 | B2 |
8143554 | Lofy | Mar 2012 | B2 |
8181290 | Brykalski et al. | May 2012 | B2 |
8191187 | Brykalski et al. | Jun 2012 | B2 |
8222511 | Lofy | Jul 2012 | B2 |
8256236 | Lofy | Sep 2012 | B2 |
8332975 | Brykalski et al. | Dec 2012 | B2 |
8359871 | Woods et al. | Jan 2013 | B2 |
8402579 | Marquette et al. | Mar 2013 | B2 |
8418286 | Brykalski et al. | Apr 2013 | B2 |
8434314 | Comiskey et al. | May 2013 | B2 |
8438863 | Lofy | May 2013 | B2 |
RE44272 | Bell | Jun 2013 | E |
8505320 | Lofy | Aug 2013 | B2 |
8516842 | Petrovski | Aug 2013 | B2 |
8539624 | Terech et al. | Sep 2013 | B2 |
8575518 | Walsh | Nov 2013 | B2 |
8621687 | Brykalski et al. | Jan 2014 | B2 |
20020100121 | Kocurek | Aug 2002 | A1 |
20030019044 | Larsson et al. | Jan 2003 | A1 |
20030070235 | Suzuki et al. | Apr 2003 | A1 |
20030084511 | Salvatini et al. | May 2003 | A1 |
20030145380 | Schmid | Aug 2003 | A1 |
20030150060 | Huang | Aug 2003 | A1 |
20030160479 | Minuth et al. | Aug 2003 | A1 |
20030188382 | Klamm et al. | Oct 2003 | A1 |
20030234247 | Stern | Dec 2003 | A1 |
20040090093 | Kamiya et al. | May 2004 | A1 |
20040177622 | Harvie | Sep 2004 | A1 |
20040255364 | Feher | Dec 2004 | A1 |
20050011009 | Wu | Jan 2005 | A1 |
20050086739 | Wu | Apr 2005 | A1 |
20050173950 | Bajic et al. | Aug 2005 | A1 |
20050278863 | Bahash et al. | Dec 2005 | A1 |
20050285438 | Ishima et al. | Dec 2005 | A1 |
20050288749 | Lachenbruch | Dec 2005 | A1 |
20060053529 | Feher | Mar 2006 | A1 |
20060053558 | Ye | Mar 2006 | A1 |
20060087160 | Dong et al. | Apr 2006 | A1 |
20060130490 | Petrovski | Jun 2006 | A1 |
20060137099 | Feher | Jun 2006 | A1 |
20060137358 | Feher | Jun 2006 | A1 |
20060158011 | Marlovits et al. | Jul 2006 | A1 |
20060162074 | Bader | Jul 2006 | A1 |
20060197363 | Lofy et al. | Sep 2006 | A1 |
20060214480 | Terech | Sep 2006 | A1 |
20060273646 | Comiskey et al. | Dec 2006 | A1 |
20070035162 | Bier et al. | Feb 2007 | A1 |
20070040421 | Zuzga et al. | Feb 2007 | A1 |
20070069554 | Comiskey et al. | Mar 2007 | A1 |
20070086757 | Feher | Apr 2007 | A1 |
20070138844 | Kim | Jun 2007 | A1 |
20070158981 | Almasi et al. | Jul 2007 | A1 |
20070200398 | Wolas et al. | Aug 2007 | A1 |
20070251016 | Feher | Nov 2007 | A1 |
20070261548 | Vrzalik et al. | Nov 2007 | A1 |
20070262621 | Dong et al. | Nov 2007 | A1 |
20070277313 | Terech | Dec 2007 | A1 |
20070296251 | Krobok et al. | Dec 2007 | A1 |
20080000025 | Feher | Jan 2008 | A1 |
20080028536 | Hadden-Cook | Feb 2008 | A1 |
20080047598 | Lofy | Feb 2008 | A1 |
20080087316 | Inaba et al. | Apr 2008 | A1 |
20080148481 | Brykalski et al. | Jun 2008 | A1 |
20080164733 | Giffin et al. | Jul 2008 | A1 |
20080166224 | Giffin et al. | Jul 2008 | A1 |
20080173022 | Petrovski | Jul 2008 | A1 |
20080263776 | O'Reagan | Oct 2008 | A1 |
20090000031 | Feher | Jan 2009 | A1 |
20090025770 | Lofy | Jan 2009 | A1 |
20090026813 | Lofy | Jan 2009 | A1 |
20090033130 | Marquette et al. | Feb 2009 | A1 |
20090106907 | Chambers | Apr 2009 | A1 |
20090126109 | Lee | May 2009 | A1 |
20090126110 | Feher | May 2009 | A1 |
20090218855 | Wolas | Sep 2009 | A1 |
20100011502 | Brykalski et al. | Jan 2010 | A1 |
20100146700 | Wolas | Jun 2010 | A1 |
20100193498 | Walsh | Aug 2010 | A1 |
20100235991 | Ward et al. | Sep 2010 | A1 |
20110010850 | Frias | Jan 2011 | A1 |
20110041246 | Li et al. | Feb 2011 | A1 |
20110107514 | Brykalski et al. | May 2011 | A1 |
20110115635 | Petrovski et al. | May 2011 | A1 |
20110253340 | Petrovski | Oct 2011 | A1 |
20110289684 | Parish et al. | Dec 2011 | A1 |
20110314837 | Parish et al. | Dec 2011 | A1 |
20120017371 | Pollard | Jan 2012 | A1 |
20120080911 | Brykalski et al. | Apr 2012 | A1 |
20120114512 | Lofy et al. | May 2012 | A1 |
20120131748 | Brykalski et al. | May 2012 | A1 |
20120261399 | Lofy | Oct 2012 | A1 |
20120319439 | Lofy | Dec 2012 | A1 |
20130086923 | Petrovski et al. | Apr 2013 | A1 |
20130097776 | Brykalski et al. | Apr 2013 | A1 |
20130097777 | Marquette et al. | Apr 2013 | A1 |
20130206852 | Brykalski et al. | Aug 2013 | A1 |
20130227783 | Brykalski et al. | Sep 2013 | A1 |
20130239592 | Lofy | Sep 2013 | A1 |
20140007594 | Lofy | Jan 2014 | A1 |
20140033441 | Morgan et al. | Feb 2014 | A1 |
20140182061 | Zaiss et al. | Jul 2014 | A1 |
20140189951 | DeFranks et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
10238552 | Aug 2001 | DE |
10115242 | Oct 2002 | DE |
0 617 946 | Mar 1994 | EP |
0 621 026 | Oct 1994 | EP |
0 862 901 | Sep 1998 | EP |
0878 150 | Nov 1998 | EP |
1 804 616 | Feb 2012 | EP |
1 327 862 | May 1963 | FR |
2 790 430 | Sep 2000 | FR |
2 251 352 | Dec 2000 | GB |
56-97416 | Aug 1981 | JP |
S62-193457 | Dec 1987 | JP |
H04-108411 | Apr 1992 | JP |
H06-343664 | Dec 1994 | JP |
H07-003403 | Jan 1995 | JP |
H09-140506 | Jun 1997 | JP |
H10-165259 | Jun 1998 | JP |
H11-266968 | Oct 1999 | JP |
2004-174138 | Jun 2004 | JP |
2 893 826 | Jun 2007 | JP |
2297207 | Apr 2007 | RU |
WO 9717930 | May 1997 | WO |
WO 9902074 | Jan 1999 | WO |
WO 0178643 | Oct 2001 | WO |
WO 0184982 | Nov 2001 | WO |
WO 0211968 | Feb 2002 | WO |
WO 02058165 | Jul 2002 | WO |
WO 03051666 | Jun 2003 | WO |
WO 2005120295 | Dec 2005 | WO |
WO 2007060371 | May 2007 | WO |
WO 2011150427 | Dec 2011 | WO |
Entry |
---|
Feher, Steve, Thermoelectric Air Conditioned Variable Temperature Seat (VTS) & Effect Upon Vehicle Occupant Comfort, Vehicle Energy Efficiency, and Vehicle Environment Compatibility, SAE Technical Paper, Apr. 1993, pp. 341-349. |
Feher, Steve, Stirling Air Conditioned Variable Temperature Seat (SVTS) and Comparison with Thermoelectric Air Conditioned Variable Temperature Seat (VTS), SAE Technical Paper Series, International Congress and Exposition, No. 980661, Feb. 23-26, 1998, pp. 1-9. |
Lofy, J. et al., Thermoelectrics for Environmental Control in Automobiles, Proceeding of Twenty-First International Conference on Thermoelectrics (ICT 2002), published 2002, pp. 471-476. |
Okamoto et. al., The Effects of a Newly Designed Air Mattress upon Sleep and Bed Climate, Applied Human Science, vol. 16 (1997), No. 4 pp. 161-166. |
Winder et al., Heat-retaining Mattress for Temperature Control in Surgery, Br Med J, Jan. 17, 1970 1:168. |
I-CAR Advantage Online: The Climate Control Seat System, online article dated Aug. 27, 2001. |
Product information for a “Thermo-Electric Cooling & Heating Seat Cushion”; retrieved on May 12, 2008 from http://www.coolorheat.com/. |
Product information retrieved on Jan. 30, 2007 from http://store.yahoo.co.jp/maruhachi/28tbe20567.html (no English translation available). |
Product information for “Kuchofuku's air conditioned bed, clothing line,” retrieved on Oct. 11, 2007 from http://www.engadget.com/2007/06/29/kuchofukus-air-conditioned-bed-clothing-line/. |
Product information for “SleepDeep™,” retrieved on or about Jun. 2008 from http://www.sleepdeep.se. |
Number | Date | Country | |
---|---|---|---|
20130269106 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
61602332 | Feb 2012 | US |