Clinical workflows utilizing autonomous and semiautonomous telemedicine devices

Information

  • Patent Grant
  • 10603792
  • Patent Number
    10,603,792
  • Date Filed
    Friday, November 21, 2014
    10 years ago
  • Date Issued
    Tuesday, March 31, 2020
    4 years ago
Abstract
The present disclosure describes various clinical workflows and other methods that utilize a telemedicine device in a healthcare network. According to various embodiments, a healthcare practitioner may utilize a remote presence interfaces (RPIs) on a remote access device (RAD), such as a portable electronic device (PED) to interface with a telemedicine device. The healthcare practitioner may directly interface with a display interface of a telemedicine device or utilize the RPI on a RAD. The present disclosure provides various clinical workflows involving a telemedicine device to view patient data during a telepresence session, perform rounds to visit multiple patients, monitor a patient, allow for remote visitations by companions, and various other clinical workflow methods.
Description
TECHNICAL FIELD

This disclosure relates to clinical workflows involving autonomous and semi-autonomous robotic devices. More specifically, this disclosure relates to clinical workflows for telemedicine devices in a healthcare facility.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-C illustrate example embodiments of a telepresence device.



FIGS. 2A and 2B illustrate embodiments of what may be displayed during a consult on a telepresence device and via an RPI on a PED, respectively.



FIG. 3 illustrates a flow diagram of data between telemedicine devices and remote user devices.



FIG. 4 illustrates various remote features available to a healthcare practitioner using a telemedicine device.



FIG. 5 illustrates an embodiment of an endpoint list of various telepresence devices and their connectivity state.



FIG. 6 illustrates a selectable destination patient list that can be used within an RPI to navigate a telepresence device.



FIG. 7 illustrates a toolbar separating an endpoint list and a patient list in an RPI, allowing for quick user selection of various possible permutations.



FIG. 8 illustrates a toolbar for managing modules and control operations available via an RPI, while simultaneously displaying a video feed from a telepresence device.



FIG. 9 illustrates a flow chart of a method for automatically populating a dashboard with relevant patient data when utilizing a telemedicine device.



FIG. 10 illustrates a flow chart of a method for intelligently dispatching an autonomous telemedicine device.



FIG. 11 illustrates a flow chart of another method for intelligently dispatching an autonomous telemedicine device.



FIG. 12 illustrates a flow chart of a method for a nurse to attend rounds using a telemedicine device to sequentially visit a number of patients.



FIG. 13 illustrates a flow chart of a method for a healthcare practitioner to perform patient rounds using a telemedicine device while viewing, saving, and sharing relevant patient data.



FIG. 14 illustrates a flow chart of a method for a nurse to send a telemedicine device to observe a patient for a period of time.



FIG. 15A illustrates a flow chart of a method for tracking the amount of time a telemedicine device spends with each patient.



FIG. 15B illustrates a flow chart of a method for tracking the usage of a telemedicine device with respect to individual patients.



FIG. 16 illustrates a flow chart of a method for an autonomous telemedicine device to invite healthcare practitioners while it automatically performs patient rounds.



FIG. 17 illustrates a flow chart of a method for a telemedicine device to intelligently facilitate remote telepresence connections.



FIG. 18 illustrates a flow chart of a method for using a telemedicine device to evaluate and/or monitor a remote patient.



FIG. 19 illustrates a flow chart of a method for using a telemedicine device as a reminder service in conjunction with remote telepresence consultations.



FIG. 20 illustrates a flow chart of a method for utilizing a telemedicine device to update electronic medical records.



FIG. 21 illustrates a flow chart of a method for utilizing an autonomous telemedicine device to check on patients and record preselected and/or anomalous conditions.



FIG. 22 illustrates a flow chart of a method for utilizing an autonomous telemedicine device to allow a companion of a patient to perform remote visits.





The described features, structures, and/or characteristics of the systems and methods described herein may be combined in any suitable manner in one or more alternative embodiments, and may differ from the illustrated embodiments.


DETAILED DESCRIPTION

Healthcare facilities may include telemedicine technologies, such as telepresence and/or telemedicine devices in a telepresence network that allow remote healthcare practitioners to provide services to patients and/or other healthcare practitioners in remote locations. For example, a remote healthcare practitioner may be a neurologist practicing in a relatively large hospital who may, via a telemedicine device, provide services and consultations to patients and/or other medical professionals in a relatively small hospital that may not otherwise have a neurologist on staff.


The present disclosure provides various methods and clinical workflows that utilize autonomous, semi-autonomous, and/or manually controlled telemedicine devices to improve at least one aspect of healthcare. As used herein, a telepresence device may broadly allow for remote video and/or audio connections between a remote user and a local patient. A telemedicine device may be a type of telepresence device configured with one or more additional characteristics or features for use in a healthcare facility. A telemedicine device may be autonomous, semi-autonomous, and/or manually controlled.


In a remote presence (RP) system, a telemedicine device, such as an autonomous robot, a semi-autonomous robot, a stationary system, a mobile system, and/or a stationary system mounted to a mobile cart may communicate with an interfacing device via a communications network. In various embodiments, a remote access device (RAD) may be used to view a remote presence interface (RPI), an application running on the RAD. A remote user may utilize the RPI on any of a wide variety of electronic devices, including computers, tablets, cellular phones, various portable electronic devices (PEDs), and/or other suitable electronic devices (referred to as RADs throughout).


A user may select one or more endpoint telepresence devices via the RPI. Once a secure connection is established between the telepresence device and the RAD, the RPI, being displayed on the RAD, may include a video feed from the telepresence device. In addition, the RPI may include any number of navigational panels, setting controls, telemetry data, map views, and/or patient information, some of which are described in detail herein.


In some embodiments, the RPI may allow a user to select a control mode for the telepresence device. The telepresence device may be controlled manually by the user, operate semi-autonomously, or operate autonomously based on the control mode selected by the user. As described herein, the RPI may allow a user to specify movement (i.e., a location within a healthcare facility or a physical movement, such as a head turn) of the telepresence device using a destination selection panel, an arrow, a physical or virtual joystick, a touch pad, click-to-destination, and/or other navigational control.


The RPI may provide various notifications associated with the network connection, the user's remote device, a patient, a healthcare facility, a healthcare practitioner, a telepresence device, and/or the like. The RPI may include a media management module configured to allow a user to record and/or store audio and/or visual data for subsequent use. A settings panel may allow settings on the RAD and/or the telepresence device to be adjusted. In some views, multiple windows may provide quick access to various panels of information. For example, one or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features described herein may be displayed simultaneously and/or alone in a full-screen mode.


The RPI may utilize a camera of the user's device to capture an image of the user and display the image on a display of the telepresence device. In some embodiments, the image on the display of the telepresence device may be modified and/or enhanced. In various embodiments, multiple healthcare practitioners may participate in a remote consultation.


The RPI may incorporate sub-applications and/or provide access to related applications, such as a StrokeRESPOND application configured to provide one or more functions and/or workflow processes described in U.S. patent application Ser. No. 12/362,454, titled “DOCUMENTATION THROUGH A REMOTE PRESENCE ROBOT,” filed on Jan. 29, 2009, which application is hereby incorporated by reference in its entirety.


The RPI may be configured to maintain a “stateful” connection at the application layer, such that the session and variables may be maintained in the event that the connection is lost or dropped. The RPI may then attempt to re-establish the session using these variables when the connection is restored. The RAD and/or RPI may have settings that enable a user to maximize frame rate or image quality at the expense of the battery life of the device, or vice versa.


According to one embodiment, the RPI may include a “dashboard” configured to allow a healthcare practitioner to visualize patient data during a telepresence session. The patient data may be intelligently populated on a remote presence interface (RPI) of a remote access device (RAD) used by the healthcare practitioner during the remote telepresence session. The dashboard of patient data may be automatically populated based on the patient, context, and/or other factors.


A telepresence network and/or device may detect that a patient's data is being reviewed by the physician and the telepresence device may be automatically dispatched to the patient's room. Accordingly, when the physician remotely connects to the telepresence device, the telepresence device may already be at the patient's bedside or en route to the patient's bedside. In one embodiment, the telepresence device may perform patient rounds, checking on and/or recording information for a plurality of patients at scheduled intervals. The healthcare practitioner may review patient data recorded during the rounds.


In some embodiments, the healthcare practitioner may use a multimedia module of the RPI to save waveforms or other patient data of interest. The healthcare practitioner may share historical waveforms or other patient data with a bedside team directly via the RPI, via a multi-person telepresence session, and/or via access to a multimedia database. Additionally, the telepresence device may observe and/or record anomalous activity of a patient during an observation period.


In some embodiments, the telemedicine device may track the amount of time it is utilized for each particular patient, and/or the type of use for each patient. For example, each encounter with a patient may be categorized by type of visit, the type of person making the visit, the outcome of the visit, the reason for the visit, or other characteristic of the visit. In some embodiments, a telemedicine device may intelligently facilitate remote telepresence connections, such as automatically requesting the assigned doctor for a particular patient when the patient requests “a doctor.”


In some embodiments, the telemedicine device may facilitate communication with an electronic medical record database to automatically (or via manual instructions) update an electronic medical record via the telemedicine device and/or via an RPI on a RAD. In some embodiments, a telemedicine device may allow a companion of a patient to perform remote visits. For example, a spouse, friend, family member, domestic partner, and/or the like may remotely access a telemedicine device to initiate a telepresence session with a patient.


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” and “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. In particular, an “embodiment” may be a system, an article of manufacture (such as a computer-readable storage medium), a method, and/or a product of a process.


The phrases “connected to” and “in communication with” refer to any form of interaction between two or more entities, including mechanical, electrical, magnetic, and electromagnetic interaction. Two components may be connected to each other even though they are not in direct contact with each other and even though there may be intermediary devices between the two components.


Types of telepresence devices include, but are not limited to, remote telepresence devices, mobile telepresence units, and/or control stations. For example, a remote telepresence device may include a telepresence robot configured to move within a medical facility and provide a means for a remote practitioner to perform remote consultations. Again, a telemedicine device, as used herein, may refer to any type of telepresence device having one or more additional features or characteristics for use in a healthcare capacity. Telepresence devices may comprise any of a wide variety of endpoint devices, such as those described in U.S. patent application Ser. No. 13/360,579 filed on Jan. 27, 2012, titled “INTERFACING WITH A MOBILE TELEPRESENCE ROBOT,” and U.S. patent application Ser. No. 13/360,590 filed on Jan. 27, 2012, titled “INTERFACING WITH A MOBILE TELEPRESENCE ROBOT,” which applications are hereby incorporated by reference in their entirety.


The term “remote access device” (RAD) as used throughout the specification may include any of a wide variety of electronic devices, including portable electronic devices (PEDs). Specifically contemplated and illustrated are tablet-style electronic devices, including, but not limited to, electronic readers, tablet computers, tablet PCs, cellular phones, interactive displays, video displays, touch screens, touch computers, and the like. Examples of PEDs include the Apple iPad®, iPod®, and iPhone®, the Hewlett Packard Slate®, the Blackberry Playbook®, the Acer Iconia Tab®, the Samsung Galaxy®, the LG Optimus G-Slate®, the Motorola Xoom®, the HP touchpad Topaz®, the Dell Streak®, and the like. Additionally, a RAD may include a workstation, a desktop, a stationary monitor, and/or other non-portable electronic device. Throughout this description and the accompanying drawings, a tablet-style touch-screen PED is used as an illustrative RAD, however, any of a wide variety of RADs and/or other electronic devices may be used instead.


The described features, operations, or characteristics may be combined in any suitable manner in one or more embodiments. The order of the steps or actions of the methods described in connection with the embodiments disclosed may be varied. Moreover, one or more steps may be omitted from a method, and/or steps from one or more methods may be combined. Thus, any order in the drawings or Detailed Description is for illustrative purposes only and is not meant to imply a required order, unless otherwise specified.


In various embodiments, the techniques introduced herein may be embodied in machine-executable instructions executed by a general-purpose or special-purpose computer (or other electronic device). Alternatively, the techniques may be performed by hardware components that include specific logic for performing the steps, or by a combination of hardware, software, and/or firmware. Accordingly, the various components, modules, systems, and/or features described herein may be embodied as modules within a system. Such a system may be implemented in software, firmware, hardware, and/or physical infrastructure.


In other embodiments, the techniques may also be embodied as a computer program product, including a non-transitory machine-readable medium having stored thereon instructions that may be used to program or be executed on a computer (or other electronic device, such as a PED) to perform processes described herein. The machine-readable medium may include, but is not limited to, hard drives, floppy diskettes, optical disks, CD-ROMs, DVD-ROMs, ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, solid-state memory devices, or other types of media/machine-readable media suitable for storing electronic instructions.


The various embodiments disclosed herein will be best understood by reference to the drawings, wherein like elements are designated by like numerals throughout. In the following description, numerous specific details are provided for a thorough understanding of the embodiments described herein. However, those of skill in the art will recognize that one or more of the specific details may be omitted, or other methods, components, or materials may be used. In some cases, operations and/or components are not shown or described in detail.



FIGS. 1A-C illustrate example embodiments of a telepresence device configured to function as a telemedicine device. As illustrated in each of FIGS. 1A-C, a telepresence device may comprise a base 110 including navigation components configured such that the telepresence device is capable of being manually driven, semi-autonomously driven, and/or autonomously driven. Various display features, connection features, and/or data ports 120, 130, and 165 may be available on a mid-section of the telepresence device. The telepresence device may also include a handle 135. A head portion 140 of the telepresence device may include one or more cameras 160, speakers, and/or microphones. Multiple cameras 160 may be useful to render 3D images, and multiple microphones and/or speakers may be useful for rendering and/or generating directional sound. The head portion may also include a display 150 configured to display an image captured using an RPI on a RAD. The head portion may be configured to rotate, pan, and/or tilt, independent of the base portion 110.


The display 150 and/or the interface 130 may comprise a touch screen or other interface to receive inputs. In some embodiments, if the telepresence device is an autonomous mobile telepresence device, the display 150 and/or the interface 130 may provide a list of destinations or patients that, as described herein, can be selected to send the telepresence device to the selected destination or location. The display 150 and/or the interface 130 may also enable a person to stop the telepresence device when it is autonomously navigating, and likewise enable the telepresence device to resume autonomous navigation to its destination. The display 150 and/or the interface 130 may additionally have a button or menu option that instructs the telepresence device to autonomously navigate to a dock or charging station. The display 150 and/or the interface 130 may include buttons or menu options for various settings, or to page or notify support personnel of a problem with, or question regarding, the operation of the telepresence device.



FIGS. 2A and 2B illustrate an embodiment 200 of what may be displayed during a consult on a telepresence device 255 and via an RPI on a PED 210, respectively. As illustrated, the telepresence device 255 may include audio and/or visual equipment 285 to capture images and/or audio for display on the PED 210. PED 210 may include a camera 280 to capture an image 290 for display on a screen 215 of a head portion 225 of the telepresence device 255. In addition to or in place of the image 290, the screen 215 may display a user interface for and/or information associated with an application running on the telepresence device. In some embodiments, the image 290 of a remote healthcare practitioner may be reduced in size or eliminated to accommodate the display of the user interface and/or other information on the screen 215, or the user interface and/or additional information may be displayed as an overlay on the image 290.


A lower portion of the telepresence device may include adjustment knobs 235 and 245. In some embodiments, and as illustrated, the adjustment knobs 235 and 245 may be used for controlling the microphone volume 235 and/or the speaker volume 245. Additionally, a screen 275 may provide additional information and/or provide controls for the telepresence device 255. For example, the screen 275 may provide additional information about the user of the PED 210. For instance, a patient being cared for via the telepresence device 255 may see a healthcare practitioner using the RPI on the PED 210. Similarly, the healthcare provider may see and interact with the patient via the telepresence device 255 using the RPI on the PED 210.


The screen 275 may be a touch screen device and provide an interface for initiating, stopping, interrupting, and/or otherwise controlling any of the various methods, workflows, and/or operations described herein. Additionally or alternatively, the screen 275 may provide an interface for patients and/or healthcare practitioners to provide information associated with any of the methods, workflows and/or operations described herein. According to various embodiments, the screen 275 may receive inputs and/or otherwise be controlled by a remote interface, a touch screen display, one or more integrated or connected peripheral devices (e.g., keyboard, mouse, buttons), and/or via adjustment knobs 235 and 245. For example, adjustment knobs 235 and 245 may be used to navigate and/or select menus features, displayed content/pages, and/or icons on the screen 275 and/or screen 215.


The RPI on a PED 210 illustrates multiple panels. As illustrated, a radiography panel 220 may display images associated with a patient displayed in a live video feed 250. Telemetry data 230, lab results 240, patient data 260, and physician notes 270 may be displayed in various other panels on PED 210 via the RPI. According to various embodiments, each of the panels 220, 230, 240, 250, 260, 270, and 290 may be moved, enlarged, merged with another panel, removed, and/or captured (recorded), intelligently based on decisions made by the RPI, based on usage history, based on relevancy, and/or based on user selection. Camera 280 may be selectively enabled or disabled by the user.


The RPI may enable complete integration of patient data monitoring with the remote telepresence session, thereby adding a dimension of data-driven functionality uniquely valuable in telemedicine applications. The user may select an icon from a toolbar or other panel to activate a patient bedside data monitoring app, such as those offered by any of a variety of real-time patient data monitoring application providers. Upon selecting the appropriate icon, a patient data monitoring window may appear in the RPI. The user may expand this pane to a full screen view, reposition the pane, and/or resize the pane as described above. The RPI may show any number of real-time or archived patient biometrics or waveforms, such as temperature, heart rate, pulse, blood pressure, oxygen saturation, or the like.


Using the touch-screen interface, the user may pause and resume real-time, time-delayed, or archived patient data. The user may move back and forth through time-based patient data using dragging or swiping gestures, or the user may zoom or scale the waveform or metric along an amplitude axis and/or time axis. The application may further allow the user to set markers along a waveform to measure variations in amplitude or time associated with various features of the patient data, such as peaks, valleys, maxima or minima (global or local), global averages, running averages, threshold crossings, or the like.


The data may be collected from bedside monitors or other monitoring devices in real-time and archived for a period of time (or indefinitely) in a server or database. The monitoring app may be a separate application and/or integrated within the RPI. The monitoring app may retrieve the relevant data and provide it to the RPI through an application programming interface (API) and/or the RPI may independently retrieve the data from a database.


The data may also be collected by a data collection components of the telepresence device by, for example, directing a camera of the telepresence device to the display of a monitoring device, and either recording video of the monitor display or performing image analysis on the video image to extract the patient data. The user and/or telepresence device may annotate the data and store the annotations with the data, either locally or in a remote server, for later retrieval. The monitoring app may enable alarms, alerts, notifications, or other actions or scripted activities set to take place in response to certain events in the data.


In some embodiments, if a patient's vitals or other biometrics trigger an alert or alarm condition, the telepresence device may be configured to autonomously navigate to the bed or room number of that patient, and send a notification or invitation to a doctor, caregiver, or specialist to begin a telepresence session with the patient. Additionally, when a healthcare practitioner initiates a session with a telepresence device and selects either a location or destination or patient to visit with the autonomous telepresence device, the bedside or biometric data for a patient associated with the selected location, destination, or name may be automatically retrieved and used to populate a “dashboard” of patient data that the healthcare practitioner can then review, annotate, or otherwise interact with as discussed above.


Moreover, an autonomous mobile telepresence device may be used to conduct patient rounds in a healthcare facility. As the telepresence device moves from one location to the next, the location of the telepresence device may be used to retrieve the name of a patient associated with that location, and that patient's biometric, bedside data, and/or other patient data may be retrieved and used to populate a patient dashboard on a display of the PED.


In addition, an autonomous mobile telepresence device may be scripted or scheduled to make scheduled stops at various beds, rooms, locations, or patients associated therewith. The RPI may retrieve the names or contact info of people (such as doctors, nurses, students, family members, etc.) associated with a scheduled or upcoming stop at a particular patient or location, and send a notification via SMS, email, etc., to the associated people inviting them to join the telepresence session by receiving audio and/or video from the session on a PED via the RPI. To accommodate a time interval that may be necessary or convenient to allow others to join the session, the telepresence device may send invitations, notifications, and/or reminders to join the session a predetermined amount of time prior to the time the session is scheduled to begin. Repeated or reminder notifications may be sent to each party at regular or decreasing intervals to remind them of an upcoming session. The notifications may contain a hyperlink to follow to join the session, a link to the RPI, an app notification or badge for display on the PED, or the address or phone number of another device address to connect to. The notification may further include a username, password, pin and/or other credential(s) that the invitees must provide to join the session.



FIG. 3 illustrates a flow diagram 300 of data between telemedicine devices and remote user devices. As illustrated, at a patient bedside 310, various patient data may be collected via bedside monitors, ventilators, pumps, data such as the patient room number, and other patient data, at 311. The various patient data may be securely available via a solution partner's web portal 320. A telemedicine device 315 may perform any of the various services provided herein and include communication components (e.g., wired and/or wireless network components) to interface with one or more servers 330 and 340, directly with a RAD, or with other telepresence devices. Video archives 335 may be shared or communicated between the servers 330 and 340 and the solution partner's web portal.


The various data and services collected at the patient bedside 310 may be made available via the web portal 320 and/or the servers 330 and 340. The data, such as patient room information, bedside data, images, notifications, images, live consults, exam devices, documentation, orders sets, and the like, may be available useable via one or more clinical experiences 350. For example, the data may be made available via a fixed RAD 351, a portable RAD (PED) 352, and/or on mobile devices (PEDs) 353.



FIG. 4 illustrates various remote features available to a healthcare practitioner 430 using a telemedicine device 410. As illustrated, a telemedicine device 410 may allow a healthcare practitioner 430 to participate in telepresence communication sessions with various patients 461 and 462 and/or other healthcare practitioners 463 and 464. Additionally, the telemedicine device 410 may allow a healthcare practitioner 430 to view telemetry data 420, switch between and autonomously navigate to various patients on a patient list 440, and/or navigate within a healthcare facility using a plan view map 450. In various embodiments, the telemedicine device may be configured to autonomously and/or semi-autonomously navigate with a healthcare facility.



FIG. 5 illustrates an embodiment 500 of an endpoint list 510 generated by the RPI running on a RAD 505. The endpoint list 510 may include various telepresence devices 520 and their respective connectivity states 515. A user may indicate (via a touch, a click, using a stylus, and/or by speaking) to which of the available endpoints he or she would like to connect. Where an ADT (Admissions, Discharges, and Transfers) data source is available, patients may also be listed. Selecting a particular patient may initiate a connection to an endpoint device that is assigned to, associated with, or otherwise in proximity to the selected patient. A device in proximity to the patient could be a device nearest a location of the selected patient, the same bed, room, or floor number.


The list may also include doctors, nurses, staff, or any other persons that may currently (or for a scheduled period of time) be associated with a particular location to which the endpoint can navigate. The list of available endpoints may be searchable and/or filterable. In some embodiments, the list may be implemented with a text box in the window, together with the list of endpoints, in a separate window, or in separate tabs. As the user enters alphanumeric characters into the text box, the list may be instantaneously filtered to exclude endpoints whose names do not match the character string currently contained in the text box. Other filtering parameters may be specified, such as endpoint type, manufacturer, status, facility, building, floor, room, customer, or any other grouping. Logical, arbitrary, or otherwise customized groupings of endpoints may be created by a user or administrator, and these groupings may additionally be used to filter or otherwise search the list of endpoints.


Each endpoint in the list may have an associated status indicator, which informs the user whether a device is ready, busy, offline, in a private session, in a multi-presence session (which the user may join to receive session audio, video, images, or potentially control some or all functions of the endpoint).



FIG. 6 illustrates an embodiment 600 of an RPI with a panel 620 displaying a live feed from a telepresence device. A lower panel 610 may display a list of patients. A user may select a patient on the patient list to direct the telepresence device to navigate to the selected patient. Again, the telepresence device may be manually driven, autonomously navigate, or semi-autonomously navigate to the selected destination. The patient list may further include one or more meters or visual indicators indicating patient condition, criticality, or other current health metric associated with each patient. The list may further include a visual indicator of a distance or estimated travel time from the current position of the telemedicine device to the corresponding patient. These measures of patient condition and travel time may be combined to create a single metric that represents a best or most clinically effective next patient to visit. The patient list may be sortable and/or filterable, such that the order of patients is continuously updated based on these or other variables.



FIG. 7 illustrates an embodiment 700 of an RPI on a RAD 705, including a video window 710 displaying a list of telepresence devices to which the user has access, a work space window 730 displaying a list of patients, and a toolbar 715 as a tool belt dividing the display. In various embodiments, the selection of a telepresence device via video window 710 will display a live video feed from the selected telepresence device and initiate a communication session with the telepresence device to allow the user of the RPI on the RAD 705 to control the telepresence device and/or join in a multi-user experience with the telepresence device. The selection of a patient via work space window 730 may automatically select an associated telepresence device based on availability, proximity, and/or other preferences. Alternatively, the user of the RPI on the RAD 705 may additionally select a telepresence device. The selection of a patient via work space window 730 may also direct a telepresence robot to navigate to the location of the patient.



FIG. 8 illustrates an embodiment 800 of an RPI on a RAD 805, including a toolbar 825 in a lower panel 820. The toolbar may provide quick access to any of a wide variety of settings and/or features of the RPI. A user may select an icon using any of a wide variety of methods depending on the RAD 805. For instance, a user may touch an icon to select it. Settings and/or features of the RPI may be accessed simultaneously while a live video feed is shown in the upper panel 810. A media management toolbar 830 (selectively enabled) may allow for the video feed in upper panel 810 to be recorded, at 840. A notification 825 may alert a user of the RAD 805 that the battery on the telepresence device is nearly depleted. As in previous embodiments, a window 815 may display the image currently being captured by a camera on the RAD 805 or managing modules and control operations available via an RPI, while simultaneously displaying a video feed from a telepresence device.


According to various embodiments, the toolbar 825 may provide access to a handset, a stethoscope, a camera, a video, a live cursor, a laser pointer, microphone settings, a map, navigational options, a disconnect button, and/or other feature, option or settings. The toolbar 825 may provide access to various other functions or applications, such as StrokeRESPOND, SureNotes, a media manager, patient data, lab results, image data, and/or team communication.



FIG. 9 illustrates a flow chart of a method 900 for automatically populating a dashboard with relevant patient data when utilizing a telemedicine device. According to various embodiments, a healthcare practitioner may utilize a RAD configured with an RPI to monitor or communicate with a patient. The RPI may allow the healthcare practitioner to access a telepresence network configured with one or more telepresence devices, such as an autonomous telemedicine device. The healthcare practitioner may select a patient using the RPI, at 910. A telemedicine device associated with the RPI, the telepresence network, the healthcare practitioner, and/or the patient may autonomously navigate to the patient, at 920. The RPI may show an image of the patient captured by a camera of the telemedicine device, the RPI may show an image of the patient, monitors, charts, surroundings, etc.


During or prior to a tele-consultation with the patient, a clinical dashboard on the RPI may be automatically populated with relevant patient data, at 930. For example, panels on a display of the RAD may be populated with various statistics, charts, graphs, telemetry data, personal data, and other relevant data associated with the patient. The healthcare practitioner may utilize the patient data during the tele-consultation, at 940. The healthcare practitioner may make notes and/or update electronic medical records using the RPI. The telemedicine device may be configured to automatically record all or portions of the tele-consultation, relevant patient data gathered during the tele-consultation, and/or automatically update electronic medical records.



FIG. 10 illustrates a flow chart of a method 1000 for intelligently dispatching an autonomous telemedicine device. A nurse may alert a physician regarding a patient's condition, at 1010. For example, a nurse may identify a symptom that requires urgent attention. A responding physician may access the patient's data to review the patient's condition, at 1020. A telepresence network and/or a telemedicine device may detect that a patient's data is being reviewed by the physician, and the telepresence device may be automatically dispatched to the patient's room, at 1030. The physician may remotely connect to the telemedicine device, such as via an RPI on a RAD, at 1040. Because the telepresence network and/or the telemedicine device detected the access to the patient's data, the telepresence device may already be at the patient's bedside or en route to the patient's bedside when the physician connects via the RPI.



FIG. 11 illustrates a flow chart of another method 1100 for intelligently dispatching an autonomous telemedicine device. A nurse may be assigned to monitor several patients (patients A-Z) and decide that he wants to see Patient A, at 1110. The nurse may select Patient A from a list of patients, at 1120. In some embodiments, the nurse may select Patient A via a display interface directly on a telemedicine device. In other embodiments, the nurse may select Patient A via an RPI on a RAD in communication with a telepresence network and/or the telemedicine device. In response to the nurse's selection of Patient A from the list of patients, a telemedicine device may be automatically dispatched to the room of patient A, at 1130. The telemedicine device may autonomously navigate to the room of patient A, at 1140. When the nurse disconnects, the telemedicine device may autonomously return to a docking station, at 1150.



FIG. 12 illustrates a flow chart of a method 400 for a nurse to attend rounds using a telemedicine device to sequentially visit a number of patients. A nurse accesses a display interface of a telemedicine device or an RPI on a RAD, at 1205. The nurse selects a plurality of patients A-Z from a list of patients, at 1210. A telemedicine device autonomously navigates to the first patient, at 1215. A clinical dashboard on the RAD automatically populates with relevant patient data for the first patient, at 1220. In various embodiments, the RPI may allow the nurse to view and/or hear the patient, allow the patient to view and/or hear the nurse, allow the nurse to perform various medical tasks, such as check charts, monitors, medical instrument readouts, and/or perform various medical checkups. For example, the telemedicine device may be equipped with a stethoscope, heart rate monitor, blood pressure monitor, and/or other medical device. Such medical devices may be remotely useable via the RPI.


When finished with an individual patient, the nurse may indicate that she is done with the current patient via the RPI on the RAD, at 1225. For example, the nurse may select a next patient on a list of patients, or select a “next patient” button via the RPI. If there are more patients on the list of the plurality of patients selected by the nurse, at 1230, the telemedicine device may autonomously navigate to the next patient, at 1235. Again, a clinical dashboard on the RPI may automatically populate with relevant patient data, at 1240. Following the remote visit/consultation, the nurse may indicate that she is done with the current patient, at 1225. If there are more patients on the list, at 1230, then the telemedicine device may autonomously and/or automatically navigate to the next patient, at 1235. The cycle may continue until there are no more patients on the list, at 1230. At this point, the nurse has completed the rounds and the process may end. The telemedicine device may be configured to autonomously return to its dock.


According to various embodiments, the list of patients to be visited may be manually generated by a healthcare practitioner, or automatically generated by a scheduling system. Additionally, the order of the list may be continuously updated based on the condition of patients as they are visited during the rounds. For example, real-time data may indicate that a particular patient should be checked on more frequently. Accordingly, the list of patients and/or the order in which they are visited may be updated based on real-time patient conditions and/or other inputs provided by a healthcare practitioner. In some instances, a healthcare practitioner may indicate that a particular patient should be visited more often than the data would otherwise suggest. Additionally, the list of patients may be used to populate a queue of patients to be visited by remote healthcare practitioners when they log in to a telemedicine device. The queue may include numerous patients associated with one or more healthcare practitioners. The queue may be updated, filtered, and/or re-ordered based on the healthcare practitioner who logs in, the current status of the patients, and/or other relevant factors. In some embodiments the healthcare practitioner may manually override the automatically generated queue.



FIG. 13 illustrates a flow chart of a method 1300 for a healthcare practitioner to perform patient rounds using a telemedicine device while viewing, saving, and sharing, relevant patient data. A healthcare practitioner remotely performs patient rounds using a telemedicine device, at 1310. For example, using the process described above with reference to FIG. 12. The healthcare practitioner may review patient data automatically populated on a clinical dashboard of an RPI while simultaneously participating in a telepresence session with the patient, at 1320. The healthcare practitioner may use a multimedia module of the RPI to save waveforms or other patient data of interest, at 1330. The healthcare practitioner may share on a display associated with the telemedicine device historical waveforms or other patient data with a bedside team directly via the RPI, via a multi-person telepresence session, and/or via access to a multimedia database, at 1340.



FIG. 14 illustrates a flow chart of a method 1400 for a nurse to send a telemedicine device to observe a patient for a period of time. A bedside nurse may observe a patient having a seizure, at 1410. The nurse sends a telemedicine device to the patient's bedside to continue observation, at 1420. The telemedicine device may continue the observation and may record all activity or anomalous activity, at 1430. The physician may log into the telepresence device and review recorded activity, at 1440.



FIG. 15A illustrates a flow chart of a method 1500 for tracking the amount of time a telemedicine device spends with each patient. The telemedicine device tracks each session and/or usage by patient name (or other identifying characteristic), at 1510. The telemedicine device may track the amount of time it spends at each patient's bedside, or is otherwise being used in conjunction with a particular patient, at 1520. Additionally, the telemedicine device may track the usage of one or more devices or functionalities associated with the telemedicine device, such as a camera, stethoscope, otoscope, auxiliary video port or other auxiliary input, privacy handset, or other feature or device associated with the telemedicine device. The telemedicine device, a telepresence system, and/or an RPI may total the patient encounters and present them, such as via a graph or data chart, at 1530.



FIG. 15B illustrates a flow chart of a method 1550 for tracking the usage of a telemedicine device with respect to individual patients. The telemedicine device (or related system) may track each session by patient name or other identifying characteristic, at 1555. The telemedicine device may track the amount of time it spends at each patient's bedside, or otherwise being used in conjunction with a particular patient, at 1560. The telemedicine device may categorize each encounter with a patient, at 1565. For example, each encounter may be categorized by type of visit, the type of person making the visit, the outcome of the visit, the reason for the visit, or other characteristic of the visit. The telemedicine device, a telepresence system, and/or an RPI may total the patient encounters and present them, such as via a graph or data chart, at 1570.



FIG. 16 illustrates a flow chart of a method 1600 for an autonomous telemedicine device to invite healthcare practitioners while it automatically performs patient rounds. The telemedicine device may be scheduled to visit patients A-Z at 8 a.m., at 1610. The telemedicine device may automatically invite team members to participate, via a telepresence session, as the telemedicine device performs rounds, at 1620. The remote team members may join in the rounds via an RPI on a RAD, at 1630.


Additionally, an autonomous telemedicine device may be configured to perform, for example, compliance rounds. The telemedicine device may be configured to review patient orders for each of a plurality of patients and then visit each patient and check for compliance. For example, a patient may have orders pertaining to a change of bed elevation, DVT prophylaxis (compression sleeves around a portion of a patient's leg), a medication, confinement to bed, and/or other doctor-ordered condition. The telemedicine device may then navigate to each patient and using, for example, image analysis, computer vision techniques, and/or data monitoring devices, check for patient compliance. In some embodiments, the telemedicine device may navigate to each patient's bedside and then call a healthcare practitioner and invite the healthcare practitioner to confirm, via a teleconference, that the patient has complied with a set of orders. In some embodiments, the telemedicine device may be configured to question associated healthcare practitioners and/or the patient to ask about compliance. For example, the telemedicine device may simply verify that each patient is “doing OK,” still in bed, and/or asleep.



FIG. 17 illustrates a flow chart of a method 1700 for a telemedicine device to intelligently facilitate remote telepresence connections. The telemedicine device may be at a patient's bedside, at 1710. A nurse, also at the patient's bedside, may need assistance from another health professional, for example, a pharmacist, at 1720. The nurse may select a “pharmacist” link from a display interface on the telemedicine device or via an RPI on a RAD, at 1730. According to various embodiments, the nurse may not need to specify a particular pharmacist. The telemedicine device may invite the assigned pharmacist to remotely participate via a telepresence session, at 1740. For example, a pharmacist assigned to the patient, a pharmacist who last administered to the patient, the nearest pharmacist, an available pharmacist, an on-call pharmacist, and/or other available pharmacist may be automatically invited by the telemedicine device or an associated telepresence system. In various embodiments, the invitation may be sent via email, text message, personal message, voice message, a system alert to a RAD, a proprietary messaging system, or the like.


In alternative embodiments, any of a patient, nurse, physician, doctor, visitor, remote user, healthcare practitioner, and/or other person may make a general request for a different patient, nurse, physician, doctor, visitor, remote user, healthcare practitioner, and/or other person. The telemedicine device, a telepresence system, and/or an RPI may receive the general request and make a context-based specific request. For example, a patient may request a consultation with a “doctor” via a display interface of a telemedicine device. The telemedicine device may, based on the context of the location, patient, time, and/or other factors, send a request to a specific doctor to participate in a telepresence session via the telemedicine device. The doctor may utilize an RPI on a RAD to remotely log in to the telemedicine device.



FIG. 18 illustrates a flow chart of a method 1800 for using a telemedicine device to evaluate and/or monitor a remote patient. For example, a sick patient in an emergency department may be waiting for a bed and/or room in an intensive care unit (ICU), at 1810. An ICU nurse may send a telemedicine device to the patient, at 1820. The ICU nurse may remotely evaluate and monitor the patient from the ICU ward, at 1830. Accordingly, a patient needing the expert care of an ICU nurse may receive it remotely via the telemedicine device.



FIG. 19 illustrates a flow chart of a method 1900 for using a telemedicine device as a reminder service in conjunction with remote telepresence consultations. In the illustrated example, a nurse may be attending a critical patient, Patient A, at 1910. A telemedicine device may remind the nurse that a second patient, Patient B, needs a scheduled pain assessment, at 1920. The nurse may elect to remain with Patient A while dispatching the telemedicine device to Patient B. The telemedicine device may autonomously navigate to Patient B and call the nurse to perform the pain assessment remotely, at 1930. The nurse may utilize an RPI on a RAD to remotely perform the pain assessment in a telepresence session.



FIG. 20 illustrates a flow chart of a method 2000 for utilizing a telemedicine device to update electronic medical records. In various situations a medical professional has reason to update a patient's medical record. For example, prior to a shift change, a nurse typically updates each patient's medical record. In the illustrated embodiment, a nurse is entering data for a shift change, at 2010. The nurse sends a telemedicine device to a patient, at 2020. The nurse collects clinical bedside data via the telemedicine device and updates an electronic medical record, at 2030. In one embodiment, the telemedicine device may be configured to communicate with an electronic medical record database to automatically (or via manual instructions) update an electronic medical record via the telemedicine device and/or via an RPI on a RAD.



FIG. 21 illustrates a flow chart of a method 2100 for utilizing an autonomous telemedicine device to check on patients and record preselected and/or anomalous conditions. A healthcare practitioner may flag patients requiring monitoring, at 2110. At scheduled intervals (automatically determined or as scheduled by the healthcare practitioner), a telemedicine device may autonomously navigate to each flagged patient, at 2120. The telemedicine device may record preselected information and/or anomalous information, at 2130. Information may be determined anomalous if it deviates from a specified threshold level, for example. A healthcare practitioner may then review the recorded information, at 2140. For example, a healthcare practitioner may flag patients for visits during the night and then review any specific or anomalous information recorded by the telemedicine device.



FIG. 22 illustrates a flow chart of a method 2200 for utilizing an autonomous telemedicine device to allow a companion of a patient to perform remote visits. In the illustrated embodiment, a patient's companion (e.g., spouse, friend, family member, domestic partner) must travel, so is offered an application for use on a personal electronic device, at 2210. The companion uses the application to remotely log in to a telemedicine device and request a visit with the patient, at 2220. The telemedicine device obtains authorization for non-medical visitation usage, at 2230. For example, non-medical visitations may be given a lower priority than actual medical usages. In some embodiments, a healthcare facility may include telemedicine devices specifically dedicated to non-medical visits. Such telemedicine devices may not have all the same features of telemedicine devices for use by healthcare practitioners.


Alternatively, a telemedicine device may selectively disable specific features when a user logs in as a companion. For example, live audio and video may be disabled while the telemedicine navigates through a healthcare facility. The live audio and/or video may then be enabled when the device reaches the target patient or other location where the privacy of the target patient, his or her companion, and other patients and staff in the facility can be reasonably assured. Additionally, the RPI of the companion may completely or partially prevent the companion from manually navigating the telepresence device. For example, the companion may have the ability to move the telepresence device about a particular room or within a specified radius of a bed of the target patient, but may not have the ability to move the device beyond some defined boundary. As another example, the companion may have the ability to control head movements and/or the direction a camera is aimed or zoomed, but not be able to control the movement of a base of a telemedicine device.


In some embodiments, the telemedicine device may limit the pan, tilt, or zoom range of a camera associated with the telemedicine device, to prevent other patients or staff from coming within the field of view of the camera. This limited range may be fixed or predetermined, may depend on scene analysis using image analysis techniques, and/or may be determined based on a calculation of the field of view of the camera associated with the telemedicine device as compared to items tagged in a map of the telemedicine device, such as patients, beds, or zones or regions designated as allowed or prohibited. The calculation of the field of view of the camera may depend on the location and pose of the telemedicine device, as well as pan, tilt, and zoom parameters of the camera associated with the telemedicine device.


Assuming permission is granted, the telemedicine device autonomously navigates to the patient for tele-visitation, at 2240. During the companion's telepresence session, a healthcare practitioner may request usage of the telemedicine device to visit a second patient for medical purposes, at 2250. The telemedicine device may explain the situation to the first patient and/or the companion, disconnect the companion, and autonomously navigate to the second patient, at 2260.


Variations may be made to the details of the above-described embodiments without departing from the underlying principles and scope of the present disclosure. Accordingly, the scope of the presently described systems and methods should be determined only by the following claims.

Claims
  • 1. A method for providing a remote telepresence patient visitation, the method comprising: receiving a login request from a user using a remote presence interface on a remote access device;verifying credentials of the user provided with the login request;displaying a list of patients on the remote presence interface;receiving a request from the user via the remote presence interface for telepresence sessions with a selection of a plurality of patients from the patient list;directing a telemedicine device to autonomously navigate to a first patient of the plurality of patients;receiving, prior to a telepresence session, patient data regarding the first patient from a bedside patient monitor;populating a dashboard of the remote presence interface with the patient data related to the first patient, such that the patient data is viewable during the telepresence session;in response to the telemedicine device reaching the first patient, initiating a telepresence session between the user and the first patient via the remote presence interface on the remote access device;receiving, subsequent to initiating the telepresence session with the first patient, an indication that the user wishes to conclude the telepresence session with the first patient; anddirecting, upon conclusion of the telepresence session with the first patient, the telemedicine device to autonomously navigate to a second patient of the plurality of patients.
  • 2. The method of claim 1, wherein populating the dashboard of the remote presence interface, comprises: subsequent to the telemedicine device reaching the first patient and initiating the telepresence session, gathering, by the telemedicine device, the patient data from the bedside patient monitor; andtransmitting the patient monitoring data from the telemedicine device to the remote presence interface for display in the dashboard, such that the patient data is viewable during a telepresence session.
  • 3. The method of claim 1, further comprising: receiving an indication that the user wishes to conclude the telepresence session; anddirecting the telemedicine device to autonomously navigate to a docking station.
  • 4. The method of claim 1, further comprising: gathering patient data relating to the patient; andtransmitting the patient data from the telemedicine device to the remote access device to be used in populating a remote dashboard of the remote presence interface on the remote access device, such that the patient data is viewable during the telepresence session.
  • 5. The method of claim 1, wherein the patient data comprise a waveform.
  • 6. The method of claim 1, wherein the patient data comprise vital signs.
  • 7. The method of claim 1, wherein the patient data comprise biometric data.
  • 8. The method of claim 1, wherein the patient data comprise archived patient monitoring data.
  • 9. The method of claim 1, wherein the dashboard is populated with patient data before the telepresence session.
  • 10. The method of claim 1, further comprising: sharing the patient data from the remote presence device to a display associated with the telemedicine device viewable by a person in proximity to a bedside of the first patient.
  • 11. The method of claim 1, where directing comprises: in response to detecting that the first patient's data is being reviewed, automatically dispatching the telemedicine device to a location of the first patient.
  • 12. The method of claim 1, further comprising: in response to real-time data concerning a condition of a third patient of the plurality of patients, automatically directing the telemedicine device to the third patient before the second patient.
  • 13. The method of claim 1, further comprising: continuously updating an order of patients for the telemedicine device to visit based on real-time data relating to conditions of each of the plurality of patients.
  • 14. The method of claim 13, further comprising: overriding an automatically-generated order for visiting one or more patients in response to a manual input.
  • 15. The method of claim 1, further comprising: in response to a third patient's data trigging an alarm condition: automatically dispatching the telemedicine device to the third patient; andsending an invitation to a medical practitioner to begin a telepresence session with the third patient.
  • 16. The method of claim 1, further comprising: tracking an amount of time the telemedicine device is used in conjunction with a particular patient.
  • 17. The method of claim 16, further comprising: displaying statistics on the remote presence interface relating to one or more encounters with the particular patient.
  • 18. The method of claim 1, further comprising: documenting an encounter of the telemedicine device with a particular patient, wherein documenting comprises categorizing the encounter by at least one of type of visit, a type of person making the visit, the outcome of the visit, and a reason for the visit.
  • 19. A telemedicine device comprising: a communication component configured to receive a patient list indicating a plurality of patients to visit, wherein the patient list is created via a remote presence interface on a remote access device that displays a list of patients on the remote presence interface;a navigation component configured to autonomously navigate the telemedicine device to a first patient of the plurality of patients;a data collection component configured to gather patient data relating to the first patient, wherein the patient data comprise real-time patient monitoring data from a bedside patient monitor;the communication component further configured to transmit the patient data to be used in populating a remote dashboard of a remote presence interface, such that the patient data is viewable during the telepresence session;the communication component further configured to receive an indication to conclude the telepresence session with the first patient; andwherein the navigation component is further configured to autonomously navigate the telemedicine device directly to a second patient of the plurality of patients, in response to the indication to conclude the telepresence session with the first patient.
  • 20. The telemedicine device of claim 19, further comprising: an input configured to receive an indication that a medical professional is needed to visit a patient;
  • 21. The telemedicine device of claim 19 wherein the communication component is further configured to: transmit an invitation to a user to join a telepresence session; andtransmit audio, video, and/or patient data to the user via the telepresence session.
  • 22. The telemedicine device of claim 19, further comprising: an input component configured to receive instructions to alert a user that a patient needs attention in response to an event;a navigation component configured to autonomously navigate the telemedicine device to the patient in response to the event; andwherein the communication component is further configured to: transmit an invitation to the user to join a telepresence session upon arriving at the patient; andtransmit audio, video, and/or patient data to the user via the telepresence session.
  • 23. A method comprising: displaying a list of patients on a remote presence interface of a remote access device;receiving, from a remote user, a selection of a plurality of patients from the patient list via the remote presence interface on the remote access device;directing a telemedicine device to autonomously navigate to a first patient of the plurality of patients;initiating a telepresence session with the first patient via the remote presence interface;populating a dashboard of the remote presence interface with patient data relating to the first patient, wherein the patient data is obtained prior to the telepresence session from at least one of a patient chart and a bedside patient monitor, such that the patient data is viewable to the remote user during the telepresence session;recording the patient data relating to the patient data for subsequent review;directing the telemedicine device to display previously recorded patient data for review by a local medical professional;receiving an indication to conclude the telepresence session with the first patient; anddirecting, upon conclusion of the telepresence session with the first patient, the telemedicine device to autonomously navigate directly to a second patient of the plurality of patients.
  • 24. The method of claim 23, further comprising: storing a record of each of a plurality of patient visits in a memory of a telepresence robot, wherein each patient is identified by a unique identifier and the record includes: an amount of time spent at each patient's bedside;a category for each encounter with a patient;usage information for a component of the telemedicine device; andexporting the record.
  • 25. The method of claim 23, further comprising: receiving an indication by the telemedicine device that a medical professional is needed to visit the patient;transmitting an invitation by the telemedicine device to the medical professional to join a telepresence session regarding the patient; andtransmitting audio, video, and/or patient data to a remote access device to be viewed by the medical professional.
  • 26. The method of claim 23, further comprising: receiving at the telemedicine device an indication that a medical professional is needed to visit the patient;displaying a list of available medical professionals;receiving a selection of a medical professional from the list of medical professionals available to visit the patient; andtransmitting, by the telemedicine device, an invitation to the selected medical professional to join the telepresence session.
  • 27. The method of claim 23, further comprising: transmitting, by the telemedicine device, an invitation to a user to join a telepresence session; andtransmitting audio, video, and/or patient data to the user via the telepresence session.
  • 28. The method of claim 23, further comprising: receiving, by the telemedicine device, an instruction to remind a user that a patient needs attention in response to an event;in response to the event, navigating the telemedicine device autonomously to the patient;upon arriving at the patient, transmitting from the telemedicine device an invitation to the user to join a telepresence session; andtransmitting audio, video, and/or patient data from the telemedicine device to the user via the telepresence session.
RELATED APPLICATIONS

This U.S. Patent Application is a continuation of PCT Application No. PCT/US2013/031708 (the “PCT Application”), which application is hereby incorporated by reference it is entirety. This U.S. Patent Application and the PCT Application also claim priority under 35 U.S.C. § 119(e) to: U.S. Provisional Application No. 61/650,205 filed May 22, 2012, titled “Remote Presence Interface and Patient Data Integration;” U.S. Provisional Application No. 61/674,794 filed Jul. 23, 2012, titled “Graphical User Interfaces Including Touchpad Driving Interfaces for Telemedicine Devices;” U.S. Provisional Application No. 61/674,796 filed Jul. 23, 2012, titled “Clinical Workflows Utilizing Autonomous and Semi-Autonomous Telemedicine Devices;” U.S. Provisional Application No. 61/674,782 filed Jul. 23, 2012, titled “Behavioral Rules For a Telemedicine Robot To Comply With Social Protocols;” U.S. Provisional Application No. 61/766,623 filed Feb. 19, 2013, titled “Graphical User Interfaces Including Touchpad Driving Interfaces for Telemedicine Devices;” which applications are hereby incorporated by reference in their entireties.

US Referenced Citations (817)
Number Name Date Kind
3821995 Aghnides Jul 1974 A
4107689 Jellinek Aug 1978 A
4213182 Eichelberger et al. Jul 1980 A
4413693 Derby Nov 1983 A
4471354 Smith Sep 1984 A
4519466 Shiraishi May 1985 A
4553309 Hess et al. Nov 1985 A
4572594 Schwartz Feb 1986 A
4625274 Schroeder Nov 1986 A
4638445 Mattaboni Jan 1987 A
4652204 Arnett Mar 1987 A
4669168 Tamura et al. Jun 1987 A
4679152 Perdue Jul 1987 A
4697278 Fleischer Sep 1987 A
4697472 Hiyane Oct 1987 A
4709265 Silverman et al. Nov 1987 A
4733737 Falamak Mar 1988 A
4751658 Kadonoff et al. Jun 1988 A
4766581 Korn et al. Aug 1988 A
4777416 George et al. Oct 1988 A
4797557 Ohman Jan 1989 A
4803625 Fu et al. Feb 1989 A
4847764 Halvorson Jul 1989 A
4875172 Kanayama Oct 1989 A
4878501 Shue Nov 1989 A
4942512 Kohno Jul 1990 A
4942538 Yuan et al. Jul 1990 A
4953159 Hayden et al. Aug 1990 A
4974607 Miwa Dec 1990 A
4977971 Crane, III et al. Dec 1990 A
5006988 Borenstein et al. Apr 1991 A
5040116 Evans, Jr. et al. Aug 1991 A
5051906 Evans et al. Sep 1991 A
5073749 Kanayama Dec 1991 A
5084828 Kaufman et al. Jan 1992 A
5130794 Ritchey Jul 1992 A
5148591 Pryor Sep 1992 A
5153833 Gordon et al. Oct 1992 A
5155684 Burke et al. Oct 1992 A
5157491 Kassatly Oct 1992 A
5182641 Diner et al. Jan 1993 A
5186270 West Feb 1993 A
5193143 Kaemmerer et al. Mar 1993 A
5217453 Wilk Jun 1993 A
5220263 Onishi et al. Jun 1993 A
5224157 Yamada et al. Jun 1993 A
5230023 Nakano Jul 1993 A
5231693 Backes et al. Jul 1993 A
5236432 Matsen et al. Aug 1993 A
5262944 Weisner et al. Nov 1993 A
5305427 Nagata Apr 1994 A
5315287 Sol May 1994 A
5319611 Korba Jun 1994 A
5341242 Gilboa et al. Aug 1994 A
5341459 Backes Aug 1994 A
5341854 Zezulka et al. Aug 1994 A
5347306 Nitta Sep 1994 A
5347457 Tanaka et al. Sep 1994 A
5350033 Kraft Sep 1994 A
5366896 Margrey et al. Nov 1994 A
5374879 Pin et al. Dec 1994 A
5375195 Johnston Dec 1994 A
5400068 Ishida et al. Mar 1995 A
5413693 Redepenning May 1995 A
5417210 Funda et al. May 1995 A
5419008 West May 1995 A
5436542 Petelin et al. Jul 1995 A
5441042 Putman Aug 1995 A
5441047 David et al. Aug 1995 A
5442728 Kaufman et al. Aug 1995 A
5462051 Oka et al. Oct 1995 A
5486853 Baxter et al. Jan 1996 A
5510832 Garcia Apr 1996 A
5511147 Abdel-Malek Apr 1996 A
5528289 Cortjens et al. Jun 1996 A
5539741 Barraclough et al. Jul 1996 A
5544649 David et al. Aug 1996 A
5550577 Verbiest et al. Aug 1996 A
5553609 Chen et al. Sep 1996 A
5563998 Yaksich et al. Oct 1996 A
5572229 Fisher Nov 1996 A
5572999 Funda et al. Nov 1996 A
5594859 Palmer et al. Jan 1997 A
5600573 Hendricks et al. Feb 1997 A
5617539 Ludwig et al. Apr 1997 A
5619341 Auyeung et al. Apr 1997 A
5623679 Rivette et al. Apr 1997 A
5630566 Case May 1997 A
5636218 Ishikawa et al. Jun 1997 A
5652849 Conway et al. Jul 1997 A
5657246 Hogan et al. Aug 1997 A
5659779 Laird et al. Aug 1997 A
5673082 Wells et al. Sep 1997 A
5675229 Thorne Oct 1997 A
5682199 Lankford Oct 1997 A
5684695 Bauer Nov 1997 A
5701904 Simmons et al. Dec 1997 A
5734805 Isensee et al. Mar 1998 A
5739657 Takayama et al. Apr 1998 A
5748629 Caldara et al. May 1998 A
5749058 Hashimoto May 1998 A
5749362 Funda et al. May 1998 A
5754631 Cave May 1998 A
5758079 Ludwig et al. May 1998 A
5762458 Wang et al. Jun 1998 A
5764731 Yablon Jun 1998 A
5767897 Howell Jun 1998 A
5786846 Hiroaki Jul 1998 A
5787545 Colens Aug 1998 A
5793365 Tang et al. Aug 1998 A
5801755 Echerer Sep 1998 A
5802494 Kuno Sep 1998 A
5836872 Kenet et al. Nov 1998 A
5838575 Lion Nov 1998 A
5844599 Hildin Dec 1998 A
5857534 Devault et al. Jan 1999 A
5867494 Krishnaswamy et al. Feb 1999 A
5867653 Aras et al. Feb 1999 A
5871451 Unger et al. Feb 1999 A
5872922 Hogan et al. Feb 1999 A
5876325 Mizuno et al. Mar 1999 A
5911036 Wright et al. Jun 1999 A
5917958 Nunally et al. Jun 1999 A
5927423 Wada et al. Jul 1999 A
5949758 Kober Sep 1999 A
5954692 Smith et al. Sep 1999 A
5959423 Nakanishi et al. Sep 1999 A
5961446 Beller et al. Oct 1999 A
5966130 Benman, Jr. Oct 1999 A
5973724 Riddle Oct 1999 A
5974446 Sonnenreich et al. Oct 1999 A
5983263 Rothrock et al. Nov 1999 A
5995119 Cosatto et al. Nov 1999 A
5995884 Allen et al. Nov 1999 A
5999977 Riddle Dec 1999 A
6006946 Williams et al. Dec 1999 A
6031845 Walding Feb 2000 A
6036812 Williams et al. Mar 2000 A
6047259 Campbell et al. Apr 2000 A
6091219 Maruo et al. Jul 2000 A
6113343 Goldenberg et al. Sep 2000 A
6133944 Braun et al. Oct 2000 A
6135228 Asada et al. Oct 2000 A
6148100 Anderson et al. Nov 2000 A
6160582 Hill Dec 2000 A
6170929 Wilson et al. Jan 2001 B1
6175779 Barrett Jan 2001 B1
6189034 Riddle Feb 2001 B1
6201984 Funda et al. Mar 2001 B1
6211903 Bullister Apr 2001 B1
6219587 Ahlin et al. Apr 2001 B1
6232735 Baba et al. May 2001 B1
6233504 Das et al. May 2001 B1
6233735 Ebihara May 2001 B1
6250928 Poggio et al. Jun 2001 B1
6256556 Zenke Jul 2001 B1
6259806 Green Jul 2001 B1
6259956 Myers et al. Jul 2001 B1
6266162 Okamura et al. Jul 2001 B1
6266577 Popp et al. Jul 2001 B1
6289263 Mukherjee Sep 2001 B1
6292713 Jouppi et al. Sep 2001 B1
6292714 Okabayashi Sep 2001 B1
6304050 Skaar et al. Oct 2001 B1
6314631 Pryor Nov 2001 B1
6317652 Osada Nov 2001 B1
6317953 Pryor Nov 2001 B1
6321137 De Smet Nov 2001 B1
6324184 Hou et al. Nov 2001 B1
6324443 Kurakake et al. Nov 2001 B1
6325756 Webb et al. Dec 2001 B1
6327516 Zenke Dec 2001 B1
6330486 Padula Dec 2001 B1
6330493 Takahashi et al. Dec 2001 B1
6346950 Jouppi Feb 2002 B1
6346962 Goodridge Feb 2002 B1
6369847 James et al. Apr 2002 B1
6373855 Downing et al. Apr 2002 B1
6381515 Inoue et al. Apr 2002 B1
6389329 Colens May 2002 B1
6400378 Snook Jun 2002 B1
6408230 Wada Jun 2002 B2
6411055 Fujita et al. Jun 2002 B1
6430471 Kintou et al. Aug 2002 B1
6430475 Okamoto et al. Aug 2002 B2
6438457 Yokoo et al. Aug 2002 B1
6445964 White et al. Sep 2002 B1
6449762 Mcelvain Sep 2002 B1
6452915 Jorgensen Sep 2002 B1
6457043 Kwak et al. Sep 2002 B1
6459955 Bartsch et al. Oct 2002 B1
6463352 Tadokoro et al. Oct 2002 B1
6463361 Wang et al. Oct 2002 B1
6466844 Ikeda et al. Oct 2002 B1
6468265 Evans et al. Oct 2002 B1
6470235 Kasuga et al. Oct 2002 B2
6474434 Bech Nov 2002 B1
6480762 Uchikubo et al. Nov 2002 B1
6491701 Tierney et al. Dec 2002 B2
6496099 Wang et al. Dec 2002 B2
6496755 Wallach et al. Dec 2002 B2
6501740 Sun et al. Dec 2002 B1
6507773 Parker et al. Jan 2003 B2
6522906 Salisbury et al. Feb 2003 B1
6523629 Buttz et al. Feb 2003 B1
6526332 Sakamoto et al. Feb 2003 B2
6529620 Thompson Mar 2003 B2
6529765 Franck et al. Mar 2003 B1
6529802 Kawakita et al. Mar 2003 B1
6532404 Colens Mar 2003 B2
6535182 Stanton Mar 2003 B2
6535793 Allard Mar 2003 B2
6540039 Yu et al. Apr 2003 B1
6543899 Covannon et al. Apr 2003 B2
6549215 Jouppi Apr 2003 B2
6563533 Colby May 2003 B1
6567038 Granot et al. May 2003 B1
6580246 Jacobs Jun 2003 B2
6581798 Liff et al. Jun 2003 B2
6584376 Van Kommer Jun 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6590604 Tucker et al. Jul 2003 B1
6594269 Polcyn Jul 2003 B1
6594552 Nowlin et al. Jul 2003 B1
6597392 Jenkins et al. Jul 2003 B1
6602469 Maus et al. Aug 2003 B1
6604019 Ahlin et al. Aug 2003 B2
6604021 Imai et al. Aug 2003 B2
6611120 Song et al. Aug 2003 B2
6643496 Shimoyama et al. Nov 2003 B1
6646677 Noro et al. Nov 2003 B2
6650748 Edwards et al. Nov 2003 B1
6666374 Green et al. Dec 2003 B1
6667592 Jacobs et al. Dec 2003 B2
6674259 Norman et al. Jan 2004 B1
6684129 Salisbury et al. Jan 2004 B2
6691000 Nagai et al. Feb 2004 B2
6693585 Macleod Feb 2004 B1
6710797 Mcnelley et al. Mar 2004 B1
6724823 Rovati et al. Apr 2004 B2
6728599 Wang et al. Apr 2004 B2
6763282 Glenn et al. Jul 2004 B2
6764373 Osawa et al. Jul 2004 B1
6769771 Trumbull Aug 2004 B2
6781606 Jouppi Aug 2004 B2
6784916 Smith Aug 2004 B2
6785589 Eggenberger et al. Aug 2004 B2
6791550 Goldhor et al. Sep 2004 B2
6798753 Doganata et al. Sep 2004 B1
6799065 Niemeyer Sep 2004 B1
6799088 Wang et al. Sep 2004 B2
6804580 Stoddard et al. Oct 2004 B1
6804656 Rosenfeld et al. Oct 2004 B1
6810411 Coughlin et al. Oct 2004 B1
6816192 Nishikawa Nov 2004 B1
6816754 Mukai et al. Nov 2004 B2
6836703 Wang et al. Dec 2004 B2
6839612 Sanchez et al. Jan 2005 B2
6840904 Goldberg Jan 2005 B2
6845297 Allard Jan 2005 B2
6852107 Wang et al. Feb 2005 B2
6853878 Hirayama et al. Feb 2005 B2
6853880 Sakagami et al. Feb 2005 B2
6871117 Wang et al. Mar 2005 B2
6879879 Jouppi et al. Apr 2005 B2
6888333 Laby May 2005 B2
6892112 Wang et al. May 2005 B2
6893267 Yueh May 2005 B1
6895305 Lathan et al. May 2005 B2
6898484 Lemelson et al. May 2005 B2
6914622 Smith et al. Jul 2005 B1
6925357 Wang et al. Aug 2005 B2
6951535 Ghodoussi et al. Oct 2005 B2
6952470 Tioe et al. Oct 2005 B1
6957712 Song et al. Oct 2005 B2
6958706 Chaco et al. Oct 2005 B2
6965394 Gutta et al. Nov 2005 B2
6990112 Brent et al. Jan 2006 B1
6995664 Darling Feb 2006 B1
7007235 Hussein et al. Feb 2006 B1
7011538 Chang Mar 2006 B2
7015934 Toyama et al. Mar 2006 B2
RE39080 Johnston Apr 2006 E
7030757 Matsuhira et al. Apr 2006 B2
7053578 Diehl et al. May 2006 B2
7055210 Keppler et al. Jun 2006 B2
7058689 Parker et al. Jun 2006 B2
7092001 Schulz Aug 2006 B2
7096090 Zweig Aug 2006 B1
7115102 Abbruscato Oct 2006 B2
7117067 Mclurkin et al. Oct 2006 B2
7123285 Smith et al. Oct 2006 B2
7123974 Hamilton Oct 2006 B1
7123991 Graf et al. Oct 2006 B2
7127325 Nagata et al. Oct 2006 B2
7129970 James et al. Oct 2006 B2
7133062 Castles et al. Nov 2006 B2
7142945 Wang et al. Nov 2006 B2
7142947 Wang et al. Nov 2006 B2
7151982 Liff et al. Dec 2006 B2
7154526 Foote et al. Dec 2006 B2
7155306 Haitin et al. Dec 2006 B2
7156809 Quy Jan 2007 B2
7158859 Wang et al. Jan 2007 B2
7158860 Wang et al. Jan 2007 B2
7158861 Wang et al. Jan 2007 B2
7161322 Wang et al. Jan 2007 B2
7162338 Goncalves et al. Jan 2007 B2
7164969 Wang et al. Jan 2007 B2
7164970 Wang et al. Jan 2007 B2
7167448 Wookey et al. Jan 2007 B2
7171286 Wang et al. Jan 2007 B2
7174238 Zweig Feb 2007 B1
7181455 Wookey et al. Feb 2007 B2
7184559 Jouppi Feb 2007 B2
7188000 Chiappetta et al. Mar 2007 B2
7199790 Rosenberg et al. Apr 2007 B2
7202851 Cunningham et al. Apr 2007 B2
7206627 Abovitz et al. Apr 2007 B2
7215786 Nakadai et al. May 2007 B2
7219364 Bolle et al. May 2007 B2
7222000 Wang et al. May 2007 B2
7227334 Yang et al. Jun 2007 B2
7256708 Rosenfeld et al. Aug 2007 B2
7262573 Wang et al. Aug 2007 B2
7283153 Provost et al. Oct 2007 B2
7289883 Wang et al. Oct 2007 B2
7292257 Kang et al. Nov 2007 B2
7292912 Wang et al. Nov 2007 B2
7305114 Wolff et al. Dec 2007 B2
7317685 Flott et al. Jan 2008 B1
7321807 Laski Jan 2008 B2
7332890 Cohen et al. Feb 2008 B2
7333642 Green Feb 2008 B2
7346429 Goldenberg et al. Mar 2008 B2
7352153 Yan Apr 2008 B2
7363121 Chen et al. Apr 2008 B1
7382399 Mccall et al. Jun 2008 B1
7386730 Uchikubo Jun 2008 B2
7391432 Terada Jun 2008 B2
7400578 Guthrie et al. Jul 2008 B2
7404140 O'Rourke Jul 2008 B2
7421470 Ludwig et al. Sep 2008 B2
7430209 Porter Sep 2008 B2
7432949 Remy et al. Oct 2008 B2
7433921 Ludwig et al. Oct 2008 B2
7441953 Banks Oct 2008 B2
7467211 Herman et al. Dec 2008 B1
7483867 Ansari et al. Jan 2009 B2
7492731 Hagendorf Feb 2009 B2
7510428 Obata et al. Mar 2009 B2
7523069 Friedl et al. Apr 2009 B1
7525281 Koyanagi et al. Apr 2009 B2
7535486 Motomura et al. May 2009 B2
7557758 Rofougaran Jul 2009 B2
7587260 Bruemmer et al. Sep 2009 B2
7587512 Ta et al. Sep 2009 B2
7590060 Miceli Sep 2009 B2
7593030 Wang et al. Sep 2009 B2
7599290 Dos Remedios et al. Oct 2009 B2
7624166 Foote et al. Nov 2009 B2
7630314 Dos Remedios et al. Dec 2009 B2
7631833 Ghaleb et al. Dec 2009 B1
7643051 Sandberg et al. Jan 2010 B2
7647320 Mok et al. Jan 2010 B2
7657560 Dirienzo Feb 2010 B1
7680038 Gourlay Mar 2010 B1
7693757 Zimmerman Apr 2010 B2
7698432 Short et al. Apr 2010 B2
7703113 Dawson Apr 2010 B2
7719229 Kaneko et al. May 2010 B2
7737993 Kaasila et al. Jun 2010 B2
7739383 Short et al. Jun 2010 B1
7756614 Jouppi Jul 2010 B2
7761185 Wang et al. Jul 2010 B2
7769492 Wang et al. Aug 2010 B2
7769705 Luechtefeld Aug 2010 B1
7774158 Domingues Goncalves et al. Aug 2010 B2
7813836 Wang et al. Oct 2010 B2
7831575 Trossell et al. Nov 2010 B2
7835775 Sawayama et al. Nov 2010 B2
7860680 Arms et al. Dec 2010 B2
7861366 Hahm et al. Jan 2011 B2
7885822 Akers et al. Feb 2011 B2
7890382 Robb et al. Feb 2011 B2
7912583 Gutmann et al. Mar 2011 B2
RE42288 Degioanni Apr 2011 E
7924323 Walker et al. Apr 2011 B2
7949616 Levy et al. May 2011 B2
7956894 Akers et al. Jun 2011 B2
7957837 Ziegler et al. Jun 2011 B2
7982763 King Jul 2011 B2
7982769 Jenkins et al. Jul 2011 B2
7987069 Rodgers et al. Jul 2011 B2
8077963 Wang et al. Dec 2011 B2
8116910 Walters et al. Feb 2012 B2
8126960 Obradovich et al. Feb 2012 B2
8170241 Roe et al. May 2012 B2
8179418 Wright et al. May 2012 B2
8180486 Saito et al. May 2012 B2
8209051 Wang et al. Jun 2012 B2
8212533 Ota Jul 2012 B2
8265793 Cross et al. Sep 2012 B2
8287522 Moses et al. Oct 2012 B2
8292807 Perkins et al. Oct 2012 B2
8320534 Kim et al. Nov 2012 B2
8340654 Bratton et al. Dec 2012 B2
8340819 Mangaser et al. Dec 2012 B2
8348675 Dohrmann Jan 2013 B2
8374171 Cho et al. Feb 2013 B2
8400491 Panpaliya et al. Mar 2013 B1
8401275 Wang et al. Mar 2013 B2
8423284 O″Shea Apr 2013 B2
8451731 Lee et al. May 2013 B1
8463435 Herzog et al. Jun 2013 B2
8503340 Xu Aug 2013 B1
8515577 Wang et al. Aug 2013 B2
8527094 Kumar et al. Sep 2013 B2
8532860 Daly Sep 2013 B2
8610786 Ortiz Dec 2013 B2
8612051 Norman et al. Dec 2013 B2
8639797 Pan et al. Jan 2014 B1
8670017 Stuart et al. Mar 2014 B2
8726454 Gilbert et al. May 2014 B2
8836751 Ballantyne et al. Sep 2014 B2
8849679 Wang et al. Sep 2014 B2
8849680 Wright et al. Sep 2014 B2
8861750 Roe et al. Oct 2014 B2
8897920 Wang et al. Nov 2014 B2
8902278 Pinter et al. Dec 2014 B2
20010002448 Wilson et al. May 2001 A1
20010010053 Ben-Shachar et al. Jul 2001 A1
20010020200 Das et al. Sep 2001 A1
20010034475 Flach et al. Oct 2001 A1
20010034544 Mo Oct 2001 A1
20010037163 Allard Nov 2001 A1
20010048464 Barnett Dec 2001 A1
20010051881 Filler Dec 2001 A1
20010054071 Loeb Dec 2001 A1
20010055373 Yamashita Dec 2001 A1
20020015296 Howell et al. Feb 2002 A1
20020027597 Sachau Mar 2002 A1
20020027652 Paromtchik et al. Mar 2002 A1
20020033880 Sul et al. Mar 2002 A1
20020038168 Kasuga et al. Mar 2002 A1
20020044201 Alexander et al. Apr 2002 A1
20020049517 Ruffner Apr 2002 A1
20020055917 Muraca May 2002 A1
20020057279 Jouppi May 2002 A1
20020058929 Green May 2002 A1
20020059587 Cofano et al. May 2002 A1
20020063726 Jouppi May 2002 A1
20020073429 Beane et al. Jun 2002 A1
20020082498 Wendt et al. Jun 2002 A1
20020085030 Ghani Jul 2002 A1
20020095238 Ahlin et al. Jul 2002 A1
20020095239 Wallach et al. Jul 2002 A1
20020098879 Rheey Jul 2002 A1
20020104094 Alexander et al. Aug 2002 A1
20020106998 Presley et al. Aug 2002 A1
20020109770 Terada Aug 2002 A1
20020109775 White et al. Aug 2002 A1
20020111988 Sato Aug 2002 A1
20020120362 Lathan et al. Aug 2002 A1
20020128985 Greenwald Sep 2002 A1
20020130950 James et al. Sep 2002 A1
20020133062 Arling et al. Sep 2002 A1
20020141595 Alexander Oct 2002 A1
20020143923 Alexander Oct 2002 A1
20020177925 Onishi et al. Nov 2002 A1
20020183894 Wang et al. Dec 2002 A1
20020184674 Xi et al. Dec 2002 A1
20020186243 Ellis et al. Dec 2002 A1
20030016726 Pavlidis Jan 2003 A1
20030021107 Howell et al. Jan 2003 A1
20030030397 Simmons Feb 2003 A1
20030048481 Kobayashi et al. Mar 2003 A1
20030050733 Wang et al. Mar 2003 A1
20030050734 Lapham Mar 2003 A1
20030060808 Wilk Mar 2003 A1
20030063600 Noma et al. Apr 2003 A1
20030069752 Ledain et al. Apr 2003 A1
20030080901 Piotrowski May 2003 A1
20030100892 Morley et al. May 2003 A1
20030104806 Ruef et al. Jun 2003 A1
20030112823 Collins et al. Jun 2003 A1
20030114962 Niemeyer et al. Jun 2003 A1
20030120714 Wolff et al. Jun 2003 A1
20030126361 Slater et al. Jul 2003 A1
20030135097 Wiederhold et al. Jul 2003 A1
20030135203 Wang et al. Jul 2003 A1
20030144579 Buss Jul 2003 A1
20030144649 Ghodoussi et al. Jul 2003 A1
20030151658 Smith Aug 2003 A1
20030152145 Kawakita Aug 2003 A1
20030171710 Bassuk et al. Sep 2003 A1
20030174285 Trumbull Sep 2003 A1
20030180697 Kim et al. Sep 2003 A1
20030195662 Wang et al. Oct 2003 A1
20030199000 Valkirs et al. Oct 2003 A1
20030206242 Choi Nov 2003 A1
20030212472 Mckee Nov 2003 A1
20030216833 Mukai et al. Nov 2003 A1
20030216834 Allard Nov 2003 A1
20030220541 Salisbury et al. Nov 2003 A1
20030220715 Kneifel et al. Nov 2003 A1
20030231244 Bonilla et al. Dec 2003 A1
20030232649 Gizis et al. Dec 2003 A1
20030236590 Park et al. Dec 2003 A1
20040001197 Ko et al. Jan 2004 A1
20040001676 Colgan et al. Jan 2004 A1
20040008138 Hockley, Jr. et al. Jan 2004 A1
20040010344 Hiratsuka et al. Jan 2004 A1
20040012362 Tsurumi Jan 2004 A1
20040013295 Sabe et al. Jan 2004 A1
20040017475 Akers et al. Jan 2004 A1
20040019406 Wang et al. Jan 2004 A1
20040024490 Mclurkin et al. Feb 2004 A1
20040041904 Lapalme et al. Mar 2004 A1
20040065073 Nash Apr 2004 A1
20040068657 Alexander et al. Apr 2004 A1
20040078219 Kaylor et al. Apr 2004 A1
20040080610 James et al. Apr 2004 A1
20040088077 Jouppi et al. May 2004 A1
20040088078 Jouppi et al. May 2004 A1
20040093409 Thompson et al. May 2004 A1
20040095516 Rohlicek May 2004 A1
20040098167 Yi et al. May 2004 A1
20040102167 Shim et al. May 2004 A1
20040107254 Ludwig et al. Jun 2004 A1
20040107255 Ludwig et al. Jun 2004 A1
20040117065 Wang et al. Jun 2004 A1
20040117067 Jouppi Jun 2004 A1
20040123158 Roskind Jun 2004 A1
20040135879 Stacy et al. Jul 2004 A1
20040138547 Wang et al. Jul 2004 A1
20040143421 Wang et al. Jul 2004 A1
20040148638 Weisman et al. Jul 2004 A1
20040150725 Taguchi Aug 2004 A1
20040153211 Kamoto et al. Aug 2004 A1
20040157612 Kim Aug 2004 A1
20040162637 Wang et al. Aug 2004 A1
20040167666 Wang et al. Aug 2004 A1
20040167668 Wang et al. Aug 2004 A1
20040168148 Goncalves et al. Aug 2004 A1
20040170300 Jouppi Sep 2004 A1
20040172301 Mihai et al. Sep 2004 A1
20040172306 Wohl et al. Sep 2004 A1
20040174129 Wang et al. Sep 2004 A1
20040175684 Kaasa et al. Sep 2004 A1
20040179714 Jouppi Sep 2004 A1
20040186623 Dooley et al. Sep 2004 A1
20040189700 Mandavilli et al. Sep 2004 A1
20040201602 Mody et al. Oct 2004 A1
20040205664 Prendergast Oct 2004 A1
20040215490 Duchon et al. Oct 2004 A1
20040218099 Washington Nov 2004 A1
20040222638 Bednyak Nov 2004 A1
20040224676 Iseki Nov 2004 A1
20040230340 Fukuchi et al. Nov 2004 A1
20040240981 Dothan et al. Dec 2004 A1
20040241981 Doris et al. Dec 2004 A1
20040260790 Balloni et al. Dec 2004 A1
20050003330 Asgarinejad et al. Jan 2005 A1
20050004708 Goldenberg et al. Jan 2005 A1
20050007445 Foote et al. Jan 2005 A1
20050013149 Trossell Jan 2005 A1
20050021182 Wang et al. Jan 2005 A1
20050021183 Wang et al. Jan 2005 A1
20050021187 Wang et al. Jan 2005 A1
20050021309 Alexander et al. Jan 2005 A1
20050024485 Castles et al. Feb 2005 A1
20050027567 Taha Feb 2005 A1
20050027794 Decker Feb 2005 A1
20050028221 Liu et al. Feb 2005 A1
20050035862 Wildman et al. Feb 2005 A1
20050038416 Wang et al. Feb 2005 A1
20050038564 Burick Feb 2005 A1
20050049898 Hirakawa Mar 2005 A1
20050052527 Remy et al. Mar 2005 A1
20050060211 Xiao et al. Mar 2005 A1
20050065435 Rauch et al. Mar 2005 A1
20050065438 Miller Mar 2005 A1
20050065659 Tanaka et al. Mar 2005 A1
20050065813 Mishelevich et al. Mar 2005 A1
20050071046 Miyazaki et al. Mar 2005 A1
20050073575 Thacher et al. Apr 2005 A1
20050078816 Sekiguchi et al. Apr 2005 A1
20050083011 Yang et al. Apr 2005 A1
20050099493 Chew May 2005 A1
20050104964 Bovyrin et al. May 2005 A1
20050110867 Schulz May 2005 A1
20050122390 Wang et al. Jun 2005 A1
20050125083 Kiko Jun 2005 A1
20050125098 Wang et al. Jun 2005 A1
20050149364 Ombrellaro Jul 2005 A1
20050152447 Jouppi et al. Jul 2005 A1
20050152565 Jouppi et al. Jul 2005 A1
20050154265 Miro et al. Jul 2005 A1
20050168568 Jouppi Aug 2005 A1
20050182322 Grispo Aug 2005 A1
20050192721 Jouppi Sep 2005 A1
20050204438 Wang et al. Sep 2005 A1
20050212478 Takenaka Sep 2005 A1
20050219356 Smith et al. Oct 2005 A1
20050225634 Brunetti et al. Oct 2005 A1
20050231156 Yan Oct 2005 A1
20050231586 Rodman et al. Oct 2005 A1
20050232647 Takenaka Oct 2005 A1
20050234592 Mcgee et al. Oct 2005 A1
20050264649 Chang et al. Dec 2005 A1
20050267826 Levy et al. Dec 2005 A1
20050283414 Fernandes et al. Dec 2005 A1
20050286759 Zitnick et al. Dec 2005 A1
20060007943 Fellman Jan 2006 A1
20060010028 Sorensen Jan 2006 A1
20060013263 Fellman Jan 2006 A1
20060013469 Wang et al. Jan 2006 A1
20060013488 Inoue Jan 2006 A1
20060014388 Lur et al. Jan 2006 A1
20060020694 Nag et al. Jan 2006 A1
20060029065 Fellman Feb 2006 A1
20060047365 Ghodoussi et al. Mar 2006 A1
20060048286 Donato Mar 2006 A1
20060052676 Wang et al. Mar 2006 A1
20060052684 Takahashi et al. Mar 2006 A1
20060056655 Wen et al. Mar 2006 A1
20060056837 Vapaakoski Mar 2006 A1
20060064212 Thorne Mar 2006 A1
20060066609 Iodice et al. Mar 2006 A1
20060071797 Rosenfeld et al. Apr 2006 A1
20060074525 Close et al. Apr 2006 A1
20060074719 Horner Apr 2006 A1
20060082642 Wang et al. Apr 2006 A1
20060087746 Lipow Apr 2006 A1
20060095158 Lee et al. May 2006 A1
20060095170 Yang et al. May 2006 A1
20060098573 Beer et al. May 2006 A1
20060103659 Karandikar et al. May 2006 A1
20060104279 Fellman et al. May 2006 A1
20060106493 Niemeyer et al. May 2006 A1
20060122482 Mariotti et al. Jun 2006 A1
20060125356 Meek et al. Jun 2006 A1
20060142983 Sorensen et al. Jun 2006 A1
20060149418 Anvari Jul 2006 A1
20060161136 Anderson Jul 2006 A1
20060161303 Wang et al. Jul 2006 A1
20060164546 Adachi Jul 2006 A1
20060171515 Hintermeister et al. Aug 2006 A1
20060173708 Vining et al. Aug 2006 A1
20060173712 Joubert Aug 2006 A1
20060178559 Kumar et al. Aug 2006 A1
20060178776 Feingold et al. Aug 2006 A1
20060178777 Park et al. Aug 2006 A1
20060184274 Sakai et al. Aug 2006 A1
20060189393 Edery Aug 2006 A1
20060195569 Barker Aug 2006 A1
20060224781 Tsao et al. Oct 2006 A1
20060247045 Jeong et al. Nov 2006 A1
20060259193 Wang et al. Nov 2006 A1
20060268704 Ansari et al. Nov 2006 A1
20060271238 Choi et al. Nov 2006 A1
20060271400 Clements et al. Nov 2006 A1
20060293788 Pogodin Dec 2006 A1
20070021871 Wang et al. Jan 2007 A1
20070025711 Marcus Feb 2007 A1
20070046237 Lakshmanan et al. Mar 2007 A1
20070050937 Song et al. Mar 2007 A1
20070064092 Sandberg et al. Mar 2007 A1
20070078566 Wang et al. Apr 2007 A1
20070093279 Janik Apr 2007 A1
20070112700 Den et al. May 2007 A1
20070116152 Thesling May 2007 A1
20070117516 Saidi et al. May 2007 A1
20070120965 Sandberg et al. May 2007 A1
20070122783 Habashi May 2007 A1
20070129849 Zini Jun 2007 A1
20070133407 Choi et al. Jun 2007 A1
20070135967 Jung et al. Jun 2007 A1
20070142964 Abramson Jun 2007 A1
20070170886 Plishner Jul 2007 A1
20070176060 White et al. Aug 2007 A1
20070192910 Vu et al. Aug 2007 A1
20070197896 Moll et al. Aug 2007 A1
20070198128 Ziegler et al. Aug 2007 A1
20070198130 Wang et al. Aug 2007 A1
20070199108 Angle et al. Aug 2007 A1
20070216347 Kaneko et al. Sep 2007 A1
20070226949 Hahm et al. Oct 2007 A1
20070250212 Halloran et al. Oct 2007 A1
20070255115 Anglin et al. Nov 2007 A1
20070255155 Drew et al. Nov 2007 A1
20070255706 Iketani et al. Nov 2007 A1
20070262884 Goncalves et al. Nov 2007 A1
20070273751 Sachau Nov 2007 A1
20070290040 Wurman et al. Dec 2007 A1
20070291109 Wang et al. Dec 2007 A1
20070291128 Wang et al. Dec 2007 A1
20080009969 Bruemmer et al. Jan 2008 A1
20080011904 Cepollina et al. Jan 2008 A1
20080027591 Lenser et al. Jan 2008 A1
20080033641 Medalia Feb 2008 A1
20080045804 Williams Feb 2008 A1
20080051985 D'Andrea et al. Feb 2008 A1
20080056933 Moore et al. Mar 2008 A1
20080065268 Wang et al. Mar 2008 A1
20080082211 Wang et al. Apr 2008 A1
20080086241 Phillips et al. Apr 2008 A1
20080091340 Milstein et al. Apr 2008 A1
20080126132 Warner et al. May 2008 A1
20080133052 Jones et al. Jun 2008 A1
20080161969 Lee et al. Jul 2008 A1
20080174570 Jobs et al. Jul 2008 A1
20080201016 Finlay Aug 2008 A1
20080201017 Wang et al. Aug 2008 A1
20080215987 Alexander et al. Sep 2008 A1
20080229531 Takida Sep 2008 A1
20080232763 Brady Sep 2008 A1
20080255703 Wang et al. Oct 2008 A1
20080263451 Portele et al. Oct 2008 A1
20080263628 Norman et al. Oct 2008 A1
20080267069 Thielman et al. Oct 2008 A1
20080269949 Norman et al. Oct 2008 A1
20080281467 Pinter Nov 2008 A1
20080306375 Sayler et al. Dec 2008 A1
20090030552 Nakadai et al. Jan 2009 A1
20090044334 Parsell et al. Feb 2009 A1
20090049640 Lee et al. Feb 2009 A1
20090055023 Walters et al. Feb 2009 A1
20090070135 Parida et al. Mar 2009 A1
20090086013 Thapa Apr 2009 A1
20090089085 Schoenberg Apr 2009 A1
20090102919 Zamierowski et al. Apr 2009 A1
20090105882 Wang et al. Apr 2009 A1
20090106679 Anzures et al. Apr 2009 A1
20090122699 Alperovitch et al. May 2009 A1
20090125147 Wang et al. May 2009 A1
20090144425 Marr et al. Jun 2009 A1
20090146822 Soliman Jun 2009 A1
20090146882 Halivaara et al. Jun 2009 A1
20090164255 Menschik et al. Jun 2009 A1
20090164657 Li et al. Jun 2009 A1
20090171170 Li et al. Jul 2009 A1
20090177323 Ziegler et al. Jul 2009 A1
20090177641 Raghavan Jul 2009 A1
20090237317 Rofougaran Sep 2009 A1
20090240371 Wang et al. Sep 2009 A1
20090248200 Root Oct 2009 A1
20090259339 Wright et al. Oct 2009 A1
20100010672 Wang et al. Jan 2010 A1
20100010673 Wang et al. Jan 2010 A1
20100017046 Cheung et al. Jan 2010 A1
20100019715 Roe et al. Jan 2010 A1
20100026239 Li et al. Feb 2010 A1
20100030578 Siddique et al. Feb 2010 A1
20100041998 Postel Feb 2010 A1
20100051596 Diedrick et al. Mar 2010 A1
20100063636 Matsumoto et al. Mar 2010 A1
20100063848 Kremer et al. Mar 2010 A1
20100066804 Shoemake et al. Mar 2010 A1
20100070079 Mangaser et al. Mar 2010 A1
20100073490 Wang et al. Mar 2010 A1
20100076600 Cross et al. Mar 2010 A1
20100085874 Noy et al. Apr 2010 A1
20100088232 Gale Apr 2010 A1
20100115418 Wang et al. May 2010 A1
20100116566 Ohm et al. May 2010 A1
20100128104 Fabregat et al. May 2010 A1
20100131103 Herzog et al. May 2010 A1
20100145479 Griffiths Jun 2010 A1
20100157825 Anderlind et al. Jun 2010 A1
20100171826 Hamilton et al. Jul 2010 A1
20100191375 Wright et al. Jul 2010 A1
20100228249 Mohr et al. Sep 2010 A1
20100268383 Wang et al. Oct 2010 A1
20100278086 Pochiraju et al. Nov 2010 A1
20100286905 Goncalves et al. Nov 2010 A1
20100301679 Murray et al. Dec 2010 A1
20100323783 Nonaka et al. Dec 2010 A1
20110022705 Yellamraju et al. Jan 2011 A1
20110050841 Wang et al. Mar 2011 A1
20110071675 Wells et al. Mar 2011 A1
20110071702 Wang et al. Mar 2011 A1
20110072114 Hoffert et al. Mar 2011 A1
20110153198 Kokkas et al. Jun 2011 A1
20110172822 Ziegler et al. Jul 2011 A1
20110187875 Sanchez et al. Aug 2011 A1
20110190930 Hanrahan et al. Aug 2011 A1
20110193949 Nambakam et al. Aug 2011 A1
20110195701 Cook et al. Aug 2011 A1
20110213210 Temby et al. Sep 2011 A1
20110218674 Stuart et al. Sep 2011 A1
20110245973 Wang et al. Oct 2011 A1
20110280551 Sammon Nov 2011 A1
20110288417 Pinter et al. Nov 2011 A1
20110292193 Wang et al. Dec 2011 A1
20110301759 Wang et al. Dec 2011 A1
20110306400 Nguyen Dec 2011 A1
20120023506 Maeckel et al. Jan 2012 A1
20120036484 Zhang et al. Feb 2012 A1
20120059946 Wang Mar 2012 A1
20120072023 Ota Mar 2012 A1
20120072024 Wang et al. Mar 2012 A1
20120092157 Tran Apr 2012 A1
20120095352 Tran Apr 2012 A1
20120113856 Krishnaswamy May 2012 A1
20120191246 Roe et al. Jul 2012 A1
20120191464 Stuart et al. Jul 2012 A1
20120203731 Nelson et al. Aug 2012 A1
20120291809 Kuhe et al. Nov 2012 A1
20130250938 Anandakumar et al. Sep 2013 A1
20140009561 Sutherland Jan 2014 A1
20140047022 Chan et al. Feb 2014 A1
20140085543 Hartley et al. Mar 2014 A1
20140135990 Stuart et al. May 2014 A1
20140139616 Pinter et al. May 2014 A1
20140155755 Pinter et al. Jun 2014 A1
Foreign Referenced Citations (130)
Number Date Country
1216200 May 2000 AU
2289697 Nov 1998 CA
1404695 Mar 2003 CN
1554193 Dec 2004 CN
1554985 Dec 2004 CN
1561923 Jan 2005 CN
1743144 Mar 2006 CN
101049017 Oct 2007 CN
101106939 Jan 2008 CN
101151614 Mar 2008 CN
100407729 Jul 2008 CN
101390098 Mar 2009 CN
101507260 Aug 2009 CN
101730894 Jun 2010 CN
101866396 Oct 2010 CN
101978365 Feb 2011 CN
102203759 Sep 2011 CN
101106939 Nov 2011 CN
466492 Jan 1992 EP
488673 Jun 1992 EP
0981905 Jan 2002 EP
1262142 Dec 2002 EP
1304872 Apr 2003 EP
1536660 Jun 2005 EP
1573406 Sep 2005 EP
1594660 Nov 2005 EP
1763243 Mar 2007 EP
1791464 Jun 2007 EP
1800476 Jun 2007 EP
1819108 Aug 2007 EP
1856644 Nov 2007 EP
1536660 Apr 2008 EP
1928310 Jun 2008 EP
1232610 Jan 2009 EP
2027716 Feb 2009 EP
2145274 Jan 2010 EP
2214111 Aug 2010 EP
2263158 Dec 2010 EP
2300930 Mar 2011 EP
2342651 Jul 2011 EP
2431261 Apr 2007 GB
7194609 Aug 1995 JP
7213753 Aug 1995 JP
7248823 Sep 1995 JP
7257422 Oct 1995 JP
0884328 Mar 1996 JP
08-166822 Jun 1996 JP
8320727 Dec 1996 JP
9267276 Oct 1997 JP
1079097 Mar 1998 JP
10288689 Oct 1998 JP
11220706 Aug 1999 JP
2000-032319 Jan 2000 JP
2000-049800 Feb 2000 JP
2000-079587 Mar 2000 JP
2000-196876 Jul 2000 JP
2001-125641 May 2001 JP
2001-147718 May 2001 JP
2001-179663 Jul 2001 JP
2001-188124 Jul 2001 JP
2001-198865 Jul 2001 JP
2001-198868 Jul 2001 JP
2001-199356 Jul 2001 JP
2002-000574 Jan 2002 JP
2002-046088 Feb 2002 JP
2002-101333 Apr 2002 JP
2002-112970 Apr 2002 JP
2002-235423 Aug 2002 JP
2002-305743 Oct 2002 JP
2002-321180 Nov 2002 JP
20023-55779 Dec 2002 JP
2004-181229 Jul 2004 JP
2004-524824 Aug 2004 JP
2004-261941 Sep 2004 JP
2004-289379 Oct 2004 JP
2005-028066 Feb 2005 JP
2005-059170 Mar 2005 JP
2005-111083 Apr 2005 JP
2006035381 Feb 2006 JP
2006-508806 Mar 2006 JP
2006-109094 Apr 2006 JP
2006-224294 Aug 2006 JP
2006246438 Sep 2006 JP
2007007040 Jan 2007 JP
2007-081646 Mar 2007 JP
2007-232208 Sep 2007 JP
2007-316966 Dec 2007 JP
2009-125133 Jun 2009 JP
2010-064154 Mar 2010 JP
2010-532109 Sep 2010 JP
2010-246954 Nov 2010 JP
10-2006-0037979 May 2006 KR
10-2009-0012542 Feb 2009 KR
10-2010-0019479 Feb 2010 KR
10-2010-0139037 Dec 2010 KR
199306690 Apr 1993 WO
1997042761 Nov 1997 WO
1998051078 Nov 1998 WO
1999067067 Dec 1999 WO
2000025516 May 2000 WO
2000033726 Jun 2000 WO
2001031861 May 2001 WO
2003077745 Sep 2003 WO
2004008738 Jan 2004 WO
2004012018 Feb 2004 WO
2004075456 Sep 2004 WO
2006012797 Feb 2006 WO
2006044847 Apr 2006 WO
2006078611 Jul 2006 WO
2007041295 Apr 2007 WO
2007041038 Jun 2007 WO
2008100272 Aug 2008 WO
2008100272 Oct 2008 WO
2009117274 Sep 2009 WO
2009128997 Oct 2009 WO
2009145958 Dec 2009 WO
2010006205 Jan 2010 WO
2010006211 Jan 2010 WO
2010033666 Mar 2010 WO
2010047881 Apr 2010 WO
2010062798 Jun 2010 WO
2010065257 Jun 2010 WO
2010120407 Oct 2010 WO
2011028589 Mar 2011 WO
2011028589 Apr 2011 WO
2011097130 Aug 2011 WO
2011097132 Aug 2011 WO
2011109336 Sep 2011 WO
2011097132 Dec 2011 WO
2011149902 Dec 2011 WO
Non-Patent Literature Citations (201)
Entry
Oh et al., “Autonomous Battery Recharging for Indoor Mobile Robots”, Proceedings of Australian Conference on Robotics and Automation, 2000, pp. 1-6.
Ojha, Anand K., “An application of Virtual Reality in Rehabilitation”, Proceedings of the 1994 IEEE Southeastcon Creative Technology Transfer, A Global Affair, Apr. 1994, pp. 4-6.
Paulos et al., “A World Wide Web Telerobotic Remote Environment Browser”, available online at <http://www.w3.org/Conferences/WWW4/Papers/326/>, retrieved on Nov. 23, 2010, 1995, 15 pages.
Paulos, Eric John, “Personal Tele-Embodiment”, Introductory and cover pages from 2001 Dissertation including Contents table, together with e-mails relating thereto from UC Berkeley Libraries, as shelved at UC Berkeley Engineering Library (Northern Regional library Facility), 25 pages, including 4 pages of e-mails, May 8, 2002.
Paulos et al., “PRoP: Personal Roving Presence”, ACM:CHI Proceedings of CHI, 1998, 8 pages.
Paulos et al., “Ubiquitous Tele-Embodiment: Applications and Implications”, International Journal of Human Computer Studies, vol. 46, No. 6, Jun. 1997, pp. 861-877.
Paulos et al., “Video of PRoP 2 at Richmond Field Station”, www.prop.org, Printout of Home Page of Website and Two-page Transcript of the Audio Portion of said PRoP Video, May 2001, 2 pages.
Paulos, Eric J., “Personal Tele-Embodiment”, Dissertation, Doctor of Philosophy in Computer Science in the Graduate Division of the University of California at Berkeley, 2001, 282 pages.
Picturetel Corporation, “Introducing PictureTel Live200 for Windows NT”, 1997, 63 pages.
Pin et al., “A New Family of Omnidirectional and Holonomic Wheeled Platforms for Mobile Robots”, IEEE Transactions on Robotics and Automation, vol. 10, No. 4, Aug. 1994, pp. 480-489.
Piquepaille, Roland, “How New Technologies are Modifying Our Way of Life”, Roland Piquepaille's Technology Trends, This Blog and its RSS Feed Are Moving, Oct. 31, 2004, 2 pages.
Radvision, “Making Sense of Bandwidth the NetSense Way”, Network Congestion in Unmanaged Networks Bandwidth Estimation and Adaptation Techniques, Radvision's Netsense Technology, 2010, 7 pages.
Roach, Adam, “Automatic Call Back Service in SIP”, Internet Engineering Task Force, Internet Draft, Category: Informational, Mar. 2000, 8 pages.
Rovetta et al., “A New Telerobotic Application: Remote Laparoscopic Surgery Using Satellites and Optical Fiber Networks for Data Exchange”, International Journal of Robotics Research, vol. 15, No. 3, Jun. 1, 1996, pp. 267-279.
Roy et al., “Towards Personal Service Robots for the Elderly”, Workshop on Interactive Robots and Entertainment (WIRE 2000), vol. 25, Apr. 30-May 1, 2000, 7 pages.
Salemi et al., “MILO: Personal Robot Platform”, IEEE/RSJ International Conference on Intelligent Robots and Systems, Aug. 2005, pp. 4089-4094.
Sandt et al., “Perceptions for a Transport Robot in Public Environments”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, Sep. 7-11, 1997, pp. 360-365.
Sawyer, Robert J., “Inventing the Future: 2000 Years of Discovery”, Available online at <http://www.sfwriter.com/pritf.htm>, retrived on May 25, 2008, Jan. 2, 2000, 2 pages.
Schaeffer et al., “Care-O-Bot™: The Concept of a System for Assisting Elderly or Disabled Persons in Home Environments”, Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, vol. 4, 1998, pp. 2476-2481.
Schultz et al., “Web Interfaces for Mobile Robots in Public Places”, IEEE Robotics and Automation Magazine, vol. 7, No. 1, Mar. 2000, pp. 48-56.
Shimoga et al., “Touch and Force Reflection for Telepresence Surgery”, Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Nov. 1994, pp. 1049-1050.
Siegwart et al., “Interacting Mobile Robots on the Web”, Proceedings of the IEEE International Conference on Robotics and Automation, May 1999, pp. 10-15.
Simmons et al., “Xavier: An Autonomous Mobile Robot on the Web”, IEEE Robotics and Automation Magazine, 1999, pp. 43-48.
Stephenson, Gary, “Dr. Robot Tested at Hopkins”, Johns Hopkins Medical institutions, available online at <http://www.hopkinsmedicine.org/press/2003/august/030805.htm>, Aug. 5, 2003, 2 pages.
Stoianovici et al., “Robotic Tools for Minimally Invasive Urologic Surgery”, Complications of Urologic Laparoscopic Surgery: Recognition, Management and Prevention, Dec. 2002, 17 pages.
Suplee, Carl, “Mastering the Robot”, available online at <http://www.cs.cmu.edu-nursebotlweb/press/wash/index.html>, retrieved on Nov. 23, 2010, Sep. 17, 2000, 5 pages.
Tahboub et al., “Dynamics Analysis and Control of a Holonomic Vehicle With Continously Variable Transmission”, Journal of Dynamic Systems, Measurement and Control ASME, vol. 124, Mar. 2002, pp. 118-126.
Telepresence Research, Inc., “Telepresence Mobile Robot System”, available online at <http://www.telepresence.com/telepresence-research/TELEROBOT/>, retrieved on Nov. 23, 2010, Feb. 20, 1995, 3 pages.
Tendick et al., “Human-Machine Interfaces for Minimally Invasive Surgery”, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 6, Oct. 30-Nov. 2, 1997, pp. 2771-2776.
Theodosiou et al., “MuLVAT: A Video Annotation Tool Based on XML-Dictionaries and Shot Clustering”, 19th International Conference, Artificial Neural Networks-ICANN, Sep. 14-17, 2009, pp. 913-922.
Thrun et al., “Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva”, Journal of Robotics Research, vol. 19, 2000, pp. 1-35.
Time, Lists, “Office Coworker Robot”, Best Inventions of 2001, Available online at <http://content.time.com/time/specials/packages/article/0,28804,1936165_1936255_1936640,00.html>, Nov. 19, 2001, 2 pages.
Tyrrell et al., “Teleconsultation in Psychology: The Use of Videolinks for Interviewing and Assessing Elderly Patients”, British Geriatrics Society, Age and Ageing, vol. 30, No. 3, May 2001, pp. 191-195.
Tzafestas et al., “VR-based Teleoperation of a Mobile Robotic Assistant: Progress Report”, Technical Report DEMO 2000/13, Institute of Informatics and Telecommunications, National Center for Scientific Research “Demokritos”, Athens, Greece, Nov. 2000, pp. 1-23.
Urquhart, Kim, “InTouch's Robotic Companion ‘Beams Up’ Healthcare Experts”, Medical Device Daily, The Daily Medical Technology Newspaper, vol. 7, No. 39, Feb. 27, 2003, pp. 1-4.
Weaver et al., “Monitoring and Controling Using the Internet and Java”, Proceedings of the 25th Annual Conference of the IEEE Industrial Electronics Society, vol. 3, 1999, pp. 1152-1158.
Weiss et al., “Telework and Video-Mediated Communication: Importance of Real-Time, Interactive Communication for Workers with Disabilities”, Available online at <http://www.telbotics.com/research_3.htm>, retrieved on Nov. 23, 2010, 1999, 3 pages.
Weiss, et al., “PEBBLES: A Personal Technology for Meeting Education, Social and Emotional Needs of Hospitalised Children”, Personal and Ubiquitous Computing, vol. 5, No. 3, Aug. 2001, pp. 157-168.
West et al., “Design of Ball Wheel Mechanisms for Omnidirectional Vehicles with Full Mobility and Invariant Kinematics”, Journal of Mechanical Design, ASME, vol. 119, Jun. 1997, pp. 153-161.
Yamasaki et al., “Applying Personal Robots and Active Interface to Video Conference Systems”, 6th International Conference on Human Computer Interaction, vol. B, 1995, pp. 243-248.
Yamauchi, Brian, “PackBot: A Versatile Platform for Military Robotics”, Proceedings of SPIE for Military Robotics, 2004, pp. 228-237.
Yong et al., “Robot Task Execution with Telepresence Using Virtual Reality Technology”, International Conference on Mechatronic Technology, Nov. 30-Dec. 2, 1998, pp. 1-8.
Zambroski, James, “CMU, Pitt Developing ‘Nursebot’”, available online at <http://www.cs.cmu.edu/˜nursebot/web/press/tribunereview.html>, retrieved on Jun. 26, 2012, Oct. 27, 2000, 3 pages.
Zamrazil, Kristie, “Telemedicine in Texas: Public Policy Concerns”, Focus Report, House Research Organization, Texas House of Representatives, No. 76-22, May 5, 2000, pp. 1-16.
Zipperer, Lorri, “Robotic Dispensing System”, ISMP Medication Safety Alert, vol. 4, No. 17, Aug. 25, 1999, pp. 1-2.
Zorn, Benjamin G., “Ubiquitous Telepresence”, Department of Computer Science, University of Colorado, Mar. 18, 1996, 13 pages.
“Defendant VGo Communications, Inc.'s Invalidity Contentions Pursuant to the Feb. 27, 2012 Civil Minute Order”, U.S. District Court for the Central District of California, in Case No. CV11-9185 PA, May 2, 2012, 143 pages.
“Magne Charge”, Smart Power for Electric Vehicles, General Motors Corporation, Serial No. 75189637, Registration No. 2114006, Filing Date: Oct. 29, 1996, Aug. 26, 1997, 2 pages.
“More Online Robots: Robots that Manipulate”, available online at <http://ford.ieor.berkeley.edu/ir/robots_a2.html>, retrieved on Nov. 23, 2010, Aug. 2001, 2 pages.
“PictureTel Adds New Features and Functionality to its Award-Winning Live200 Desktop Videoconferencing System”, PR Newswire Association, LLC, Gale, Cengage Learning, Jun. 13, 1997, 4 pages.
Office Action received for Chinese Patent Application No. 200680044698.0 dated Nov. 4, 2010. (9 pages of Official Copy and 17 pages of English Translation).
Wang et al., “A Healthcare Tele-robotic System with a Master Remote Station with an Arbitrator”, U.S. Appl. No. 60/449,762, filed Feb. 24, 2003, 28 pages.
Activmedia Robotics LLC, “Pioneer 2/PeopleBot™”, Operations Manual, Version 9, Oct. 2001, 78 pages.
Adams, Chris, “Simulation of Adaptive Behavior (SAB'02)—From Animals to Animats 7”, Mobile Robotics Research Group, The Seventh International Conference, available online at: <http://www.dai.ed.ac.uk/groups/mrg/MRG.html>, retrieved on Jan. 22, 2014, Aug. 4-11, 2002, 1 page.
Ando et al., “A Multimedia Self-Service Terminal with Conferencing Functions”, Proceedings of 4th IEEE International Workshop on Robot and Human Communication, RO-MAN'95, Jul. 5-7, 1995, pp. 357-362.
Android Amusement Corp., “Renting Robots from Android Amusement Corp!”, What Marketing Secret, (Advertisement), 1982, 1 page.
Applebome, “Planning Domesticated Robots for Tomorrow's Household”, New York Times, available online at <http://www.theoldrobots.com/images17/dc17.JPG>, Mar. 4, 1982, 1 page.
Bar-Cohen et al., “Virtual Reality Robotic Telesurgery Simulations Using MEMICA Haptic System”, Proceedings of SPIE's 8th Annual International Symposium on Smart Structures and Materials, Mar. 5-8, 2001, 8 pages.
Barrett, Rick, “Video Conferencing Business Soars as Companies Cut Travel; Some Travel Cuts are Permanent”, available online at <http://www.ivci.com/international_videoconferencing_news_videoconferencing_news_19.html>, May 13, 2002, 2 pages.
Bartholomew, “Pharmacy Apothecary of England”, BnF-Teaching Kit—Childhood in the Middle Ages, available online at <http://classes.bnf.fr/ema/grands/034.htm>, retrieved on Jul. 26, 2012, 2 pages.
Bauer et al., “Remote Telesurgical Mentoring: Feasibility and Efficacy”, IEEE, Proceedings of the 33rd Hawaii International Conference on System Sciences, 2000, pp. 1-9.
Bauer, Jeffrey C., “Service Robots in Health Care: The Evolution of Mechanical Solutions to Human Resource Problems”, BonSecours Health System, Inc., Technology Ealy Warning System, Jun. 2003, pp. 1-10.
Bischoff, Rainer, “Design Concept and Realization of the Humanoid Service Robot HERMES”, In A. Zelinsky (ed.): Field and Service Robotics, Springer, London, 1998, pp. 485-492.
Blackwell, Gerry, “Video: A Wireless LAN Killer App?”, Availabel online at <http://www.wi-fiplanet.com/columns/ article.php/1010261/Video-A-Wireless-LAN-Killer>, retrieved on Nov. 22, 2010, Apr. 16, 2002, 4 pages.
Breslow et al., “Effect of a Multiple-Site Intensive Care Unit Telemedicine Program on Clinical and Economic Outcome an Alternative Paradigm for Intensivist Staffing”, Critical Care Med., vol. 32, No. 1, Jan. 2004, pp. 31-38.
Brooks, Rodney A., “A Robust Layered Control System for a Mobile Robot”, IEEE, Journal of Robotics and Automation, vol. 2, No. 1, Mar. 1986, pp. 14-23.
Brooks, Rodney Allen, “Flesh and Machines: How Robots Will Change Us”, available online at <http://dl.acm.org/citation.cfm?id=560264&preflayout=flat%25202%2520of>, retrieved on Nov. 23, 2010, Feb. 2002, 3 pages.
Celt et al., “The eICU: It's Not Just Telemedicine”, Critical Care Medicine, vol. 29, No. 8 (Supplement), Aug. 2001, pp. 183-189.
Cheetham et al., “Interface Development for a Child's Video Conferencing Robot”, Centre for Learning Technologies, Ryerson University, 2000, 4 pages.
Cleary et al., “State of the Art in Surgical Robotics: Clinical Applications and Technology Challenges”, Computer Aided Surgery, Nov. 2001, pp. 1-26.
CNN, “Floating ‘Droids’ to Roam Space Corridors of the Future”, available online at <http://edition.cnn.com/2000/TECH/space/01/12/psa/> retrieved on Nov. 11, 2010., Jan. 12, 2000, 3 pages.
CNN.com, “Paging Dr.Robot: Machine Helps Doctors with Patients”, available online at <http://edition.cnn.com/2003/TECH/ptech/09/29/doctor.robot.ap/index.html>, retrieved on Sep. 30, 2003, 3 pages.
Crowley, Susan L., “Hello to Our Future”, AARP Bulletin, available online at <http://www.cs.cmu.ed/-nursebot/web/press/aarp 99_14/millennium.html>, Jan. 2000, retrieved on Nov. 23, 2010, 12 pages.
Dalton, Barnaby, “Techniques for Web Telerobotics”, Ph. D Thesis for degree of Doctor of Philosophy, University of Western Australia, available online at <http://telerobot.mech.uwa.edu.au/information.html>, 2001, 243 pages.
Davies, Brian, “Robotics in Minimally Invasive Surgery”, Mechatronics in Medicine Lab, Dept. Mechanical Engineering, Imperial College, London SW7 2BX, The Institution of Electrical Engineers, IEE, Savoy Place, London WC2R OBL, UK, 1995, pp. 1-2.
Davis, Erik, “Telefriend, Meet iRobot, The Smartest Webcam on Wheels”, Wired Magazine, Issue 8.09, available online at <http://www.wired.com/wired/archive/8.09/irobot.html?pg=1&topic=&topic_set=>, retrieved on Jul. 7, 2012, Sep. 2000, 3 pages.
Dean et al., “1992 AAAI Robot Exhibition and Competition”, Articles, AI Magazine, vol. 14, No. 1, 1993, 15 pages.
Digiorgio, James, “Is Your Emergency Department of the Leading Edge?”, Chicago Hospital News, vol. 2, No. 12, Feb. 2005, 3 pages.
Dudenhoeffer et al., “Command and Control Architectures for Autonomous Micro-Robotic Forces”, FY00 Project Report, Idaho National Engineering and Environmental Laboratory, Human Systems Engineering and Sciences Department, Idaho Falls, Apr. 2001, 43 pages.
Elhajj et al., “Real-Time Haptic Feedback in Internet-Based Telerobotic Operation”, IEEE International Conference on Electro/Information Technology, Jun. 2000, 10 pages.
Elhajj et al., “Supermedia in Internet-Based Telerobotic Operations”, Lecture Notes in Computer Science, vol. 2216, 2001, pp. 359-372.
Elhajj et al., “Synchronization and Control of Supermedia Transmission Via the Internet”, Proceedings of 2001 International Symposium on Intelligent Multimedia Video and Speech Processing, Hong Kong, May 2-4, 2001, pp. 320-323.
Ellison et al., “Telerounding and Patient Satisfaction after Surgery”, American College of Surgeons, Elsevier, Inc., vol. 199, No. 4, Oct. 2004, pp. 523-530.
Evans et al., “HelpMate: the Trackless Robotic Courier”, Pyxis, available online at <http://www.pyxis.com/>, 3 pages.
Fels et al., “Developing a Video-Mediated Communication System for Hospitalized Children”, Telemedicine Journal, vol. 5, No. 2, 1999, 30 pages.
Fetterman, David M., “Videoconferencing Over the Internet”, Qualitative Health Journal, vol. 7, No. 1, May 1966. pp. 154-163.
Fiorini et al., “Health Care Robotics: A Progress Report”, IEEE International Conference on Robotics and Automation, vol. 2, Apr. 20-25, 1997, pp. 1271-1276.
Fong, Terrence, “Collaborative Control: A Robot-Centric Model for Vehicle Teleoperation”, The Robotics Institute Carnegie Mellon University, Nov. 2001, 197 pages.
Gaidioz et al., “Synchronizing Network Probes to Avoid Measurement Intrusiveness with the Network Weather Service”, High-Performance Distributed Computing, Proceedings of the Ninth International Symposium, 2000, pp. 147-154.
Garner et al., “The Application of Telepresence in Medicine”, BT Technology Journal, vol. 15, No. 4, Oct. 1, 1997, pp. 181-187.
Ghiasi et al., “A Generic Web-based Teleoperations Architecture: Details and Experience”, Proceedings of SPIE, Telemanipulator and Telepresence Technologies VI, vol. 3840, No. 234, Sep. 19, 1999, 14 pages.
Goldberg et al., “Collaborative Teleoperation via the Internet”, IEEE International Conference on Robotics and Automation (ICRA), vol. 2, San Francisco, California, 2000, pp. 2019-2024.
Goldberg et al., “Desktop Teleoperation via the World Wide Web”, Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, May 21-27, 1995, pp. 654-659.
Goldenberg et al., “Telemedicine in Otolaryngology”, American Journal of Otolaryngology, vol. 23, No. 1, Jan. 2002, pp. 35-43.
Goldman, Lea, “Machine Dreams”, available online at <http://www.forbes.com/global/2002/0527/043.html>, retrieved on Nov. 23, 2010., May 27, 2002, 5 pages.
Gump, Michael D., “Robot Technology Improves VA Pharmacies”, U.S. Medicine Informational Central, Jul. 2001, 3 pages.
Hameed et al., “A Review of Telemedicine”, Journal of Telemedicine and Telecare, vol. 5, Supplement 1, 1999, pp. 103-106.
Han et al., “Construction of an Omnidirectional Mobile Robot Platform Based on Active Dual-Wheel Caster Mechanisms and Development of a Control Simulator”, Journal of Intelligent and Robotic Systems, Kluwer Acedemic Publishers, vol. 29, Nov. 2000, pp. 257-275.
Handley et al., “SDP: Session Description Protocol”, RFC 2327, available Online at <http://www.faqs.org/rfcs/rfc2327.html>, retrieved on Nov. 23, 2010, Apr. 1998, 22 pages.
Hanebeck et al., “ROMAN: A Mobile Robotic Assistant for Indoor Service Applications”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, 1997, pp. 518-525.
Fulbright et al., “SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste of Storage Facilities”, Autonomous Robots, vol. 2, 1995, pp. 225-235.
“Appeal from the U.S. District Court for the Central District of California in No. 11-CV-9185, Judge Percy Anderson”, May 9, 2014, pp. 1-48.
“Google translation of: Innovations Report”, From research project to television star: Care-O-bot in ZDF series, available online at <http://www.innovations-report.de/specials/printa.php?id=5157>, Sep. 28, 2001.
“MPEG File Format Summary”, available at <http://www.fileformat.info/format/mpeg/egff.htm>, retrieved on Jun. 25, 2014, Feb. 1, 2001, 7 pages.
Koenen, Rob, “MPEG-4: A Powerful Standard for Use in Web and Television Environments”, (KPN Research), available at <http://www.w3.org/Architecture/1998/06/Workshop/paper26>, Jul. 1, 1998, 4 pages.
CMU Course 16X62, “Robot user's manual”, (describing the Nomad Scout), Carnegie Mellon University, Feb. 1, 2001, 11 pages.
Panusopone et al., “Performance comparison of MPEG-4 and H.263+ for streaming video applications”, Circuits Systems Signal Processing, vol. 20, No. 3, 2001, pp. 293-309.
Schraft et al., “Care-O-botTM: The Concept of a System for Assisting Elderly or Disabled Persons in Home Environments”, IEEE Proceedings of the 24th Annual Conference of the Industrial Electronics Society, IECON '98, Aug. 31-Sep. 4, 1998, pp. 2476-2481.
“Robart I, II, III”, Spawar, Systems Center Pacific, Available online at <http://www.nosc.mil/robots/land/robart/robart.html>, retrieved on Nov. 22, 2010, 1998, 8 pages.
“Using your Infrared Cell Phone Camera”, Available on <http://www.catsdomain.com/xray/about.htm>, retrieved on Jan. 23, 2014, Courtesy of Internet Wayback Machine, Jan. 30, 2010, 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/031708, dated Jun. 26, 2013, 13 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/031708, dated Dec. 4, 2014, 10 pages.
Screenshot Showing Google Date for Lemaire Telehealth Manual, Screenshot Retrieved on Dec. 18, 2014, 1 page.
Nomadic Technologies, Inc., “Nomad Scout Language Reference Manual”, Software Version: 2.7, Part No. DOC00002, Jul. 12, 1999, 47 pages.
Reply Brief for Defendant—Appellee VGO Communications, Inc., Appeal from the U.S. District Court for the Central District of California, in Case No. 2:11-cv-9185, Judge Percy Anderson, May 28, 2013, 75 pages.
Civil Minutes—General: Case No. CV 11-9185PA (AJWx), InTouch Tech., Inc. v. VGo Commons, Inc., U.S. District Court for the Central District of California, Judge Percy Anderson, Sep. 10, 2012, 7 pages.
Defendant—Counterclaimant VGo Communications, Inc.'s Supplemental Invalidity Contentions Pursuant to the Feb. 27, 2012 Civil Minute Order, U.S. District Court for the Central District of California, Case No. CV11-9185 PA, May 14, 2012, 228.
Opening Brief for Plaintiff—Appellant InTouch Technologies, Inc., Appeal from the U.S. District Court for the Central District of California in Case No. 11-cv-9185, Judge Percy Anderson, Apr. 12, 2013, 187 pages.
Reply Brief for Plaintiff—Appellant InTouch Technologies, Inc., Appeal from the U.S. District Court for the Central District of California in Case No. 11-cv-9185, Judge Percy Anderson, Jun. 14, 2013, 39 pages.
Active Media, Inc., “Saphira Software Manual”, Real World, Saphira Version 5.3, 1997, 105 pages.
Apple Inc., “I Phone”, iPhone Series, XP002696350, Sep. 21, 2012, pp. 1-29.
Blaer et al., “TopBot: Automated Network Topology Detection With a Mobile Robot”, IEEE, Proceedings of the 2003 International Conference on Robotics and Automation, Taipei, Taiwan, Sep. 14-19, 2003, pp. 1582-1587.
Bradner, S., “The Internet Standards Process—Revision 3”, Network Working Group, Request for Comments: 2026, BCP: 9, Obsoletes: 1602, Category: Best Current Practice, Oct. 1996, pp. 1-36.
Christensen et al., “BeeSoft User's Guide and Reference”, Robots for the Real World™, Real World Interface, Inc., Sep. 26, 1997, 203 pages.
Chu et al., “Detection of Target Mobile Signal Strength”, Technical Development, Motorola Inc., Jan. 1999, pp. 205-206.
Dario et al., “A Robot Workstation for Diagnosis and Physical Therapy”, IEEE Catalog No. 88TH0234-5, Centro “E. Piaggio” University of Pisa, Italy, 1989, pp. 67-72.
Gostai “Gostai Jazz: Robotic Telepresence”, available online at <http://www.gostai.com>, 4 pages.
Leifer et al., “VIPRR: A Virtually in Person Rehabilitation Robot”, Proceedings of 1997 International Conference on Rehabilitation Robotics, Apr. 14-15, 1997, 4 pages.
Minsky, Marvin, “Telepresence”, OMNI Magazine, Jun. 1980, 6 pages.
Noritsugu et al., “Application of Rubber Artificial Muscle Manipulator as a Rehabilitation Robot”, Mechatronics, IEEE/ASME Transactions, vol. 2, No. 4, Dec. 1997, pp. 259-267.
Osborn et al., “Quality of Life Technology Center”, QoLT Research Overview: A National Science Foundation Engineering Research Center, Carnegie Mellon University of Pittsburgh, 2 pages.
Reynolds et al., “Review of Robotic Telemedicine Utilization in Intensive Care Units (ICUs)”, 11th Annual ATA Symposium, Tampa, Florida, 2011, 1 page.
Tipsuwan et al., “Gain Adaptation of Networked Mobile Robot to Compensate QoS Deterioration”, vol. 4, 28th Annual Conference of the Industrial Electronics Society, Nov. 5-8, 2002, pp. 3146-3151.
Tsui et al., “Exploring Use Cases for Telepresence Robots”, 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Mar. 2011, 7 pages.
UMASS Lowell Robotics Lab, “Robotics Lab @ UMASS Lowell”, Department of Computer Science, Brochure, 2011, 2 pages.
Video Middleware Cookbook, “H.350 Directory Services for Multimedia”, 4 pages.
U.S. Appl. No. 10/783,760, filed Feb. 20, 2004, 48 pages.
International Search Report Received for International Patent Application No. PCT/US2005/037347, dated Apr. 17, 2006, 2 pages.
International Preliminary Report on Patentability and Written Opinion Received for International Patent Application No. PCT/US2005/037347, dated Apr. 17, 2006, 7 pages.
International Preliminary Report on Patentability and Written Opinion Received for International Patent Application No. PCT/US2006/037076, dated Apr. 1, 2008, 6 pages.
International Search Report and Written Opinion Received for International Application No. PCT/US2006/037076, dated May 11, 2007, 6 pages.
International Preliminary Report on Patentability and Written Opinion Received for International Patent Application No. PCT/US/200714099, dated Dec. 16, 2008, 5 pages.
International Search Report Received for International Patent Application No. PCT/US2007/14099, dated Jul. 30, 2008, 1 page.
Nomadic Technologies, Inc., “Nomad Scout User's Manual”, Software Version 2.7, Part Number: DOC00004, Jul. 12, 1999, pp. 1-59.
ACM Digital Library Record, Autonomous Robots, vol. 11, No. 1, Table of Content, available at <http://dl.acm.org/citation.cfm?id=591550&picked=prox&cfid=360891374&cftoken=35225929>, Jul. 2001, 2 pages.
Brenner, Pablo, “A Technical Tutorial on the IEEE 802.11 Protocol”, BreezeCOM Wireless Communications, Jul. 18, 1996, pp. 1-24.
Library of Congress, “008-Fixed-Length Data Elements (NR)”, MARC 21 Format for Classification Data, available at <http://www.loc.gov/marc/classification/cd008.html>, retrieved on Jul. 22, 2014, pp. 1-14.
Paulos et al., “Personal Tele-Embodiment”, Chapter 9 in Goldberg et al., Ed., “Beyond Webcams”, MIT Press, Jan. 4, 2002, pp. 155-167.
Paulos et al., “Social Tele-Embodiment: Understanding Presence”, Autonomous Robots, vol. 11, No. 1, Kluwer Academic Publishers, Jul. 2001, pp. 87-95.
Paulos, Eric John, “Personal Tele-Embodiment”, Introductory and Cover Pages from 2001 Dissertation Including Contents table, together with E-mails Relating thereto from UC Berkeley Libraties, as Shelved at UC Berkeley Engineering Library (Northern Regional Library Facility), May 8, 2002, 25 pages (including 4 pages of e-mails).
Paulos, Eric John, “Personal Tele-Embodiment”, OskiCat Catalog Record, UCB Library Catalog, Results page and MARC Display, retrieved on Jun. 14, 2014, 3 Pages.
Harmo et al., “Moving Eye—Interactive Telepresence over Internet with a Ball Shaped Mobile Robot”, Automation Technology Laboratory, Helsinki University of Technology, 2000, 6 pages.
Haule et al., “Control Scheme for Delayed Teleoperation Tasks”, Communications, Computers and Signal Processing, Proceedings of IEEE Pacific Rim Conference, May 17-19, 1995, pp. 157-160.
Hees, William P., “Communications Design for a Remote Presence Robot”, CSCI E-131B, Final Project, Jan. 14, 2002, 12 pages.
Herias et al., “Flexible Virtual and Remote Laboratory for Teaching Robotics”, FORMATEX 2006, Proceedings of Advance in Control Education Madrid, Spain, Jun. 2006, pp. 1959-1963.
Holmberg et al., “Development of a Holonomic Mobile Robot for Mobile Manipulation Tasks”, FSR'99 International Conference on Field and Service Robotics, Pittsburgh, PA, Aug. 1999, 6 pages.
Ishiguro et al., “Integrating a Perceptual Information Infrastructure with Robotic Avatars: A Framework for Tele-Existence”, Intelligent Robots and Systems, Proceedings of 1999 IEEE/RSJ International Conference, vol. 2, 1999, pp. 1032-1038.
Ishihara et al., “Intelligent Microrobot DDS (Drug Delivery System) Measured and Controlled by Ultrasonics”, Proceedings of IEEE/RSJ International Workshop on Intelligent Robots and Systems, vol. 2, Nov. 3-5, 1991, pp. 1145-1150.
Itu, “Call Completion Supplementary Services for H.323”, ITU-T, Telecommunication Standardization Sector of ITU, H.450.9, Series H: Audiovisual and Multimedia Systems, Nov. 2000, 63 pages.
Itu, “Call Intrusion Supplementary Service for H.323”, ITU-T, Telecommunication Standardization Sector of ITU, H.450.11, Series H: Audiovisual and Multimedia Systems, Mar. 2001, 59 pages.
Itu, “Packet-Based Multimedia Communications Systems”, ITU-T, Telecommunication Standardization Sector of ITU, H.323, Series H: Audiovisual and Multimedia Systems, Feb. 1998, 128 pages.
Itu, “A Far End Camera Control Protocol for Videoconferences Using H.224”, Transmission of Non-Telephone Signals, ITU-T, Telecommunication Standardization Sector of ITU, H.281, Nov. 1994, 12 pages.
Ivanova, Natali, “Internet Based Interface for Control of a Mobile Robot”, First Degree Programme in Mathematics and Computer Science, Master⋅s thesis, Department of Numerical Analysis and Computer Science, 2003, 59 pages.
Jacobs et al., “Applying Telemedicine to Outpatient Physical Therapy”, AMIA, Annual Symposium Proceedings, 2002, 1 page.
Jenkins et al., “Telehealth Advancing Nursing Practice”, Nursing Outlook, vol. 49, No. 2, Mar. 2001, pp. 100-105.
Johanson, Mathias, “Supporting Video-Mediated Communication over the Internet”, Thesis for the degree of Doctor of Philosophy, Department of Computer Engineering, Chalmers University of Technology, Gothenburg, Sweden, 2003, 222 pages.
Jouppi et al., “BiReality: Mutually-Immersive Telepresence”, Multimedia '04, Proceedings of the 12th Annual ACM International Conference on Multimedia, Oct. 10-16, 2004, pp. 860-867.
Jouppi et al., “First Steps Towards Mutually-Immersive Mobile Telepresence”, CSCW '02, Proceedings of the ACM conference on Computer Supported Cooperative Work, Nov. 16-20, 2002, pp. 354-363.
Kanehiro et al., “Virtual Humanoid Robot Platform to Develop Controllers of Real Humanoid Robots without Porting”, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, Oct. 29-Nov. 3, 2001, pp. 1093-1099.
Kaplan et al., “An Internet Accessible Telepresence”, Multimedia Systems Journal, vol. 5, 1996, 7 pages.
Keller et al., “An Interface for Raven”, The National Aviary's Teleconferencing Robot, Interaction and Visual Interface Design, School of Design, Carnegie Mellon University, 2001, 8 pages.
Khatib et al., “Robots in Human Environments”, Robotics Laboratory, Department of Computer Science, Stanford University, 1999, 15 pages.
Knight et al., “Active Visual Alignment of a Mobile Stereo Camera Platform”, Robotics and Automation, Proceedings of ICRA '00, IEEE International Conference, vol. 4, Apr. 24-28, 2000, pp. 3203-3208.
Kurlowicz et al., “The Mini Mental State Examination (MMSE)”, The Hartford Institute for Geriatric Nursing, Journal of Psychiatric Research, No. 3, Jan. 1999, 2 pages.
Kuzuoka et al., “Can the GestureCam be a Surrogate?”, Proceedings of the Fourth European Conference on Computer-Supported Cooperative Work, Sep. 10-14, 1995, pp. 181-196.
Lane, Earl, “Automated Aides”, available online at <http://www.cs.cum.edu/nursebot/web/press/nd4380.htm>, Reterieved on Nov. 23, 2010, Oct. 17, 2000, 4 pages.
Lee et al., “A Novel Method of Surgical Instruction: International Telementoring”, World Journal of Urology, vol. 16, No. 6, Dec. 1998, pp. 367-370.
Lemaire, Edward, “Using Communication Technology to Enhance Rehabilitation Services”, Terry Fox Mobile Clinic, The Rehabilitation Centre, Ottawa, Canada, Version 2.0, 1998-2001, 104 pages.
Lim et al., “Control to Realize Human-Like Walking of a Biped Humanoid Robot”, Systems, Man and Cybernetics, IEEE International Conference, vol. 5, 2000, pp. 3271-3276.
Linebarger et al., “Concurrency Control Mechanisms for Closely Coupled Collaboration in Multithreaded Virtual Environments”, Department of Computer Science and Engineering; Lehigh University, vol. 13, 2004, 40 pages.
Sachs et al., “Virtual Visit™: Improving Communication for Those Who Need it Most”, Studies in Health Technology and Informatics, vol. 94, Medicine Meets Virtual Reality 11, 2003, pp. 302-308.
Long, William F., “Robot Navigation Technology”, available online at <http://www.atp.nist.gov/eao/sp950-1/helpmate.htm>, retrieved on Nov. 23, 2010, Mar. 1999, 3 pages.
Luna, Nancy, “Robot a New Face on Geriatric Care”, ocregister.com, Aug. 6, 2003, 3 pages.
Mack, Michael J., “Minimally Invasive and Robotic Surgery”, The Journal of the American Medical Association, vol. 285, No. 5, Feb. 7, 2001, pp. 568-572.
Mair, G. M., “Telepresence—The Technology and its Economic and Social Implications”, Technology and Society, Technology and Society at a Time of Sweeping Change, Proceedings of International Symposium, Jun. 20-21, 1997, pp. 118-124.
Martin, Anya, “Brighter Days Ahead”, Assisted Living Today, vol. 9, Nov./Dec. 2002, pp. 19-22.
McCardle et al., “The Challenge of Utilizing New Technology in Design Education”, Loughborough University, Idater, 2000, pp. 122-127.
Meng et al., “E-Service Robot in Home Healthcare”, Proceedings of the 2000 IEEE/RSJ, International Conference on Intelligent Robots and Systems, 2000, pp. 832-837.
Metz, Cade, “HP Labs”, available online at <http://www.pcmag.com/article2/0,2817,1130820,00.asp>, Jul. 1, 2003, 4 pages.
Michaud, Anne, “Introducing ‘Nursebot’”, available online at <http://www.cs.cmu.edu/˜nursebot/web/press/globe_3_01/index.html>, retrieved on May 5, 2008, Sep. 11, 2001, 4 pages.
Microsoft Corporation, Inc., “Microsoft NetMeeting 3 Features”, available online at <http://technet.microsoft.com/en-us/library/cc723477.aspx>, retrieved on Jun. 26, 2012, 2012, 6 pages.
Montemerlo, Mike, “Telepresence: Experiments in Next Generation Internet”, available Online at <http://www.ri.cmu.edu/creative/archives.htm>, retrieved on May 25, 2008, Oct. 20, 1998, 3 pages.
Murphy, Robin R., “Introduction to A1 Robotics”, A Bradford Book, The Massachusetts Institute of Technology Press, 2000, 487 pages.
Nakajima et al., “A Multimedia Teleteaching System using an Electronic Whiteboard for Two-Way Communication of Motion Videos and Chalkboards”, Robot and Human Communication, Proceedings of 2nd IEEE International Workshop, 1993, pp. 436-441.
Nakazato et al., “Group-Based Interface for Content-Based Image Retrieval”, Proceedings of the Working Conference on Advanced Visual Interfaces, 2002, pp. 187-194.
Nakazato et al., “Group-Oriented User Interface for Digital Image Management”, Journal of Visual Languages and Computing, vol. 14, No. 4, Aug. 2003, pp. 45-46.
Nersc, “Berkeley Lab's RAGE Telepresence Robot Captures R&D100 Award”, Available online at <https://www.nersc.gov/news-publications/news/nersc-center-news/2002/berkeley-lab-s-rage-telepresence-robot-captures-r-and-d100-award/>, Retrieved on Jan. 22, 2014, Jul. 2, 2002, 2 pages.
“Nomad XR4000 Hardware Manual”, Release 1.0, Nomadic Technologies, Inc., Mar. 1999, 34 pages.
North, Michael, “Telemedicine: Sample Script and Specifications for a Demonstration of Simple Medical Diagnosis and Treatment Using Live Two-Way Video on a Computer Network”, Greenstar Corporation, 1998, 5 pages.
Ogata et al., “Development of Emotional Communication Robot: WAMOEBA-2R—Experimental evaluation of the Emotional Communication between Robots and Humans”, Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, 2000, pp. 175-180.
Ogata et al., “Emotional Communication Robot: WAMOEBA-2R-Emotion Model and Evaluation Experiments”, Proceedings of the International Conference on Humanoid Robots, 2000, pp. 1-16.
Related Publications (1)
Number Date Country
20150081338 A1 Mar 2015 US
Provisional Applications (5)
Number Date Country
61650205 May 2012 US
61674794 Jul 2012 US
61674796 Jul 2012 US
61674782 Jul 2012 US
61766623 Feb 2013 US
Continuations (1)
Number Date Country
Parent PCT/US2013/031708 Mar 2013 US
Child 14550744 US