Integrated circuits, including memory devices, often are used in computers and other electronic products, e.g., digital televisions, digital cameras, and cellular phones, to store data and other information. The timing of operations in an integrated circuit is governed by a clock signal.
Some embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings in which:
Integrated circuits may receive a clock signal from an external source such as a crystal oscillator. Some components of an integrated circuit may be harmed by a clock signal frequency that is too high or too low. The clock signal from the external source can be called an external clock signal. The external clock signal is often defined by a maximum frequency which is the highest frequency at which the integrated circuit is designed to safely operate, and is received at an unknown frequency that is often less than the defined maximum frequency. In some instances, no (at least practical) minimum frequency is defined, meaning some components of the integrated circuit may potentially operate at a frequency that is too slow for safe operation. For example, some components of an integrated circuit may be damaged if internal algorithms of the integrated circuit operate too long with a clock signal that is too slow. In addition, there are time-based hazards that may be accelerated by a low frequency clock signal. For example, program disturb occurs when heat dissipated during programming of a memory cell corrupts neighboring cells. The longer the heat is present, the greater the potential for program disturb. Energy is wasted if programming of a memory cell takes longer than necessary. Finally, voltages used during programming stress the memory device, and the stress is greater for a longer a programming operation. The inventor has discovered that the challenges noted above, as well as others, can be addressed by comparing the external clock signal with an internal clock signal generated in the integrated circuit, and choosing to operate according to the internal clock signal if the external clock signal is too slow.
For the purposes of this document, a high signal is a high voltage signal that can be represented by a “1”, and a low signal is a low voltage signal that can be represented by a “0”.
The external clock signal at the input 106 and the internal clock signal at the input 112 are also received by a frequency comparator 130 (e.g., a compare circuit). The frequency comparator 130 receives a compare bar signal at an input 132. The compare bar signal is an active low signal that can initiate a comparison between the external clock signal and the internal clock signal in the frequency comparator 130. The compare bar signal will be further described with respect to
The internal clock signal from the internal clock generator 111 at the input 112 is received in a clock input of a fourth D flip-flop 230 having a D input coupled to a QB output. A Q output of the fourth D flip-flop 230 is coupled to a clock input of a fifth D flip-flop 232 having a D input coupled to a QB output. A Q output of the fifth D flip-flop 232 is coupled to a clock input of a sixth D flip-flop 234 having a D input coupled to a high signal “1”. A Q output of the sixth D flip-flop 234 is coupled to a first input 242 of a fifth NAND gate 246.
The compare bar signal at the input 132 is coupled to reset inputs of the D flip-flops 210, 212 and 214 and to an R input of an SR latch 250. The Q output of the first D flip-flop 210 is coupled to an S input of the SR latch 250. A QB output of the SR latch 250 is coupled to reset inputs of the D flip-flops 230, 232 and 234.
The frequency comparator 200 can compare the frequency of the external clock signal with the frequency of the internal clock signal by latching a result of a race between the two clock signals through respective pulse counters.
The D flip-flops 210, 212 and 214 are a pulse counter for the external clock signal. The D flip-flops 210 and 212 are frequency dividers to divide the external clock signal by two at the Q output of the first D flip-flop 210 and by four at the Q output of the second D flip-flop 212. The compare bar signal at the input 132 coupled to the reset inputs of the D flip-flops 210, 212 and 214 is usually high to force the Q outputs of the D flip-flops 210, 212 and 214 to a low signal. The compare bar signal goes low for a period of time to allow the frequency comparator 200 to compare the frequency of the external clock signal with the frequency of the internal clock signal. The low compare bar signal at the reset inputs of the D flip-flops 210, 212 and 214 allows the D flip-flops 210, 212 and 214 to provide a divided external clock signal at the Q outputs of the D flip-flops 210 and 212. A rising edge of the divided external clock signal at the clock input of the third D flip-flop 214 provides a high signal at the Q output of the third D flip-flop 214 and the first input 222 of the fourth NAND gate 226 due to the high signal at the D input of the third D flip-flop 214. The high signal at the Q output of the third D flip-flop 214 indicates an end of the race for the external clock signal.
The D flip-flops 230, 232 and 234 are a pulse counter for the internal clock signal. The D flip-flops 230 and 232 are frequency dividers to divide the internal clock signal by two at the Q output of the fourth D flip-flop 230 and by four at the Q output of the fifth D flip-flop 232. The compare bar signal at the input 132 coupled to the R input of the SR latch 250 forces the QB output of the SR latch 250 high when the compare bar signal is high to force the Q outputs of the D flip-flops 230, 232 and 234 to a low signal. When the compare bar signal goes low the QB output of the SR latch 250 does not go low until the S input of the SR latch 250 is raised by a rising edge of the Q output of the first D flip-flop 210. The QB output of the SR latch 250 is low for a period of time to allow the D flip-flops 230, 232 and 234 to provide a divided internal clock signal at the Q outputs of the D flip-flops 230 and 232. A rising edge of the divided internal clock signal at the clock input of the sixth D flip-flop 234 provides a high signal at the Q output of the sixth D flip-flop 234 and the first input 242 of the fifth NAND gate 246 due to the high signal at the D input of the sixth D flip-flop 234. The high signal at the Q output of the sixth D flip-flop 234 indicates an end of the race for the internal clock signal.
The SR latch 250 does not change state until the external clock signal works its way through the first D flip-flop 210. The SR latch 250 gives the external clock signal a head start in the race with the internal clock signal such that the external clock signal will win the race, for example, when it has a higher frequency but lags behind the internal clock signal. The external clock signal may also win the race even if it has a lower frequency than the internal clock signal due to the SR latch 250.
A second input 252 of the fifth NAND gate 246 is coupled to an output of the fourth NAND gate 226, and a second input 256 of the fourth NAND gate 226 is coupled to an output of the fifth NAND gate 246. The output of the fourth NAND gate 226 is coupled to an inverter 262, the inverter 262 to provide the external clock enable signal at the second input 136 of the first NAND gate 110 shown in
If the external clock signal has a higher frequency than the internal clock signal, the first input 222 of the fourth NAND gate 226 will go high first, and the fourth NAND gate 226 will provide a low output signal that is inverted by the inverter 262 into a high external clock enable signal while the internal clock enable signal remains low. With reference to
If the frequency of the internal clock signal is greater than the frequency of the external clock signal by more than the frequency margin, the first input 242 of the fifth NAND gate 246 will go high first, and the fifth NAND gate 246 will provide a low output signal that is inverted by the inverter 264 into a high internal clock enable signal while the external clock enable signal remains low. With reference to
The frequency of the external clock signal may be the frequency of the mixed clock signal at the output 150 if it is substantially equal to the frequency of the internal clock signal. The frequency of the external clock signal may also be the frequency of the mixed clock signal at the output 150 if it is less than the frequency of the internal clock signal by less than the frequency margin when the two signals are out of phase. The external clock signal is given a preference over the internal clock signal by the SR latch 250 discussed above. The frequency margin is a fraction of the range of frequencies within which the integrated circuit is designed to safely operate. The magnitude of the frequency margin depends, at least in part, on the number of flip-flops in the pulse counters of the frequency comparator 200. The frequency margin is reduced by increasing the number of flip-flops in the frequency comparator 200. The mixed clock signal at the output 150 therefore has a low frequency boundary, but its frequency is not necessarily the higher of the external clock signal and the internal clock signal. For the frequency comparator 200 shown in
The memory cells in the array of memory cells 310 including a memory cell 350 can be non-volatile memory cells, such as floating-gate memory cells, charge trap memory cells or phase change memory cells. The memory cells in the array of memory cells 310 including the memory cell 350 are programmed, read and erased with the mixed clock signal that is provided from the output 150 of the clock circuit 100. Program disturb, energy use and voltage stress can all be reduced when the memory cells in the array of memory cells 310 including the memory cell 350 are programmed, read and erased with the mixed clock signal that is provided from the output 150 of the clock circuit 100.
The bus 560 may be interconnect traces on a circuit board or may be one or more cables. The bus 560 may couple the devices of the system 500 by wireless means such as by electromagnetic radiations, for example, radio waves. The peripheral device 558 coupled to the I/O controller 550 may be a printer, an optical device such as a CD-ROM and a DVD reader and writer, a magnetic device reader and writer such as a floppy disk driver, or an audio device such as a microphone.
The system 500 represented by
The various embodiments of the invention described herein and shown in
Although specific embodiments have been described, it will be evident that various modifications and changes may be made to these embodiments. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
The Abstract of the Disclosure is provided to comply with 37 C.F.R. §1.72(b), requiring an abstract that allows the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the claims. In addition, in the foregoing Detailed Description, it may be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as limiting the claims. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.