Vibratory separators are used to separate solid particulates of different sizes and/or to separate solid particulate from fluids. Various industries use vibratory separators for filtering materials, for example, the oil and gas industry, the food processing industry, the pharmaceutical industry, and the agriculture industry. A vibratory separator is a vibrating sieve-like table upon which solids-laden fluid is deposited and through which clean fluid emerges. The vibratory separator may be a table with a generally perforated filter screen bottom. Fluid is deposited at the feed end of the vibratory separator. As the fluid travels down the length of the vibrating table, the fluid falls through the perforations to a reservoir below, leaving the solid particulate material behind. The vibrating action of the vibratory separator table conveys solid particles left behind to a discharge end of the separator table.
The vibratory shaker includes a screen disposed within a basket of the vibratory separator. The screens themselves may be flat or nearly flat, corrugated, depressed, or contain raised surfaces. Due to the vibration or shaking of the vibratory separator, and the materials processed through the vibratory separator, the screens, as well as other parts, in the separator may wear over time. Therefore, screens are removably secured in the basket so they can be removed for repair or replacement.
The above described apparatus is illustrative of one type of shaker or vibratory separator known to those of ordinary skill in the art.
The following is directed to various examples of embodiments of the disclosure. The embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. In addition, those having ordinary skill in the art will appreciate that the following description has broad application, and the discussion of any embodiment is meant only to be an example of that embodiment, and not intended to suggest that the scope of the disclosure, including the claims, is limited to that embodiment. Specifically, while embodiments disclosed herein may reference shale shakers or vibratory separators used to separate cuttings from drilling fluids in oil and gas applications, one of ordinary skill in the art will appreciate that a vibratory separator (or vibratory shaker) and its component parts as disclosed herein and methods disclosed herein may be used in any industrial application. For example, vibratory separators in accordance with embodiments disclosed herein may be used in the food industry, cleaning industry, waste water treatment, and others.
Certain terms are used throughout the following description and the claims refer to particular features or components. As those having ordinary skill in the art will appreciate, different persons may refer to the same feature or component by different names. This document does not intend to distinguish between components or features that differ in name but not function. The figures are not necessarily to scale. Certain features and components herein may be shown exaggerated in scale or in somewhat schematic form and some details of conventional elements may not be shown in interest of clarity and conciseness.
In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . .” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first component is coupled to a second component, that connection may be through a direct connection, or through an indirect connection via other components, devices, and connections. Additionally, directional terms, such as “above,” “below,” “upper,” “lower,” etc., are used for convenience in referring to the accompanying drawings.
Embodiments disclosed herein relate generally to vibratory separators, and in particular, to vibratory separators having one or more high capacity screen assemblies. High capacity screen assemblies may be used to increase or maximize the amount of fluid capacity of a vibratory separator (e.g., the number of gallons per minute of drilling fluid or mud that a vibratory separator can process). The higher fluid capacity a vibratory separator has, the fewer separators and screens may be used to maintain drilling operations. High capacity sifting or filtering screens are designed to maximize the flow rate of drilling fluids which may be processed and include an assembly of parts which involve additional manufacturing and assembly processes.
High capacity screen assemblies may include, for example, a modified single screen that provides higher effective processing capacity than a standard or conventional single screen. For example, a high capacity screen assembly may include a screen frame having a first screening surface disposed above a second screening surface. In other words, a single screen frame includes a two-tier screening surface. The two-tier screening surface may be integrally formed with the screen frame or one or both of the two tiers of the screening surface may be coupled to the screen frame. In some embodiments, the first screening surface may be coupled to the second screening surface or may be coupled to the screen frame.
In some embodiments, a high capacity screening assembly may include one or more screen inserts installed into a screen frame. For example, a screen frame may include a screen surface having a plurality of openings, and a screen insert disposed in a first opening of the plurality of openings of the screen frame. A single screen frame or deck having two screening surfaces (i.e., two-tier screening surface), may provide a larger screening surface area than the screening surface area of the screen frame alone and/or may provide double screening of a material within a single screen frame when the two screening surfaces of the single screen frame are positioned in series so that fluid passes through two screening surface of the screen frame. Examples of two-tier screening assemblies are shown and described in WO 2013/188322, assigned to the assignee of the present application, and incorporated by reference in its entirety.
Embodiments of the present disclosure provide a screen frame with a mating or sealing surface configured to engage a screen insert inserted into an opening of the screen frame. Embodiments of the present disclosure also provide a screen insert with a mating or sealing surface configured to engage one or more longitudinal or transverse ribs of a screen frame when the screen insert is inserted in an opening of the screen frame. The mating and/or sealing surfaces of the screen frame and/or screen insert may be configured to reduce or prevent leaks between the screen insert and the screen frame in accordance with embodiments disclosed herein.
The mating face may be provided between the screen frame and the insert. In some embodiments, a gasket may be installed to provide a seal between the insert and the screen frame. To alleviate the need for a gasket to provide a satisfactory seal, the mating face may be moved from a top mesh surface of the screen frame to a lower sealing surface of the screen frame. The mating face may taper to a point which creates a convoluted path, making it likely that solids that find the path will pack out and create a filter cake, blocking unwanted particles from passing through.
To increase the flow rate of wellbore fluid through a screen frame, a screen frame insert is inserted into an opening of the screen frame. The screen frame insert increases the surface area of the screen frame, by providing another screening surface for the wellbore fluid. The openings of the screen are formed by the intersection of a plurality of longitudinal ribs and a plurality of transverse ribs. In some embodiments, a mating surface may be located on a longitudinal rib or may be located on a transverse rib. In other embodiments, the mating surface may be located on both longitudinal ribs and both transverse ribs, thus surrounding the opening. The mating surface may be located on any combination of a longitudinal rib and/or a transverse rib, such as could be designed by one of ordinary skill in the art.
In some embodiments, the screen frame insert may also include a plurality of openings formed by the intersection of a plurality of longitudinal ribs and a plurality of transverse ribs. In some embodiments, a sealing surface may be located on a longitudinal rib or may be located on a transverse rib. In other embodiments, the sealing surface may be located on both longitudinal ribs and both transverse ribs, thus surrounding the opening. The sealing surface may be located on any combination of a longitudinal rib and/or a transverse rib, such as could be designed by one of ordinary skill in the art. In some embodiments, the sealing surface of the screen frame insert corresponds to the mating surface of the screen frame. In some embodiments, the sealing surface of the screen frame insert corresponds to the mating surface of the screen frame.
By having mating surfaces and sealing surfaces which correspond, insertion of the screen frame insert into the screen frame may be assisted. The corresponding mating surfaces and sealing surfaces may also aid in blocking unwanted particles passing through. After inserting the screen frame insert into the opening of the screen frame and aligning the corresponding mating surfaces and sealing surfaces, a tortuous path makes it likely that any solids finding the path would create a filter cake. To ensure the screen frame insert is “seated” onto the screen frame, force may be applied, such that the corresponding mating surfaces and sealing surfaces form a seal.
In yet other embodiments, the screen frame insert may include an extending member which may engage with at least one of the longitudinal ribs and/or the transverse ribs of the screen frame. In some embodiments, the screen frame insert may engage the screen frame via one or more clips located on the extending member. In other embodiments, the longitudinal ribs and/or the transverse ribs of the screen frame may include a plurality of teeth which engage with the extending member of the screen frame insert. Embodiments of the screen frame and screen frame insert are described below.
Referring to
In some embodiments, the screen insert unit 101 may include a plurality of longitudinal ribs 104 and one or more transverse ribs 106 defining individual sections of the screen insert unit 101. A screen insert unit 101 may have a single section, two sections, three sections, four sections, or more, depending on the application the screen insert. The longitudinal and transverse ribs 104, 106 of the screen insert unit 101 may provide structural stability to the screen insert unit 101 and/or to a screen mesh disposed on top of the screen insert unit 101. A top surface of the screen insert unit 101 may have a rectangular surface area. The top surface area of the screen insert unit 101 may be based on the shape of the screen frame 100. A screen insert unit 101 may have a single lower portion or insert portion 150, two lower portions or insert portions, three lower portions or insert portions, four lower portions or insert portions, or more, depending on the application of the screen insert unit 101. In certain embodiments, and as shown in the figures, a lower portion 150 of the screen insert unit 101 may be generally square-shaped or rectangular-shaped to fit within a generally rectangular or square opening 105 of the screen frame 100. In other embodiments, the lower portion 150 of the screen insert unit 101 may have a cross-sectional shape which corresponds with the cross-sectional shape of the opening 105 in the screen frame 100, including but not limited to circular, oval, triangular, and other known shapes. The screen insert units 101 may be inserted in one or more openings 105 of the screen frame, such that the screen insert unit 101 extends upward from a top surface of the screen frame 100 to provide an additional screening surface. Thus, each screen insert unit 101 includes an insert portion or lower portion 150 and a screening portion or upper portion 140. In some embodiments, the screen insert unit 101 will have a plurality of insert portions or lower portions 150 corresponding to a number of openings 105 of the screen frame 100. For example, in one embodiment, as shown in
In some embodiments, the shape and size of each of the openings 105 defined by the plurality of transverse ribs 107 and longitudinal ribs 109 may be the same. In other embodiments, the shape and size of each of the openings 105 may vary. For example, in some embodiments, one or more openings 105a may be configured such that the shape and size of the opening 105a corresponds to a configuration (e.g., shape and size) of an insert portion 150 of a screen insert unit 101. One or more other openings 105b of the screen frame may have a configuration different from the openings 105a configured to receive an insert portion 150 of a modular screen insert unit 101. In this embodiment, the one or more other openings 105b may be configured to allow material to pass from an upper surface to a bottom surface of the screen 100 during processing of a material, but may not be configured to receive a modular screen insert unit 101. Various configurations of openings 105a configured to receive a modular screen insert unit 101 are discussed in more detail below.
As shown in
Each opening 105 of the screen frame 100 is defined by a portion of a first longitudinal rib 109a, a portion of a second longitudinal rib 109b (adjacent the first longitudinal rib 109a in the plurality of longitudinal ribs), a portion of a first transverse rib 107a, and a portion of a second transverse rib 107b (adjacent the first transverse rib 107a in the plurality of transverse ribs). As noted above, one or more openings 105 are configured to receive an insert portion 150 of a screen insert unit 101. Specifically, the first and second longitudinal ribs 109a,b and first and second transverse ribs 107a,b, which define the opening 105a, may be configured to correspond to a mating surface or surfaces of the insert portion 150 of the screen insert unit 101. For example, the first and second longitudinal ribs 109a,b and first and second transverse ribs 107a,b may each include a feature or profile (e.g., an arrangement of surfaces, vertical, horizontal, sloped, notched, etc.) configured to collectively provide a seat 125 configured to receive and seal against the screen insert unit 101. Examples of such features or profiles are described in detail below.
For example, as shown in
The second longitudinal rib 109b may include a second side surface 130 opposite the sloped first side surface 120 of the first longitudinal rib 109a. In opening 105a configured to receive a screen insert unit 101, the second side surface 130 extends downwardly from the top surface 122 of the second longitudinal rib 109b (which forms part of a top surface of screen frame 100) to a second sealing surface 134. The second side surface 130 may be substantially vertical or may include a slope (not shown). The second sealing surface 134 extends from the second side surface 130 towards the opening 105a to a second inner surface 136 of the second longitudinal rib 109b. The second sealing surface 134 may be oriented in a generally horizontal position and the second inner surface 136 may be oriented in a generally vertical position. Similar to the first sealing surface 124, the second sealing surface 134 may include a longitudinal groove 138. The longitudinal groove 138 may be an upward facing groove configured to receive, locate, and facilitate securement of the screen insert 110 within the screen frame 100. The longitudinal groove 138 may also aid in sealing against fluid flow between the screen insert 110 and screen frame 100, i.e., to reduce or prevent fluid bypass of the screen insert. In some embodiments, the longitudinal groove 138 may be defined by opposing tapered surfaces. For example, as shown, the longitudinal groove 138 of the second sealing surface 134 may be v-shaped, similar to the longitudinal groove 128 of the first sealing surface 124; however, one of ordinary skill in the art will appreciate that the second sealing surface 134 may have a differently shaped longitudinal groove 138 including, for example, rounded, squared, w-shaped, etc.
As shown in
Turning now to
In opening 105a configured to receive screen insert unit 101, the second transverse rib 107b includes a fourth side surface 217 extending downwardly from the top surface 123 (which forms part of a top surface of screen frame 100) to a fourth sealing surface 216. The fourth sealing surface 216 extends inward from the fourth side surface 217 towards the opening 105a to a fourth inner surface 218 of the second transverse rib 107b. Thus, as shown in
As shown in
The inner surfaces 126, 136, 208, and 218 may be curvilinear in shape. For example, the first inner surface 126 protrudes outwardly towards opening 105 with ends tapering back towards the first side surface 120. Such a curvilinear shape may allow for a wider, and thus strengthened, inner surface while still maximizing the opening 105 for fluid flow therethrough. In some embodiments, the inner surfaces 126, 136, 208, and 218 may extend straight towards their respective side surface. For example, the first inner surface 126 may protrude outwardly towards opening 105 and extend straight back towards the first side surface 120. Thus, while examples are shown in drawings and discussed herein, one of ordinary skill in the art will appreciate that other shaped longitudinal ribs and transverse ribs may be used without departing from the scope of embodiments disclosed herein.
The lower portion 150 of the screen insert unit 101 may be configured to engage with the features and/or profiles of the first and second longitudinal ribs 109a,b and first and second transverse ribs 107a,b. For example, with reference to
As shown in
The second side 404 includes a second side surface 156 of the screen insert unit 101 that extends downwardly from a lower surface of the screen insert unit 101 or a second outer surface 190 of the screen insert unit 101 to a second mating surface 158. The second mating surface 158 extends from the second side surface 156 inwards towards the opening 170 to an outer surface 127 of the extending member 240. As shown, in some embodiments, the second mating surface 158 may be oriented in a generally horizontal position while the outer surface 127 of the extending member may be oriented in a generally vertical position. The second side surface 156 of the screen insert unit 101 is configured to engage the second side surface 130 of the second longitudinal rib 109b, the second mating surface 158 is configured to contact the second sealing surface 134 of the second longitudinal rib 109b, and the second inner surface 136 of the second longitudinal rib 109b is configured to contact the outer surface 127 of the extending member 240. While the second mating surface 158 is shown to engage the groove 138 of the second sealing surface 134, in other embodiments, the groove 138 may be formed in the second mating surface 158 and the second sealing surface 134 of the second longitudinal rib 109b would be configured to contact the groove 138.
As shown in
As shown in
The sloped first side surface (not shown) of the frame 100 is configured to engage a corresponding sloped first side surface 152 of a lower portion 150 of the screen insert, creating an in-situ sealing mechanism after some time of apparatus operation when sediment and small solids in the fluid flow create a filter-cake in the space between the sloped first side surface 120 and the corresponding sloped first side surface 152 and thus block unwanted fluid flow between the screen insert unit and screen frame. Additionally, the sloped first side surface 120 is intended to aid the location of the screen insert unit into the screen frame during assembly.
Referring now to
As shown in
A slight pressure may be applied while urging the screen insert unit 101 into the screen frame 100 to engage the extending member 240 with at least one of the first inner surface 126 of the first longitudinal rib 109a, the second inner surface 136 of the second longitudinal rib 109b, the third inner surface 208 of the first transverse rib 107a, and the fourth inner surface 218 of the second transverse rib 107b, having an interference fit therebetween, and to engage the outwardly facing clips 245 with a bottom surface of at least one of the first inner surface 126 of the first longitudinal rib 109a, the second inner surface 136 of the second longitudinal rib 109b, the third inner surface 208 of the first transverse rib 107a, and the fourth inner surface 218 of the second transverse rib 107b.
Further, as shown in
While the description above provides various examples of features and profiles of a screen insert unit coupled to a screen, one of ordinary skill in the art will appreciate that various modifications to various features and profiles may be used to secure an insert to a screen and aid in providing a seal between the screen insert unit and the screen to prevent fluid bypass of the screen insert unit without departing from the scope of embodiments disclosed herein. For example, one of ordinary skill in the art will appreciate that the angle of the sloped first side surface 120 and the angle of the corresponding sloped first side surface 152 may vary depending on, for example, the desired screening surface area of the screen insert 110, the width of an upper portion 140 of the screen insert 110, the width of the lower portion 150 of the screen insert 110, the width of the opening 105, the desired or expected flow rate of material to be separated, etc. In this embodiment, the sloped first side surface 120 and the corresponding sloped first side surface 152 have the same angle. The angle of the sloped first side surface 120 and the corresponding sloped first side surface 152 may be between, for example, 10 degrees and 80 degrees. In some embodiments, the angle of the sloped first side surface 120 and the corresponding sloped first side surface 152 may be between 30 degrees and 60 degrees. In yet other embodiments, the angle of the sloped first side surface 120 and the corresponding sloped first side surface 152 may be between 10 degrees and 50 degrees or between 25 degrees and 75 degrees. One of ordinary skill in the art will appreciate that the sloped first side surface 120 and the corresponding sloped first side surface 152 may be of any degree based on a given application. A plurality of screen inserts in a modular unit may have the same or varying angles of the sloped first side surface 120 and the corresponding sloped first side surface 152 between each of the plurality of screen inserts in the modular unit. The sloped first side surface 120 and the corresponding sloped first side surface 152 need not have the exact same angle in certain embodiments.
Further, the screen insert units 101 may be made of any material suitable for a particular application, e.g., oilfield screens, wastewater treatment screens, food processing screens, etc. For example, glass-filled polypropylene may be used in certain embodiments. In other embodiments, glass-filled nylon may be used. Steel reinforcements may also be used inside the screen insert units 101 to add rigidity. The screen insert units 101 may be integrally molded inserts or assembled insert components.
Additionally, a mesh screen (not shown) may be applied to the top of the screen insert unit 110. The mesh screen may have any sized apertures as will be appreciated by one having ordinary skill in the art. As an embodiment, the mesh screen may have mesh that is rectangular, square or oblong in shape. The mesh may be interlocking or calendared or may have a design to increase fluid flow with respect to a similar sized mesh. The mesh screen may be secured to the screen insert unit 101 prior to the screen insert unit 101 being inserted into the openings 105 of the screen frame 100. Alternatively, the screen insert unit 101 may have mesh applied prior to being inserted into the openings 105 of the screen frame 100. The mesh screen may be fastened to the screen insert unit in a number of ways including using fasteners, adhesives, and other known attachment methods. For example, in the case of a composite material, the mesh screen may be secured to the screen frame 100 by melting the composite material to secure the screen frame 100 to the mesh screen. A mesh screen may also be applied to the top of the screen frame 100 over cells 102 and openings 105 which do not include a screen insert unit 101.
The mesh screen size (i.e., the mesh spacing) may be determined by characteristics of the particular fluid and/or particulate matter to be processed. For example, in a wellbore application, the mesh screen size may be determined by characteristics of a particular wellbore. For example, depending on the wellbore characteristics, a coarse mesh screen may be used for drilling a wellbore containing, for example, mostly gumbo (e.g., soft, sticky, swelling clay or sticky shale) and a fine mesh screen may be used for drilling a wellbore containing, for example, higher sand content. In other embodiments, different mesh sizes (i.e., mesh screen having different size openings) may be used on different surfaces of the same screen. For example, a first mesh screen size may be used to cover the screen insert unit 101 and a second mesh screen size may be used to cover the openings 105 and cells 102 which do not include a screen insert unit 101. In other embodiments, a first mesh screen size may be used to cover an area of the screening surface nearest a proximate end of the shaker and a second mesh screen size may be used to cover an area of the screening surface nearest a distal end of the shaker.
Vibratory separators using conventional filtering screens may be retrofitted with high capacity filtering screens (screens and/or screen insert units) as described herein to reduce assembly time and effort. For example, conventional filtering screens, using gaskets for sealing against unwanted fluid flow between the components and requiring fittings for securing the components together, may be retrofitted with high capacity filtering screens as described herein.
Although only a few example embodiments have been described in detail above those skilled in the art will readily appreciate that many modifications are possible in the example embodiments without materially departing from scope of the present application. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures. It is the express intention of the applicant not to invoke 35 U.S.C. § 112, paragraph 6 for any limitations of any of the claims herein, except for those in which the claim expressly uses the words ‘means for’ together with an associated function.
The present document is based on and claims priority to U.S. Provisional Application Ser. No. 62/218,535, filed Sep. 14, 2015, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/051437 | 9/13/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62218535 | Sep 2015 | US |